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Specifications are not (necessarily)
executable”®

I. J. Hayes!, C. B. Jones?

Abstract

Specifications can be written in languages which have formal se-
mantics. Their very formality, and the similarities with some aspects
of implementation languages, invites the idea that specifications might
be executed. This paper presents a number of arguments against that
idea. The aim is to warn of the dangers of limiting specification lan-
guages to the point where all of their constructs can be executed.
While conceding the difficulties of relating specifications to an under-
standing of the “requirements” for a system, it is argued that other
solutions should be sought than “executable specification languages”.

1 Introduction

For the development of software, the starting point is usually a set of require-
ments typically given informally in natural language. The informal nature
of the requirements means that misunderstandings are possible and that
formal verification of an implementation is not possible. To overcome this
problem the development process can be viewed as being split into phases.
In fact, the so-called phases have to be iterated at least when changes to
the requirements occur: it is however useful to view the required project
documentation as being created by a series of idealised phases. Initially, a
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detailed functional® specification of what the system should do can be devel-
oped from the requirements. The specification can then be validated? against
the requirements early in the development of the software. By this process
many of the initial errors and misunderstandings can be detected when the
cost of correction is low.

Currently specifications are most commonly written in a natural language.
However, using a natural language leads to specifications that are vague and
ambiguous. While such specifications do aid in detecting errors early in the
development process, the imprecision of an informal specification leads to
misunderstandings both in validating the specification against the require-
ments, and the implementation against the specification. For this reason
many people have argued that a more formal approach to specification is re-
quired. Once a specification has been formalised there is a precise document
against which further implementation can be verified; in fact, only then is it
possible to formally verify that an implementation satisfies a specification.

There are three more-or-less distinct ways in which software design can
be based on a formal specification: the “transformational” approach (e.g.,
[CIP85, CIP8T]), the “constructive mathematics” approach (e.g., [CT86]),
and those methods where designs are posited and then justified at each de-
velopment step. The arguments presented in this paper apply to all of these
approaches, however, this presentation focuses on the third — posit and prove
— approach.

Even when using a formal specification, one is left with the problem of
validating the specification against the informal requirements. One approach
that has been advocated is to use an executable specification and perform
the validation by a series of tests on the specification. (A full discussion
of notions of executability and specification can be found in [Kne89] which
studies the use of symbolic execution for validating specifications.) Although
considering individual test cases is useful, it is not as powerful as proving
general properties about a specification. Requiring a specification notation
to be directly executable restricts the forms of specification that can be used.
In developing specifications of computing systems it is necessary to be able

'In the normal sense of the word and not in the more restricted sense as used in
functional programming.

2We use the term (formal) verification to indicate that an implementation has been
proved to satisfy a specification, and the more general term validate to indicate some form
of check of satisfaction.



to precisely and concisely specify its desired properties. Any formalism that
is applicable should be available to specify the properties of the system: one
does not wish to be restricted to a notation that can be executed.

In general, a specification written in a notation that is not directly exe-
cutable will contain less implementation detail than an executable one. The
process of directly matching a specification to a set of requirements will be
more straightforward with a specification phrased in terms of desirable prop-
erties of the system as opposed to one containing the algorithmic details
necessary to make it directly executable. Similarly, it will be easier to verify
that an implementation meets the more abstract specification than to try
to match an executable specification against an implementation for which
different data and program structure may have been chosen.

In fact, executable specifications tend to overspecify the problem. Firstly,
because the implementor is tempted to follow the algorithmic structure of the
specification (although this may not be desirable for efficiency or other rea-
sons), and secondly because the executable specification will produce partic-
ular results in cases where a more implicit specification might allow a number
of different results. The latter point is all the more important because of the
danger of unnecessarily constraining the choice of possible implementations.

As well as their role at the top level of the system, specifications play an
important part in defining the interfaces of modules internal to the system.
The validation of a module specification is done with respect to a higher-level
specification, or more likely a higher-level design that meets the higher-level
specification. As both the higher-level specification and design can be for-
malised, the validation of the internal modular design can also be formalised;
here one does not have the same problem of working from informal require-
ments that motivated the use of executable specifications.

2 Deterministic Operations

A deterministic specification requires a unique result to be produced for a
given input, whereas a non-deterministic specification allows a number of
possible alternative results. In Section 3 we explore the subject of non-
determinism. This section argues that the aim of executability offers unnec-
essary constraints even for deterministic specifications.

