
KEY CENTRE FOR SOFTWARE TECHNOLOGYDEPARTMENT OF COMPUTER SCIENCEUNIVERSITY OF QUEENSLANDSt. LuciaQueenslandAustralia 4072TECHNICAL REPORTNo. 148Speci�cations are not (necessarily) executableI. J. Hayes and C. B. JonesJanuary, 1990

Speci�cations are not (necessarily)executable�I. J. Hayesy, C. B. JoneszAbstractSpeci�cations can be written in languages which have formal se-mantics. Their very formality, and the similarities with some aspectsof implementation languages, invites the idea that speci�cations mightbe executed. This paper presents a number of arguments against thatidea. The aim is to warn of the dangers of limiting speci�cation lan-guages to the point where all of their constructs can be executed.While conceding the di�culties of relating speci�cations to an under-standing of the \requirements" for a system, it is argued that othersolutions should be sought than \executable speci�cation languages".1 IntroductionFor the development of software, the starting point is usually a set of require-ments typically given informally in natural language. The informal natureof the requirements means that misunderstandings are possible and thatformal veri�cation of an implementation is not possible. To overcome thisproblem the development process can be viewed as being split into phases.In fact, the so-called phases have to be iterated at least when changes tothe requirements occur: it is however useful to view the required projectdocumentation as being created by a series of idealised phases. Initially, a�Copyright c
 1989 The Institution of Electrical Engineers. This paper is published inthe Software Engineering Journal Vol. 4 No. 6 pp330{338 and is reprinted here with thepermission of the publisher.yDepartment of Computer Science, University of Queensland, Australia.zDepartment of Computer Science, University of Manchester, England.1

detailed functional1 speci�cation of what the system should do can be devel-oped from the requirements. The speci�cation can then be validated2 againstthe requirements early in the development of the software. By this processmany of the initial errors and misunderstandings can be detected when thecost of correction is low.Currently speci�cations are most commonlywritten in a natural language.However, using a natural language leads to speci�cations that are vague andambiguous. While such speci�cations do aid in detecting errors early in thedevelopment process, the imprecision of an informal speci�cation leads tomisunderstandings both in validating the speci�cation against the require-ments, and the implementation against the speci�cation. For this reasonmany people have argued that a more formal approach to speci�cation is re-quired. Once a speci�cation has been formalised there is a precise documentagainst which further implementation can be veri�ed; in fact, only then is itpossible to formally verify that an implementation satis�es a speci�cation.There are three more-or-less distinct ways in which software design canbe based on a formal speci�cation: the \transformational" approach (e.g.,[CIP85, CIP87]), the \constructive mathematics" approach (e.g., [C+86]),and those methods where designs are posited and then justi�ed at each de-velopment step. The arguments presented in this paper apply to all of theseapproaches, however, this presentation focuses on the third { posit and prove{ approach.Even when using a formal speci�cation, one is left with the problem ofvalidating the speci�cation against the informal requirements. One approachthat has been advocated is to use an executable speci�cation and performthe validation by a series of tests on the speci�cation. (A full discussionof notions of executability and speci�cation can be found in [Kne89] whichstudies the use of symbolic execution for validating speci�cations.) Althoughconsidering individual test cases is useful, it is not as powerful as provinggeneral properties about a speci�cation. Requiring a speci�cation notationto be directly executable restricts the forms of speci�cation that can be used.In developing speci�cations of computing systems it is necessary to be able1In the normal sense of the word and not in the more restricted sense as used infunctional programming.2We use the term (formal) veri�cation to indicate that an implementation has beenproved to satisfy a speci�cation, and the more general term validate to indicate some formof check of satisfaction. 2

to precisely and concisely specify its desired properties. Any formalism thatis applicable should be available to specify the properties of the system: onedoes not wish to be restricted to a notation that can be executed.In general, a speci�cation written in a notation that is not directly exe-cutable will contain less implementation detail than an executable one. Theprocess of directly matching a speci�cation to a set of requirements will bemore straightforward with a speci�cation phrased in terms of desirable prop-erties of the system as opposed to one containing the algorithmic detailsnecessary to make it directly executable. Similarly, it will be easier to verifythat an implementation meets the more abstract speci�cation than to tryto match an executable speci�cation against an implementation for whichdi�erent data and program structure may have been chosen.In fact, executable speci�cations tend to overspecify the problem. Firstly,because the implementor is tempted to follow the algorithmic structure of thespeci�cation (although this may not be desirable for e�ciency or other rea-sons), and secondly because the executable speci�cation will produce partic-ular results in cases where a more implicit speci�cation might allow a numberof di�erent results. The latter point is all the more important because of thedanger of unnecessarily constraining the choice of possible implementations.As well as their role at the top level of the system, speci�cations play animportant part in de�ning the interfaces of modules internal to the system.The validation of a module speci�cation is done with respect to a higher-levelspeci�cation, or more likely a higher-level design that meets the higher-levelspeci�cation. As both the higher-level speci�cation and design can be for-malised, the validation of the internal modular design can also be formalised;here one does not have the same problem of working from informal require-ments that motivated the use of executable speci�cations.2 Deterministic OperationsA deterministic speci�cation requires a unique result to be produced for agiven input, whereas a non-deterministic speci�cation allows a number ofpossible alternative results. In Section 3 we explore the subject of non-determinism. This section argues that the aim of executability o�ers unnec-essary constraints even for deterministic speci�cations.Most of what is said in this paper could be presented either in a declarative3

