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SUMMARY

The marked increase in popularity of Bayesian methods in statistical practice over the last decade owes
much to the simultaneous development of Markov chain Monte Carlo (MCMC) methods for the evaluation
of requisite posterior distributions. However, along with this increase in computing power has come the
temptation to �t models larger than the data can readily support, meaning that often the propriety of the
posterior distributions for certain parameters depends on the propriety of the associated prior distributions.
An important example arises in spatial modelling, wherein separate random e�ects for capturing unstructured
heterogeneity and spatial clustering are of substantive interest, even though only their sum is well identi�ed
by the data. Increasing the informative content of the associated prior distributions o�ers an obvious remedy,
but one that hampers parameter interpretability and may also signi�cantly slow the convergence of the MCMC
algorithm. In this paper we investigate the relationship among identi�ability, Bayesian learning and MCMC
convergence rates for a common class of spatial models, in order to provide guidance for piror selection
and algorithm tuning. We are able to elucidate the key issues with relatively simple examples, and also
illustrate the varying impacts of covariates, outliers and algorithm starting values on the resulting algorithms
and posterior distributions. Copyright ? 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

The marked increase in popularity of Bayesian methods in statistical practice over the last decade
owes much to the simultaneous development of Markov chain Monte Carlo (MCMC) methods for
the evaluation of requisite posterior distributions. This is especially true in hierarchical modelling,
where previously foreboding multiple layers of random e�ects (whose estimation depends on the
‘borrowing of strength’ across typically independent but similar data components) can now be
accommodated fairly easily. However, along with this increase in computing power has come the
temptation to �t models larger than the data can readily support, meaning that the propriety of
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the posterior distributions for certain parameters depends on the propriety of the associated prior
distributions. In many models it is obvious which parameters are well identi�ed by the data and
which are not, thus determining which prior distributions must be carefully speci�ed and which
may be left vague. Unfortunately, in complex model settings these identi�ability issues may be
rather subtle. As such, many authors (for example, Carlin and Louis, [1], p. 188) recommend
avoiding such models unless the classi�cation of parameters as ‘identi�able’ and ‘unidenti�able’
is well understood.
Models for the analysis of areal data (that is, data which are sums or averages aggregated

over a particular set of regional boundaries) are a common example of this problem. Introduced
by Clayton and Kaldor [2] in an empirical Bayes context and later expanded to a fully Bayesian
setting by Besag, York and Molli�e [3], these models express the number of disease events in region
i, Yi, as a Poisson random variable having mean Ei exp(�i). Here, Ei is an expected number of
events and �i is a log-relative risk of disease, modelled linearly as

�i= x′iR+ �i + �i; i=1; : : : ; I (1)

In this equation the xi are explanatory spatial covariates, R is a vector of �xed e�ects, and X= {�i}
and M= {�i} are collections of region-speci�c random e�ects capturing regional heterogeneity
and clustering, respectively. Typically these spatial e�ects are captured by assuming the mixing
distributions

�i
iid∼N(0; 1=�h) and �i |�j 6=i ∼N(��i ; �

2
�i
); i=1; : : : ; I (2)

where

��i =

∑
j 6=i wij�j

∑
j 6=i wij

and �2�i
=

1
�c
∑

j 6=i wij

and the weights wij are �xed constants. In practice, one often takes wij =0 unless areas i and j are
adjacent (that is, share a common boundary). If areas i and j are adjacent, we set wij = 1, although
other forms of wij are possible [4; 5]. This distribution for M is called a conditionally autoregressive
speci�cation, which for brevity we typically write in vector notation as M∼CAR(�c). Note that
since this prior is speci�ed conditionally, the parameters are only uniquely determined up to an
additive constant. This problem is normally corrected either by insisting that the covariate vector
not include an intercept term, or by imposing the sum-to-zero constraint

