Coloring Inductive Graphs On-line

Sandy Irani*
Computer Science Division
University of California

Berkeley, CA 94720.

July 24, 1996

Abstract

In this paper we consider the problem of on-line graph coloring. In
an instance of on-line graph coloring, the nodes are presented one at
a time. As each node is presented, its edges to previously presented
nodes are also given. Fach node must be assigned a color, different
from the colors of it neighbors, before the next node is given. Let A(G)
be the number of colors used by algorithm A on a graph G and x(G)
the chromatic number of G. The performance ratio of an on-line graph
coloring algorithm for a class of graphs C is mazgec(A(G)/x(G)). We
consider the class of d-inductive graphs. A graph G is d-inductive if
the nodes of G can be numbered so that each node has at most d

*This research was supported by an IBM Graduate Fellowship.

edges to higher-numbered nodes. In particular, planar graphs are 5-
inductive, and chordal graphs are y(G)-inductive. First Fit (F'F) is
the algorithm that assigns each node the lowest numbered color pos-
sible. We show that if G is d-inductive then F'F uses O(dlogn) colors
on (. This yields an upper bound of O(logn) on the performance
ratio of F'F" on chordal and planar graphs. FF does as well as any
on-line algorithm for d-inductive graphs: we show that for any d and
any on-line graph coloring algorithm A, there is a d-inductive graph
that forces A to use Q(dlogn) colors to color G. We also examine
on-line graph coloring with lookahead. An algorithm is on-line with
lookahead [, if it must color node ¢ after examining only the first [4+
nodes. We show that for | < @ the lower bound of dlogn colors
still holds.

1 Introduction

In an on-line problem, the input is obtained incrementally and partial out-
put must be produced before the entire problem instance is known. If the
problem to be solved is an optimization problem, the question is what kind
of solution quality can be obtained given the fact that each part of the so-
lution is produced without knowledge of the entire input. We examine the
problem of on-line graph coloring: the graph is presented one node at a time,
and when a node is presented, the edges from that node to all previously
presented nodes are also given. Fach node must be assigned a color, differ-
ent from the colors of its neighbors, before the next node is presented. The
object is to minimize the number of colors used. On-line graph coloring can
be applied to processor assignment and register allocation problems [1], [9].
We measure an on-line algorithm in comparison to the optimal off-line algo-
rithm. This notion was first introduced by Sleator and Tarjan and presented
a way to do a worst case analysis of on-line algorithms [10].

Let A(G) be the number of colors used by algorithm A on the graph G.
Let x(G) be the chromatic number of G, the minimum number of colors
required to color GG off-line. We are interested in finding an on-line graph

coloring algorithm A, that for a class of graphs C, minimizes

AlG)
X(G)

maxgec

This is the performance ratio of A for the class C.

A fundamental issue of great importance is lookahead: what is it worth
to know the future? It may be possible to delay a decision at some extra
cost. In the case of processor allocation the cost might be delaying the
scheduling of a task. In the case of register allocation, the price might be
keeping extra registers to store values temporarily before they are placed in
their assigned register. In either case, it is useful to know, given lookahead
[, how much better an on-line algorithm can do. The only previous work on
on-line algorithms with lookahead was done by Graham, Chung and Saks in
the area of dynamic location problems (1-server problems with excursions)
[2]. They characterize all graphs on which a dynamic location problem can
be solved optimally with a fixed lookahead.

We examine on-line graph coloring for the class of inductive graphs. A
d-inductive graph has the property that the nodes can be assigned distinct
numbers in such a way that each node is adjacent to at most d higher-
numbered nodes. First Fit (FF) is the most natural on-line algorithm a
practitioner would think of: it assigns to each node the lowest-numbered
color possible (i.e. the lowest numbered color such that the node is not
already adjacent to any nodes of that color). We show that F'F' will use
O(dlog n) colors on any d-inductive graph with n nodes. Karloff has a proof
of the upper bound for First Fit that was discovered independently [5]. We
show that this bound is tight: for any on-line graph coloring algorithm A,
there is a d-inductive graph on which A uses Q(dlogn) colors. Since d + 1
is an upper bound on the chromatic number of any d-inductive graph, this
yields a bound for any d of Q(logn) on the performance ratio for any on-
line algorithm on d-inductive graphs. The upper bound on the number of
colors used yields an upper bound on the performance ratio for graphs where
d and the chromatic number are closely related. For example, since planar
graphs are 5-inductive and chordal graphs are y(G)-inductive, the number
of colors used by FF' is O(logn) for planar graphs and O(x(G)logn) for
chordal graphs, which yields a performance ratio of O(log n) for both classes.
The bound for planar graphs is tight to within a constant factor because

