
SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Using Software Architecture for Code Testing

Henry Muccini1, Antonia Bertolino2 and Paola Inverardi1

1 Dipartimento di Informatica, Universitá dell’Aquila, Via Vetoio 1, 67100 L’Aquila,

{muccini,inverard}@di.univaq.it

2 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” (ISTI-CNR), Area della Ricerca CNR di

Pisa, 56100 Pisa, Italy, antonia.bertolino@isti.cnr.it

Abstract

Our research deals with the use of Software Architecture (SA) as a reference model for testing the

conformance of an implemented system with respect to its architectural specification. We exploit the

specification of SA dynamics to identify useful schemes of interactions between system components and

to select test classes corresponding to relevant architectural behaviors. The SA dynamics is modeled by

Labeled Transition Systems (LTSs). The approach consists of deriving suitable LTS abstractions called

ALTSs. ALTSs offer specific views of SA dynamics by concentrating on relevant features and abstracting

away from uninteresting ones. Intuitively, deriving an adequate set of test classes entails deriving a set

of paths that appropriately cover the ALTS. Next, a relation between these abstract SA tests and more

concrete, executable tests needs to be established, so that the architectural tests derived can be refined

into code-level tests. In the paper, we use the TRMCS case study to illustrate our hands-on experience.

We discuss the insights gained and highlight some issues, problems, and solutions of general interest in

architecture-based testing.

Keywords

D.2 Software Engineering/D.2.11 Software Architectures

D.2 Software Engineering/D.2.5 Testing and Debugging

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

D.2 Software Engineering/D.2.5 Testing and Debugging/D.2.5.k Testing strategies

D.2 Software Engineering/D.2.5 Testing and Debugging/D.2.5.s Tracing

I. Introduction

In recent years, the study of software architecture (SA) has emerged as an autonomous

discipline requiring its own concepts, formalisms, methods, and tools [30], [3], [24]. SA

represents a very promising approach since it handles the design and analysis of com-

plex distributed systems and tackles the problem of scaling up in software engineering.

Through suitable abstractions, it provides the means to make large applications man-

ageable. SAs support the formal modeling of a system, allowing for both a topological

(static) description and a behavioral (dynamic) one. SA models the system in terms of

components and connectors, where components represent abstract computational subsys-

tems, and connectors formalize the interactions among components. Both industry and

academia have actively used SA to improve the dependability of complex systems [3], [24],

and SA-based processes have been proposed to model and analyze real systems [3], [30].

A crucial part of the development process is testing: software testing consists of the

dynamic verification of a program’s behavior, performed by observing the execution of the

program on a selected set of test cases [6]. In particular, specification-based testing checks

that the Implementation Under Test (IUT) fulfills the specifications, used to “capture” all

and only the important properties against which the IUT has to be tested.

The importance of the use of formal methods in software specification and design does

not need to be stressed. Several authors have highlighted the advantages of formal methods

in testing as well, and several techniques have been proposed to select tests from semi-

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

formal [46], algebraic [5] and model-based [19] specifications.

Recently, various approaches have been proposed on testing driven by the architectural

specification [28]. Among these, we have been addressing the problem of identifying suit-

able functional test classes for the testing in-the-large of complex real-world systems [8],

[9]. This paper builds on our previous work [8], [9], presenting the fully developed approach

in a coherent, comprehensive way.

Our goal is to provide a test manager with a systematic method to extract suitable test

classes for the higher levels of testing and to refine them into concrete tests at the code

level. Our approach is based on the specification of SA dynamics, which is used to identify

useful schemes of interactions between system components, and to select test classes cor-

responding to relevant architectural behaviors. Our SA dynamics is modeled by Labeled

Transition Systems (LTSs). The approach consists of deriving suitable LTS abstractions,

called Abstract LTSs or ALTSs. ALTSs offer specific views of the SA dynamics by con-

centrating on relevant features and abstracting away from uninteresting ones. Intuitively,

deriving an adequate set of test classes entails deriving a set of paths that appropriately

cover the ALTS. Then the architectural tests must be refined into code-level tests in order

to be executed. To this end, we follow here a stepwise, manual methodology, to deal with

the lack of a formal relation between the SA description and the code.

Note that our approach differs from, for example, applying a coverage criterion directly

over the complete LTS. Indeed, the ALTS is a tool to understand what must be tested.

In other words, it represents a model of the system, whereas a coverage criterion is just a

method to efficiently produce a set of test scenarios from the specified model.

The contribution of this paper is twofold: i) it develops a methodology for the extraction

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

of test specifications relevant at an architectural level, and ii) it tests out the viability of

the approach in a real-world context. The empirical investigation with a case study was

instrumental for the latter goal.

The remainder of this paper is organized as follows: Section II presents an overview

on the approach; Section III outlines the case study to which we apply the approach.

Section IV describes the approach in detail, and Section V presents its application to the

case study. Sections IV and V may be read concurrently: they are organized to present

the theory and practice, respectively, of each step of our approach. Section VI discusses

some problems and insights gained, and Section VII considers related work. Section VIII

summarizes the paper and presents future work plans.

II. An Overview of Our Approach to SA Testing

Several Architectural Description Languages (ADLs) rely on Labeled Transition Systems

to model the SA dynamics [31], [38], [36], [24]. In our approach, we assume the existence

of an SA description, in some ADL, and that an LTS model can be derived from such

a description, whose node and arc labels represent, respectively, states and transitions

relevant in the context of SA dynamics. Note that the LTS model expresses aspects

such as concurrency, nondeterminism, asynchrony, and so on, relative to architectural

nonsequential behaviors. We recall the definition of an LTS.

Definition II.1: A Labeled Transition System (LTS) is a quintuple (S,L, S0,SF , T),

where S is the set of states, L is the set of distinguished labels (actions) denoting the LTS

alphabet, S0 ∈ S is the initial state, SF ⊆ S is the set of final states, and T = {
l
−→⊆

S × S | l ∈ L} is the transition relation labeled with elements of L.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

In the following, we use the terms LTS “labels” and “actions” interchangeably.

A path p on an LTS, where p = S0
l1−→ S1

l2−→ S2
l3−→ . . .

ln−→ Sn, is a complete path

if S0 is the initial state and Sn is a final state. Hereafter, for the sake of brevity, an LTS

path will also be denoted by its sequence of labels (e.g., p = l1.l2.ln).

Our approach to SA-based testing consists of four logical steps. As the starting point

we assume that the software architect, by looking at the SA dynamics from different view-

points, defines various obs-functions over the SA model, each one highlighting a specific

perspective of interest for a test session (Step 1). Applying each obs-function to the LTS,

an Abstract LTS (ALTS) can be generated, which is a reduced LTS showing only inter-

esting behaviors with respect to the selected view (Step 2). On this graph which is much

more manageable than the original LTS, the software architect chooses a set of important

patterns of behaviors (paths over the ALTS) to be tested (Step 3). Finally, these high-

level tests are passed to the software tester, who actually has to run the tests and observe

whether the current implementation “conforms” to its architectural model (Step 4). We

say that the implementation does not conform to the specification if some interactions

described at the architectural level would not be allowed in the implementation.

Steps 1 to 3 present a rigorous method to extract architectural tests from an SA spec-

ification. Step 4 deals with the execution of these tests at the code level. As far as this

paper is concerned, we could not rely on a strictly formal refinement process from SA

to code. So the last step is dealt with using a less formal approach than the first three.

Indeed, applying the approach to the case study is not an a posteriori validation, but is

instrumental in understanding the issues that concretely arise in the execution of SA-based

tests at code-level, as well as in working out a systematic procedure to address them.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

User1

Router Server

Timer

AlarmUR AlarmRS (c)
Check0

Nofunc

Clock

AckSR (c)

AckRU0

User2

AlarmUR0

AlarmUR1

Check1

Check

AckRU1

Fig. 1. TRMCS components and connectors

III. The TRMCS Case Study

The Teleservice and Remote Medical Care System (TRMCS) [32] is a system that pro-

vides monitoring and assistance to disabled or elderly people. A typical service is to send

relevant information to a local phone-center so that the family, along with those concerned

with medical or technical assistance, can be timely notified of critical circumstances.

From the informal requirements of TMRCS, we derive an SA model by defining the

system topology (static view of components and connectors) and the system dynamics

(the interactions).

The resulting TRMCS software architecture is shown in Figure 1. In it, boxes repre-

sent components (i.e., processing elements); arrows identify connectors (i.e., connecting

elements, in this case channels), and arrow labels refer to the data elements exchanged

through the channels. In particular, we identify four component types:

• User: sends either an “alarm” or a “check” message to the Router process. After sending

an alarm, he/she waits for an acknowledgment from the Router. In our analysis, we

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

consider the case in which two Users can concurrently send alarms and checks.

• Router: waits for signals (check or alarm) from the User. It forwards the alarm messages

to the Server and monitors the state of the User via check messages.

• Server: dispatches the help requests.

• Timer: sends a clock signal at each time unit.

The Java implementation of the TRMCS was developed independently, on the basis of

the same informal requirements.

This case study serves three main purposes: to empirically validate the feasibility of the

approach as a whole; to specifically work out the procedure relative to Step 4, as stated

above; and finally, to verify to what extent the approach is able to identify conformance

errors between the SA reference model and the implementation.

IV. The Approach

In this section, we describe the four steps of our approach to SA-based testing.

