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edges to higher-numbered nodes. In particular, planar graphs are 5-inductive, and chordal graphs are �(G)-inductive. First Fit (FF ) isthe algorithm that assigns each node the lowest numbered color pos-sible. We show that if G is d-inductive then FF uses O(d logn) colorson G. This yields an upper bound of O(logn) on the performanceratio of FF on chordal and planar graphs. FF does as well as anyon-line algorithm for d-inductive graphs: we show that for any d andany on-line graph coloring algorithm A, there is a d-inductive graphthat forces A to use 
(d logn) colors to color G. We also examineon-line graph coloring with lookahead. An algorithm is on-line withlookahead l, if it must color node i after examining only the �rst l+ inodes. We show that for l < nlogn the lower bound of d logn colorsstill holds.1 IntroductionIn an on-line problem, the input is obtained incrementally and partial out-put must be produced before the entire problem instance is known. If theproblem to be solved is an optimization problem, the question is what kindof solution quality can be obtained given the fact that each part of the so-lution is produced without knowledge of the entire input. We examine theproblem of on-line graph coloring: the graph is presented one node at a time,and when a node is presented, the edges from that node to all previouslypresented nodes are also given. Each node must be assigned a color, di�er-ent from the colors of its neighbors, before the next node is presented. Theobject is to minimize the number of colors used. On-line graph coloring canbe applied to processor assignment and register allocation problems [1], [9].We measure an on-line algorithm in comparison to the optimal o�-line algo-rithm. This notion was �rst introduced by Sleator and Tarjan and presenteda way to do a worst case analysis of on-line algorithms [10].Let A(G) be the number of colors used by algorithm A on the graph G.Let �(G) be the chromatic number of G, the minimum number of colorsrequired to color G o�-line. We are interested in �nding an on-line graph2



coloring algorithm A, that for a class of graphs C, minimizesmaxG2CA(G)�(G) :This is the performance ratio of A for the class C.A fundamental issue of great importance is lookahead: what is it worthto know the future? It may be possible to delay a decision at some extracost. In the case of processor allocation the cost might be delaying thescheduling of a task. In the case of register allocation, the price might bekeeping extra registers to store values temporarily before they are placed intheir assigned register. In either case, it is useful to know, given lookaheadl, how much better an on-line algorithm can do. The only previous work onon-line algorithms with lookahead was done by Graham, Chung and Saks inthe area of dynamic location problems (1-server problems with excursions)[2]. They characterize all graphs on which a dynamic location problem canbe solved optimally with a �xed lookahead.We examine on-line graph coloring for the class of inductive graphs. Ad-inductive graph has the property that the nodes can be assigned distinctnumbers in such a way that each node is adjacent to at most d higher-numbered nodes. First Fit (FF ) is the most natural on-line algorithm apractitioner would think of: it assigns to each node the lowest-numberedcolor possible (i.e. the lowest numbered color such that the node is notalready adjacent to any nodes of that color). We show that FF will useO(d log n) colors on any d-inductive graph with n nodes. Karlo� has a proofof the upper bound for First Fit that was discovered independently [5]. Weshow that this bound is tight: for any on-line graph coloring algorithm A,there is a d-inductive graph on which A uses 
(d log n) colors. Since d + 1is an upper bound on the chromatic number of any d-inductive graph, thisyields a bound for any d of 
(log n) on the performance ratio for any on-line algorithm on d-inductive graphs. The upper bound on the number ofcolors used yields an upper bound on the performance ratio for graphs whered and the chromatic number are closely related. For example, since planargraphs are 5-inductive and chordal graphs are �(G)-inductive, the numberof colors used by FF is O(log n) for planar graphs and O(�(G) log n) forchordal graphs, which yields a performance ratio of O(log n) for both classes.The bound for planar graphs is tight to within a constant factor because3