one can show that for any on-line algorithm A, there is a tree T' such that
A(T) = Q(logn). Since trees are also chordal, the result also yields a tight
lower bound on the performance ratio for any on-line algorithm on chordal
graphs.

When lookahead is added to the model, our results indicate that a sub-
stantial amount of lookahead is required to give an on-line algorithm any
advantage. We show that even with lookahead @, an on-line algorithm
still requires Q(dlogn) colors to color a d-inductive graph. For lookahead
[> & we can do better, because we can color a d-inductive graph on-line

in ©(min{dlogn, %}) colors. It is surprising that the advantage of looka-
head was not simply a tradeoff in [, but rather produced a threshold effect.
In addition, the point at which lookahead becomes an advantage is quite

high.

The following is an outline of the techniques used in the proofs. The
upper bound is proved by attaching a price to each node. Nodes to which
FF assigns higher-numbered colors cost more than nodes that are assigned
lower numbered colors. The price of a node is a lower bound on the number
of nodes in the graph. We use the constraint that the graph must be d-
inductive to lower bound the price of a node that gets assigned a high color.
Therefore we show that if F'F' uses many colors, the graph must be large.

For the lower bound, the adversary presents a graph such that each node
does not have more than d edges to higher-numbered nodes (thus ensuring
that the graph is d-inductive). Conceptually, the adversary divides the graph
into phases. We show that the adversary can construct the graph in such
a way that before every phase, he can determine all of the edges for nodes
presented in the coming phase. After the p'* phase, any on-line coloring
algorithm has used at least p colors to color the graph. To get the bound
with lookahead, the adversary inserts [independent nodes in between the
nodes of each phase. Thus when the algorithm is coloring nodes in phase
p it cannot see any of the nodes in phase p 4+ 1. As long as the number of
“independent” nodes does not dominate the total number of nodes, the same
lower bound holds as in the case without lookahead.

2 Related Work

The on-line model is a natural way to view many problems that arise in
practice. Such problems that have been studied in the past include on-line
bin packing, operations on data structures and embedding process graphs on
networks. Faigle, Kern and Turan discuss several on-line problems, rephrased
as partitioning an independence system [3].

There has also been considerable work on on-line graph coloring. In
evaluating an on-line graph coloring algorithm, keep in mind that the worst
possible performance ratio is n. Lovasz, Saks and Trotter have shown an
algorithm that has a performance ratio of o(n) [8]; their algorithm achieves
a performance ratio of O(@L*n) on all graphs. This is close to the best any
on-line algorithm can do for general graphs. It has been shown that for any
on-line algorithm A, and integer any k, there is a graph on at most k(2F — 1)
nodes with chromatic number & on which A will use 2 — 1 colors [11].
This yields a lower bound of Q(#) for the performance ratio of any on-
line algorithm on general graphs. N)ote that this lower bound does not say
anything if we restrict our attention to the class of graphs where k is fixed
and the number of nodes in the graph can be arbitrarily large. Vishwanathan
has a randomized on-line algorithm for coloring graphs where the chromatic
number is a constant but the size of the graph can grow [12]. His algorithm

achieves a competitive ratio of O(n/+/logn) colors.