Most of what is said in this paper could be presented either in a declarative



or an imperative framework. The latter has been chosen and a program — or
part thereof — which changes a state is referred to as an operation.

2.1 Specifying in terms of known functions

The authors and readers of any specification can be assumed to share an
understanding of a set of “known” available functions (or operators) that
may be used in a specification.

The expressive power of a language required to succinctly specify a prob-
lem varies considerably with the complexity of the problem itself. Simple
problems can be adequately specified in conventional (efficiently executable)
programming languages. For example, using multiple assignment, an opera-
tion to swap two values may be specified thus:

i,j:=17],1.
(This also has the virtue that it solves the so-called frame problem by making
it clear that no variables other than ¢ and j are to be changed.)

A very high-level language (e.g., SETL [FSS83]) expands the range of
problems that can be succinctly specified by providing a richer set of available
functions that can be used. A powertul technique is the use of functions that

are available for objects which are more abstract than those of the final
implementation language. For example, if s; and s, are sets, then

51,821 =5 83,8 U s

defines a functional behaviour which might — when working on representa-
tions in terms of linked lists — have to be implemented in several procedures.

Apart from the lack of available functions, there is a more subtle problem
with such specifications. If the functions used are partial, the assignment
style of specification does not really provide a suitable way of recording a
pre-condition. Such assumptions are often crucial in specifying a system.

As a larger example of an operation that can be specified in a functional
manner consider a text file update: given a text file consisting of a sequence
of lines, it is to be updated both by deleting a set of numbered lines and by
adding sequences of lines after given line numbers in the original file. Let
Line be the type of a line and Lines, a sequence of lines:

Lines = seq of Line.



Then a text file update can be defined abstractly as a function
update: Lines x (set of Ni) X (N — Lines) — Lines,

where the first parameter is the initial file (a sequence of lines); the second
parameter is the set of line numbers of lines to be deleted; the third parameter
is the additions, which are modelled as a mapping from a line number to the
text that is to be added after that line number; and the result is the updated
file.

There is, here, an important pre-condition. For an update update(f,d, a),
the lines to be deleted must be in the original file: d C domf; and the
additions must go after line numbers in the original file or after the pseudo line
number zero to insert text at the beginning of the file: doma = {0} U dom f.
(Additions at every point in the file have been required — typically many of
these will be empty.) These two assumptions are the pre-condition to be able
to successfully apply the update function.

Each line in the original file is replaced by a sequence of lines in the
output; this sequence consists of either the empty sequence if the line is
deleted, or just the original line if that line is unaffected by the update; in
either case it is augmented with additions. If n is a line number then the
sequence of lines that it will be replaced by in the output file is given by

(if n € d then [] else [f(n)]) " a(n),

where s~ t is the concatenation of the sequences s and ¢.

To specify update, for each line in the original file the sequence of lines it
is replaced by is constructed and all of these sequences are concatenated to
form the output:

update(f,d,a) &
a(0) "conc {n — (if n € d then [] else [f(n)])

“a(n) | n € domf},
where conc ss forms the concatenation of all the sequences in the sequence of
sequences ss.

Although the above is written in a very high-level fashion, it is still quite
close to an executable program in a functional programming language. Such
a high-level program could be executed and such programs can tempt one to
consider requiring specifications to be executable. Although this particular
specification could be executed, the approach does not generalise to all spec-
ifications as is shown in Section 3.1 for a specification closely related to this



one. In addition, it is crucial to specify a pre-condition for update, otherwise
it does not make sense for all possible inputs; such pre-conditions are not
usually part of an executable language but are essential in a specification.

2.2 Specifying by Inverse

The next question is how to specify operations where no known function is
available. Notice that writing something like

i= ng(ivj)
only shifts the problem, unless ged is already fully understood.

Some specifications of novel concepts can be constructed by using a known
function to constrain the inverse of the operation. Suppose, for example,
that (integer) square root is both unfamiliar and to be specified, but that

squaring is known. It is possible to fix r as the largest integer square root of
n (r,n € N) by writing

r?<n<(r+1)=%

Although this example is very small, the general approach of specifying
via an inverse function should not be dismissed. It is, for example, convenient
(see [Jon80]) to express the task of constructing a parse tree by stating inter
alia that collecting the terminal strings from the wanted tree should yield
the string given as input. There is, in general, no way of executing such an
inverse specification. Even where a search happens to be possible, it is likely
to be enormously inefficient. The point is not that it is impossible to write
the required operation but rather that a clear (inverse) specification should
not be disallowed because it cannot be executed.