or an imperative framework. The latter has been chosen and a program { orpart thereof { which changes a state is referred to as an operation.2.1 Specifying in terms of known functionsThe authors and readers of any speci�cation can be assumed to share anunderstanding of a set of \known" available functions (or operators) thatmay be used in a speci�cation.The expressive power of a language required to succinctly specify a prob-lem varies considerably with the complexity of the problem itself. Simpleproblems can be adequately speci�ed in conventional (e�ciently executable)programming languages. For example, using multiple assignment, an opera-tion to swap two values may be speci�ed thus:i ; j : = j ; i :(This also has the virtue that it solves the so-called frame problem by makingit clear that no variables other than i and j are to be changed.)A very high-level language (e.g., SETL [FSS83]) expands the range ofproblems that can be succinctly speci�ed by providing a richer set of availablefunctions that can be used. A powerful technique is the use of functions thatare available for objects which are more abstract than those of the �nalimplementation language. For example, if s1 and s2 are sets, thens1; s2 : = s1 \ s2; s1 [s2de�nes a functional behaviour which might { when working on representa-tions in terms of linked lists { have to be implemented in several procedures.Apart from the lack of available functions, there is a more subtle problemwith such speci�cations. If the functions used are partial, the assignmentstyle of speci�cation does not really provide a suitable way of recording apre-condition. Such assumptions are often crucial in specifying a system.As a larger example of an operation that can be speci�ed in a functionalmanner consider a text �le update: given a text �le consisting of a sequenceof lines, it is to be updated both by deleting a set of numbered lines and byadding sequences of lines after given line numbers in the original �le. LetLine be the type of a line and Lines, a sequence of lines:Lines = seq of Line: 4

Then a text �le update can be de�ned abstractly as a functionupdate:Lines � (set of N1)� (N! Lines)! Lines;where the �rst parameter is the initial �le (a sequence of lines); the secondparameter is the set of line numbers of lines to be deleted; the third parameteris the additions, which are modelled as a mapping from a line number to thetext that is to be added after that line number; and the result is the updated�le.There is, here, an important pre-condition. For an update update(f ; d ; a),the lines to be deleted must be in the original �le: d � dom f ; and theadditions must go after line numbers in the original �le or after the pseudo linenumber zero to insert text at the beginning of the �le: doma = f0g [dom f .(Additions at every point in the �le have been required { typically many ofthese will be empty.) These two assumptions are the pre-condition to be ableto successfully apply the update function.Each line in the original �le is replaced by a sequence of lines in theoutput; this sequence consists of either the empty sequence if the line isdeleted, or just the original line if that line is una�ected by the update; ineither case it is augmented with additions. If n is a line number then thesequence of lines that it will be replaced by in the output �le is given by(if n 2 d then [] else [f (n)])_� a(n);where s _� t is the concatenation of the sequences s and t .To specify update, for each line in the original �le the sequence of lines itis replaced by is constructed and all of these sequences are concatenated toform the output:update(f ; d ; a) 4a(0)_�conc fn 7! (if n 2 d then [] else [f (n)])_�a(n) j n 2 dom f g;where conc ss forms the concatenation of all the sequences in the sequence ofsequences ss.Although the above is written in a very high-level fashion, it is still quiteclose to an executable program in a functional programming language. Sucha high-level program could be executed and such programs can tempt one toconsider requiring speci�cations to be executable. Although this particularspeci�cation could be executed, the approach does not generalise to all spec-i�cations as is shown in Section 3.1 for a speci�cation closely related to this5

one. In addition, it is crucial to specify a pre-condition for update, otherwiseit does not make sense for all possible inputs; such pre-conditions are notusually part of an executable language but are essential in a speci�cation.2.2 Specifying by InverseThe next question is how to specify operations where no known function isavailable. Notice that writing something likei : = gcd(i ; j)only shifts the problem, unless gcd is already fully understood.Some speci�cations of novel concepts can be constructed by using a knownfunction to constrain the inverse of the operation. Suppose, for example,that (integer) square root is both unfamiliar and to be speci�ed, but thatsquaring is known. It is possible to �x r as the largest integer square root ofn (r ;n 2 N) by writingr2 � n < (r + 1)2:Although this example is very small, the general approach of specifyingvia an inverse function should not be dismissed. It is, for example, convenient(see [Jon80]) to express the task of constructing a parse tree by stating interalia that collecting the terminal strings from the wanted tree should yieldthe string given as input. There is, in general, no way of executing such aninverse speci�cation. Even where a search happens to be possible, it is likelyto be enormously ine�cient. The point is not that it is impossible to writethe required operation but rather that a clear (inverse) speci�cation shouldnot be disallowed because it cannot be executed.2.3 Combining Clauses in a Speci�cationAlthough the technique of the previous section extends the repertoire of speci-�able operations, there are many speci�cations which can be built up onlyfrom a combination of properties. It is widely accepted that such combina-tions can be built up using the operators of predicate calculus. A standardexample is to specify a SORT operation on sequences without duplicates.Let Useq be the set of all sequences without duplicates:Useq = fs 2 seq of N j 8i ; j 2 dom s � i 6= j) s(i) 6= s(j)g:6