∑I
i=1 �i=0. A fully

Bayesian model speci�cation is completed by specifying �xed values or prior distributions for
each of R; �h, and �c.
Intuitively, the identi�ability issue in equation (1) is obvious: the single data point Yi cannot

possibly provide information about �i and �i individually, but only about their sum, �i= �i + �i.
This is the usual notion of identi�ability, which a Bayesian might refer to as likelihood iden-
ti�ability. From a more formal mathematical point of view, if we consider the reparameteri-
zation from (X;M) to (X; W), we have the joint posterior p(X; W | y)∝L(W; y)p(X)p(W − X). This
means that

p(�i | �j 6=i ; W; y) ∝ p(�i)p(�i − �i | {�j − �j}j 6=i)

Since this conditional distribution is free of the data y, we say that �i is Bayesianly unidenti�ed
(Gelfand and Sahu [6]), a condition that can also be shown to hold for the �i. Note that this does
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not mean that the model precludes Bayesian learning about �i; this would instead require

p(�i | y)=p(�i)

This is a stronger condition than Bayesian unidenti�ability, since it says that the data have no
impact on the marginal (not just the conditional) posterior for �i.
Of course, in some sense identi�ability is a non-issue for Bayesian analyses, since given proper

prior distributions the corresponding posteriors must be proper as well, hence every parameter
can be well estimated. However, Bayesians are often drawn to vague priors, since they typically
ensure that the data play the dominant role in determining the posterior. In addition, most standard
reference priors [7], that is, distributions derived from formal rules, are not only vague but usually
improper as well. Posterior impropriety resulting from a (likelihood) unidenti�ed parameter having
an improper prior will manifest itself in the MCMC context as convergence failure. Unfortunately,
the problem may not be readily apparent, since a slowly converging sampler may produce output
that is virtually indistinguishable from one that will never converge due to an improper posterior!
Several authors (for example, Besag et al. [8]) have pointed out that MCMC samplers running

over spaces that are not fully identi�ed are perfectly legitimate, provided that their samples are used
only to summarize the components of the proper embedded posterior, that is, a lower-dimensional
parameter vector having a unique integrable posterior distribution (in our case, the �i). In the
context of our spatial model (1), however, the unidenti�ed components �i and �i are actually
interesting in their own right, since they capture the impact of missing spatial covariates which
vary globally (heterogeneity) and locally (clustering), respectively. For instance, Best et al. [9]
de�ne the quantity

 =
SD(M)

SD(X) + SD(M) (3)

where SD(·) is the empirical marginal standard deviation of the random e�ect vector in question. A
posterior for  concentrated near 1 suggests most of the excess variation (that is, that not explained
by the covariates xi) is due to spatial clustering, while a posterior concentrated near 0 suggests
most of this variation is mere unstructured heterogeneity. This genuine interest in the trade-o�
between X and M forces these authors into a search for proper yet vague priors for these two
components – a task complicated by the fact that the prior for the former is speci�ed marginally,
while that for the latter is speci�ed conditionally (see equation (2)). We return to these issues in
Section 3.
In the case of the partially identi�ed Gaussian linear model, y = X R + U with X less than full

column rank, Gelfand and Sahu [6] provide a surprising MCMC convergence result. They show
that under a 
at prior on R, the Gibbs sampler for the full parameter vector R is divergent, but the
samples from the identi�ed subset of parameters (say, T=X1R) form an exact sample from their
(unique) posterior density p(T | y). That is, such a sampler will produce identically distributed
draws from the true posterior for T, and convergence is immediate. The authors then consider a
logistic growth curve model (an example clearly outside the Gaussian family), and observe steadily
decreasing lag 1 sample autocorrelations in the Gibbs samples for T as the prior variance for R
increases. This leads them to postulate that such monotonic and continuous improvement in the
convergence rate for estimable functions will occur quite generally as the prior on R becomes more
and more vague. In subsequent work, Gelfand, Carlin and Trevisani [10] in fact show that, for a
broad class of Gaussian models with or without covariates, corr(T(t); T(t+1)) approaches 0 as the
prior variance for R goes to in�nity once the chain has converged.
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Unfortunately, in the case of our spatial models (1) and (2), one cannot choose such an ‘arbi-
trarily vague’ prior, since in this case the parameters would not be identi�ed, and thus the entire
joint posterior (and hence the marginal posteriors for X, M and  ) would become improper. As
such, guidance is needed on how to choose appropriate priors that will still produce acceptable
MCMC convergence behaviour. We investigate several such speci�cations, and show that a variety
of factors (such as the value of the data point Yi and the starting point of the MCMC chain for
�i and �i) can have a signi�cant e�ect on the observed convergence rate and estimated posterior
distributions.
The remainder of our paper is organized as follows. Section 2 investigates a very simple model