2.3 Combining Clauses in a Specification

Although the technique of the previous section extends the repertoire of speci-
fiable operations, there are many specifications which can be built up only
from a combination of properties. It is widely accepted that such combina-
tions can be built up using the operators of predicate calculus. A standard
example is to specify a SORT operation on sequences without duplicates.
Let Useq be the set of all sequences without duplicates:

Useq = {s € seq of N [ Vi,j € doms i #j = s(i) # s(j)}.



The SORT operation transforms a sequence in without duplicates to another
sequence out without duplicates as follows:

in, out € Useq
is-ordered(out) A is-permutation(in, out),

where

is-ordered : Useq — B
is-ordered(s) £ Vi,j€doms-i<j = s(i)<s(j)

is-permutation : Useq X Useq — B

is-permutation(s;, s;) £ rngs; = rngs;.

This version of the sorting (cf. is-permutation) problem is simplified by the
assumption that the sequences (Useq) do not contain duplicate elements.
(The general case is considered in Section 3.1.) But even here several inter-
esting observations can be made. Most importantly, the conjunction of the
ordering and permutation properties shows a specification technique which
is just not available in an implementation language: it is essentially defining
the valid outputs of SORT to be the intersection of the results of two pro-
cesses one of which yields a very large set of permutations of in and the other
of which can be thought of as yielding an infinite set of ordered sequences.
In general, conjunction is not a construct of executable languages. With
care, such conjunctions can sometimes be reformulated as Prolog programs.
Another point about is-permutation is the way it is made concise by shifting
between data types (here, sequences to sets). This technique can be useful
in a range of specifications.

Even where a specification does not explicitly use a conjunction, the tech-
nique may be used implicitly. In both Z [Hay87, Spi89] and VDM [Jon86],
data type invariants are considered to be conjoined to other properties over
types using them.

An example of the use of conjunction in a non-trivial specification appears
in work on wunification: see chapters by Fitzgerald and Vadera in [JS90].



2.4 Negation in Specifications

Specifications can be built up using any expressions of predicate calculus.
But, just as conjunction provides a particularly powerful extension to notions
of executable languages, negation is also worthy of special mention. Consider,
for example, the function to calculate the greatest common divisor (highest
common factor). If one defines a common factor by the following predicate:

is-cd :IN; x Nx N — B
is-cd(d,i,7) £ d divides i A d divides j,

then one can specify the greatest common divisor as follows:

ged: Ny x Ny — Ny
ged(i,j)=d <
is-ed(d, i, j) A —~(Je € Ny - is-ed(e,i,5) N e > d).

This specification makes use of both conjunction and negation. The structure
of the specification does not lead directly to the structure of a program
to calculate greatest common divisors. Although it is straightforward to
implement the common divisor check is-cd from its specification, the same
cannot be said for implementing ged based directly on the structure of the
specification.

If one treats the two conjuncts as each generating possible sets of results®
(d’s) then the value of the ged must satisfy both constraints and hence must
be in the intersection of the two sets. To calculate the second set based on
the structure of the specification, one should calculate the finite set of d’s
that satisfy

de € Ny - is-cd(e,i,j) N e >d,

and then take the complement of this set relative to the natural numbers,
giving an infinite set. As use has been made of an intermediate infinite set,
this approach is not executable. One needs to reason about the problem and
realise that the first set is finite so one can use it to generate possibilities,
while the second predicate is used to check these possibilities; even this ap-
proach has problems as one then has to perform similar reasoning to limit

3This use of a Boolean function is actnally an example of using the inverse of a function
as discussed in Section 2.2 —some of the arguments to the Boolean function and the desired
result (namely true) are supplied, and the other argument is generated.



the search space for possible values of e. Note that although it is possible to
rewrite the negated existential quantification as the universal quantification

Ve € Ny - —is-ed(e,i,j) Ve < d,

this only moves the problem; it does not resolve it.

All this reasoning about the problem is not necessary to just specify the
task. Such reasoning is part of the process of coming up with an implemen-
tation, and in performing such reasoning one would hope to come up with
a more efficient implementation than that based directly on the structure of
the specification. To produce an executable specification it would be neces-
sary both to make the specification more complicated than necessary, and
to perform reasoning that would be better done at the time of designing an
actual implementation.

The reader might like to consider the structurally similar specification of
determining the least common multiple given below; this example is further
complicated by the fact that the set of common multiples of two numbers
is infinite, and — while the second conjunct generates a finite set — the set
generated by the existentially quantified predicate before it is negated is
infinite. Hence one cannot use either conjunct in an evaluation based on the
structure of the specification without running into infinite sets.