A. Step 1: Obs-functions Definition

From the SA specification of the system under analysis, we derive a Labeled Transition

System that models the SA dynamics. In principle, this graph could directly be used as

the reference model for deriving the test scenarios. The problem is that the LTS provides

a global, monolithic description; it is a vast amount of information flattened into a graph.

Extracting from this global model the observations of system behavior that are relevant

for validation is a difficult task. This is a problem that always arises in formal testing:

with the exception of very small routines, we need ways for exploring the LTS and deriving

representative behaviors that constitute the test suite.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Our aim is to provide software architects with a key to decipher the LTS. A common

practice in the analysis of complex systems is to derive from the global SA model a set

of simplified models that provide different system views. Accordingly, the basic idea of

our approach is to allow for the formal derivation from the LTS of reference models for

testing, each representing a relevant pattern of behavior; with some abuse of terminology,

we refer to each of the selected patterns of behavior as an SA testing criterion. Intuitively,

an SA testing criterion abstracts away interactions that are uninteresting with regard to

a specific test concern. Referring to the LTS definition, an SA testing criterion naturally

partitions the LTS actions L into two groups: relevant interactions R (i.e., those we want

to observe by testing) and nonrelevant interactions NR (i.e., those we are not interested

in at this time), so that L = R ∪ NR and R ∩ NR = ∅.

We therefore associate with an SA testing criterion an obs-function that maps the rele-

vant LTS labels to a specified interpretation domain D, whereas any other (nonrelevant)

one is mapped to a distinct element τ . The obs-function may also be considered as a hiding

operator that makes a set of actions invisible to its environment and may relabel the others

in an interpretation domain D. The relabeling may help emphasize the semantic meaning

of observable actions. More precisely:

obs : L −→ L′, so that obs(r ∈ R) = d ∈ D, obs(n ∈ NR) = τ , and L′ = D ∪ τ .

We can also extend the obs-function definition to LTS paths so that if p = l1.l2.ln,

obs(p) = obs(l1.l2.ln) = obs(l1).obs(l2).obs(ln).

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

B. Step 2: Abstract LTS Derivation

We use the obs-function as a means to derive a smaller automaton from the LTS which

still expresses all high-level behaviors we want to test according to the selected SA test-

ing criterion, but hides away any other irrelevant behavior. The automaton is called an

Abstract LTS (ALTS).

The ALTS is obtained from the LTS via two transformations: i) by relabeling each tran-

sition T ∈ LTS according to the obs-function, and ii) by minimizing the resulting automa-

ton with respect to a selected equivalence relation. We analyzed trace- and bisimulation-

based equivalences, both familiar from the theory of concurrency [42]. If one wants to

reduce as much as possible the number of τ transitions and corresponding nodes, then

a trace equivalence can be considered. In fact, this equivalence abstracts from τ -labeled

transitions and concentrates on any computational paths of transitions that are different

from τ . A bisimulation-based equivalence is more suited when one wants to observe how

the system evolves step-by-step, even along τ -moves (preserving the branching structure).

The relabeled automaton is called the ObsLTS, and the reduced one is the ALTS.

Figure 2 gives an example of the ALTS construction: the original LTS is analyzed,

identifying the observation of interest (Figure 2.a); the abstraction is applied over this

LTS with respect to the selected obs-function (Figure 2.b); the trace equivalence mini-

mization function is applied. The resulting ALTS is shown in Figure 2.c. Figure 2.d, in

contrast, presents a (bisimulation-based) branch minimization. As can be seen, the branch

minimization is more informative since it gives more data on the original LTS structure.

Taking into consideration that i) the aim of ALTS is to provide a more compact and

analyzable graph, and that ii) the ALTS automaton is built to highlight only interesting

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

act2

act1

act1S1

S5

S2

act0

a) b)

S4

act0

act2

act1

act2

d2

d2
c)

S3act3 d3

B

A

Cd3

d2

d2

d2

S0

Obs-function:
act0 -> , act1 -> ,

act2 -> d2, act3 -> d3

d2

d2D’

B’
d2

C’d3

d2

d)

A’

τ

τ

τ

ττ

τ

τ

τ τ

Fig. 2. a) LTS; b) ObsLTS; c) trace-based ALTS; d) bisimulation-based ALTS

behaviors, the trace equivalence is more suitable for our purposes. Moreover, full infor-

mation about the LTS may be retrieved (if necessary) by using the algorithm explained

in Appendix A.

The ALTS generation process1 can be proved to be correct and complete, that is, each

ALTS path comes from an LTS path (ALTS does not introduce new paths) and each LTS

path can be mapped onto an ALTS path (ALTS does not loose information), as discussed

in Appendix B.

C. Step 3: Test Selection

Once the ALTS associated with an SA testing criterion via an obs-function has been

derived, the task of deriving an adequate set of tests according to the selected test criterion

1The ALTS derivation is completely automated: we customized the existing FC2Tools [21], taking advantage

of the functions “fc2explicit” and “fc2weak.” A short description of the tools that support our approach can be

found in Appendix C.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

is converted into the task of deriving a set of complete paths appropriately covering the

ALTS.

Given the relatively small dimensions of an ALTS, a tester might consider to apply

extensive coverage criteria on it. However, ALTS paths clearly specify architectural be-

haviors at a higher abstraction level than the original LTS because they are based on an

obs-function applied over the LTS. Thus, one ALTS complete path can correspond to many

possible LTS paths (i.e., architectural tests). Therefore, less thorough coverage criteria

seem more practical.

We apply here McCabe’s [40], [54] test technique as it is a good compromise between arc

and path coverage in the case of ALTS coverage; in fact, any base set of paths covers all

edges and nodes in the graph (i.e., this coverage subsumes branch and statement coverage

testing).

Clearly, any ALTS coverage criteria, such as McCabe’s or other potential alternatives,

need to be evaluated empirically, considering the cost and effectiveness of the obtained

test sets (i.e., the number of test sequences and their respective effectiveness in detecting

potential nonconformance failures). This evaluation, which would entail comparing various

criteria applied over the same SA, is outside the scope of this paper.

When considering what to take as the specification of an “architectural test” we are left

with two options. The first option, which is the one we take in this paper, is to consider

an ALTS complete path as the test specification. In this case, the test is specified at a

more abstract level and the tester instinctively focuses the testing on a restricted set of

interactions (those in the ALTS alphabet). A second option could be to identify those

LTS paths of which the selected ALTS path is an abstraction (this process is illustrated

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

in Appendix A). Because LTS paths are more detailed than ALTS paths, in this case

the tester would have more information about how to perform the tests, but also stricter

requirements; that is, the tester doesn’t have as much freedom in choosing the code-level

tests. In practice, it might actually be more difficult to test the conformance of source

code to the test specification.

In either case (ALTS or LTS path), an architectural test is essentially a sequence of

system actions that are meaningful at the SA level.

D. Step 4: Code-Level Testing

In this section, we discuss how a tester can use the architectural paths, as produced in

Section IV-C, to test the implementation. In general, when the test cases are derived from

an analysis of the specifications, two major problems remain to be solved: traceability and

test execution.

• Traceability concerns “relating the abstract values of the specification to the concrete

values of the implementation” [19]. Here we are concerned with traceability from the SA-

level of abstraction. Several researchers have recognized the importance and difficulty of

this problem [55], [48], but no one has yet found a general solution.

If a well-formalized architecture-based development process is in place, SA specifications

can be used to formally drive the generation of low-level design and code, and thus the

correspondence is maintained throughout the process. For instance, some ADLs (such

as C2ADL [12] and xADL [18]) provide development support for implementing software

architectures in Java and C++ [13]. Explicit mapping rules drive the source-code imple-

mentation of architectural components, connectors, and messages via objects.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

Considering specifically the process followed in the experience described in this paper,

due to real-world constraints SA specifications and low-level design have been intermixed

without any formal mapping, but using ad-hoc monitoring and code-analysis techniques.

While this is certainly not the ideal process, it is a realistic and plausible approach, and

we discuss some interesting insights gained. The procedure we followed consists of Step

4.1 and Step 4.2, described later in this section.

• Test execution entails forcing the Implementation Under Test (IUT) to execute the

specific sequence of events that has been selected. This is a difficult task, which becomes

harder in distributed and concurrent settings, where non-determinism is introduced. In

fact, depending on the system state, a same input might excite different sequences of

interactions (among several concurrent processes) and produce different results. A detailed

discussion of this problem is outside the scope of this paper. In brief, one can distinguish

between deterministic- and nondeterministic-testing approaches, as discussed below in

Step 4.3.

In the following, we show how Step 4 is divided into three substeps, explaining how we

tackled both problems.

Step 4.1: In this substep we map architectural components and actions (identified by

the LTS labels) into their low-level implementation. As mentioned before, our experience

was conducted in a realistic context, in which we could not make any assumptions on the

existence of formal relationships between software architecture and design elements. We

thus analyzed the system implementation to understand how architectural actions (e.g.,

high-level functionalities) have been implemented in the code by sequences of partially or-

dered method calls. Note that more than one implementation sequence, might correspond

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

to one LTS action. In such cases, to test the architectural action, all of them should be

considered. Of course, the same implementation action (e.g., a method call) may occur in

several implementation sequences, corresponding to different architectural actions. This is

not a problem, however, because we test sequences and not single implementation actions.