one can show that for any on-line algorithm A, there is a tree T such thatA(T ) = 
(log n). Since trees are also chordal, the result also yields a tightlower bound on the performance ratio for any on-line algorithm on chordalgraphs.When lookahead is added to the model, our results indicate that a sub-stantial amount of lookahead is required to give an on-line algorithm anyadvantage. We show that even with lookahead nlogn , an on-line algorithmstill requires 
(d log n) colors to color a d-inductive graph. For lookaheadl > nlogn we can do better, because we can color a d-inductive graph on-linein �( minfd log n; dnl g) colors. It is surprising that the advantage of looka-head was not simply a tradeo� in l , but rather produced a threshold e�ect.In addition, the point at which lookahead becomes an advantage is quitehigh.The following is an outline of the techniques used in the proofs. Theupper bound is proved by attaching a price to each node. Nodes to whichFF assigns higher-numbered colors cost more than nodes that are assignedlower numbered colors. The price of a node is a lower bound on the numberof nodes in the graph. We use the constraint that the graph must be d-inductive to lower bound the price of a node that gets assigned a high color.Therefore we show that if FF uses many colors, the graph must be large.For the lower bound, the adversary presents a graph such that each nodedoes not have more than d edges to higher-numbered nodes (thus ensuringthat the graph is d-inductive). Conceptually, the adversary divides the graphinto phases. We show that the adversary can construct the graph in sucha way that before every phase, he can determine all of the edges for nodespresented in the coming phase. After the pth phase, any on-line coloringalgorithm has used at least p colors to color the graph. To get the boundwith lookahead, the adversary inserts l independent nodes in between thenodes of each phase. Thus when the algorithm is coloring nodes in phasep it cannot see any of the nodes in phase p + 1. As long as the number of\independent" nodes does not dominate the total number of nodes, the samelower bound holds as in the case without lookahead.4



2 Related WorkThe on-line model is a natural way to view many problems that arise inpractice. Such problems that have been studied in the past include on-linebin packing, operations on data structures and embedding process graphs onnetworks. Faigle, Kern and Turan discuss several on-line problems, rephrasedas partitioning an independence system [3].There has also been considerable work on on-line graph coloring. Inevaluating an on-line graph coloring algorithm, keep in mind that the worstpossible performance ratio is n. Lovasz, Saks and Trotter have shown analgorithm that has a performance ratio of o(n) [8]; their algorithm achievesa performance ratio of O( nlog�n) on all graphs. This is close to the best anyon-line algorithm can do for general graphs. It has been shown that for anyon-line algorithm A, and integer any k, there is a graph on at most k(2k� 1)nodes with chromatic number k on which A will use 2k � 1 colors [11].This yields a lower bound of 
( n(logn)2 ) for the performance ratio of any on-line algorithm on general graphs. Note that this lower bound does not sayanything if we restrict our attention to the class of graphs where k is �xedand the number of nodes in the graph can be arbitrarily large. Vishwanathanhas a randomized on-line algorithm for coloring graphs where the chromaticnumber is a constant but the size of the graph can grow [12]. His algorithmachieves a competitive ratio of O(n=plog n) colors.Researchers have considered on-line coloring of more restricted classes ofgraphs. One can show that bipartite graphs can be colored on-line usingO(log n) colors. This bound is matched by a lower bound of 
(log n) forany on-line algorithm on trees. Kierstead and Trotter have shown an on-linealgorithm that achieves an optimal performance ratio of 3 on interval graphs[7]. Kierstead has shown that FF has a constant performance ratio on theclass of interval graphs [6]. Gyarfas and Lehel have shown that FF achieves aconstant performance ratio on split graphs, complements of bipartite graphs,and complements of chordal graphs [4]. Although FF does well on somerestricted classes of graphs, one can show that it does quite poorly in general.In fact, there is a bipartite graph on 2k nodes on which FF will use k colors.The graph is simply the complement of a perfect matching on 2k nodes.5



3 Upper BoundA graph G is d-inductive if the nodes of G can be ordered in such a waythat each node has at most d edges to higher-numbered nodes. Such anordering on the nodes is called an inductive order. An inductive order isnot necessarily unique for a graph. Note that if the nodes were presentedin the reverse inductive order, then First Fit would use at most d+ 1 colorsto color the graph. An inductive order of G de�nes an orientation of theedges called an inductive orientation obtained by orienting the edges fromthe higher-numbered nodes to the lower numbered nodes. Notice that in aninductive orientation, the in-degree of each node is bounded by d. In fact theupper bound of O(d log n) for First Fit holds for any graph whose edges canbe oriented so that the in-degree of every node is no more than d. However,any such graph is 2d-inductive (the average degree is no more than 2d), sousing the weaker assumption can only yields an improvement of a constantfactor.Theorem 1 If G is a d-inductive graph on n nodes, then FF usesO(d log n) colors to color G.The analysis will make use of a �xed inductive orientation of the graph.Note that the order in which the adversary presents the nodes need not bean inductive order. The adversary would like to present a graph on whichFF uses as many colors as possible and has as few nodes as possible. Thenodes are numbered in the order they are presented. Examine the graph justafter the adversary has presented node j. Let N(j) denote the neighborhoodof node j when it is �rst presented. Suppose node j gets color c. Then forevery color in f1; . . . ; c� 1g, there is a node in N(j) that has been assignedthat color. Fix a set of nodes Sj such that :� For every i 2 Sj, i < j.� Sj � N(j)� For every k 2 f1; . . . ; c � 1g there is exactly one node in Sj that hasbeen assigned the color k. 6