that uses Gaussian distributions but is analogous in many ways to our spatial model (1). In this
case, we demonstrate signi�cant non-monotonicity in the convergence rate when the starting points
for the chain are su�ciently far from the equilibrium distribution. Section 3 considers the more
advanced spatial setting, in the context of the oft-analysed Scottish lip cancer data [2]. Here
convergence behaviour is even more di�cult to predict; however, we also explore the Bayesian
learning within the system through the distribution of  , as de�ned in equation (3). Finally,
Section 4 discusses our �ndings and suggests directions for future research.

2. MOTIVATING EXAMPLE

To begin with, we consider perhaps the simplest example of a Bayesianly unidenti�ed model:

y | �; �∼N(�+ �; 1) (4)

where we place N(0; �21) and N(0; �
2
2) priors on � and �, respectively. Obviously this model would

rarely if ever be considered in practice, but we select it since it does �t into the Gaussian framework
of Gelfand and Sahu [6] and Gelfand, Carlin and Trevisani [10], and since the unidenti�ability
in its mean structure is of the same form as that in our spatial model of interest (1). A previous
analysis of this model by Carlin and Louis (Reference [1], p. 203), shows that moderate values
of �21 and �22 coupled with poor starting values for the sampler lead to slow convergence for �; �
and �= �+ �, but that this problem is not apparent from plots of � sample traces alone. That is,
even if posterior summaries are desired only for the well-identi�ed parameter �, the convergence
of the unidenti�ed parameters � and � must be monitored as well (say, using sample traces and
lag 1 sample autocorrelations). Here we focus on the convergence rate for �.
Let �21 =∞, and de�ne �= �22=(�

2
2 + 1). Thinking of � as a �xed tuning constant, the full

conditional distributions necessary for the Gibbs sampler are

� |y; �∼N(y − �; 1) and � |y; �∼N(�(y − �); �) (5)

The result of Gelfand and Sahu [6] ensures that as �→ 1 (that is, �22→∞), the samples for � and
� diverge but those for � converge immediately, while that of Gelfand, Carlin and Trevisani [10]
ensures that in running a Gibbs sampler using the full conditionals (5), corr(�(t); �(t+1) |y)= 0 for
every t and all values of �, once the sampler has converged. Note that the latter result does not
contradict the Gelfand and Sahu claim of monotonically improving convergence as �→ 1, since
it shows the convergence rate is in fact constant (and perfect, since the lag 1 autocorrelation is
0) for all �. However, the result pertains only to draws �(t) from the stationary distribution of
the Markov chain; the draws are uncorrelated once the sampler has converged. It says nothing
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Figure 1. Convergence plots, N(�; 1) model with �=0:9999.

about what may happen if the algorithm’s starting value �(1) is not a plausible draw from the true
stationary distribution of �.
To investigate the behaviour of this sampler during a pre-convergence ‘burn-in’ period, we ran

a version in which we set y=30 but �(1) =−30. In this case, unless � is quite large the starting
value for � will be quite far from its true posterior distribution. Figure 1 summarizes the �rst 100
draws from this sampler when �=0:9999, corresponding to an essentially 
at prior on � (recall the
prior on � is also 
at). The �rst row of the �gure shows the anticipated divergence of the � and �
chains, while the second row shows immediate convergence for � (lag 1 sample autocorrelation=
– 0.105), also as expected. Figure 2 then considers the e�ect of setting �=0:0001, so that the �
prior is now tightly centred around 0, in contrast to the 
at prior for �. Now convergence for �
(hence �) is immediate, and so � convergence is as well (lag 1 sample autocorrelation=–0.106),
as in the previous case.
The interesting situation arises in Figure 3, wherein we set �=0:9, a moderate value leading to