Step 4.2: This second substep takes into account how an ordered sequence of actions

(i.e., an architectural test) is implemented by a sequence of low-level functions. Since the

TRMCS implementation is in Java, we map actions into sequences of method calls. If each

action is implemented, at the low level, by a sequence of methods calls, it would be useful

to understand how sequences of these actions (i.e., an architectural test) are implemented

by the source code.

Two alternatives may be taken into account: i) each action is implemented by a sequence

of operations, and they run sequentially; or ii) the actions can run concurrently. In the

former case, a sequence of architectural actions is implemented by the sequential execution

of the respective low-level sequence diagrams. In the latter case, the operations may

interleave with each other. Note that in this context, “acti before actj” does not mean

that all the operations implementing acti must run before all the operations implementing

actj. It means that some operations that identify the action termination must be executed

following a given order, whereas the others may be run in any order. In Section V,

we further develop this idea in the context of the TRMCS system, and the operations

identifying the termination of actions are denoted as Synchronization Methods (SMs).

Step 4.3: At this point, we run the code and evaluate the execution traces with respect to

the expected ones (i.e., those identified in Step 4.2) to analyze the source code conformance

with respect to the architectural behavior. To execute the desired test sequence, our

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

pragmatic approach is to repeat the launching of a program run under some specified

input conditions several times until the sequence is observed (or a maximum number of

iterations is reached).

In the literature, this is called a nondeterministic testing approach. In contrast, the

deterministic testing approach (firstly proposed by Carver and Tai [16]) forces a program to

execute a specified test sequence by instrumenting it with synchronization constructs that

deterministically reproduce the desired sequence. Instrumentation is commonly used in

software testing [28], but care must be taken to contain the consequent execution overhead

and avoid the triggering of unexpected behaviors. Alternatively, a language-based dynamic

approach for Java requiring no instrumentation has been recently proposed in [35]. A test

driver automatically executes the calls as specified in a test sequence, controlling the

synchronization of the Java threads through a clock. A related, yet different problem is

execution replay for reproducing an observed trace, as required, e.g., during debugging to

force a series of synchronizarion events that led to a failure. A tool for the deterministic

replay of Java multithreaded applications is presented in [17].

V. Applying the Approach

We now apply the approach introduced in the previous section to the TRMCS case study

presented in Section III. We specify the TRMCS components behavior by using the Finite

State Process (FSP) [38] language. The behavior of each component is modeled by one

or more FSP processes, and each process is described by an LTS which is automatically

generated by the Labeled Transition System Analyzer (LTSA) tool [34].

By running the LTSA tool on the TRMCS FSP specification, we obtain a (minimized)

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

LTS composed of 256 states. The LTS labels of interest for our analysis are:

1) u[i].sendAlarm To Router: an Alarm msg is sent by Useri to the Router;

2) u[i].receiveAck From Router: the Router Acknowledgment msg is received by Useri;

3) r.[i].sendAlarm To Server: the Router forwards the Alarm msg to the Server;

4) sa[0].sendAck To Router: the Server sends the Ack to the Router;

5) r.sendNoFunc To Server: the Router sends the NoFunction msg to the Server.

The steps presented in the following description are the same as those presented in the

previous section.

A. Applying Step 1

Given the informal description of the TRMCS in Section III, due to obvious safety-

critical concerns, we may want to test the flow of an Alarm message, from the moment a

User sends it to the moment the User receives an acknowledgment. In the terminology used

in Section IV, the software architect may decide that an important SA testing criterion is

“all those behaviors involving the flow of an Alarm message through the system.”

From this quite informal specification, a corresponding obs-function can be formally

defined. This is called “AlarmObs” and is shown in Figure 3.a. The set of relevant

actions R for AlarmObs contains all of the actions (i.e., elements of the LTS alphabet)

that specifically involve sending an Alarm message by a User (label 1 above), or the User’s

subsequent reception of the Router acknowledgment (label 2). The corresponding actions

must be relabeled in D according to their semantic interpretation. As shown in Figure 3.a,

the four actions involving Alarm sending and Ack receiving are relabeled (AlarmiDispatch,

AckiDispatch), and any other is hidden.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

D = {Alarm1Dispatch, Alarm2Dispatch, Ack1Dispatch, Ack2Dispatch}

obs (u.0.sendAlarm_To_Router) = Alarm1Dispatch:User1 issues an Alarm msg
obs (u.0.receiveAck_From_Router) = Ack1Dispatch :User1 receives an Ack
obs (u.1.sendAlarm_To_Router) = Alarm2Dispatch :User2 issues an Alarm msg
obs (u.1.receiveAck_From_Router) = Ack2Dispatch : User2 receives an Ack

For any other rule r , obs (r) = τ

D = {FRa1, FRa2, TRack1, TRack2, FRno}

obs (r.[0].sendAlarm_To_Server) = FRa1 : Alarm1 from Router to Server
obs (r.[1].sendAlarm_To_Server) = FRa2 : Alarm2 from Router to Server
obs (sa[0].sendAck_To_Router) = TRack1 : Ack1 from Server to Router
obs (sa[1].sendAck_To_Router) = TRack2 : Ack2 from Server to Router
obs (r.sendNoFunc_To_Server) = FRno : NoFunctioning From Router to Server

For any other rule r , obs (r) = τ

b)

a)

Fig. 3. a) AlarmObs obs-function; b) ServerRegression obs-function

An alternative scenario could be that the TRMCS is already functioning and one of the

components is being modified. We then want to test whether the modified component still

interacts with the rest of the system in conformance with the original description of the

SA. In this case, the observation point of the software architect is “all the interactions that

involve this component.” If, for instance, the component being modified is specifically the

Server, then the corresponding obs-function is the one given in Figure 3.b: FR{a1, a2, no}

is used to relabel the messages the Server receives from the Router, and TR{ack1, ack2}

is used to relabel the messages sent to the Router. This SA testing criterion is referred to

hereafter as “ServerRegression.”

B. Applying Step 2

With reference to the AlarmObs criterion, after applying reduction and minimization

algorithms, we obtain the ALTS depicted in Figure 4.a (the shaded circle represents the

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

Ack2Dispatch

Alarm1Dispatch
Alarm2Dispatc

h

Alarm2DispatchAlarm1Dispatch

D

A

B C

Ack1Dispatch Ack2Dispatch

Ack1Dispatch

a) b)
FRno

FRno

FRno

TRack1TRack2

FRno

TRack2TRack1

FRa1FRa2

FRa2FRa1

D

A

B

C

Fig. 4. a) AlarmObs ALTS; b) ServerRegression ALTS

initial state, which in this example also coincides with the only final one). This ALTS rep-

resents in a concise, graphical way how the Alarm flow is handled: after an Alarm is issued

(e.g., Alarm1Dispatch), the system can nondeterministically react with one of two possible

actions: i) elaborate this Alarm and send back an Acknowledgment (Ack1Dispatch), or ii)

receive another Alarm message from another User (Alarm2Dispatch).

With reference to the ServerRegression criterion, the ALTS in Figure 4.b is obtained. It

shows the interactions involving the Server component: it can receive Alarm1 (“FRa1”)

or Alarm2 (“FRa2”) from the Router, and afterwards it can nondeterministically receive

other Alarms or send back Acknowledgments (“TRacki”). At any moment, it can receive

the NoFunc message from the Router (“FRno”).

C. Applying Step 3

With reference to the ALTS derived for the AlarmObs criterion (Figure 4.a), a list of test

paths derived according to McCabe’s coverage criterion [54] follows with the corresponding

Test Sequences (TSs):

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

Path1a: A B A, TS1a:Alarm1Dispatch.Ack1Dispatch;

Path2a: A B D B A, TS2a:Alarm1Dispatch.Alarm2Dispatch.Ack2Dispatch.Ack1Dispatch;

Path3a: A B A C A, TS3a:Alarm1Dispatch.Ack1Dispatch.Alarm2Dispatch.Ack2Dispatch;

Path4a: A B D C A, TS4a:Alarm1Dispatch.Alarm2Dispatch.Ack1Dispatch.Ack2Dispatch;

Path5a: A B D C D C A, TS5a:Alarm1Dispatch.Alarm2Dispatch.Ack1Dispatch.Alarm1Dispatch.

Ack1Dispatch.Ack2Dispatch.

Let us consider, for example, Paths 2a, 3a, and 4a. These three paths are aimed at

validating that no Alarm messages in a series of two is lost, irrespectively of the order in

which they are processed. Moreover, for conformance testing purposes, we want to check

whether the system implementation enables all the sequences of actions envisioned at the

architectural level.

With reference to the ServerRegression observation and the associated ALTS (Figure

4.b), McCabe’s coverage criterion yields the following set of test paths with the corre-

sponding TS lists:

Path1b: A A, TS1b: FRno;

Path2b: A B A, TS2b: FRa1.TRack1;

Path3b: A B B A, TS3b: FRa1.FRno.TRack1;

Path4b: A B D B A, TS4b: FRa1.FRa2.TRack2.TRack1;

Path5b: A B A C A, TS5b: FRa1.TRack1.FRa2.TRack2;

Path6b: A B D C A, TS6b: FRa1.FRa2.TRack1.TRack2;

Path7b: A B D D B A, TS7b:FRa1.FRa2.FRno.TRack2.TRack1;

Path8b: A B D C C A, TS8b: FRa1.FRa2.TRack1.FRno.TRack2;

Path9b: A B D C D B A, TS9b: FRa1.FRa2.TRack1.FRa1.TRack2.TRack1.