� jSjj = c � 1Notice that if we remove the edges between j and lower numbered nodesnot in Sj, then FF will produce the same coloring. Let Sinj be those nodesin Sj that are incident to edges directed into j, and Soutj those nodes on Sjthat are incident to edges directed out of j in the inductive orientation. Weknow that jSinj j � d. Let dj = d� jSinj j. Then jSoutj j = c� 1� (d� dj). Notethat there can be at most dj edges from higher-numbered nodes directed intoj. Associate with each node j a value Pj given byPj = 1 + Xk2Soutj PkdkNote that if dk = 0, then there can not be any edges from higher-numberednodes into node k. This implies that k 62 Soutj for every node j where j > k.Thus the above sum is well de�ned.Intuitively, if node j gets color c, then Pj is the number of nodes usedin the graph to force node j to get color c, or the \price" of node j. Theconstraint is that no node can have in-degree greater than d. dj denotes thenumber of additional edges that can be directed into node j after it is �rstpresented. We can think of these as \slots" for edges directed into j. So howmany nodes were used to force j to get the color c? One for the node j itself.In addition, j must be adjacent to nodes assigned colors f1; . . . ; c� 1g. Thisis the set Sj. A slot is used up from every node i in Soutj (i.e. if there isan edge from j into i). Since Pi is the price of node i , and node j uses upone of its di slots, we add Pi=di to the price of node j. To formalize this, weneed to prove that if the price of a node is Pi , then there are in fact at leastPi nodes in the graph. Also we need to prove that nodes that are assignedhigher-numbered colors, have a higher price.Lemma 2 For any node j, Pj � n.Proof: We prove the claim by bounding partial sums de�ned as follows:P (i)j = 1 + Xk2Soutj \f1;...ig Pkdk7



We show that for all 1 � i � n:nXk=iP (i�1)k � nThis implies the claim because P (i�1)i = Pi andPi � Pi + nXk=i+1P (i�1)k = nXk=iP (i�1)k � nBy induction on i:For i = 1: P (0)1 = . . . = P (0)n = 1. SonXk=1P (0)k = nBy the induction hypothesis, we know thatnXk=iP (i�1)k � nSuppose i 2 Soutk , thenP (i)k = 1 + Xl2Soutk \f1;...;ig Pldl = Pidi + P (i�1)kIf i 62 Soutk , then P (i)k = P (i�1)kFor every k such that i 2 Soutk there is an edge from k into i. There are atmost di such edges, because there are at most di edges from higher-numberednodes into i. So we havenXk=i+1P (i)k � di �Pidi �+ nXk=i+1P (i�1)k8



= P (i�1)i + nXk=i+1 P (i�1)k= nXk=i P (i�1)k � n2 Lemma 3 If i is colored with color c then(1) if di 6= 0; then Pidi � 1d  d+ 1d !c�1(2) if di = 0; then Pi �  d + 1d !c�1�dProof:By induction on c.� Case 1: di 6= 0. Each node in Souti is colored with a di�erent color inthe range 1; . . . c� 1. If a node j is in Souti , then dj 6= 0. Thus, by theinduction hypothesis, we can lower bound Pidi as follows:Pidi � 1di 241 + Xl2Souti 1d  d + 1d !l�135� 1di 241 + jSouti jXl=1 1d  d + 1d !l�135= 1di  d+ 1d !jSouti j = 1di  d + 1d !c�1�jSini j = 1di  d + 1d !c�1�d+diSince di is an integer between 1 and d, this expression is minimized fordi = d. Pidi � 1d  d+ 1d !c�19



� Case 2: di = 0. Similarly to above, we getPi �  d + 1d !c�1�d+di =  d + 1d !c�1�d2The two claims yield the theorem because if FF colors a node with color c,then the size of the graph is at least 1d �d+1d �c�1�d.c � log d+1d dn + d+ 1 = O(d log n)4 Lower BoundThe following theorem shows that no on-line algorithm can perform asymp-totically better than FF . Michael Saks has a simpli�ed version of the proofof Theorem 4, but unfortunately, the simpler proof does not generalize forthe case when lookahead is added to the model. We present a proof of thelower bound from which the lower bound with lookahead follows easily.Theorem 4 For every on-line graph coloring algorithm A, and for everyd, there is a family of d-inductive graphs G such that for every n � d 3, thereis a G 2 G where G has n nodes and A(G) = 
(d log n):The nodes are numbered from 1 to n in the order they are presented.The adversary presents a graph such that the number of edges from anynode to higher-numbered nodes is at most d. To do this, he must ensure thatafter a node is presented, at most d more nodes will be adjacent to it. Thisensures that G is d-inductive; an inductive order of G is the order in whichthe nodes are presented. We introduce the notion of slots which indicatesfor a particular node how many more edges can be attached to it withoutviolating this condition. When a node is �rst presented, it has d slots. Aseach additional node adjacent to it appears, the number of slots decreasesby one. When a node has no slots left, the adversary cannot add any more10