a weakly informative prior for �, but again maintaining the 
at prior for �. Now the poor starting
value for � leads to a burn-in period covering roughly the �rst 25 iterations, and noticeably slow
convergence for � (lag 1 sample autocorrelation=0.471). While again this does not contradict
the aforementioned theoretical results (the lag 1 sample autocorrelation based only on the �nal 75
post-burn-in iterations is an insigni�cant −0.144), it does illustrate a practical di�culty in their
implementation. Speci�cally, if good starting values are not available for every parameter in the
MCMC algorithm, observed convergence behaviour for the identi�ed subset need not improve
monotonically as the prior variance on the full parameter vector approaches in�nity (that is, as
� → 1 in our case). Di�culties like the one illustrated in Figure 3 may well be the reason for
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Figure 2. Convergence plots, N(�; 1) model with �=0:0001.

Figure 3. Convergence plots, N(�; 1) model with �=0:9.
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the past recommendations to ‘play it safe’ in such situations and use tightly informative priors for
all parameters not in the identi�ed subset. This after all is the Bayesian equivalent of the usual
frequentist approach to this problem; namely, imposing constraints on the parameter space. Figure 2
essentially sets �=0, analogous to the ‘corner point’ constraints used in ANOVA modelling; an
obvious alternative would be the summation constraint �+ �= k for some constant k.

3. CONVERGENCE FOR SPATIAL MODELS

Perhaps the most worrisome thing about the results of the previous section is that the troublesome
case summarized in Figure 3 is precisely the one most often used in the analogous spatial model
(1). That is, one typically selects values for �h (the marginal heterogeneity precision) and �c (the
conditional clustering precision) that are neither very large nor very small. If instead hyperpriors
are speci�ed on �h and �c, they also tend to favour moderate values. We choose to proceed with
�xed prior values for the precision parameters; this will enable us to track changes in convergence
diagnostics and posterior values as the prior precisions change. Use of prior distributions instead
would require the speci�cation of at least two hyperprior control parameters, further muddying the
interpretation of changes. We focus on three di�erent values for each of �h and �c: 1; 10−3 and
10−6, which produce a fairly wide range in the corresponding variances.
As alluded to above, the choices of prior values (or hyperpriors) are made to preserve the

interpretability of the �i and �i random e�ects: a very large �h (or �c) e�ectively constrains these
parameters to all be the same, while very small values for both will preclude their convergence
altogether. Convergence of the identi�able �i will still occur if the Markov chain begins from the
stationary distribution (that is, if good starting values for these random e�ects are available), but
of course this may not be the case, especially if the number of regions is at all large.
To investigate the degree of this problem, we consider a data set originally presented by Clayton

and Kaldor [2] and reanalysed by many others since. This data set provides observed and expected
cases of lip cancer in the 56 districts of Scotland for 1975–1980; the expected cases were calculated
using the method of Mantel and Stark [11], that is, they are based on MLEs of the age e�ects in a
simple multiplicative risk model. For each district i we also have one covariate xi (the percentage
of the population engaged in agriculture, �shing or forestry) and a list of which other districts j
are adjacent to i. We thus apply models (1) and (2) with adjacency weights wij =1 if regions i
and j are adjacent, and 0 otherwise.
Since Gibbs sampler code for analysing these data and model is readily available as an example

in the BUGS software package [12], we use this language to carry out our investigation. The newest
version of BUGS for Windows, WinBUGS 1.2, automatically imposes the sum-to-zero constraint∑I