Paths 1b, 3b, 7b and 8b, for example, are meant to verify that the NoFunc message (FRno

in Figure 4.b) can be received by the Server at any moment.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

D. Applying Step4

We now concentrate on the test sequences generated from the AlarmObs ALTS in Sec-

tion V-C. These tests involve three different components (User1, User2, and Router) and

two architectural events (AlarmDispatch and AckDispatch). By following the three steps

defined in Section IV-D, we have:

Applying Step 4.1:

AlarmDispatch and AckDispatch are the events of interest when considering the se-

lected architectural tests. We need to understand how the source code implements these

architectural actions.

The AlarmDispatch operation represents a system Input, and what we expect is that the

alarm process is started when the User pushes the Alarm button of the hardware device.

Following this reasoning, we start by analyzing the actions associated with pushing the

Alarm button, and we find that the Alarm functionality is implemented by two different

Java processes: the Alarm message is written into a socket and the Router periodically

reads the socket looking for new messages. The Ack function is implemented following a

similar scheme: the Router writes into a socket and the User waits on a defined socket

port.

The objects and the methods that implement the Alarm are shown in Figure 5. Let us

very briefly comment on it: from the User side (Fig. 5.al), the xUser object creates the User

object, if the if 1 condition is verified. After some time (in which internal operations can be

performed), if Users press the Alarm button (if 2), they thereby create a ClientConnection

and the SendNMessages (SNM) objects. The User calls the send() method of the SNM

object, which tries “n” times to create the socket. If the socket is created (if 3), the SNM

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

xUser User
RepeatEv
entAtTime

Client
Connection

SendN
Messages

TryEvent

xRouter
Master
Router

Server
Connection

Server
Socket

Receive
UserAlarm

Server
Service

ReceiveN
Messages

a1) User Send Alarm Scenario

a2) Router Receive Alarm Scenario

if_1

new()

if_2

new()

cc=new()

snm=new(cc,...)
new()

snm.send()
for (i=0; i<x)
runEvent() s= new

Socket()
if_3

s.out.writeLong(msg)

new()
new()

ss=new()
if_a new()

runEvent() while (true)
accept()

if_b rnm=new()

rnm.receive()

s.inTo.readLong()

if parameters
are correct

if User
pushes Alarm

button

try to create the
socket and to

write on it

if the
ServerSocket

has been
created

read into the
socket,
forever

AlarmSM

Fig. 5. The implementation of the AlarmDispatch

finally writes the Alarm message into the socket. From the Router side (Fig. 5.a2), the

Router graphical interface object (xRouter) creates a new instance of the MasterRouter

object, which in turn creates the ServerConnection object. It tries to create a ServerSocket

“ss”, and then a process is activated that continuously checks the ServerSocket port. In

this way, when a new message is written in the socket (if b) the socket is read and the

Alarm is received.

A similar analysis has been conducted for the Ack function.

Applying Step 4.2:

Now we will analyze how an architectural test (i.e., a sequence of actions) is imple-

mented by the code. Let us consider as an example TS3a, Alarm1Dispatch. Ack1Dispatch.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

Alarm2Dispatch. Ack2Dispatch. The actions of interest in this test sequence are AlarmiDispatch

and AckiDispatch (for i=1,2), and their order is such that Alarm1Dispatch happens before

Ack1Dispatch, which happens before Alarm2Dispatch, which happens before Ack2Dispatch.

At the architectural level, Alarm1Dispatch happens before Ack1Dispatch if the second

action is run after the first one has terminated. At the code level, the ordering relation

“happens before” can be interpreted in two ways:

i) If the code-level sequences implementing the AlarmiDispatch (Figure 5) and the

AckiDispatch actions are run sequentially, Alarm1Dispatch happens before Ack1Dispatch

if the Alarm scenarios in Figure 5 are run to completion before the Ack scenarios start.

ii) If the low-level scenarios can be concurrently run, their method calls may interleave.

In particular, if the implementations for Alarmi and Acki run concurrently, the methods

in their scenarios could be called in a different order. In this context, then, what does

“Alarmi happens before Acki” mean? To answer this question, we identify those meth-

ods (Synchronization Methods, or SMs) that actually perform an architectural action.

Therefore, Alarm1 before Ack1 means that the Alarm1 SM happens before the Ack1 SM,

whereas other methods may be called in any order.

We are aware that identifying the SMs is a nontrivial task in a development process not

based on strictly formalized refinement steps: in our experimentation with the TRMCS

case study, this was not so difficult due to a straightforward correspondence between LTS

labels and (reading and writing) operations performed over Java sockets. In Figure 5 the

“s.inTo.readLong()” method represents the SM for Alarm.

Applying Step 4.3:

At this point we need to execute the test sequences and verify whether the system im-

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

plementation behaves, at run-time, as described by our SA test. As stated at the end

of Section IV, to perform this analysis we apply a nondeterministic testing approach,

instrumenting the TRMCS program P to capture run-time information. Note that the in-

strumentation does not introduce new threads of execution, thus reducing instrumentation

overheads.

More precisely, given the TRMCS implementation P we build an instrumented version

P ′ able to store information about the execution of the SMs. To implement this new

feature, we introduce the “SynchronizationMethod” file; when an SM is called by the

system, a print operation is performed in this file which captures the following information:

<SM ID, User ID, SM instance, time>. For example, <AlarmSM, User 1, Alarm 3,

974910169250> records that the synchronization method AlarmSM (in Figure 5) has been

called (at the system time 974910169250) in response to the third instance of an Alarm

message issued by User1.

By running P ′ several times with the User1 and User2 Alarms as inputs in different

orders, we obtain a SynchronizationMethod file report. The information collected by the

report is a sequence of pairs of lines such as the following couple:

..., <AlarmSM, User i, Alarm j, ti>, <AckSM, User i, Alarm j, ti+ε>, ...

In other words, each Alarm operation is always immediately followed by the relative

Acknowledgment, as described by behavior TS3a in Section V.C. This implies that we

never observe behaviors TS2a and TS4a. Triggered by this observation, code analysis

pictures a conformance fault with respect to the architectural expected behaviors.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

VI. Some Considerations

Considering the four steps of our approach, it is possible to make an empirical evaluation

of the difficulty of applying it and its generality which can then lead to further lines of

research.

A. Difficulty of Application

Step 1. Obs-functions definition: The definition of an obs-function of interest is an empiri-

cal task, based on a software architect’s experience. This task could be made easier through

a classification of observations and by assigning semantics to the messages exchanged in

the SA model. Methods similar to SAAM [33] or SCENT [49], in which architectural

information is empirically captured, could help.

Step 2. Deriving ALTS: As shown, the ALTS generation can be automated. In this work,

we adapt the FC2Tools to reach our goal, but other tools (such as Caesar/Aldebaran [14])

can be used as well.

Step 3. Test Classes Selection: To cover the ALTS entails applying a coverage criterion

over this graph, extracting only paths that expose different behaviors. Coverage criteria,

such as McCabe’s [40] test technique, which is used here, could be easily automated.

Step 4. Code-level Testing: This is the most difficult step that the tester needs to apply

to generate test cases. To trace high-level information into code-level tests entails relating

the abstract values of the specification to the concrete values of the implementation. Four

general problems appear: i) Understanding which classes and methods implement an ar-

chitectural functionality is usually not obvious. Solving this problem may be facilitated

by using a more informative notation for LTSs, in which Inputs and Outputs are identified

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 25

at the specification level (IO Automata [37]) and can then be compared to code-level In-

puts and Outputs. ii) More than one sequence can implement the desired behavior. This

problem can be handled only by requiring the intervention of the tester, who manually

evaluates each point of decision and performs a reasoned choice regarding which selection

is most relevant for testing purposes. iii) When deriving the code-level sequences, we can

end up having to consider a lot of functionalities that are not described in the architectural

sequences: notably, in the SA description we consider only interactions, but not computa-

tions. iv) The architectural model usually describes only the expected behaviors, but the

implementation has to handle the exceptional behaviors as well.

Currently, our approach is not entirely formal and a discontinuity between formality

(Steps 1 to 3) and informality (Step 4) can be noticed. One way to cope with this prob-

lem, is to make stronger assumptions on the process, explicitly referring to a formal map-

ping between architectural elements and implementation objects. This solution has been

investigated in [44], as outlined in Section VIII.

B. Approach Generality

To put our approach into practice, we selected an ADL to describe the SA dynamics

through an LTS, we selected a coverage criteria to extract a limited number of ALTS

paths, and we used an implementation following the object-oriented paradigm.

However, we kept our approach as independent as possible from these choices: the

only constraint we required is that the SA dynamics be described via an LTS conforming

to the definition given in Section II. Different ADLs can be used to describe the SA.

Different ALTS coverage criteria can be applied and different implementation languages

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 26

and programming paradigms can be used. Finally, several software development processes

can be used: the SA description can be obtained a posteriori in a reverse engineering step;

or the SA description can be created before the system design, thus driving the definition

of the components and of their interactions; or the SA description can be directly mapped

on the implementation [41].