edges incident to that node. If an on-line algorithm is coloring the nodes ofa graph, then the number of slots of color c is simply the total number ofslots belonging to nodes that have been assigned color c.The adversary works in phases starting with phase 1. He adds Xp nodesin the pth phase and determines all the edges for these Xp nodes at thebeginning of a phase. The total number of edges added during the pth phaseis (p � 1)Xp. If the adversary plans to have c phases, then he chooses theXp's as follows: Xc = 2. Xp�1 = & d + 1d !Xp + 2'The adversary's goal is to force the algorithm to use p di�erent colors bythe end of the pth phase. If he succeeds, then by the end of the last phase, thealgorithm will have used at least c colors to color the entire graph. To boundthe total number of nodes in the graph, we �rst bound the number of nodesin each phase. Using the fact that Xc � 3 and Xp�1 � ((d+ 1)=d)Xp + 3,Xp � 3 c�pXi=0  d+ 1d !i � 3d d+ 1d !c�p+1 :The total number of nodes in the graph is the sum over all phases of thenumber of nodes added in each phase:n � 3d cXp=1 d+ 1d !c�p+1= 3d c�1Xj=0 d+ 1d !j+1� 3d2  d + 1d !c+1 :Since n � d 3, c = 
(d log n).First we describe the adversary's strategy against First Fit and then wedescribe how the adversary alters the strategy when playing against an arbi-trary on-line graph coloring algorithm A. We then prove that A can do nobetter than First Fit. 11



If the adversary is playing against First Fit, then in the �rst phase, hepresents X1 independent nodes. First Fit assigns them all the color 1. Inthe second phase, the adversary presents X2 nodes each of which is adjacentto a node that has been assigned color 1. First Fit will assign these nodesthe color 2. In general, during phase p, every new node will be adjacentto p � 1 nodes each of which is assigned a di�erent color in f1; . . . ; p � 1g.The adversary will only be able to do this if there are enough slots of colors1; . . . ; p� 1. If he succeeds, then every node in phase p will be assigned thecolor p. Let FFi(p) denote the number of slots of color i remaining afterphase p. We prove that the Xj's are chosen in such a way that that followinglemma holds:Lemma 5 For any phase p � c, and for every i � p,(A) FFi�1(p) � 2d + FFi(p) and FFp(p) = dXp(B) Every node in phase p is assigned the color p.Proof: By induction on p. Assuming the claim is true for every phasethrough phase p, we prove the claim for phase p + 1. Since for every i � p,color i has at least dXp slots and dXp � Xp+1, there are enough slots of colors1; . . . ; p so that every node in phase p+1 can be adjacent to nodes that havebeen assigned colors 1; . . . ; p. First Fit will assign each new node the colorp+1, which proves Part B of the lemma. In addition, the same number of slotsof each color is used up, so we have for i � p, FFi�1(p+1) � 2d+FFi(p+1).Each of the new nodes is assigned the color p + 1 and each new node has dslots, so FFp+1(p + 1) = dXp+1. The number of slots of color p after phasep + 1 is dXp � Xp+1, because Xp+1 slots were used up in phase p. SincedXp � 2d + (d+ 1)Xp+1, FFp(p+ 1) � 2d + FFp+1(p+ 1). 2Now suppose the adversary plays against an arbitrary algorithm A. LetAi(p) denote the number of slots that algorithm A has of color i after phasep. We name each color according to the number of slots it has where color 1has the most slots (i.e. Ai(p) � Ai+1(p) ). If the relative number of slots ofthe colors changes, the colors are renamed accordingly. When the adversaryplays against algorithm A, his goal is to keep A's distribution of slots amongcolors as spread out as First Fit's distribution. Speci�cally, after each phasep, he wants to maintain the following two properties:12