Defining a common multiple by the predicate:

ts-cm :N X Ny x N; — B
is-em(m,i,7) & i divides m A j divides m,

one can specify the least common multiple as follows:

lem: Ny x Ny — Ny
lem(i,j)=m &
is-em(m,é,j) A =(3In € Ny - is-em(n,i,5) A n < m).

2.5 Quantifiers

Consider the following simple specification:

is-perfect-square (1) A JjeN-i=j 2



A straightforward attempt to directly execute the above specification would
probably enumerate the natural numbers testing each to see if ¢ is a perfect
square. If it is, this will terminate; but if it is not, it will not terminate. We
can guarantee termination in all cases by stopping when the enumeration
gets to i, however, this relies on the property that the square of a natural
number is always greater than or equal to the number itself.

Even this simple example involving a quantifier leads to problems for
direct execution. In general, the property of the problem that is used to
control the enumeration is not as simple as above; and one is required to
reason about the problem (preferably in the mathematical system associated
with the application area) in order to determine such properties before one
can attempt execution.

2.6 Non-Computable Clauses in Specifications

The problem of calculating the so-called Hamming numbers is found in
[Dij76]. The Hamming numbers are those whose only prime factors are 2,
3, and 5. The problem is to generate the sequence of Hamming numbers in
increasing order. This sequence, ham, can be specified by

ham:N; — N
ordered(ham) A
rmgham = {n € N | Vp € Primes - p divides n = p € {2,3,5}},

where Primes is the set of all prime numbers. As this sequence is infinite,
it cannot be computed in its entirety; but its prefixes can (e.g., the first 100
Hamming numbers). This can be done by stating that the output should be
the prefix of ham of length 100. Note that if the first conjunct (ordered(ham))
is used to generate possibilities, all of the ordered infinite sequences would
have to be generated: this is not possible. However, by adding the condition
that only the first 100 items are required, an implementation of the whole
specification becomes possible.

In the paper entitled “Functional programs as executable specifications”,
Turner [Tur85, pages 43-44] makes use of the following non-executable spec-
ification for the problem of computing the Hamming numbers (given in
Turner’s notation):

ham = SORT{2* x 3" x 5°| a, b, ¢ « [0..]}

10



where the notation in braces generates a sequence with no duplicates contain-
ing the given expression for a, b and ¢ taking natural number values greater
than or equal to zero. Note that, although this specification looks formal,
it is not since SORT on infinite sequences cannot be defined as a recursive
function; the above use of SORT is informal and the above specification is
not directly executable as it involves sorting an infinite sequence. By relying
on properties of the Hamming numbers, however, it can be transformed into
a program that merges already ordered sequences and is executable, although
as specified it never terminates.

Specifications can contain clauses that are not computable; when these
clauses are conjoined with additional constraints the whole may be com-
putable. However, the structure of the specification does not lead directly
to the structure of an implementation as a component is not computable.
The specification must be transformed (typically, by taking into account not
necessarily obvious properties of the problem) to a form that has a different
structure and is amenable to implementation.

A specification language should be expressive enough to specity non-
computable problems such as the halting problem. If it is not, one can-
not use the single specification notation to cover both theoretical aspects
of computing and practical ones. It is possible to build a specification of
implementable systems where a component of the specification is itself not
computable. For example, if one takes the specification of the halting prob-
lem and adds the condition that the program being examined to determine
whether or not it halts contains no loops or recursion, then the problem is
trivially implementable.

One can also specify problems such as the following one related Fermat’s
last theorem: given n € N can three natural numbers z, y and z be found
such that

$n _I_ yn — ZTZ‘
Whether or not this is computable, at this time nobody has been able to

determine whether or not this theorem holds. Again a specification notation
should be able to specify such problems irrespective of these issues.

11



3 Non-Deterministic Operations

We hope the reader is by now aware of some of the expressive advantages
of specifications which are not (necessarily) executable. The case against
executable specifications changes from one of convenience to necessity when
non-determinism is considered.

3.1 External Non-Determinism

There are some computer systems where even their external behaviour should
not be too closely determined by the specification. Section 2.3 considers a
simplified SORT problem without duplicate keys. One specification where
it is reasonable to have a complete specification which does not determine a
unique result is for sorting where records (Rec) can contain duplicate keys.
The components of the records can be obtained using selector functions:

key: Rec — N
data: Rec — Data.