VII. Related Work

The approach we have proposed here makes use of several concepts: testing concurrent

and real-time systems, specification-based testing, conformance testing, tracing informa-

tion, and architectural testing. This section is a brief, but for reasons of space incomplete,

overview of these research areas.

Much work has been devoted to testing concurrent and real-time systems, both

specification driven [16], [39], [15] and implementation based [29], [4], [17], [35]. These

references address different aspects, from modeling time to internal nondeterminism, but

all focus on unit testing. Our aim is different: we want to derive test plans for integration

testing. Thus, although the technical tools some of these approaches use are the same

as ours (e.g., LTS, abstractions, event sequences), we use them in a different way. This

difference in goals emerges from the very beginning of our approach: we work on an

architectural description that drives our selection of the abstraction and of the paths.

Our approach to defining ALTS paths in order to specify high-level test classes has much

in common with Carver and Tai’s use of the synchronization sequence (SYN-sequence)

constraint, for specification-based testing of concurrent programs [16]. Indeed, sequencing

constraints specify restrictions to apply on the possible event sequences of a concurrent

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 27

program when selecting tests, similar to what ALTS paths do for a SA. Again, the main

difference is in the distance of the abstraction level of the reference model from the imple-

mentation. This prevents the straightforward application of their results for SA testing.

For example, the technique defined in [16] was implemented in [4] for Java programs, and

the SYN-sequences are runtime program executions; in our approach, the SYN-sequences

are the test classes, and thus they are more abstract.

A number of methods regard the selection of a test suite based on the specification

of the implementation under test, which is assumed to be given in the form of a

Finite State Machine (FSM). The Transition tour, W-method, DS-method, UIO method

and many variants of them (such as the Wp-method) have been proposed. A review of

these approaches is given in [10]. Bochmann and colleagues present a test generation tool

(TAG) based on FSM and generated by a specification [51]. The drawbacks of this tool

are due to the use of FSM with a limited number of states in the implementation and the

impossibility of ensuring a complete coverage with nondeterministic specifications.

Other approaches have been proposed to test software systems using statecharts:

In [49], natural language scenarios are formalized through statecharts, annotated with

helpful information for test case generation. Test cases are then generated through path

traversal. Bogdanov [11] presents a method to extract test cases from statecharts in order

to prove that the implementation is behaviorally equivalent to the design. The Das-Boot

tool presented in [53] generates a test suite for object-oriented systems specified through

statecharts.

Several authors [25], [52], [22] have recently dealt with the problem of automatically

generating test suites to test the conformance of an implemented system to its spec-

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 28

ification. Bochmann and colleagues [25], [10] use FSMs to drive a conformance testing

approach: the system specification (S) and its implementation (I) are formalized using

FSMs; “conformance relations” (equivalence, quasi-equivalence, reduction) are defined

and the Wp-method is used to generate test sequences.

Tretmans [52] presents some approaches for LTS-based conformance testing. The spec-

ification (S) is formalized using LTSs, the implementation (I) is expressed using LTSs

or Input/Output Transition Systems (IOTSs), and tests (T) are formalized using LTSs.

Given S and one of its possible implementations I, Tretmans defines some “implementa-

tion relations” (imp) to correlate S with I: I conforms to S iff I is “imp” with respect to

S.

Fernandez et al. [22], [23] use Input/Output LTS (IOLTS) to formalize the specifi-

cation, the implementation, and the test purposes. They propose an approach for an

automatic, on-the-fly generation of test cases, embodied in the Test Generation and Veri-

fication (TGV) environment [23].

We also use the SA-derived LTS as a reference model to derive test cases but in a different

manner. The behavioral model of the implementation under test could be modeled through

an LTS (or an IOLTS). This model is required in order to properly define what conformance

means in a formal manner. Based on these models, they define some implementation

relations (conf, ioconf, ioco, etc.) and they test whether the implementation is correct

with respect to the specification. In our approach, we do not assume that we are able to

produce an LTS over the implementation. In fact, we compare architecture level sequence

of events with lower level execution paths.

The problem of tracing information is not new, and some relevant papers are listed

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 29

in the references of the following sources. Egyed [20] shows a way to detect traceability

between software systems and their models, and gives a list of interesting references on

traceability techniques. Some work has been done in bridging the gap between require-

ments and software architectures (e.g., [50], [45]), and much other work addresses the

traceability of requirements (e.g., [26]). The problem of mapping abstract tests into the

System Under Test is currently being studied in the AGEDIS project [1].

The topic of architectural testing has recently raised some interest [47], [7], [27],

[28], [48]. In [47], the authors define six architectural-based testing criteria, adapting

specification-based approaches; in [7], the authors analyze the advantages in using SA-

level testing for reuse of tests and to test extra-functional properties. In [27] Harrold

presents approaches for using software architecture for effective regression testing, and in

[28], she also discusses the use of software architecture for testing. In [48], the authors

present an architecture-based integration testing approach that takes into consideration

architecture testability, simulation, and slicing.

All of the above works give interesting insights. However, to the best of our knowledge,

this paper represents the first attempt to tackle the whole cycle of SA-based testing with

a comprehensive and concrete approach. It spans the spectrum from test derivation based

on architecture dynamics down to test execution over system implementation, and relies

on empirical hands-on experience derived from a real-world case study.

VIII. Conclusions and Future Work

Our research investigates how the SA notions, methods, and tools can be usefully ex-

ploited within a software development process. In particular, this paper focuses on using

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 30

SA descriptions to improve the conformance testing of a large distributed system. As

such, this paper relies on two prolific branches of current software engineering literature:

software architecture and specification-based testing.

In terms of software architecture, although the literature is rich in models and tools for

design and analysis based on SA [24], very little has been proposed for SA-based testing.

Despite the claim that SA must play a role throughout the software life cycle, there are

still many problems due to the practical implications of using SA models and tools. In

particular, while it may be relatively easy to conceive of a method for deriving suites of

architectural test cases according to some notion of coverage, subsequently establishing

a relationship between these high-level tests and the implementation under test may be

quite difficult, and as yet no complete solution exists.

As far as specification-based testing is concerned, although the methods and tools used

basically remain the same, there are at least two main differences between our approach

and existing approaches:

i) The SA description tries to capture SA-relevant behaviors alone, while abstracting

away other system functions. Thus, our tests specifically belong to the integration test-

ing stages and certainly do not aim to test the system as completely as possible, as in

traditional specification-based test approaches.

ii) The abstraction level of the reference model and its relative “distance” from the

implementation under test may vary much in the two contexts. In SA-based approaches,

this distance is purposely very high, whereas in existing approaches to specification-based

testing, this is often assumed to be low. In other words, a high abstraction level is a

basic assumption of our approach, whereas traditional approaches require a close distance

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 31

between the reference model and the implementation, and typically both are represented

by automata [52].

We have provided here an excerpt from the empirical insights gained while performing

SA-based testing on the TRMCS case study. Although the experience reported may appear

to be specific to the case study, we believe that in most cases the problems encountered

as well as the solutions found can easily be generalized to any SA-centered context.

Our future work will go in several directions. We consider the approach presented here

as a foundational contribution that might not be directly applied in practice. For example,

we might not always have a global architectural model at our disposal. This can happen for

several reasons: i) architectural components may be described through complex models,

in terms of states and transitions and putting these models together may give rise to a

state explosion problem. ii) The architectural models may be incomplete, which means

that some component behaviors are unknown or components are not completely specified.

These are very common situations in industrial contexts. We are currently investigating

the possibility of generating abstract observations and test cases directly from partial

architectural models.

Another area under investigation is how to further formalize our approach, with stricter

assumptions on the SA-based development process. In [44] we show how the testing process

proposed in this paper can be made completely systematic, by specializing and refining our

general approach to a more specific context. By adopting a C2 style architecture [12] and

the related C2 framework [13], we were able to handle the traceability/mapping among

SA and code problem (by adapting the category partition method [46]) and the execution

over the identified test cases problems (through the Argus-I tool [2]). The approach has

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 32

been applied to a case study, gaining interesting results.

Acknowledgments

The authors would like to acknowledge the Italian MURST/MIUR national projects

SALADIN and SAHARA, which partially supported this work as well as Thierry Jeron

and the anonymous reviewers for their constructive comments and suggestions.

References

[1] AGEDIS Project. Automated Generation and Execution of Test Suites for Distributed Component-based

Software. On-line at: <http://www.agedis.de/index.shtml>.

[2] The Argus-I project. University of California, Irvine. Information on-line at <http://www.ics.uci.edu/∼mdias/

research/ArgusI>.

[3] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. SEI Series in Software Engineering,

Addison-Wesley, 1998.

[4] A. Bechini and K.-C. Tai. Design of a Toolset for Dynamic Analysis of Concurrent Java Programs. In Proc.

IEEE 6th Int. Workshop on Program Comprehension, pp. 190-197, June 1998.

[5] G. Bernot, M. C. Gaudel, and B. Marre. Software Testing Based on Formal Specifications: A Theory and a

Tool. Software Engineering Journal, Vol. 6, N. 6, pp. 387-405, 1991.

[6] A. Bertolino. Knowledge Area Description of Software Testing. In SWEBOK, Joint IEEE-ACM Software

Engineering Coordinating Committee. On-line at: <http://www.swebok.org>.

[7] A. Bertolino and P. Inverardi. Architecture-based software testing. In Proc. ISAW96, October 1996.