i=1 �i=0 numerically by recentring the �i samples around their own mean at the end of each
iteration [9]. All older versions of the program (including the one we used) do not, which in
turn prohibits the inclusion of an intercept term in the log-relative risk model. Note that neither
approach solves the Bayesian identi�ability problem with the �i due to the continued presence
of the covariate coe�cient � and the �i. The sample implementation in the BUGS manual also
initializes � and all the random e�ects to 0. Our investigations suggest that this value is not far
from the bulk of the posterior mass for all of these parameters, so any convergence rate patterns
we observe in the �i or �i as functions of �h and �c should not be signi�cantly a�ected by our
use of these starting values. We �rst examine the pattern of the lag 1 autocorrelations for � and
the �i across a range of �h and �c values, and then examine the behaviour of  for evidence of
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Bayesian learning across the prior scenarios speci�ed by the precision parameters. All simulations
are carried out with the same random seed to ensure comparability.

3.1. Convergence results

The data set lists the 56 counties in order of decreasing standardized mortality ratio, SMRi=Yi=Ei,
from a high of 6.52 to a low of 0. As such we consider convergence behaviour for �1; �27; �47 and
�56, corresponding to districts with observed rates much higher, about the same, and much lower
than expected. Running the Gibbs sampler for 10 000 iterations, Figure 4 plots the lag 1 sample
autocorrelations for these four parameters and the covariate e�ect � under our three choices for
each of �h and �c, 1; 10−3 and 10−6.
Using the BUGS parameterization, the well-identi�ed parameter in this setting is

�i= logEi + �xi + �i + �i

(recall the Ei are assumed known). Our simulations suggest near-immediate convergence for all
�i (all within-chain lag 1 sample autocorrelations less than 0.2 in magnitude), in concert with the
aforementioned theoretical work. However, convergence for the sum of the random e�ects, �i= �i+
�i, is rather more di�cult to predict. For �56, convergence behaviour is more or less as predicted by
the Gelfand and Sahu [6] result for the corresponding �i, in that having both priors tighter leads to
generally poorer convergence, as measured by the lag 1 ACF. When the heterogeneity prior is very
tight (�h = 1:0), a vague clustering prior (�c = 10−6) is able to compensate and produce a small lag
1 ACF; similarly when the clustering prior is tight, a vague heterogeneity prior also produces good
convergence behaviour. However, for �1, �27 and �47 (top three panels) the pattern is reversed,
with somewhat poor to very poor convergence for all nine prior combinations except the most
restrictive one (�h = �c = 1). Apparently the SMR of 0 in districts 55 and 56 encourages a posterior
log-relative risk of −∞, creating a con
ict with the tighter priors, hence slower convergence, but
for regions whose data encourage more moderate SMR values, identi�ability of the �i weakens,
so that the tighter priors o�er a relative convergence bene�t.
Finally, the situation for � is particularly discouraging. With the exception of the tightest prior

combination (�h = �c = 1), all prior settings produce lag 1 autocorrelations greater than 0.998,
a value so large that acceptable posterior summaries cannot be produced even with our 10 000
samples. Indeed, trace plots (not shown) using poorer starting values (for example, �i=�i=−2 for
all i) have not yet located the bulk of the posterior mass by iteration 10 000. Again, to the extent
that only the well-identi�ed parameters (the �i) are of interest, this sampler remains legitimate;
however, it would not be appropriate in settings where we have genuine interest in the impact of
the AFF covariate on lip cancer risk.
Incidentally, we were somewhat surprised by this poor performance for �, especially since most

previous analyses of this data set do not mention any particular di�culty in estimating it via
MCMC. However, these analyses generally place hyperprior distributions on �c and �h, which in
turn a�ord the opportunity to learn about these parameters from the data. For instance, Conlon
and Waller [5] use gamma hyperpriors having mean 1 for both �h and �c, the �rst vague (variance
1000) and the second weakly informative (variance 10). These authors report resulting posterior
medians of 55.2 and 2.95 for �h and �c, respectively – much larger than any of the �xed values
we tried and suggestive of signi�cant learning for these two hyperparameters. Since our setting
instead �xes (often quite small) values for �h and �c, this learning is precluded, and the excess
uncertainty seems to propagate through the system to the �xed e�ect �.
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Figure 4. Lag 1 sample autocorrelations for �1, �27, �47, �56 and �, Scottish lip cancer data, various priors
for �h and �c.
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Figure 5. Lag 1 sample autocorrelations for all �i, when �c = 10−3 and �h = 1.