SORT can then be specified by

in, out € seq of Rec
is-ordr(out) N\ is-permr(in, out),

where

is-ordr :seq of Rec — B
is-ordr(s) & Vi,j€doms-i<j = key(s(i)) < key(s(i)),
and

is-permr :seq of Rec X seq of Rec — B
is-permr (s, s2) & bagof(si) = bagof(sq),
where a sequence is converted into a bag (or multi-set) representation by
bagof :seq of Rec — (Rec — Ny)
bagof(s) & {r+ card{i € doms |s(i)=r}|r €mgs},

12



where card gives the cardinality of a set: in this case the frequency of occur-
rence of r in the sequence. Notice, here again, the advantage of finding a
convenient operator (=) in another type — in this case bags.

In this example a deterministic executable sort algorithm, no matter how
abstract and high-level, will yield a unique result for any given input. Such a
“specification” would put a restriction on all implementations that they pro-
duce exactly the same ordering although this may not be a requirement as far
as the user is concerned. Thus one cannot write a deterministic specification
of the above sorting problem that allows the implementor to choose either
a Quicksort or an insertion sort to implement it: an insertion sort is stable
— records with identical keys retain their original order — while Quicksort is
not stable. In fact, a deterministic specification may allow neither Quicksort
nor an insertion sort as implementations.

A larger example is the specification of a differential file comparison,
diff, which can be obtained by inverting the specification of update given
in Section 2.1. The operation diff takes two files (fi, fo: Lines) as input and
outputs a set of deletions (d:set of N) and additions (a:IN — Lines) that
will change the first file into the second. This can be specified by making use
of the update function:

d Cdomfi Adoma = {0} Udomfi A fo = update(fi, d, a)

Given any two input files the output deletions and additions are not, in
general, uniquely determined. For example, if the first file contains two
consecutive identical lines and the second file contains just one copy of the
line in the same place, diff may either delete the first line or the second line;
both choices will satisfy the specification. Hence it is not possible to use a
functional program to specity diff without selecting a particular output and
hence overconstraining the space of implementations. More importantly, the
specification of diff above clearly describes what diff should do; it gives no
indication of how it should do it. Any description of diff that can be executed
will contain considerably more detail about how to go about computing the
differences.

A particularly interesting specification which embodies such external non-
determinism is given in [Mar85]. One of the tasks considered is the con-
straints which must be put on the representation of lines on a raster display.
It is obvious that the limitations of the pixel grid prevent, in general, a
completely accurate portrayal of a line; the problem of “staircasing” is a

13



well-known corollary of this limitation. Marshall proposes a series of con-
sistency conditions which any acceptable implementation must fulfill. These
conditions do not uniquely determine the output.

There are many examples of non-deterministic specifications for numer-
ical algorithms; these specifications often contain constructs which are not
representable in decimal (or binary) notation. Let R be the set of mathemat-
ical real numbers; these cannot be represented on a machine and hence we
need a set Float of floating point approximations to real numbers which are
available on the machine. Consider the example of finding the square root of
a real number. Given a positive floating point number, z: Float, we wish to
calculate its square root, r, so that r? = z. For positive z, r is an element
of R but it is not necessarily an element of Float. Hence the result of this
operation may not be representable as an element of Float as the accuracy
of the machine is limited. We must augment our specification to allow for
the actual result to be an approximation to the square root

sqrt: Float — Float
can be defined by
r>0Asqrt(z)=r = IreR-?*=a A |rn—r|<0-0L

This is an example where we combine a deterministic clause (r? = z) in-

volving an unrepresentable value r with an additional clause that makes the
actual result required not as well determined but representable as a Float.
As the above specification contains an unrepresentable component we cannot
consider the specification notation used to be directly executable.

The specification of sqrt does not give any indication of how to compute
the square root. A possible implementation is one based on Newton’s method
of successive approximation. This method is based on deeper mathematical
results than anything immediately obvious in the specification. In addition,
it is based on the theory of the real numbers rather than Floats.

3.2 Internal Non-Determinism

The preceding section begins with a hint that non-determinism is more im-
portant than the frequency of genuinely under-determined systems might
suggest. Even where the external behaviour of a system is defined to be
deterministic, non-deterministic specifications of its components can arise in

14



design. This is obvious in the case of parallelism: components whose be-
haviour is influenced by interference can be composed in a way which yields
a deterministic system. Obvious examples of this permeate the whole of our
operating systems. For example, the non-deterministic paging behaviour of
programs must not be allowed to influence the outcome of user’s programs.