[8] A. Bertolino, F. Corradini, P. Inverardi, and H. Muccini. Deriving Test Plans from Architectural Descriptions.

In ACM Proc. Int. Conf. on Software Engineering (ICSE2000), pp. 220-229, June 2000.

[9] A. Bertolino, P. Inverardi, and H. Muccini. An Explorative Journey from Architectural Tests Definition downto

Code Tets Execution. In IEEE Proc. Int. Conf. on Software Engineering (ICSE2001), pp. 211-220, May 2001.

[10] G. v. Bochmann and A. Petrenko. Protocol Testing: Review of Methods and Relevance for Software Testing.

In ACM Proc. Int. Symposium on Software Testing and Analysis, ISSTA ’94, pp. 109-124, 1994.

[11] K. Bogdanov. Automated Testing of Harel’s Statecharts. Ph.D. thesis, The University of Sheffield, 2000.

[12] The C2 style and ADL. Project web page on-line at: <http://www.isr.uci.edu/architecture/c2.html>.

[13] The C2 Framework. On-line at: <http://www.isr.uci.edu/architecture/software.html>.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 33

[14] Caesar/Aldebaran Tool (CADP). On-line at: <http://inrialpes.fr/vasy/cadp>.

[15] R. Cardell-Oliver and T. Glover. A Practical and Complete Algorithm for Testing Real-Time Systems. In

Anders P. Ravn and Hans Rischel (Eds.), Proc. 5th Int. School and Symposium on Formal Techniques in Real

Time and Fault Tolerant Systems (FTRTFT’98), pp. 251-261. LNCS 1486, September 1998.

[16] R. H. Carver and K.-C. Tai. Use of Sequencing Constraints for Specification-Based Testing of Concurrent

Programs. IEEE Trans. on Software Engineering, Vol. 24, N. 6, pp. 471-490, June 1998.

[17] J. Choi and H. Srinivasan. Deterministic Replay of Java Multithreaded Applications. In ACM Proc. of the

Sigmetrics Symposium on Parallel and Distributed Tools, pp. 48-59, 1998.

[18] E. M. Dashofy, A. van der Hoek, and R.N. Taylor. An Infrastructure for the Rapid Development of XML-Based

Architecture Description Languages. In Proc. of the 24th Int. Conf. on Software Engineering, 2002.

[19] J. Dick and A. Faivre. Automating the Generation and Sequencing of Test Cases from Model-Based Specifica-

tions. In J.C.P. Woodcock and P.G. Larsen (Eds.), FME’93: Industrial-Strenght Formal Methods, pp. 268-284.

LNCS 670, Springer Verlag, 1993.

[20] A. Egyed. A Scenario-Driven Approach to Traceability. In IEEE Proc. Int. Conf. on Software Engineering

(ICSE2001), pp. 123-132, May 2001.

[21] FC2Tools. On-line at: <http://www-sop.inria.fr/meije/verification/quick-guide.html>.

[22] J.-C. Fernandez, C. Jard, T. Jeron, L. Nedelka, and C. Viho. Using On-the-fly Verification Techniques for

the Generation of Test Suites. In Proc. of the Eighth Int. Conf. on Computer Aided Verification (CAV’96),

USA, pp. 348-359, 1996. LNCS 1102, Springer, 1996.

[23] J.-C. Fernandez, C. Jard, T. Jeron, L. Nedelka, and C. Viho. An Experiment in Automatic Generation of

Test Suites for Protocols with Verification Technology. Special Issue of Science of Computer Programming,

Vol. 29, pp. 123-146, 1997.

[24] Formal Methods for Software Architectures. Tutorial book on Software Architectures and formal methods.

In SFM-03:SA Lectures, Eds. M. Bernardo and P. Inverardi, LNCS 2804, 2003.

[25] S. Fujiwara and G. v. Bochmann. Test Selection Based on Finite State Models. IEEE Trans. on Software

Engineering, Vol. 17, N. 6, pp. 591-603, June 1991.

[26] O. C. Z. Gotel and A. C. W. Finkelstein. An Analysis of the Requirements Traceability Problem. In IEEE

Proc. of the First Int. Conf. on Requirements Engineering (ICRE ’94), Colorado, USA., pp. 94-102, April 1994.

[27] M. J. Harrold. Architecture-Based Regression Testing of Evolving Systems. In Proc. Int. Workshop on the

ROle of Software Architecture in TEsting and Analysis (ROSATEA), CNR-NSF, pp. 73-77, July 1998.

[28] M. J. Harrold. Testing: A Roadmap. In A. Finkelstein (Ed.), ACM ICSE 2000, The Future of Software

Engineering, pp. 61-72, 2000.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 34

[29] D. M. Hoffman and P. A. Stropper. Techniques and tools for Java API testing. In IEEE Proc. of the 2000

Australian Software Engineering Conference, pp. 235-245, 2000.

[30] C. Hofmeister, R. L. Nord and D. Soni. Applied Software Architecture. Addison Wesley, 1999.

[31] P. Inverardi and A. L. Wolf. Formal Specifications and Analysis of Software Architectures Using the Chemical

Abstract Machine Model. IEEE Trans. on Software Engineering, Vol. 21, N. 4, pp. 100-114, April 1995.

[32] P. Inverardi and H. Muccini. The Teleservices and Remote Medical Care System (TRMCS). In IEEE Proc.

IWSSD-10, San Diego, California, November 2000.

[33] R. Kazman, L. Bass, G. Abowd, and M. Web. SAAM: A Method for Analyzing the Properties of Software

Architectures. In Proc. Int. Conf. on Software Engineering (ICSE16), Sorrento, Italy, pp. 81-90, May 1994.

[34] Labelled Transition System Analyzer (LTSA). On-line at: <http://www-dse.doc.ic.ac.uk/∼jnm/book/>.

[35] B. Long, D. Hoffman, and P. Strooper. Tool Support for Testing Concurrent Java Components. IEEE Trans.

on Soft. Engineering, Vol. 29, N. 6, pp. 555-566, June 2003.

[36] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann. Specification and Anal-

ysis of System Architecture Using Rapide. IEEE Trans. on Software Engineering, Special Issue on Software

Architecture, Vol. 21, N. 4, pp. 336-355, April 1995.

[37] N. A. Lynch and M. R. Tuttle. An Introduction to Input/Output Automata. In CWI Quarterly, Vol. 2, N.

3, pp. 219-246, September 1989.

[38] J. Magee and J. Kramer. Concurrency: State Models & Java Programs. Wiley, April 1999.

[39] D. Mandrioli, S. Morasca, and A. Morzenti. Generating Test Cases for Real-Time Systems from Logic

Specifications. ACM Trans. on Computer Systems, Vol. 13, N. 4, pp. 365-398, November 1995.

[40] T. J. McCabe. A Complexity Measure. IEEE Trans. on Software Engineering, Vol. 2, N. 4, pp. 308-320,

1976.

[41] N. Medvidovic, D. S. Rosenblum and R. N. Taylor. A Language and Environment for Architecture-based

Software Development and Evaluation. In IEEE Proc. Int. Conf. on Software Engineering (ICSE’99), pp.

44-53, 1999.

[42] R. Milner. Communication on Concurrences. International Series on Computer Science. Prentice Hall, 1989.

[43] H. Muccini, A. Bertolino, and P. Inverardi. Using Software Architecture for Code Test-

ing. Long version of the paper submitted for publication to IEEE TSE. On-line at

<http://www.HenryMuccini.com/Research/TSE01.htm>.

[44] H. Muccini and M.Dias. Systematic Testing of Software Architectures in the C2 style. Submitted for publi-

cation. On-line at: <http://www.HenryMuccini.com/Research/ETAPS04 Submitted.htm>.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 35

[45] B. Nuseibeh. Weaving Together Requirements and Architectures. In IEEE Computer, Vol. 34, No. 3, pp.

115-117, March 2001.

[46] T. J. Ostrand and M. J. Balcer. The Category-Partition Method for Specifying and Generating Functional

Tests. Communications of the ACM, Vol. 31, N. 6, pp. 676-686, June 1988.

[47] D. J. Richardson and A. L. Wolf. Software testing at the architectural level. ISAW-2 in Joint Proc. of the

ACM SIGSOFT ’96 Workshops, pp. 68-71, 1996.

[48] D. J. Richardson, J. Stafford, and A. L. Wolf. A Formal Approach to Architecture-based Software Testing.

Technical Report, University of California, Irvine, 1998.

[49] J. Ryser and M. Glinz. A Practical Approach to Validating and Testing Software Systems Using Scenarios.

In Proc. QWE’99: Third International Software Quality Week Europe, Brussels, Nov. 1999.

[50] Straw ’01. First Int. Workshop “From Software Requirements to Architectures” (STRAW’01), May 14, 2001,

Toronto, Canada.

[51] Q. M. Tan, A. Petrenko, and G. v. Bochmann. A Test Generation Tool for Specifications in the Form of State

Machines. In IEEE Proc. Int. Communications Conference (ICC) 96, pp. 225-229, June 23-27, 1996.

[52] J. Tretmans. Conformance Testing with Labeled Transition Systems: Implementation Relations and Test

Generation. Computer Networks and ISDN Systems, Vol. 29, pp. 49-79, 1996.