Focusing on a single prior for the moment (�c = 10−3 and �h = 1), interesting di�erences in
the �i convergence rate emerge for regions having di�ering values of the covariate xi. Figure 5
plots the lag 1 ACF values by region where the plotting character indicates the value of the
covariate. Note that the regions having xi=0 or 1 (which incidentally includes region 47 from
Figure 4) consistently exhibit convergence behaviour similar to the two regions with an SMR of 0
(regions 55 and 56). This convergence is better than all other regions, and sometimes vastly better.
The other regions (all having covariate values of 7 or more) have lag 1 ACF values which are
essentially 1; even under the tightest prior combination (�h = �c = 1, not shown), the lag 1 ACF
for these regions hovers around a disappointing 0.7. A possible explanation for this behaviour is
similar to the one given above for the regions having SMR=0; namely, that when the covariate
xi equals 0 or 1, the covariate is essentially ‘not in the model’, and thus the burden of explaining
the total Poisson variability falls on �i and �i. This in turn leads to enhanced identi�ability for �i,
hence more rapid convergence. For the remaining regions, however, the strong covariate and SMR

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2279–2294
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values leave relatively little in the data for �i and �i to explain, hence rapid convergence only
for the tightest of priors. A more algorithmic explanation is that �’s slow convergence adversely
a�ects that for those �i’s corresponding to large xi, but not those having small xi.

3.2. Results for Bayesian learning

If vague priors for the �i and �i are indeed inappropriate, this forces us to use proper priors
instead. As mentioned above, the usual strategy is to attempt to specify priors for �h and �c
which are ‘fair’ (that is, that assume excess Poisson variability in the data is due in equal parts
to heterogeneity and to clustering); again, this is di�cult due to the conditional structure of the
M prior and the marginal structure of the X prior. The posterior proportion of excess variability
due to the clustering parameters is then summarized by the posterior distribution of  , given in
equation (3). However, recently some authors have doubted whether this approach is sensible,
given that the parameters in question are not identi�ed. Is any ‘Bayesian learning’ (from marginal
prior to marginal posterior) really occurring for this proportion  ?
To investigate this, we must �rst make a connection between the prior distribution of  and

the prior precision parameters �c and �h. This is di�cult, since  itself is an empirical quantity,
de�ned only in terms of the marginal distribution of the actual random e�ects, while �c is part
of a conditional, theoretical variance expression. To reconcile the two quantities, we �rst note the
observation of Bernardinelli et al. [13] that the prior marginal standard deviation of �i is roughly
equal to the prior conditional standard deviation divided by 0.7, that is

SD(�i)
:=

1
0:7

√
(ni�c)

(6)

where ni=
∑

j wij, the number of neighbours for the ith region. To account for the varying number
of neighbours across regions, we replace ni by �n=264=56=4:71, the average number of neighbours
across the Scotland map.
Since  =SD(M)=(SD(X)+SD(M)) from equation (3),  has a non-degenerate prior distribution

even when �c and �h are �xed, due to the variability in M and X. We can thus use equation (3) to
approximate the prior mean of  for �xed �c and �h. In order to explore a range of  values, we
consider each  value in the set { 89 ; 67 ; 45 ; 23 ; 12 ; 13 ; 15 ; 17 ; 19}, a reasonably good covering of the range of
possible values from 0 to 1. We do this by selecting �h so that our approximate prior SD(�i) value
is a multiple of our approximate prior SD(�i) value, that is, we set SD(�i) ≡ 1=√�h = cSD(�i) for
each c in { 18 ; 16 ; 14 ; 12 ; 1; 2; 4; 6; 8}. We then ran 27 simulations, corresponding to the nine  values
above arising from each of our three �c values (1, 10−3 and 10−6), monitoring the convergence
and �nal posterior distribution of  in each case.
Figure 6 shows the posterior medians and 95 per cent equal-tail credible intervals arising from