It is at first sight surprising — but is a very important fact — that non-
deterministic specifications of sub-components of deterministic systems can
be useful even where the eventual implementation is also deterministic. The
resolution of this apparent paradox comes from the usefulness of non-deterministic
specifications to leave freedom to the implementor. Thus it is possible to
make and record some design decisions but postpone other decisions to later
phases of development. An example of this would be a design which can be
realised by introducing, say, a buffer pool manager. The essential properties
of such a manager are easy to describe whilst leaving open the question of
the algorithm which chooses which free buffer to allocate on the next request.
The design decision involving the manager can be verified before work com-
mences on the choice of a particular (deterministic!) algorithm. This use
of non-deterministic specifications has been shown to be very useful in the
design of larger systems.

3.3 Under-Determined versus Non-Determinism

The discussion in the preceding section might lead the reader to the suspicion
that under-determined (but deterministic) behaviour is all that is required.
Obviously, this does not work in the presence of parallelism. Intriguingly,
it can even fail in its absence. In fact, a semantics needs to cover the gen-
uinely non-deterministic case even where the final implementation language
is deterministic. The important fact is the way in which levels of abstraction
influence the notion of “behaviour”. Consider the task of specifying an op-
eration ARB which is based on a state s:set of N. It delivers a result i: N,
and has post-condition

i € s,
This specifies that a non-deterministic choice can be made. It would seem

reasonable to accept an implementation ARB; based on a state sq:seq of N
with the post-condition

t = hd sq,

15



as satisfying this specification. But the behaviour of A RB; is non-deterministic
when viewed at the set level. The actual choice can be determined from the
history of ARB operations, but insufficient of this history is stored in the
abstract (set) state to determine the choice. This is an example where the
principle of information hiding leads to the abstract level of the system ap-
pearing to be non-deterministic while the implementation is deterministic.

In the following we need to be precise about what is meant by a math-
ematical function: a function has only one possible result for any given ar-
gument, and two calls on a function with the same argument must always
return the same result. This definition of a function is the one used in math-
ematics and is consistent with that used in purely functional programming
languages. This means, for example, that if S = T, then ARB(S) must
equal ARB(T).

Often ARB 1s taken to be the specification of a class of mathematical
functions all of which satisfy the specification and any of which can be used
as an implementation. This interpretation is restrictive since it does not
allow the operation ARB; to be used as an implementation of ARB. The
implementation ARB; is a mathematical function at the sequence level: any
two calls with the same sequence return the same result; but it is not a
function when viewed at the set level: two different sequences can represent
the same set (with the elements in different orders) and hence two different
calls on ARB; with the same set (but different representations of that set)
can return different results.

The above argues that considering a specification as determining a set of
possible (deterministic) functions is too restrictive. An approach that avoids
this restriction while still using functions is to use a function that returns
a set of possible results (see, for example [Tur85, page 31]). In fact, for
our purposes this is theoretically equivalent to using a relational approach;
however, a function returning a set is more complicated to deal with in
practice. Consider, for example, whether deterministic functions should be
treated specially or whether they should just be functions returning singleton
sets, and whether functional composition should be redefined or whether
the function should take sets of possible inputs as well as producing sets of
possible outputs. In addition, if the functions return sets of possible results
then we cannot use a function as a value in an expression and we cannot
use the law of substitution which is the major reason put forward for the
simplicity of reasoning using a functional model. Another problem when

16



considering executable specifications is that the set of all possible results of
an operation may be infinite; this would preclude computing the complete
set, but it does not preclude computing one element of the set as is required
of an implementation.

Another interesting example is a non-deterministic merge as required in
operating systems or transaction processing systems. For example, we have
streams of commands coming from a number of different terminals and we
wish to merge these into a single stream to be executed. An implementation
can be considered deterministically at the level where we know about the time
at which the commands arrive from the terminals, but at the abstract level
(where we hide information about arrival times) non-deterministic behaviour
is apparent. See [Hen82, especially page 190] for a discussion of this with
respect to purely functional operating systems.

A subtle example of the use of non-determinism occurs in giving the se-
mantics of programming languages. The goal is to leave the implementor
free to allocate storage addresses to variables. Thus, a language descrip-
tion should not dictate a particular stack implementation for Pascal. In, for
example, [BJ82] the choice of locations (Loc) is under-determined for pre-
cisely this reason. This example manifests the problem of something being
essentially non-deterministic at the level of abstraction of the specification
in spite of its being deterministic in terms of the representation chosen for
an implementation.