Researchers have considered on-line coloring of more restricted classes of
graphs. One can show that bipartite graphs can be colored on-line using
O(logn) colors. This bound is matched by a lower bound of Q(logn) for
any on-line algorithm on trees. Kierstead and Trotter have shown an on-line
algorithm that achieves an optimal performance ratio of 3 on interval graphs
[7]. Kierstead has shown that F'F' has a constant performance ratio on the
class of interval graphs [6]. Gyarfas and Lehel have shown that F'F achieves a
constant performance ratio on split graphs, complements of bipartite graphs,
and complements of chordal graphs [4]. Although FF does well on some
restricted classes of graphs, one can show that it does quite poorly in general.
In fact, there is a bipartite graph on 2k nodes on which F'F' will use k£ colors.
The graph is simply the complement of a perfect matching on 2k nodes.

3 Upper Bound

A graph G is d-inductive if the nodes of (G can be ordered in such a way
that each node has at most d edges to higher-numbered nodes. Such an
ordering on the nodes is called an inductive order. An inductive order is
not necessarily unique for a graph. Note that if the nodes were presented
in the reverse inductive order, then First Fit would use at most d + 1 colors
to color the graph. An inductive order of G defines an orientation of the
edges called an inductive orientation obtained by orienting the edges from
the higher-numbered nodes to the lower numbered nodes. Notice that in an
inductive orientation, the in-degree of each node is bounded by d. In fact the
upper bound of O(dlogn) for First Fit holds for any graph whose edges can
be oriented so that the in-degree of every node is no more than d. However,
any such graph is 2d-inductive (the average degree is no more than 2d), so
using the weaker assumption can only yields an improvement of a constant
factor.

Theorem 1 If G is a d-inductive graph on n nodes, then FF' uses
O(dlogn) colors to color (.

The analysis will make use of a fixed inductive orientation of the graph.
Note that the order in which the adversary presents the nodes need not be
an inductive order. The adversary would like to present a graph on which
FF uses as many colors as possible and has as few nodes as possible. The
nodes are numbered in the order they are presented. Examine the graph just
after the adversary has presented node j. Let N(j) denote the neighborhood
of node j when it is first presented. Suppose node j gets color ¢. Then for
every color in {1,...,¢— 1}, there is a node in N(j) that has been assigned
that color. Fix a set of nodes S; such that :

o Lorevery: € 5;, ¢ <.
° S]CN(])

e For every k € {1,...,¢ — 1} there is exactly one node in S; that has
been assigned the color k.

[} |S]‘|:C—1

Notice that if we remove the edges between j and lower numbered nodes
not in S;, then F'F' will produce the same coloring. Let S;” be those nodes
in S; that are incident to edges directed into j, and S;“t those nodes on 5;
that are incident to edges directed out of j in the inductive orientation. We
know that |S%"| < d. Let d;j = d —|S"|. Then |S“| = ¢—1—(d —d;). Note
that there can be at most d; edges from higher-numbered nodes directed into
J. Associate with each node j a value P; given by

P
Pi=1+ Y d—:

¢
kESJO“

Note that if dy = 0, then there can not be any edges from higher-numbered
nodes into node k. This implies that & & S;“t for every node j where j > k.
Thus the above sum is well defined.

Intuitively, if node j gets color ¢, then P; is the number of nodes used
in the graph to force node j to get color ¢, or the “price” of node j. The
constraint is that no node can have in-degree greater than d. d; denotes the
number of additional edges that can be directed into node j after it is first
presented. We can think of these as “slots” for edges directed into j. So how
many nodes were used to force j to get the color ¢? One for the node j itself.
In addition, j must be adjacent to nodes assigned colors {1,...,¢—1}. This
is the set S;. A slot is used up from every node ¢ in S;“t (i.e. if there is
an edge from j into). Since P; is the price of node ¢ , and node j uses up
one of its d; slots, we add P;/d; to the price of node j. To formalize this, we
need to prove that if the price of a node is P; , then there are in fact at least
P; nodes in the graph. Also we need to prove that nodes that are assigned
higher-numbered colors, have a higher price.

Lemma 2 For any node j, P; < n.