[53] M. Vieira, M. Dias, and D. J. Richardson. Object-Oriented Specification-Based Testing Using UML Statechart

Diagrams. In Proc. of the ICSE 2000 Workshop on Automated Program Analysis, Testing and Verification,

pp. 758-761, June 2000.

[54] A. H. Watson and T. J. McCabe. Structured Testing: A Testing Methodology Using the Cyclomatic Complexity

Metric. NIST Special Publication 500-235, August 1996.

[55] M. Young. Testing Complex Architectural Conformance Relations. In Proc. Int. Workshop on the ROle of

Software Architecture in TEsting and Analysis (ROSATEA), CNR-NSF, pp. 42-45, July 1998.

Authors Biography

Henry Muccini is an assistant professor at the Computer Science department, Uni-

versity of L’Aquila (Italy) since 2002 and he has been visiting professor at Information

& Computer Science, University of California, Irvine. Henry’s research interests are in

software architecture-based analysis techniques; specifically, in testing of software subsys-

tems integration against a software architecture specification, in product line architecture

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 36

specification and testing, in integrating coordination policies inside the architectural de-

scription and validating software architectures using semi-formal specifications. Recently,

he is also investigating how Web applications may be modeled using UML formalisms and

through product line analysis.

Antonia Bertolino is a researcher with the Institute of Information Science and Tech-

nologies (ISTI) of the Italian National Research Council (CNR), in Pisa, Italy, where she

leads the Software Engineering group and the Pisatel Laboratory. Her research inter-

ests are in software engineering, especially software testing and dependability. Currently

she investigates approaches for systematic integration test strategies, for architecture and

UML-based test approaches, and for component-based software analysis and testing. She

is an Associate Editor of the Journal of Systems and Software, of Empirical Software En-

gineering Journal, and of the IEEE Transactions on Software Engineering. She was the

General Chair of the ACM Symposium on Software Testing and Analysis ISSTA 2002 and

of the 2nd Int’l Conf. on Achieving Quality in Software AquIS ’93. She has served in

the Program Committees of several conferences and symposia, including ISSTA, Joint

ESEC-FSE, ICSE, SEKE, Safecomp, and Quality Week. She has (co)authored over 60

papers in international journals and conferences.

Paola Inverardi is full professor at University of L’Aquila. Previously she has worked

at IEI-CNR in Pisa and at Olivetti Research Lab. in Pisa. She is head of the Department

of Computer Science at University of L’Aquila, where she leads the Software Engineering

and Architecture Research Group. Her main research area is in the application of formal

methods to software development. Her research interests primarily concentrates in the

field of software architectures. She has actively worked on the verification and analysis of

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 37

software architecture properties, both behavioral and quantitative for component-based,

distributed and mobile systems. She has served as general chair, program chair and

program committee member for many international conferences.

Appendix A

This appendix presents a procedure to derive one or more LTS paths corresponding to

a selected ALTS path. The following discussion uses the terminology of Definition II.1:

T identifies the LTS transition rules and S the LTS states. D here identifies the ALTS

transition rules.

Definition VIII.1: (tm-derivative of Si) Let tm ∈ T and Si, Sj ∈ S. A tm-derivative of

Si is a set of states Sj such that Sj is reachable from Si, applying rules in T , and Sj
tm−→

Sk, for any Sk ∈ S.

In short, tm-d (Si) = {Sj: Si
t∈T
−→ Sj

tm−→ Sk }.

When we refine ALTS paths, it is important to be able to distinguish those transition

rules in the LTS that correspond to arcs in the ALTS. We introduce a notion of validity

with respect to a selected ALTS path for an identified LTS sequence of rules.

Definition VIII.2: (Valid tm-derivative) Let di ∈ D, an ALTS transition rule, and ti ∈

T , the corresponding LTS label, that is, ti= obs−1(di) . Sj is said to be a valid derivative

of Si (with respect to D) if Sj is a tm-derivative of Si, with Si
t∈G
−→ Sj

tm−→ Sk, and G ⊆ T

does not include any rule mapped in D.

In short, Vtm-d(Si) = {Sj: Si
t∈G
−→ Sj

tm−→ Sk } and G = {T } - {tx: obs(tx) ∈ D}.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 38

To check whether this notion of validity holds, simple graph manipulation techniques

can be applied, based on the concept of the Reachability Matrix (well known algorithms

may be found in [?]).

Definition VIII.3: (Valid path) A valid path between Si and Sj ∈ Vtm-d(Si) is every

path connecting Si and Sj.

We can now present the procedure to derive LTS paths conforming to a selected ALTS

path.

Procedure RefinePath:

1. Select an ALTS path to be tested: it can be identified by a sequence of ALTS labels,

such as, d1.d2.dk.

2. Applying obs−1(di), ∀ i ∈ {1, 2, ..., k}, derive an ordered sequence of transition rules

that identifies a partial test sequence over the LTS. It can be written as t1.t2.tp.

The latter means that, starting from S0, the initial state of the LTS, rule t1 must be applied

first, followed in order by rules t2.tk, until eventually a final state Sn is reached.

3. Set the source state SSource = S0.

4. Set p = S0 {p will yield an LTS path that refines the ALTS path}.

For i =1, ... ,k Do

5. Set the current rule CR = ti.

6. Calculate Vti-d(SSource), that is, the set of target solutions STarget so that SSource
t∈G
−→

STarget
CR
−→ Sk.

7. Derive a valid LTS path q from SSource to “some” of the STarget states, that is, a LTS

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 39

path q labeled only with actions in G.

8. Set SSource=STarget′ , with STarget
CR
−→ STarget′ .

9. Put p = p.q.SSource, where “.” denotes the concatenation operation between paths.

End For

10. Derive a valid LTS path r from SSource to Sn, where Sn denotes a final state of the LTS

that is reachable by applying rule tk.

11. Set p = p.r.

end procedure.

Given one ALTS path, this procedure can be repeated more times, each time deriving

one different LTS test sequence. In fact, this procedure includes two points of selection:

several valid LTS states can be selected at step 6 and different strategies can be applied at

step 7 (and finally at step 10) to derive an LTS path connecting the selected LTS states.

These are the decision points that call for the test manager judgment. To keep the number

of tests limited, we may chose to apply at step 7 a transition rules coverage criterion. In

other words, for each ALTS path, we want derive enough LTS paths to cover as many

transitions rules as possible, in a sense trying to consider all possible system behaviors in

correspondence with an abstract test sequence.

Appendix B

In Sections IV-A and IV-B, we described how, from an LTS, an Abstract LTS (ALTS)

can be extracted. We reached this goal by defining an obs-function (based on hiding and

relabeling) and applying it to the LTS, thus producing an observed LTS (ObsLTS) from

which by minimization the ALTS is generated, as depicted in Figure ??.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 40

LTS

ObsLTS

ALTS

Obs-function =
Hiding + relabeling

Implemented using
FC2Tools

Minimization
Implemented using

FC2Tools

Fig. 6. The abstraction process

What we prove in this appendix is that ALTS paths are suitable abstractions of LTS

paths (correctness) and that an ALTS path corresponds to each LTS path (completeness).

These properties imply that ALTS paths do not introduce new information with respect

to the original one and that all the original information is suitably preserved.

In the following discussion, obs : L −→ L′ so that L = R ∪ NR, obs(R) = D, and

obs(NR) = τ . We assume that D = R to simplify definitions and proofs. Notice, though,

that the following proofs are still valid when D 6= R. With p we identify an LTS path,

with p′ an ALTS (or ObsLTS) one. With αp (αp′), we denote the p (p′) alphabet. With

O, we denote an obs-function.

Correctness and completeness properties may be now formalized as follows:

• Correctness:

For each p′ there exists at least one p such that αp ⊇ αp′, and if p′ = l1. l2.lk then

the label ordering in p induced by p′ is preserved.

• Completeness:

For each p, there exists a p′ so that αp′ ⊆ αp, and if p = l1. l2.ln, then the label

ordering in p′ is consistent with the label ordering in p.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 41

To prove that our abstraction process is correct and complete, we proceed in two steps.

Referring to Figure 6, we first prove that the mapping LTS-ObsLTS (step 1) is correct and

complete, and then that the ObsLTS-ALTS mapping (step 2) is correct and complete.

Step 1 proofs: O applies hiding and relabeling. The hiding transitional semantics may

be formally defined as follows:

1) P
l
−→P ′

P↑R
l
−→P ′↑R

l ∈ R, 2) P
l
−→P ′

P↑R
τ
−→P ′↑R

l ∈ NR

in which ↑ represents the hiding operator, R the set of actions we want to observe, and P

is the LTS we are analyzing.

The relabeling transitional semantics follows:

3) P
l
−→P ′

P/g
g(l)
−→P ′/g

, 4) P
τ
−→P ′

P/g
τ
−→P ′/g

in which g : R −→ D. These formalizations come from the FSP operators [?]. Assuming

that D = R, O behaves as the hiding operator.

Correctness proof: Let P ′ be an obsLTS, obtained from P by applying O. Let p′ be a

generic P ′ path. p′ may be composed only of elements in R (case1) or it may also contain

τ actions (case 2).

In case 1, p′ does not contain τ actions. It means that its corresponding p does not

contain NR elements (αp ⊆ R). This implies that αP = αP ′ and p = p′.