This raises the question of the semantics which can be used, for example,
to verify proof rules in the presence of “true non-determinacy”. This subject

is pursued in [Jon87] and [Nip86].

4 Other Issues

4.1 Specification Variables

In the specifications that we have given up to this point the specification
variables have stood for the values of program variables (or abstractions
thereof). However, it is useful to use specification variables that one would
never think of implementing as program variables. These variables do not
play a part in the actual execution of the program, rather they are used to
specify the required behaviour.
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In specifying a real-time system we need to be able to specify real-time
constraints on operations. For example, to specify that an operation must
be completed in less than two seconds we can introduce variables into the
specification that represent the time before (¢) and after (¢') an operation and
specify that ¢/ —t < 2. Such mathematical variables are used for specification
and are not directly reflected in the variables of the program. They are
part of the specification that an implementation has to satisfy, but will an
executable specification satisfy such a constraint? Can such a specification
be considered to be valid if it does not satisfy the constraint when we execute
it? The point here is that we should clearly distinguish a specification and an
implementation. An executable specification tends to confuse the two issues.

In specifying concurrent systems such as communications protocols it is
necessary to introduce specification variables that contain histories of mes-
sages on communication channels. For example, to specify a simple commu-
nication channel we can introduce specification variables:

in, out: seq of Message

which record the histories of messages passed in to and out of the channel,
respectively. We require that the output is always a prefix of the input:

b € seq of Message - out ™ b = in.

The variables in and out do not correspond directly to any variables that
would be found in a typical implementation, rather they are used purely to
specify the desired operation of the channel in terms of observable histories.
In an implementation, we are likely to have a buffer plus indices and counters.
Here again we run into a problem if we insist on executable specifications, as
history variables are used to help specify the problem and are not intended
to be reflected by program variables.

4.2 Inferences from Specifications

Being able to reason about a specification is important for two reasons: firstly,
one needs to be able to validate user requirements by inferring that the spec-
ification has the properties desired by the user; and secondly, one needs to be
able to verify that an implementation meets the specification or alternatively
derive the implementation from the specification via a sequence of refinement
steps.
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While an executable specification allows straightforward validation of in-
dividual test cases, it may be more difficult to validate more general prop-
erties of the system. Using a specification phrased as the conjunction of the
desired properties of the system, the validation of a property may well be
trivial if it is one of those used in the specification. If the particular property
to be validated is not one of those used in the specification, it will typically
be more difficult to derive the property from a specification complicated by
the necessary algorithmic detail to make it executable.

For the task of verifying an implementation against a specification, exe-
cutability of the specification is of little value. For a deterministic specifica-
tion it may be possible to check that the implementation produces the same
results as an executable specification for particular test cases. To verify that
the implementation is correct it will typically be simpler to show that it sat-
isfies a property-oriented specification, rather than show that it is equivalent
to a more detailed executable specification. In fact, the algorithmic struc-
tures for the executable specification and the implementation may be quite
different. For example, it is easier to show that Quicksort and an insertion
sort both satisfy the specification given earlier than to show that either satis-
fies the other, and for the non-deterministic case given in Section 3.1 neither
satisfies the other: they are both over specifications of the problem.

To derive an efficient implementation from a specification, the fact that
the specification is (inefficiently) executable is not usually a benefit. The
process of refining to an efficient implementation typically starts by inferring
additional properties of the problem from the properties given in the specifi-
cation. From these properties an algorithmic structure is developed that may
by widely variant from the structure of the specification. For the example of
calculating the square root of a real given in Section 3.1 the most interesting
part of deriving the solution using Newton’s method is done in the theory of
real numbers; once this is done it remains to be approximated using floating
point representations.

In general the structure of a specification does not correspond to the
structure of an efficient implementation. System designers have to be careful
to consider other, possibly more efficient structures than that of the specifi-
cation before committing themselves. With an executable specification there
is a greater temptation to stay with the structure of the specification and to
improve its efficiency, rather than starting from the properties of the problem
and deriving an alternative more efficient solution. With a property-oriented
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specification, although the specification may be structured, that structure
has not been chosen to enable execution and hence one is encouraged to
consider alternative structures.

5 Summary

Software can be specified in terms of a relationship between inputs and out-
puts. In many cases the software not only produces an explicit output but
also modifies an (implicit) state of the system; such operations can also be
specified in terms of a relationship between inputs and outputs, if we consider
the state before the operation as an input and the state after the operation
as an output.