our 27 MCMC runs of 10 000 iterations each, with the �gure’s three panels corresponding to the
three possible values of �c. Within each panel, the dotted line connects points having equal prior
and posterior  . For the �c = 10−6 case shown in Figure 6(a), there is very little Bayesian learning
when  is small (that is, when �h is small, so the priors are both vague), with broad intervals
and posterior medians closely tracking the prior values. However, for larger  values the posterior
medians move towards values smaller than the corresponding prior values, with the con�dence
intervals actually excluding the prior values for the two largest  ’s (that is, there is ‘signi�cant’
Bayesian learning about  under the least vague heterogeneity priors).
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Figure 6. Posterior medians and 95 percent equal-tail credible intervals for  , three di�erent �c values. Points
of prior and posterior equality are connected by the dashed lines.
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Much more prior-to-posterior movement is evident in the �c = 10−3 case shown in
Figure 6(b). This panel shows the familiar Bayesian shrinking of the posterior away from the
prior and towards the data-supported value; the only 95 per cent credible interval failing to ex-
clude its prior mean is the one using the ‘fair’ prior value  =0:5. Finally, Figure 6(c) shows
the setting where �c = 1, a rather informative prior on the amount of excess clustering. Here
when  is small we see prior-posterior disagreement, with the data suggesting more clustering
than the prior. Increasing  apparently brings the prior into agreement with the data, to the
point where the posterior credible intervals become very narrow and do not exclude the prior
 value.
The main message from Figure 6 is that, despite the non-identi�ability of the �i and �i param-

eters, using  in equation (3) to judge the relative presence of excess clustering and heterogeneity
in a spatially referenced data set is indeed sensible, since Bayesian learning about  can still
take place. However, the issue of selecting an appropriate scale for �c and �h is critical, since as
the �gure shows, the learning pattern can change markedly with this scale. It is also important to
remember that the range of prior �h values induced by our chosen  pattern varies greatly with our
three chosen �c values; for instance, �c = 10−6 implies 3:6×10−8 ¡ �h ¡ 1:5×10−4, while �c = 1
implies 3:6× 10−2 ¡ �h ¡ 1:5× 102. Best et al. [9] investigate this issue by comparing several
gamma(�; �) hyperpriors (having mean 1 and variance 1=�) for �c and �h on several simulated
Scotland data sets, and then seeing which combination most accurately reproduces the true values
in the resulting posterior. While this approach appears quite sensible, further experimentation with
other regional patterns is certainly warranted to see if prior selection recommendations can be
made in more general contexts.
Of course, strictly speaking Figure 6 does not really measure ‘Bayesian learning’ for  , since it

does not have a proper prior; our approach using approximation (6) does not explicitly incorporate
the sum-to-zero constraint needed to make the CAR prior proper. Moreover, our approach provides
only a ‘best guess’ for  a priori, and thus we really obtain only a rough idea of the prior-to-
posterior movement of  . An alternative, more direct approach to measuring Bayesian learning
for  is possible using the latest release of the Windows-based version of the BUGS program,
WinBUGS 1.2, freely available over the web at http://www.mrc-bsu.cam.ac.uk/bugs/. This
program allows direct sampling from the centred version of the CAR prior (that is, the version
incorporating the sum-to-zero constraint) via its car.normal function, and so a direct investigation
of Bayesian learning for  is possible in this sense. That is, we simply rerun our Gibbs sampling
code without the data, and compare the resulting prior draws for  to the posterior draws already
obtained.
Figure 7 summarizes some results from this alternative approach. For one of our �c values

(�c = 10−3), the three columns of this �gure compare the histograms of the prior (top row) and
posterior (bottom row)  samples for the largest, middle and smallest �h values considered in
Figure 6. The ‘best prior guesses’ for  ( 89 ;