� Property 1: Pij=1Aj(p) � d +Pij=1 FFj(p) for any i � p� Property 2: Pj�1Aj(p) =Pj�1 FFj(p)If both Properties hold after phase p, A has used at least p colors becausethe total number of slots A has is more than the number of slots it has inthe �rst p� 1 colors after phase p. That is, since, FFp(p) � (d+ 1),Xi�1Ai(p) = Xi�1 FFi(p)> d+ p�1Xi=1 FFi(p) � p�1Xi=1Ai(p)If the adversary has maintained both properties after phase p � 1, he wantsto choose the edges for the nodes in phase p such that no matter what validcoloring A uses on the nodes of phase p, both properties will be maintained.Notice that when the adversary plays against First Fit, he adds exactly(p � 1)Xp edges and Xp nodes to the graph in phase p. Thus the totalnumber of slots increases by dXp � (p� 1)Xp. The adversary adds the samenumber of edges and nodes per phase when playing against any algorithm.This ensures Property 2 because the change in the total number of slots isthe same for both A and First Fit. The adversary then must decide whereto place these edges in order to maintain Property 1.We de�ne the following variables that determine the amount of \slack"in between A's distribution and First Fit's. si is the slack variable for colori. The slack variables are chosen in such a way that Algorithm A could add(d+ 1)si more slots to color i for every i � p� 1 and Property 1 would stillhold after phase p � 1.For i = 1 to p � 1,si  minp�1�k�i8<:Xp;2666 kXj=1 FFj(p � 1)�Aj(p� 1)d+ 1 3777� i�1Xj=1 sj9=;If sp�1 < Xp then for i � p,si  min (Xp;$Ai(p � 1)d+ 1 %)13



Otherwise, si = 0 for all i � p.We prove the following lemmaLemma 6 If Properties 1 and 2 hold after phase p � 1 and the slackvariables are chosen as indicated above, then for all i where 1 � i � p � 1,si � 0 and d+ iXj=1FFj(p) � iXj=1[Aj(p� 1)�Xp + (d + 1)sj]Proof: Since FFj(p � 1) �Xp = FFj(p) for all i � p � 1, we just haveto prove si � 0 andd+ iXj=1FFj(p � 1) � iXj=1[Aj(p� 1) + (d+ 1)sj ]:Since all variables are integers, this follows if si � 0 and2666 iXj=1 FFj(p� 1) �Aj(p � 1)d + 1 3777� iXj=1 sj � 0:The proof is by induction on i. We prove that for any k where p�1 � k � i,2666 kXj=1 FFj(p� 1)�Aj(p � 1)d + 1 3777� iXj=1 sj � 0 (1)Property 1 ensures that the claim is true for i = 0. Now assume the claimis true for i. Since si+1 is chosen to be the minimum over k of the value inLine 1, then si+1 is just the minimum of a set of non-negative numbers andhence, si+1 � 0. Furthermore, since for any k where p� 1 � k � i+ 1,2666 kXj=1 FFj(p� 1)�Aj(p � 1)d + 1 3777� iXj=1 sj � si+1we have that 2666 kXj=1 FFj(p� 1)�Aj(p� 1)d+ 1 3777� i+1Xj=1 sj � 014



2The adversary chooses the edges for the next phase as follows: For 1 �i � p � 1, Xp � si of the nodes in phase p are adjacent to nodes of colori. For i � p, si of the nodes in phase p are adjacent to nodes of color i.If Pp�1i=1 si > Pi�p si, the adversary then adds Pp�1i=1 si �Pi�p si extra edgesbetween any node in phase p and any node from phase 1; . . . ; p � 1.When the adversary plays against First Fit, (p � 1)Xp edges are usedin phase p, thus Property 2 holds if the adversary uses the same numberof edges against algorithm A. Exactly (p � 1)Xp edges have been added inphase p against A, if Pp�1i=1 si �Pi�p si � 0.If sp�1 = Xp, the claim clearly follows because Pi�p si = 0. Otherwise, ifsi < Xp, then from from the choice of the si's,Xi�p si � Xi�p Ai(p� 1)(d + 1)p�1Xi=1 si � p�1Xi=1 FFi(p � 1) �Ai(p � 1)(d+ 1)p�1Xi=1 si �Xi�p si � Xi�1 FFi(p � 1)�Ai(p � 1)(d+ 1) = 0To prove that Property 1 holds after phase p, we �rst evaluate how thenumber of slots of each color has changed after algorithm A has colored allthe nodes added in phase p. We verify that the claim holds before reorderingthe colors according to their new number of slots. Then we verify that theclaim holds after the colors are renumbered. For each color i � p�1, Xp� sislots are used up and at most dsi new slots are added.iXj=1Aj(p) � iXj=1[Aj(p� 1) � (Xp � sj) + dsj ] (2)= iXj=1[Aj(p� 1) �Xp + (d+ 1)sj ] (3)15