The SORT operation transforms a sequence in without duplicates to anothersequence out without duplicates as follows:in; out 2 Useqis-ordered(out) ^ is-permutation(in; out);whereis-ordered :Useq ! Bis-ordered(s) 4 8i ; j 2 dom s � i < j) s(i) < s(j)is-permutation :Useq �Useq ! Bis-permutation(s1; s2) 4 rng s1 = rng s2:This version of the sorting (cf. is-permutation) problem is simpli�ed by theassumption that the sequences (Useq) do not contain duplicate elements.(The general case is considered in Section 3.1.) But even here several inter-esting observations can be made. Most importantly, the conjunction of theordering and permutation properties shows a speci�cation technique whichis just not available in an implementation language: it is essentially de�ningthe valid outputs of SORT to be the intersection of the results of two pro-cesses one of which yields a very large set of permutations of in and the otherof which can be thought of as yielding an in�nite set of ordered sequences.In general, conjunction is not a construct of executable languages. Withcare, such conjunctions can sometimes be reformulated as Prolog programs.Another point about is-permutation is the way it is made concise by shiftingbetween data types (here, sequences to sets). This technique can be usefulin a range of speci�cations.Even where a speci�cation does not explicitly use a conjunction, the tech-nique may be used implicitly. In both Z [Hay87, Spi89] and VDM [Jon86],data type invariants are considered to be conjoined to other properties overtypes using them.An example of the use of conjunction in a non-trivial speci�cation appearsin work on uni�cation: see chapters by Fitzgerald and Vadera in [JS90].7

2.4 Negation in Speci�cationsSpeci�cations can be built up using any expressions of predicate calculus.But, just as conjunction provides a particularly powerful extension to notionsof executable languages, negation is also worthy of special mention. Consider,for example, the function to calculate the greatest common divisor (highestcommon factor). If one de�nes a common factor by the following predicate:is-cd :N1 �N�N! Bis-cd(d ; i ; j) 4 d divides i ^ d divides j ;then one can specify the greatest common divisor as follows:gcd :N1 �N1 ! N1gcd(i ; j) = d ,is-cd(d ; i ; j) ^ :(9e 2 N1 � is-cd(e; i ; j) ^ e > d):This speci�cation makes use of both conjunction and negation. The structureof the speci�cation does not lead directly to the structure of a programto calculate greatest common divisors. Although it is straightforward toimplement the common divisor check is-cd from its speci�cation, the samecannot be said for implementing gcd based directly on the structure of thespeci�cation.If one treats the two conjuncts as each generating possible sets of results3(d's) then the value of the gcd must satisfy both constraints and hence mustbe in the intersection of the two sets. To calculate the second set based onthe structure of the speci�cation, one should calculate the �nite set of d'sthat satisfy9e 2 N1 � is-cd(e; i ; j) ^ e > d ;and then take the complement of this set relative to the natural numbers,giving an in�nite set. As use has been made of an intermediate in�nite set,this approach is not executable. One needs to reason about the problem andrealise that the �rst set is �nite so one can use it to generate possibilities,while the second predicate is used to check these possibilities; even this ap-proach has problems as one then has to perform similar reasoning to limit3This use of a Boolean function is actually an example of using the inverse of a functionas discussed in Section 2.2 { some of the arguments to the Boolean function and the desiredresult (namely true) are supplied, and the other argument is generated.8

the search space for possible values of e. Note that although it is possible torewrite the negated existential quanti�cation as the universal quanti�cation8e 2 N1 � :is-cd(e; i ; j) _ e � d ;this only moves the problem; it does not resolve it.All this reasoning about the problem is not necessary to just specify thetask. Such reasoning is part of the process of coming up with an implemen-tation, and in performing such reasoning one would hope to come up witha more e�cient implementation than that based directly on the structure ofthe speci�cation. To produce an executable speci�cation it would be neces-sary both to make the speci�cation more complicated than necessary, andto perform reasoning that would be better done at the time of designing anactual implementation.The reader might like to consider the structurally similar speci�cation ofdetermining the least common multiple given below; this example is furthercomplicated by the fact that the set of common multiples of two numbersis in�nite, and { while the second conjunct generates a �nite set { the setgenerated by the existentially quanti�ed predicate before it is negated isin�nite. Hence one cannot use either conjunct in an evaluation based on thestructure of the speci�cation without running into in�nite sets.De�ning a common multiple by the predicate:is-cm :N�N1 �N1 ! Bis-cm(m; i ; j) 4 i divides m ^ j divides m;one can specify the least common multiple as follows:lcm:N1 �N1! N1lcm(i ; j) = m ,is-cm(m; i ; j) ^ :(9n 2 N1 � is-cm(n; i ; j) ^ n < m):2.5 Quanti�ersConsider the following simple speci�cation:is-perfect-square(i) 4 9j 2 N � i = j 2:9