1
2 and

1
9 , respectively) are marked by vertical ref-

erence lines; notice that in all three cases these lines are quite close to the middle of the prior
histograms. This suggests that our rough approach making use of the Bernardinelli et al. [13]
‘rule of thumb’ in equation (6) works rather well, justifying its use in Figure 6. The vertical
alignment of the prior and posterior histograms also makes it easy to identify the Bayesian learn-
ing that is taking place; its magnitude and direction are also in concert with that indicated in
Figure 6(b).
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Figure 7. Histograms of prior and posterior  samples, �c = 10−3. Columns correspond to the three indicated
choices of �h, which in turn correspond to ‘best prior guesses’ for  (indicated by vertical reference lines)

of 8
9 ;
1
2 and

1
9 , respectively.

4. SUMMARY AND DISCUSSION

In summary, our results indicate that the convergence rates of parameters of interest in spatial
models can be a�ected by the starting values of the chains, the precise prior values chosen,
and even the values of the response variables and covariates themselves. In the speci�c context
of spatial models like (1), we also �nd that Bayesian learning about  (the equation (3) measure
of the proportion of excess variability due to clustering) is indeed possible, and that formula
(6) for converting the conditional CAR precision parameter �c into a marginal standard deviation
seems to lead to a reasonable method for calibrating the heterogeneity and clustering priors (in
particular, for obtaining a setting in which  ≈ 1

2 a priori). Figure 7 suggests that a way to check
this rough calibration would be to sample directly from the resulting prior and see if the resulting
 samples are indeed centred at the desired value. We hasten to add, however, that since our key
�ndings are speci�c to a single data set (the over-analysed and oft-maligned Scotland data), our
recommendations should be tested under a variety of spatial data sets, featuring di�erent adjacency
and covariate patterns.

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2279–2294



MARKOV CHAIN MONTE CARLO FITTING OF SPATIAL MODELS 2293

In the light of our Section 3.1 results, one might wonder if using di�erent priors for di�erent
random e�ects would be a sensible approach for improving convergence. Such an approach would
be hard to justify, however, since it nulli�es the exchangeability in the spatial prior and implicitly
uses the data to help make the prior choice. The use of vague or ultravague priors for the �i and
�i and subsequent monitoring and summarization of only the well-identi�ed log relative risks �i

might also be contemplated. However, this approach would seem to forfeit the interpretability of
the random e�ects so prized by many spatial statisticians, and in any case need not produce good
convergence for all parameters (as seen in the �rst, second and last panels of Figure 4). In the
presence of covariates xi, this approach also seems to greatly weaken the identi�ability of the
corresponding covariate e�ect �, which may often be of substantive interest.
Given the occasionally high autocorrelations present in such systems, one might worry about the

starting values used in the MCMC algorithm. We experimented with four di�erent yet plausible
sets of starting values for the random e�ects: (�i; �i)= (0; 0); (−2; 2); (−2; 0) and (–2,–2), with all
regions initialized identically. Again using 10 000 iterations, we found little posterior dependence on
the starting values for the �i, �i and  , but marked dependence for the �i, �i and �. Initializing
the �i and �i random e�ect to 0 is certainly plausible (since they are additive adjustments to
internally standardized log-relative risks), but very long runtimes may still be required to achieve
an adequate ‘e�ective sample size’ (Kass et al., [14], p. 99) for �.
As such, spatial models do not seem to provide a good example of a setting where prior

selection could plausibly be based on a strategy to improve the convergence of the computational
algorithm. Since our results in Figures 6 and 7 suggest that  is a sensible summary of the relative
contribution of the clustering parameters to the spatial model (1), future work looks to developing
more general guidelines for proper prior selection (for example, determining an appropriate scale)
and calibration (for example, encouraging prior  values near 0.5, or in some other way insisting
on an equal a priori allocation to heterogeneity and clustering). In this paper we deliberately
avoided using hyperpriors for �c and �h, due to the resulting increase in the di�culty of the
calibration problem, but since such hyperpriors are commonly used in practice, investigation of
Bayesian learning for  in their presence is clearly warranted.
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