Line 3 and Lemma 6 imply that Property 1 holds before the colorshave been renumbered according to their new number of slots. We use thefollowing lemma to prove that Property 1 holds after the colors have beenrenumbered.Lemma 7 Suppose j < i and Aj(p) < Ai(p) before the colors are re-ordered, then(1) if i � p� 1; then for every l � i� 1; Ai(p) � Al(p� 1)�Xp+ (d+ 1)sl(2) if i > p� 1; then for every l � p� 1; Ai(p) � Al(p� 1)�Xp+ (d+1)slLemma 7 together with Line 3 implies that for i � (p� 1), Pij=1Aj(p) �Pij=1Aj(p� 1)�Xp+(d+1)sj even after the colors are reordered accordingto their new number of slots. Thus using Lemma 6, Property 1 for i � p� 1holds after renumbering. Property 1 holds for i = p because First Fit andA have the same total number of slots, and First Fit has only used colorsf1; . . . ; pg, pXi=1Ai(p) �Xi�1Ai(p) =Xi�1 FFi(p) = pXi=1 FFi(p)Thus Property 1 still holds after the colors are reordered.Proof of Lemma 7: We prove that if j < i and if Aj(p) < Ai(p) beforethe colors are reordered, then(1) for i � p� 1; Ai(p) � Ai�1(p� 1) �Xp + (d+ 1)si�1(2) for i > p� 1; Ai(p) � Ap�1(p � 1)�Xp + (d + 1)sp�1In addition we prove that for every i � p� 1,Ai(p� 1)�Xp + (d+ 1)si � Ai�1(p� 1)�Xp + (d + 1)si�1:There are �ve cases.� Case 1: si = 0. Since Ai(p� 1) � Ai�1(p � 1), then it is clear thatAi(p� 1)�Xp + (d+ 1)si � Ai�1(p � 1)�Xp + (d + 1)si�1:If si = 0 then all Xp nodes in phase p are adjacent to a node of colori, and color i can not gain more slots relative to color j. Thus, it cannot be the case that for j < i, Aj(p) < Ai(p).16



� Case 2a: i � p� 1 and si�1 = Xp.Ai(p) � Ai(p � 1)� (Xp � si) + dsi� Ai(p � 1)�Xp + (d + 1)si� Ai�1(p � 1)�Xp + (d + 1)Xp= Ai�1(p � 1)�Xp + (d + 1)si�1� Case 2b: i � p � 1, si�1 < Xp and si > 0. si�1 was chosen so that forsome k where i� 1 � k � p � 1,0 = 2666 kXj=1 FFj(p� 1) �Aj(p � 1)d + 1 3777� i�1Xj=1 sjIf k � i, then si = 0 because si is chosen so thatsi � 2666 kXj=1 FFj(p� 1) �Aj(p � 1)d + 1 3777� i�1Xj=1 sj:So we have that0 = 2666i�1Xj=1 FFj(p� 1) �Aj(p � 1)d + 1 3777� i�1Xj=1 sj (4)From the choice of the si's,si � 2666 iXj=1 FFj(p� 1)�Aj(p � 1)d + 1 3777� i�1Xj=1 sj (5)Subtracting Line 4 from Inequality 5,si � &FFi(p� 1) �Ai(p � 1)d + 1 ' :Rearranging, Ai(p� 1) + (d + 1)si � FFi(p� 1) + d (6)17



Using Lemma 5, we can upper bound FFi(p�1)+d by FFi�1(p�1)�d.To upper bound FFi�1(p� 1), we know from the choice of the si's,0 � 2666i�2Xj=1 FFj(p � 1)�Aj(p� 1)d+ 1 3777� i�2Xj=1 sj (7)Subtracting Line 7 from Line 4 and rearranging,FFi�1(p � 1) � d � Ai�1(p � 1) + (d+ 1)si�1 (8)Putting Inequalities 6 and 8 together,Ai(p� 1) + (d + 1)si � Ai�1(p � 1) + (d+ 1)si�1We can now bound the number of slots of color i after phase p.Ai(p) � Ai(p � 1)� (Xp � si) + dsi� Ai�1(p � 1)�Xp + (d + 1)si�1� Case 3a: i � p and sp�1 = Xp. Since at most dXp slots can be addedto any color, Ai(p) � Ai(p � 1) + dXp� Ap�1(p � 1) + dXp= Ap�1(p � 1)�Xp + (d + 1)sp�1� Case 3b: i � p and sp�1 < Xp.si = $Ai(p � 1)d+ 1 %Ai(p� 1) � (d+ 1)si + d18