A straightforward attempt to directly execute the above speci�cation wouldprobably enumerate the natural numbers testing each to see if i is a perfectsquare. If it is, this will terminate; but if it is not, it will not terminate. Wecan guarantee termination in all cases by stopping when the enumerationgets to i , however, this relies on the property that the square of a naturalnumber is always greater than or equal to the number itself.Even this simple example involving a quanti�er leads to problems fordirect execution. In general, the property of the problem that is used tocontrol the enumeration is not as simple as above; and one is required toreason about the problem (preferably in the mathematical system associatedwith the application area) in order to determine such properties before onecan attempt execution.2.6 Non-Computable Clauses in Speci�cationsThe problem of calculating the so-called Hamming numbers is found in[Dij76]. The Hamming numbers are those whose only prime factors are 2,3, and 5. The problem is to generate the sequence of Hamming numbers inincreasing order. This sequence, ham, can be speci�ed byham:N1 !Nordered(ham)^rngham = fn 2 N j 8p 2 Primes � p divides n) p 2 f2; 3; 5gg;where Primes is the set of all prime numbers. As this sequence is in�nite,it cannot be computed in its entirety; but its pre�xes can (e.g., the �rst 100Hamming numbers). This can be done by stating that the output should bethe pre�x of ham of length 100. Note that if the �rst conjunct (ordered(ham))is used to generate possibilities, all of the ordered in�nite sequences wouldhave to be generated: this is not possible. However, by adding the conditionthat only the �rst 100 items are required, an implementation of the wholespeci�cation becomes possible.In the paper entitled \Functional programs as executable speci�cations",Turner [Tur85, pages 43{44] makes use of the following non-executable spec-i�cation for the problem of computing the Hamming numbers (given inTurner's notation):ham = SORTf2a � 3b � 5c j a; b; c [0::]g10

where the notation in braces generates a sequence with no duplicates contain-ing the given expression for a, b and c taking natural number values greaterthan or equal to zero. Note that, although this speci�cation looks formal,it is not since SORT on in�nite sequences cannot be de�ned as a recursivefunction; the above use of SORT is informal and the above speci�cation isnot directly executable as it involves sorting an in�nite sequence. By relyingon properties of the Hamming numbers, however, it can be transformed intoa program that merges already ordered sequences and is executable, althoughas speci�ed it never terminates.Speci�cations can contain clauses that are not computable; when theseclauses are conjoined with additional constraints the whole may be com-putable. However, the structure of the speci�cation does not lead directlyto the structure of an implementation as a component is not computable.The speci�cation must be transformed (typically, by taking into account notnecessarily obvious properties of the problem) to a form that has a di�erentstructure and is amenable to implementation.A speci�cation language should be expressive enough to specify non-computable problems such as the halting problem. If it is not, one can-not use the single speci�cation notation to cover both theoretical aspectsof computing and practical ones. It is possible to build a speci�cation ofimplementable systems where a component of the speci�cation is itself notcomputable. For example, if one takes the speci�cation of the halting prob-lem and adds the condition that the program being examined to determinewhether or not it halts contains no loops or recursion, then the problem istrivially implementable.One can also specify problems such as the following one related Fermat'slast theorem: given n 2 N can three natural numbers x , y and z be foundsuch thatxn + yn = z n :Whether or not this is computable, at this time nobody has been able todetermine whether or not this theorem holds. Again a speci�cation notationshould be able to specify such problems irrespective of these issues.11

3 Non-Deterministic OperationsWe hope the reader is by now aware of some of the expressive advantagesof speci�cations which are not (necessarily) executable. The case againstexecutable speci�cations changes from one of convenience to necessity whennon-determinism is considered.3.1 External Non-DeterminismThere are some computer systems where even their external behaviour shouldnot be too closely determined by the speci�cation. Section 2.3 considers asimpli�ed SORT problem without duplicate keys. One speci�cation whereit is reasonable to have a complete speci�cation which does not determine aunique result is for sorting where records (Rec) can contain duplicate keys.The components of the records can be obtained using selector functions:key:Rec ! Ndata:Rec ! Data:SORT can then be speci�ed byin; out 2 seq of Recis-ordr(out) ^ is-permr(in; out);whereis-ordr : seq of Rec ! Bis-ordr(s) 4 8i ; j 2 dom s � i < j) key(s(i)) � key(s(i));andis-permr : seq of Rec � seq of Rec ! Bis-permr(s1; s2) 4 bagof (s1) = bagof (s2);where a sequence is converted into a bag (or multi-set) representation bybagof : seq of Rec ! (Rec ! N1)bagof (s) 4 fr 7! card fi 2 doms j s(i) = rg j r 2 rng sg;12