Case 2 may present two different scenarios: i) all the τ actions in p′ also exist in p. In

this case, p = p′. Otherwise, ii) some τ actions in p′ have been generated by the observation

process. In this case, some actions in L have been hidden by means of O. Thus, p′ is the

obs-image of all those LTS paths p in which the τ label in p′ is substituted by a label in

L - αp′. For example, let R = {l1, l2,..., ln}. Then if p
′ = l1.l2.τ .ln, all the LTS paths p

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 42

= l1.l2.lx.ln so that lx ∈ L and lx 6∈ R generate p′ via obs. By construction of P ′, at least

one of these paths must exist in the LTS. Moreover, αp ⊇ αp′ (since p includes at least all

the p′ labels) and the label order is preserved (by construction of P ′).

Completeness proof: Let p be a generic path in the LTS P. We want to prove there

exists an ALTS path p′ corresponding to p. Given p and R, there are two cases: 1) αp ⊆

R, and we do not hide anything, thus p′ = p, or 2) αp contains elements in NR. Applying

the hiding rules 1 and 2, labels in R are preserved in p′ whereas those in NR become τ

actions. Recursively applying rules 1 and 2 to the path labels, we obtain the ALTS path

p′, satisfying the completeness properties.

Step 2 proofs: Let p ∈ ObsLTS and p′ ∈ ALTS. p and p′ are, for construction, trace

equivalent. This implies that αp = αp′ and that labels in p are ordered in the same way

as in p′. It suffices to prove correctness and completeness.

Appendix C: Tools Support

In the presented approach, some tools are used to implement the different steps. Initially,

an architectural language is used to specify our software architecture. An LTS model of the

SA dynamics is then automatically generated from this specification, and abstraction and

minimization are applied over the LTS to build an Abstract LTS. Finally, we instrument

the source code to analyze the TRMCS behavior with respect to the architectural tests.

Figure 7 summarizes the framework we use:

1. The Finite State Process (FSP) [?], [38] process algebra is used to specify software

component behaviors.

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 43

LTSA Tool LTS Abstractor
(using FC2Tools)

FSP SA
specification LTS ALTS

Fig. 7. The framework

2. The LTSA tool [34] takes an FSP SA specification and gives the corresponding LTS

as a result.

3. The LTS Abstractor builds abstracted views of the LTS (based on the previously

discussed theory). It has been implemented by using the existing FC2Tools [21].

The FSP language provides a concise way of describing LTSs; each FSP expression can be

mapped onto a finite LTS and vice versa. The FSP specification is based on the definition

of processes, whose behavior is modeled by LTSs; each process instance implements an

architectural component; several processes can be combined (with a parallel composition

operator) to describe the interaction between different processes. An FSP specification

comprises a declarative section defining variables and ranges, a section defining the process

initial state, and a section describing the other reachable states. Semantically, an FSP

process waits for an action (e.g., for receiving messages), performs actions (e.g., for sending

messages) and changes its state. The LTS alphabet is composed of the exchanged messages.

Figure 8 shows the FSP specification for the TRMCS system. Figure 8.a defines some

ranges used to create multiple instances of processes and Figure 8.b specifies the behavior

of the TRMCS components. The User process is separated into two parallel processes

(USER ALARM and USER CHECK) which are able to send alarms and checks. The

Router is separated into three parallel processes (to manage Alarms and Checks and to

wait for the Timer). The Server is implemented by two processes, and the Timer com-

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 44

ponent sends some clock messages to the Router. For those not familiar with FSP, the

USER ALARM line in Figure 8.b says that the USER ALARM process sends a message

called “SendAlarm To Router”, waits for the “ReceiveAck From Router” message recep-

tion and goes back to the initial state (i.e., USER ALARM). Figure 8.c is used to put the

various processes in parallel, specifying how the LTSs cooperate. This specifies how the

TRMCS system behaves, that is, how the User, Router, Server, and Timer processes have

to be put in parallel to describe the whole system behavior.

Each FSP process can be described by an LTS model that contains all the states a

process may reach and all the transitions it may perform. The LTSA tool supports the

FSP language by automatically generating the LTSs of each FSP process. The tool allows

graphical and textual visualization of the resulting LTSs, allows an evaluation of process

properties (i.e., safety, deadlock, reachability), supports specification animation to facili-

tate interactive exploration of system behavior and can be used to put different processes

in parallel. This last feature allows us to obtain a global LTS model of the system. By

running the LTSA tool on the TRMCS FSP specification, we obtained an LTS composed

of 256 states.

The observation of the LTS via an abstraction mechanism has been implemented by

using the FC2Tool. In particular, we took advantage of a function called “fc2explicit”

provided by the tool for comparing two “.FC2” graphs. The first graph is the one we want

to abstract (the architectural LTS), and the second one (in the following, Obs-graph) is

a graph we generate once we know which are the observable and unobservable labels. In

practice, it represents the observation. The Obs-graph is easily built by following these

rules: i) draw an initial state, ii) for each LTS action by acti we want to observe, create

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 45

range N = 0..1
range K = 0..1
range Sent = 0..1

/************************** User Process *************************/
USER_ALARM= (sendAlarm_To_Router -> receiveAck_From_Router -> USER_ALARM).
USER_CHECK = (sendCheck_To_Router -> USER_SENDCHECK).
||USER = (USER_ALARM||USER_CHECK).
/************************** Router Process *************************/
ROUTER_RECEIVEALARM = (receiveAlarm_From_User -> sendAlarm_To_Server ->

receiveAck_From_Server -> sendAck_To_User -> ROUTER_RECEIVEALARM).
ROUTER_RECEIVECHECK = (receiveCheck_From_User -> (sendInput_To_Timer ->

ROUTER_RECEIVECHECK | pre_receiveCheck -> ROUTER_RECEIVECHECK)).
ROUTER_RECEIVETIME = (receiveTime_From_Timer ->(sendNoFunc_To_Server ->

ROUTER_RECEIVETIME|pre_receiveTime-> ROUTER_RECEIVETIME)).
||ROUTER = ([0..1]:ROUTER_RECEIVEALARM||[0..1]:ROUTER_RECEIVECHECK||

ROUTER_RECEIVETIME).
/******************** Server Process *************************/
SERVER_RECEIVEALARM = (receiveAlarm_From_Router -> sendAck_To_Router ->

SERVER_RECEIVEALARM).
SERVER_RECEIVETIME = (receiveNoFunc_From_Router -> SERVER_RECEIVETIME).
/*************************Timer Process *************************/
TIMER = (receiveInput_From_Router -> sendTime_To_Router -> TIMER).

/************************* TRMCS ************************/

||USER_ROUTER=(u[0..1]:USER||r:ROUTER||sa[0..1]:SERVER_RECEIVEALARM||
st:SERVER_RECEIVETIME||t:TIMER)/

{
u[0].sendAlarm_To_Router/r.[0].receiveAlarm_From_User,
u[1].sendAlarm_To_Router/r.[1].receiveAlarm_From_User,

r.[0].sendAlarm_To_Server/sa[0].receiveAlarm_From_Router,
r.[1].sendAlarm_To_Server/sa[1].receiveAlarm_From_Router,

sa[0].sendAck_To_Router/r.[0].receiveAck_From_Server,
sa[1].sendAck_To_Router/r.[1].receiveAck_From_Server,

r.[0].sendAck_To_User/u[0].receiveAck_From_Router,
r.[1].sendAck_To_User/u[1].receiveAck_From_Router,

u[0].sendCheck_To_Router/r.[0].receiveCheck_From_User,
u[1].sendCheck_To_Router/r.[1].receiveCheck_From_User,

r.[0].sendInput_To_Timer/t.receiveInput_From_Router,
r.[1].sendInput_To_Timer/t.receiveInput_From_Router,

t.sendTime_To_Router/r.receiveTime_From_Timer,

r.sendNoFunc_To_Server/st.receiveNoFunc_From_Router
}.

a)

b)

c)

Fig. 8. TRMCS FSP Specification

a node labeled by acti and an edge from the initial state labeled acti; iii) for all the LTS

actions {actj, ..., actk} we want to hide, create an edge from the initial state to itself

labeled {actj + ... + actk}.

By running the “fc2explicit -abstract LTS.fc2 Obsgraph.fc2 > ALTS-nm.fc2” command,

we can compare the two graphs and generate a nonminimized ALTS. The “fc2explicit -

<opt> ALTS-nm.fc2 > ALTS.fc2” command generates the minimized graph. Option

January 26, 2004 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 46

u.0.sendAlarm_To_Router

u.1.sendAlarm_To_Router

r.0.sendAck_To_User

r.1.sendAck_To_User

r.1.sendAck_To_User

r.0.sendAck_To_User

u.1.sendAlarm_To_Router

u.0.sendAlarm_To_Router

u.0.sendCheck_To_Router+u.1.sendCheck_To_Router+r.0.sendInput_To_Timer
+r.1.sendInput_To_Timer+r.0.pre_receiveCheck+r.1.pre_receiveCheck
+sa.0.sendAck_To_Router+sa.1.sendAck_To_Router+t.sendTime_To_Router
+r.sendNoFunc_To_Server+r.pre_receiveTime+r.0.sendAlarm_To_Server

+r.1.sendAlarm_To_Server

Fig. 9. The Obs-graph for the Alarm ALTS

“opt” allows for selecting different equivalences. The Obs-graph in Figure 9 has been used

to generate the AlarmObs ALTS in Figure 3.a.

January 26, 2004 DRAFT