To bound the number of slots of color i after phase p, Xp � si nodescan be added and si slots are used up. Thus,Ai(p) � Ai(p� 1) + d(Xp � si)� si� dXp + d� FFp(p) + d � FFp�1(p)� d= FFp�1(p� 1) �Xp � dSince sp�1 < Xp, from the argument in Case 2b,FFp�1(p � 1)� d � Ap�1(p � 1) + (d+ 1)sp�1 (9)and Ai(p) � Ap�1(p� 1)�Xp + (d+ 1)sp�125 On-line Coloring with LookaheadSuppose the on-line model is slightly altered by allowing the algorithm to seethe next l nodes before assigning a color to the present node. The adversarypresents the nodes one at a time. The nodes are numbered in the order inwhich the adversary presents them. When each node is presented, its edgesto previously presented nodes are also given. Vertex i must be assigned acolor before node i+ l + 1 is presented. In this case, we say that the graphis colored on-line with lookahead l.Theorem 8 If G is a d-inductive graph on n nodes , then G can becolored on-line with lookahead l using O( minfd log n; dnl g) colors.Proof: If d log n < (d + 1)nl , then ignore the lookahead and use FF tocolor the graph. By Theorem 1, FF will use O(d log n) colors.If d log n � (d+1)nl , then divide the nodes into nl groups of l consecutivenodes. (Consecutive in the order presented). The algorithm can see the19



subgraph induced by the nodes in an entire group before having to assigna color to the �rst node in the group. Since the subgraph induced by eachgroup is d-inductive, it can be colored using d+1 colors. At most d+1 colorsare used for every group, and at most (d+ 1)nl total colors are used. 2The following theorem shows that this is asymptotically the best possible.Theorem 9 For every on-line graph coloring algorithm A with looka-head l, and for every d, there is a family of d-inductive graphs G suchthat for every n � d3, there is a G 2 G where G has n nodes andA(G) = 
( min fd log n; dnl g)We �rst prove the weaker bound of 
( min fd log n; nl g) . Let c =minfnl ; d log ng. The graph is chosen exactly according to the strategy forTheorem 4 except that the adversary inserts l independent nodes after eachphase. This means that the algorithm with lookahead l cannot see any ofthe nodes in a subsequent phase. The adversary does not count the slotsfrom the l independent nodes in determining where to add edges for the nextphase. Thus, when phase p� 1 is over, the adversary can already determinethe edges for the phase p nodes. This implies that the adversary can forcean algorithm with lookahead l to use c colors. The number of nodes in thegraph is bounded by 2n.To prove the stronger bound we alter the adversary strategy in Theorem 4so that there are �(log n) phases. After the pth phase, any on-line algorithmwill have used 
(pd) colors. Then when playing against an algorithm withlookahead, the adversary adds l nodes after each phase, but there are nowonly O(log n) phases. Let d0 = bd=2c. In phase p, the adversary presentsXp d0-cliques. Now each node has at least d0 slots. In the proof we attributeexactly d0 slots to each node when it �rst arrives. If the size of the graph is n,then the adversary chooses the number of phases, c, to beminfnl ; log(n=d2)g.He chooses the Xi's as follows: Xc = 4d02 and Xi = 2Xi+1 +4d0. O(n) nodesare used in the phases, and at most n nodes are used between phases. Sinced0 colors are used per phase, A will use 
( min fd log n; dnl g) colors.The nodes within a clique are all adjacent to the same set of nodes. Whenthe adversary plays against First Fit, each node in each clique presented inphase p is adjacent to nodes assigned colors f1; . . . ; (p� 1)d0g. First Fit uses20



d0 colors per phase. Let F̂F i(p) be the number of slots of color i First Fithas after phase p under the new strategy.Lemma 10 For any phase p � c, and for every i � p � 1 and for any1 � j; k � d0,(A) F̂F (i�1)d0+j(p) � 4d02 + F̂F id0+k(p) and F̂F (p�1)d0+k(p) = d0Xp(B) F̂F id0+k(p) = F̂F id0+j(p)(C) Each node in a clique presented in phase p is assigned a color inf(p� 1)d0 + 1; . . . ; pd0 � 1; pd0g.Proof: Similar to lemma 5. 2The adversary would like to use the same strategy as before in choosingthe edges for the upcoming phase. However, the distribution FFi(p) had theproperty that for every i � p, FFi�1(p) � FFi(p) + 2d. Now F̂F i(p) has theproperty that the colors can be grouped into blocks of d0 consecutive colors.Colors within a block have the same number of slots, and a color from a lowerblock has at least 4d02 more slots than a color from a higher block. In orderto be able to use the same method as before, we de�ne a new distribution�FF . �FF has the property that �FF i(p) � 4d0 + �FF i+1(p). It is de�ned asfollows: �FF i(p) = F̂F i(p) + 4d0(d0 � i (mod d0))Furthermore we have the property thatF̂F j(p) � �FF j(p) � [4d02 + F̂F j(p)] (10)Because �FF i(p) � 4d02, for all i � pd0,bpd0=2cXj=1 �FF j(p) � bpd0=2cXj=1 [F̂F j(p) + 4d02] (11)� bpd0=2cXj=1 F̂F j(p) + pd0Xj=bpd0=2c+1 4d02 (12)� Xj�1 F̂F j(p) (13)21