where card gives the cardinality of a set: in this case the frequency of occur-rence of r in the sequence. Notice, here again, the advantage of �nding aconvenient operator (=) in another type { in this case bags.In this example a deterministic executable sort algorithm, no matter howabstract and high-level, will yield a unique result for any given input. Such a\speci�cation" would put a restriction on all implementations that they pro-duce exactly the same ordering although this may not be a requirement as faras the user is concerned. Thus one cannot write a deterministic speci�cationof the above sorting problem that allows the implementor to choose eithera Quicksort or an insertion sort to implement it: an insertion sort is stable{ records with identical keys retain their original order { while Quicksort isnot stable. In fact, a deterministic speci�cation may allow neither Quicksortnor an insertion sort as implementations.A larger example is the speci�cation of a di�erential �le comparison,di� , which can be obtained by inverting the speci�cation of update givenin Section 2.1. The operation di� takes two �les (f1; f2:Lines) as input andoutputs a set of deletions (d : set of N) and additions (a:N ! Lines) thatwill change the �rst �le into the second. This can be speci�ed by making useof the update function:d � dom f1 ^ doma = f0g [dom f1 ^ f2 = update(f1; d ; a)Given any two input �les the output deletions and additions are not, ingeneral, uniquely determined. For example, if the �rst �le contains twoconsecutive identical lines and the second �le contains just one copy of theline in the same place, di� may either delete the �rst line or the second line;both choices will satisfy the speci�cation. Hence it is not possible to use afunctional program to specify di� without selecting a particular output andhence overconstraining the space of implementations. More importantly, thespeci�cation of di� above clearly describes what di� should do; it gives noindication of how it should do it. Any description of di� that can be executedwill contain considerably more detail about how to go about computing thedi�erences.A particularly interesting speci�cation which embodies such external non-determinism is given in [Mar85]. One of the tasks considered is the con-straints which must be put on the representation of lines on a raster display.It is obvious that the limitations of the pixel grid prevent, in general, acompletely accurate portrayal of a line; the problem of \staircasing" is a13

well-known corollary of this limitation. Marshall proposes a series of con-sistency conditions which any acceptable implementation must ful�ll. Theseconditions do not uniquely determine the output.There are many examples of non-deterministic speci�cations for numer-ical algorithms; these speci�cations often contain constructs which are notrepresentable in decimal (or binary) notation. Let R be the set of mathemat-ical real numbers; these cannot be represented on a machine and hence weneed a set Float of
oating point approximations to real numbers which areavailable on the machine. Consider the example of �nding the square root ofa real number. Given a positive
oating point number, x :Float , we wish tocalculate its square root, r , so that r2 = x . For positive x , r is an elementof R but it is not necessarily an element of Float . Hence the result of thisoperation may not be representable as an element of Float as the accuracyof the machine is limited. We must augment our speci�cation to allow forthe actual result to be an approximation to the square rootsqrt :Float ! Floatcan be de�ned byx � 0 ^ sqrt(x) = r1) 9r 2 R � r2 = x ^ j r1 � r j< 0 � 01:This is an example where we combine a deterministic clause (r2 = x) in-volving an unrepresentable value r with an additional clause that makes theactual result required not as well determined but representable as a Float .As the above speci�cation contains an unrepresentable component we cannotconsider the speci�cation notation used to be directly executable.The speci�cation of sqrt does not give any indication of how to computethe square root. A possible implementation is one based on Newton's methodof successive approximation. This method is based on deeper mathematicalresults than anything immediately obvious in the speci�cation. In addition,it is based on the theory of the real numbers rather than Floats.3.2 Internal Non-DeterminismThe preceding section begins with a hint that non-determinism is more im-portant than the frequency of genuinely under-determined systems mightsuggest. Even where the external behaviour of a system is de�ned to bedeterministic, non-deterministic speci�cations of its components can arise in14

design. This is obvious in the case of parallelism: components whose be-haviour is in
uenced by interference can be composed in a way which yieldsa deterministic system. Obvious examples of this permeate the whole of ouroperating systems. For example, the non-deterministic paging behaviour ofprograms must not be allowed to in
uence the outcome of user's programs.It is at �rst sight surprising { but is a very important fact { that non-deterministic speci�cations of sub-components of deterministic systems canbe useful even where the eventual implementation is also deterministic. Theresolution of this apparent paradox comes from the usefulness of non-deterministicspeci�cations to leave freedom to the implementor. Thus it is possible tomake and record some design decisions but postpone other decisions to laterphases of development. An example of this would be a design which can berealised by introducing, say, a bu�er pool manager. The essential propertiesof such a manager are easy to describe whilst leaving open the question ofthe algorithm which chooses which free bu�er to allocate on the next request.The design decision involving the manager can be veri�ed before work com-mences on the choice of a particular (deterministic!) algorithm. This useof non-deterministic speci�cations has been shown to be very useful in thedesign of larger systems.3.3 Under-Determined versus Non-DeterminismThe discussion in the preceding section might lead the reader to the suspicionthat under-determined (but deterministic) behaviour is all that is required.Obviously, this does not work in the presence of parallelism. Intriguingly,it can even fail in its absence. In fact, a semantics needs to cover the gen-uinely non-deterministic case even where the �nal implementation languageis deterministic. The important fact is the way in which levels of abstractionin
uence the notion of \behaviour". Consider the task of specifying an op-eration ARB which is based on a state s: set of N. It delivers a result i :N,and has post-conditioni 2 s:This speci�es that a non-deterministic choice can be made. It would seemreasonable to accept an implementation ARBl based on a state sq: seq of Nwith the post-conditioni = hd sq ; 15