Programs do precisely define a relationship between inputs and outputs
and hence can be considered to be specifications. Indeed for many systems
the program code is the only precise specification of what the system does.
There are two problems, however, with using a program as a specification.
Firstly, the relationship between inputs and outputs that a program specifies
is typically more restrictive than is required, and secondly, the way in which
the relationship is specified tends to be complicated by algorithmic details of
how to compute the result.

At the level of a relationship between inputs and outputs, programs typ-
ically restrict the allowable results when compared to the results that would
satisfy the real requirements of the users of the system.

Specifications are intended for human consumption — they provide a com-
munication link between the specifier and the user, and the specifier and the
implementor. For this role programs have too much detail of how to solve the
problem, rather than specifying what problem is to be solved. Programs are
only suitable for very simple problems where the specification of the problem
is as easily expressed in a programming language as in any other medium.

We can supply a program with a legal input — just how the legality of
the input is determined is not clear unless the specification includes a pre-
condition and pre-conditions are not generally regarded as part of a program-
ming language — and determine what output it returns. If the programming
language is deterministic then any implementation should return the same
result. If the language is not deterministic — for example, Dijkstra’s guarded
command language [Dij76, Dij75] or languages with concurrency constructs
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— then that output may be one of a number of possible outputs for that
input, but it is not necessarily the output that will be produced by another
implementation or even a second run on the same implementation. Running
a non-deterministic program with a particular input will not allow us to de-
termine all possible outputs for the given input. If the output is not what was
required we know the program is not correct, but if it is suitable it still does
not guarantee that the program will always produce suitable results for that
particular input. “Testing shows the presence of bugs not their absence” —in
the case of non-deterministic programs even testing a particular input does
not guarantee that the program is correct for that input! Readers who are
familiar with bugs in operating systems will be well aware of this problem.

To determine that a program meets a user’s requirements one has to ex-
amine the program itself as opposed to runs of the program. Using knowledge
of the meaning of the programming language constructs (i.e., the semantics
of the programming language) one can determine the possible outputs of a
program for a particular input, or classes of input, even the class of all legal
inputs. However, any reasoning about a program is difficult as the program
is not concise nor is it expressed in a notation suitable for reasoning. A spec-
ification should provide the properties of the desired system, from which a
program is developed to implement the system.

Specifications also play an important role for component modules of a
system. Even if an implementation of a module exists, it is desirable to
have a precise and concise specification of the module to avoid users of the
module having to read the more complex code of the implementation and
to avoid users making unwarranted assumptions about the function of the
module. These aspects are further reinforced if the module implements a data
abstraction; in this case, the specification is given in terms of the abstract
data type, while the implementation involves more detailed programming
language data structures. In a situation where an implementation exists, it
is clear that the important property of a specification is that it communicate
the function of the module to the users as clearly as possible; executability
of a specification provides no benefit.

Both functional and logic-programming have been suggested as possible
bases for executable specifications [Hen86, Kow85]. While these have the
advantage of being formal and of being higher-level than most programming
languages, they are too restrictive when compared to using the full power of
whatever mathematical systems are applicable to the problem.

21



There is another — more psychological — argument against attempts to use
specifications as prototypes. It has been argued above that the restriction
of a specification notation so that it be executable is bound to result in less
clear specifications; an actual executable specification is open to the further
injury of “tuning” for increased performance. The resulting destruction of
the clarity of the “specification” would lose what the current authors believe
is the principal benefit of the construction of a formal specification: its ability
to make the essential concepts of the specified system clear.

A wide-spectrum language [CIP85, CIP87] is one which includes facilities
for specification as well as an executable subset. This approach has advan-
tages for program refinement as a single notation can be used throughout the
development process. Care has to be taken, however, with the use of such a
language to avoid the pitfall of confusing the objectives of specification and
prototyping.

It is relevant to draw a distinction between specification and prototyping.
For user interface decisions a mock up (not necessarily a full implementation)
is useful to give the user a feel for the system. Here executability is important
but the function is that of a prototype rather than a specification. However,
the executable prototype is typically considerably more detailed in describing
how to compute, as opposed to the specification’s what to compute.

Our final suggestion is that perhaps much of what is described in the
literature as executable specifications would be better classified as rapid pro-
totyping — a valuable area in its own right. The plea in this paper is that the
positive advantages of specification should not be sacrificed to the separable
objective of prototyping.
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