Now when playing against an algorithm A, we would like to ensure the fol-lowing two properties:� Property 1': Pij=1Aj(p) � (2d0 � 1) +Pij=1 �FF j(p) for any i � pd0� Property 2': Pj�1Aj(p) = Pj�1 F̂F j(p)From the two properties and the bound from line 13, we know that A hasused at least at least pd0=2 colors after phase p. The slack variables for phasep are chosen after phase p � 1 as follows: For i = 1 to pd0 � 1,si  minpd0�1�k�i 8<:Xp;2666 kXj=1 �FF j(p) + d0Xp �Aj(p� 1)2d0 3777� i�1Xj=1 sj9=;If spd0�1 < Xp then for i � pd0,si  min (Xp;$Ai(p � 1)2d0 %)Otherwise, si = 0 for all i � pd0.We use the following lemma.Lemma 11 If Property 1' and 2' hold after phase p � 1 and the slackvariables are chosen as indicated above, then for all i where 1 � i � pd0 � 1,si � 0 and (2d0 � 1) + iXj=1 �FF j(p) � iXj=1[Aj(p � 1)� d0Xp + 2d0sj]The proof for Lemma 11 is similar to the proof for Lemma 6. The adversarychooses the edges for phase p so that if i � pd0 � 1, then Xp � si cliquesare adjacent to color i nodes. (If a clique is adjacent to color-i nodes, thenall the nodes in the clique are adjacent to nodes that have been assignedthe color i.) If i > pd0, then si cliques in phase p are adjacent to color-inodes. The adversary uses d02(p�1)Xp slots in phase p when playing againstFirst Fit. He uses d0(Ppd0�1j=1 (Xp � sj) +Pj�pd0 sj) against algorithm A. Theadversary then adds d0(Ppd0�1j=1 sj �Pj�pd0 sj � (d0� 1)Xp) edges between anynode in phase p and any node from a previous phase. Property 2' followsfrom Lemma 12: 22



Lemma 12 Ppd0�1j=1 sj �Pj�pd0 sj � (d0 � 1)Xp � 0.Proof: Let i be the largest integer such that i � pd0 � 1 and si < d0Xp.� Case 1: i > d0(p � 1). Let i = d0(p� 1) + l.iXj=1 sj � iXj=1 �FF j(p) + d0Xp �Aj(p� 1)2d0Xj�pd0 sj � Xj�pd0 Aj(p � 1)2d0and iXj=1 2d0sj � Xj�pd0 2d0sj� iXj=1[ �FF j(p) + d0Xp �Aj(p � 1)]� Xj�pd0 Aj(p � 1)� iXj=1[ �FF j(p) + d0Xp]�Xj�1Aj(p � 1)Since �FF j(p) + d0Xp = �FF j(p� 1) for j � d0(p � 1), andXj�1Aj(p � 1) = d0(p�1)Xj=1 F̂F j(p � 1) � d0(p�1)Xj=1 �FF j(p � 1)we have that iXj=1 2d0sj � Xj�pd0 2d0sj� d0(p�1)+lXj=d0(p�1)+1[ �FF j(p) + d0Xp]� 2d0lXp23



Since sj = Xp for i < j < pd0,pd0�1Xj=1 sj � Xj�pd0 sj � (d0 � 1)Xp� Case 2: i � d0(p � 1) Since sj � Xp = 0 for d0(p � 1) < j < pd0, andsj = 0 for j � pd0,(pd0�1Xj=1 sj � Xj�pd0 sj � (d0 � 1)Xp) = d0(p�1)Xj=1 sj � 0:2 To prove that Property 1' holds, for i � pd0�1, d0(Xp� si) slots are usedup and at most si nodes are added to color i. Thus,Ai(p) � Ai(p � 1)� d0(Xp � si) + d0si= Ai(p � 1)� d0Xp + 2d0siThus using Lemma 11, Property 1' holds before the colors are reordered.We can prove the following lemma which is su�cient to prove that Prop-erty 1' holds after the colors have been renumbered.Lemma 13 Suppose j < i and Aj(p) < Ai(p) before the colors are re-ordered, then(1) if i � pd0 � 1; then for any l � i� 1; Ai(p) � Al(p � 1)� d0Xp + 2d0sl(2) if i > pd0 � 1; then for any l � pd0 � 1; Ai(p) � Al(p � 1)� d0Xp + 2d0slThe proof of Lemma 13 parallels the proof of Lemma 7.6 Open QuestionsThe graph constructed by the adversary in the proof that 
(d log n) colorsare needed to color d-inductive graphs is not necessarily chordal. Since trees24



are chordal, there is a lower bound of 
(log n) for the performance ratio onchordal graphs, but it remains open if for any d and any on-line coloringalgorithm A, there is a chordal graph with chromatic number d such that Auses 
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