as satisfying this speci�cation. But the behaviour of ARBl is non-deterministicwhen viewed at the set level. The actual choice can be determined from thehistory of ARB operations, but insu�cient of this history is stored in theabstract (set) state to determine the choice. This is an example where theprinciple of information hiding leads to the abstract level of the system ap-pearing to be non-deterministic while the implementation is deterministic.In the following we need to be precise about what is meant by a math-ematical function: a function has only one possible result for any given ar-gument, and two calls on a function with the same argument must alwaysreturn the same result. This de�nition of a function is the one used in math-ematics and is consistent with that used in purely functional programminglanguages. This means, for example, that if S = T , then ARB(S) mustequal ARB(T).Often ARB is taken to be the speci�cation of a class of mathematicalfunctions all of which satisfy the speci�cation and any of which can be usedas an implementation. This interpretation is restrictive since it does notallow the operation ARBl to be used as an implementation of ARB . Theimplementation ARBl is a mathematical function at the sequence level: anytwo calls with the same sequence return the same result; but it is not afunction when viewed at the set level: two di�erent sequences can representthe same set (with the elements in di�erent orders) and hence two di�erentcalls on ARBl with the same set (but di�erent representations of that set)can return di�erent results.The above argues that considering a speci�cation as determining a set ofpossible (deterministic) functions is too restrictive. An approach that avoidsthis restriction while still using functions is to use a function that returnsa set of possible results (see, for example [Tur85, page 31]). In fact, forour purposes this is theoretically equivalent to using a relational approach;however, a function returning a set is more complicated to deal with inpractice. Consider, for example, whether deterministic functions should betreated specially or whether they should just be functions returning singletonsets, and whether functional composition should be rede�ned or whetherthe function should take sets of possible inputs as well as producing sets ofpossible outputs. In addition, if the functions return sets of possible resultsthen we cannot use a function as a value in an expression and we cannotuse the law of substitution which is the major reason put forward for thesimplicity of reasoning using a functional model. Another problem when16

considering executable speci�cations is that the set of all possible results ofan operation may be in�nite; this would preclude computing the completeset, but it does not preclude computing one element of the set as is requiredof an implementation.Another interesting example is a non-deterministic merge as required inoperating systems or transaction processing systems. For example, we havestreams of commands coming from a number of di�erent terminals and wewish to merge these into a single stream to be executed. An implementationcan be considered deterministically at the level where we know about the timeat which the commands arrive from the terminals, but at the abstract level(where we hide information about arrival times) non-deterministic behaviouris apparent. See [Hen82, especially page 190] for a discussion of this withrespect to purely functional operating systems.A subtle example of the use of non-determinism occurs in giving the se-mantics of programming languages. The goal is to leave the implementorfree to allocate storage addresses to variables. Thus, a language descrip-tion should not dictate a particular stack implementation for Pascal. In, forexample, [BJ82] the choice of locations (Loc) is under-determined for pre-cisely this reason. This example manifests the problem of something beingessentially non-deterministic at the level of abstraction of the speci�cationin spite of its being deterministic in terms of the representation chosen foran implementation.This raises the question of the semantics which can be used, for example,to verify proof rules in the presence of \true non-determinacy". This subjectis pursued in [Jon87] and [Nip86].4 Other Issues4.1 Speci�cation VariablesIn the speci�cations that we have given up to this point the speci�cationvariables have stood for the values of program variables (or abstractionsthereof). However, it is useful to use speci�cation variables that one wouldnever think of implementing as program variables. These variables do notplay a part in the actual execution of the program, rather they are used tospecify the required behaviour. 17

In specifying a real-time system we need to be able to specify real-timeconstraints on operations. For example, to specify that an operation mustbe completed in less than two seconds we can introduce variables into thespeci�cation that represent the time before (t) and after (t 0) an operation andspecify that t 0�t < 2. Such mathematical variables are used for speci�cationand are not directly re
ected in the variables of the program. They arepart of the speci�cation that an implementation has to satisfy, but will anexecutable speci�cation satisfy such a constraint? Can such a speci�cationbe considered to be valid if it does not satisfy the constraint when we executeit? The point here is that we should clearly distinguish a speci�cation and animplementation. An executable speci�cation tends to confuse the two issues.In specifying concurrent systems such as communications protocols it isnecessary to introduce speci�cation variables that contain histories of mes-sages on communication channels. For example, to specify a simple commu-nication channel we can introduce speci�cation variables:in; out : seq of Messagewhich record the histories of messages passed in to and out of the channel,respectively. We require that the output is always a pre�x of the input:9b 2 seq of Message � out _� b = in:The variables in and out do not correspond directly to any variables thatwould be found in a typical implementation, rather they are used purely tospecify the desired operation of the channel in terms of observable histories.In an implementation, we are likely to have a bu�er plus indices and counters.Here again we run into a problem if we insist on executable speci�cations, ashistory variables are used to help specify the problem and are not intendedto be re
ected by program variables.4.2 Inferences from Speci�cationsBeing able to reason about a speci�cation is important for two reasons: �rstly,one needs to be able to validate user requirements by inferring that the spec-i�cation has the properties desired by the user; and secondly, one needs to beable to verify that an implementation meets the speci�cation or alternativelyderive the implementation from the speci�cation via a sequence of re�nementsteps. 18

While an executable speci�cation allows straightforward validation of in-dividual test cases, it may be more di�cult to validate more general prop-erties of the system. Using a speci�cation phrased as the conjunction of thedesired properties of the system, the validation of a property may well betrivial if it is one of those used in the speci�cation. If the particular propertyto be validated is not one of those used in the speci�cation, it will typicallybe more di�cult to derive the property from a speci�cation complicated bythe necessary algorithmic detail to make it executable.For the task of verifying an implementation against a speci�cation, exe-cutability of the speci�cation is of little value. For a deterministic speci�ca-tion it may be possible to check that the implementation produces the sameresults as an executable speci�cation for particular test cases. To verify thatthe implementation is correct it will typically be simpler to show that it sat-is�es a property-oriented speci�cation, rather than show that it is equivalentto a more detailed executable speci�cation. In fact, the algorithmic struc-tures for the executable speci�cation and the implementation may be quitedi�erent. For example, it is easier to show that Quicksort and an insertionsort both satisfy the speci�cation given earlier than to show that either satis-�es the other, and for the non-deterministic case given in Section 3.1 neithersatis�es the other: they are both over speci�cations of the problem.To derive an e�cient implementation from a speci�cation, the fact thatthe speci�cation is (ine�ciently) executable is not usually a bene�t. Theprocess of re�ning to an e�cient implementation typically starts by inferringadditional properties of the problem from the properties given in the speci�-cation. From these properties an algorithmic structure is developed that mayby widely variant from the structure of the speci�cation. For the example ofcalculating the square root of a real given in Section 3.1 the most interestingpart of deriving the solution using Newton's method is done in the theory ofreal numbers; once this is done it remains to be approximated using
oatingpoint representations.In general the structure of a speci�cation does not correspond to thestructure of an e�cient implementation. System designers have to be carefulto consider other, possibly more e�cient structures than that of the speci�-cation before committing themselves. With an executable speci�cation thereis a greater temptation to stay with the structure of the speci�cation and toimprove its e�ciency, rather than starting from the properties of the problemand deriving an alternative more e�cient solution. With a property-oriented19

speci�cation, although the speci�cation may be structured, that structurehas not been chosen to enable execution and hence one is encouraged toconsider alternative structures.5 SummarySoftware can be speci�ed in terms of a relationship between inputs and out-puts. In many cases the software not only produces an explicit output butalso modi�es an (implicit) state of the system; such operations can also bespeci�ed in terms of a relationship between inputs and outputs, if we considerthe state before the operation as an input and the state after the operationas an output.Programs do precisely de�ne a relationship between inputs and outputsand hence can be considered to be speci�cations. Indeed for many systemsthe program code is the only precise speci�cation of what the system does.There are two problems, however, with using a program as a speci�cation.Firstly, the relationship between inputs and outputs that a program speci�esis typically more restrictive than is required, and secondly, the way in whichthe relationship is speci�ed tends to be complicated by algorithmic details ofhow to compute the result.At the level of a relationship between inputs and outputs, programs typ-ically restrict the allowable results when compared to the results that wouldsatisfy the real requirements of the users of the system.Speci�cations are intended for human consumption { they provide a com-munication link between the speci�er and the user, and the speci�er and theimplementor. For this role programs have too much detail of how to solve theproblem, rather than specifying what problem is to be solved. Programs areonly suitable for very simple problems where the speci�cation of the problemis as easily expressed in a programming language as in any other medium.We can supply a program with a legal input { just how the legality ofthe input is determined is not clear unless the speci�cation includes a pre-condition and pre-conditions are not generally regarded as part of a program-ming language { and determine what output it returns. If the programminglanguage is deterministic then any implementation should return the sameresult. If the language is not deterministic { for example, Dijkstra's guardedcommand language [Dij76, Dij75] or languages with concurrency constructs20

{ then that output may be one of a number of possible outputs for thatinput, but it is not necessarily the output that will be produced by anotherimplementation or even a second run on the same implementation. Runninga non-deterministic program with a particular input will not allow us to de-termine all possible outputs for the given input. If the output is not what wasrequired we know the program is not correct, but if it is suitable it still doesnot guarantee that the program will always produce suitable results for thatparticular input. \Testing shows the presence of bugs not their absence" { inthe case of non-deterministic programs even testing a particular input doesnot guarantee that the program is correct for that input! Readers who arefamiliar with bugs in operating systems will be well aware of this problem.To determine that a program meets a user's requirements one has to ex-amine the program itself as opposed to runs of the program. Using knowledgeof the meaning of the programming language constructs (i.e., the semanticsof the programming language) one can determine the possible outputs of aprogram for a particular input, or classes of input, even the class of all legalinputs. However, any reasoning about a program is di�cult as the programis not concise nor is it expressed in a notation suitable for reasoning. A spec-i�cation should provide the properties of the desired system, from which aprogram is developed to implement the system.Speci�cations also play an important role for component modules of asystem. Even if an implementation of a module exists, it is desirable tohave a precise and concise speci�cation of the module to avoid users of themodule having to read the more complex code of the implementation andto avoid users making unwarranted assumptions about the function of themodule. These aspects are further reinforced if the module implements a dataabstraction; in this case, the speci�cation is given in terms of the abstractdata type, while the implementation involves more detailed programminglanguage data structures. In a situation where an implementation exists, itis clear that the important property of a speci�cation is that it communicatethe function of the module to the users as clearly as possible; executabilityof a speci�cation provides no bene�t.Both functional and logic-programming have been suggested as possiblebases for executable speci�cations [Hen86, Kow85]. While these have theadvantage of being formal and of being higher-level than most programminglanguages, they are too restrictive when compared to using the full power ofwhatever mathematical systems are applicable to the problem.21

There is another { more psychological { argument against attempts to usespeci�cations as prototypes. It has been argued above that the restrictionof a speci�cation notation so that it be executable is bound to result in lessclear speci�cations; an actual executable speci�cation is open to the furtherinjury of \tuning" for increased performance. The resulting destruction ofthe clarity of the \speci�cation" would lose what the current authors believeis the principal bene�t of the construction of a formal speci�cation: its abilityto make the essential concepts of the speci�ed system clear.A wide-spectrum language [CIP85, CIP87] is one which includes facilitiesfor speci�cation as well as an executable subset. This approach has advan-tages for program re�nement as a single notation can be used throughout thedevelopment process. Care has to be taken, however, with the use of such alanguage to avoid the pitfall of confusing the objectives of speci�cation andprototyping.It is relevant to draw a distinction between speci�cation and prototyping.For user interface decisions a mock up (not necessarily a full implementation)is useful to give the user a feel for the system. Here executability is importantbut the function is that of a prototype rather than a speci�cation. However,the executable prototype is typically considerably more detailed in describinghow to compute, as opposed to the speci�cation's what to compute.Our �nal suggestion is that perhaps much of what is described in theliterature as executable speci�cations would be better classi�ed as rapid pro-totyping { a valuable area in its own right. The plea in this paper is that thepositive advantages of speci�cation should not be sacri�ced to the separableobjective of prototyping.AcknowledgementsThe authors are grateful to many people for discussions on this topic. Inparticular meetings of IFIP WG 2.3 and members of the (ESPRIT-funded)RAISE project have stimulated one of the authors. We would also like jointlyto thank Ralf Kneuper, Ketil St�len and Carroll Morgan for constructivecomments on drafts of this paper. Cli� Jones is grateful to SERC for sup-port both via research grants and his Senior Fellowship and to the WolfsonFoundation for �nancial support. 22

References[BJ82] D. Bj�rner and C. B. Jones. Formal Speci�cation and Software De-velopment. Prentice Hall International, 1982.[C+86] R. L. Constable et al. Implementing Mathematics with the NuPRLProof Development System. Prentice-Hall, 1986.[CIP85] CIP Language Group. The Munich Project CIP|Volume I: TheWide Spectrum Language CIP-L, volume 183 of Lecture Notes inComputer Science. Springer-Verlag, 1985.[CIP87] CIP System Group. The Munich Project CIP|Volume II: The Pro-gram Transformation System CIP-S, volume 292 of Lecture Notesin Computer Science. Springer-Verlag, 1987.[Dij75] E. W. Dijkstra. Guarded commands, nondeterminacy and formalderivation of programs. Communications of ACM, 18(8):453{457,August 1975.[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.[FSS83] S.M. Freudenberger, J.T. Schwartz, and M. Sharir. Experience withthe SETL optimizer.ACM Transactions on Programming Languagesand Systems, 5(1):26{45, January 1983.[Hay87] I. J. Hayes, editor. Speci�cation Case Studies. Prentice-Hall Inter-national, 1987.[Hen82] P. Henderson. Purely functional operating systems. In J. Darlington,P. Henderson, and D. A. Turner, editors, Functional Programmingand its Applications, pages 177{192. Cambridge University Press,1982.[Hen86] P. Henderson. Functional programming, formal speci�cation, andrapid prototyping. IEEE Transactions on Software Engineering,SE-12(2):241{250, February 1986.[Jon80] C. B. Jones. Software Development: A Rigorous Approach. PrenticeHall International, 1980. 23

[Jon86] C. B. Jones. Systematic Software Development Using VDM. Pren-tice Hall International, 1986.[Jon87] C. B. Jones. Program speci�cation and veri�cation in VDM. InM. Broy, editor, Logic of Programming and Calculi of Discrete De-sign | NATO ASI Series F: Computer and Systems Sciences, Vol.36, pages 149{184. Springer-Verlag, 1987.[JS90] C. B. Jones and R. C. F. Shaw, editors. Case Studies in SystematicSoftware Development. Prentice Hall International, 1990.[Kne89] R. Kneuper. Symbolic Execution as a Tool for Validation of Speci-�cations. PhD thesis, Department of Computer Science, Universityof Manchester, 1989.[Kow85] R. Kowalski. The relation between logic programming and logicspeci�cation. In C. A. R. Hoare and J. C. Shepherdson, edi-tors, Mathematical Logic and Programming Languages, pages 11{27.Prentice Hall, 1985.[Mar85] L. S. Marshall. A formal speci�cation of straight lines on graphicsdevices. Lecture Notes in Computer Science, 186:129{147, March1985.[Nip86] T. Nipkow. Non-deterministic data types: Models and implementa-tions. Acta Informatica, 22:629{661, 1986.[Spi89] J. M. Spivey. The Z Notation: A Reference Manual. Prentice HallInternational, 1989.[Tur85] D. A. Turner. Functional programs as executable speci�cations. InC. A. R. Hoare and J. C. Shepherdson, editors, Mathematical Logicand Programming Languages, pages 29{54. Prentice-Hall, 1985.
24