Proof: We prove the claim by bounding partial sums defined as follows:

; P
P14+ > =

kESTHN{1,..} dy,

7

We show that for all 1 <1 <n:

ZP]gi—l) <n

n
k=1

This implies the claim because Pi(i_l) = P; and

p<P+ Y PIV=%pY <y
k=1+1 k=1

By induction on 1:

For: = 1: Pl(o):...zpéo)zl. So

Z P}go) =n
k=1

By the induction hypothesis, we know that

ZP]gi—l) <n
k=1
Suppose ¢ € S then
i P P i
POy BB g
leseutn{l,..,i} i

If i ¢ 52U then P = pl™

For every k such that ¢ € S{* there is an edge from k into i. There are at
most d; such edges, because there are at most d; edges from higher-numbered
nodes into z. So we have

ORCENERE GO RS DI

k=1+1 k=1+1

Lemma 3 If: is colored with color ¢ then

Sissl

P' 1
(2) if d; = 0, thenPZ()

Proof:

By induction on e.

e Case 1: d; # 0. Each node in S/ is colored with a different color in
the range 1,...c¢— 1. If a node j is in S?“*, then d; # 0. Thus, by the

induction hypothesis, we can lower bound % as follows:

P, 1 1/(d+1\""
s g I
& = 4 +l€§md(d)]

S
1 1 /(d+1
y 1+Z ()

_ i d—l—l |S£’“t| B l d—l—l c—1—|SZ"| B l d—|—1 c—1—d+d;
A\ d Cd\ d T A\ d

Since d; is an integer between 1 and d, this expression is minimized for

d; = d.
l d—|—1 c—1
d d

%
|

Y

L
d

Ne)

o Case 2: d; = 0. Similarly to above, we get

P' N d—|—1 c—1—d+d; B d—|—1 c—1—d
‘T d B d

The two claims yield the theorem because if F'F' colors a node with color ¢,
c—1—d
then the size of the graph is at least % (d‘j’Tl) .

c < logd+71dn—|—d—|—1 = O(dlogn)

4 Lower Bound

The following theorem shows that no on-line algorithm can perform asymp-
totically better than F'F'. Michael Saks has a simplified version of the proof
of Theorem 4, but unfortunately, the simpler proof does not generalize for
the case when lookahead is added to the model. We present a proof of the
lower bound from which the lower bound with lookahead follows easily.

Theorem 4 For ecvery on-line graph coloring algorithm A, and for every
d, there is a family of d-inductive graphs G such that for everyn > d 2, there
is a G € G where G has n nodes and A(G) = Q(dlogn).

The nodes are numbered from 1 to n in the order they are presented.
The adversary presents a graph such that the number of edges from any
node to higher-numbered nodes is at most d. To do this, he must ensure that
after a node is presented, at most d more nodes will be adjacent to it. This
ensures that (¢ is d-inductive; an inductive order of GG is the order in which
the nodes are presented. We introduce the notion of slots which indicates
for a particular node how many more edges can be attached to it without
violating this condition. When a node is first presented, it has d slots. As
each additional node adjacent to it appears, the number of slots decreases
by one. When a node has no slots left, the adversary cannot add any more

10

edges incident to that node. If an on-line algorithm is coloring the nodes of
a graph, then the number of slots of color ¢ is simply the total number of
slots belonging to nodes that have been assigned color c.

The adversary works in phases starting with phase 1. He adds X, nodes
in the p' phase and determines all the edges for these X, nodes at the
beginning of a phase. The total number of edges added during the p'* phase
is (p — 1)X,. If the adversary plans to have ¢ phases, then he chooses the
X,’s as follows: X, = 2.

SNCINe

The adversary’s goal is to force the algorithm to use p different colors by
the end of the p* phase. If he succeeds, then by the end of the last phase, the
algorithm will have used at least ¢ colors to color the entire graph. To bound
the total number of nodes in the graph, we first bound the number of nodes

in each phase. Using the fact that X. <3 and X,.1 < ((d+1)/d)X, + 3,

L ld+ 1\ d+ 1\
nggz(i) ggd(i) :
—~\ d d

The total number of nodes in the graph is the sum over all phases of the
number of nodes added in each phase:

c d-+1 c—p+1
3d2(—+)
P
c—1 d 1 J+1
— d
7=0

< 3 (ﬁ)+

S
IA

d
Since n > d *, ¢ = Q(dlogn).

First we describe the adversary’s strategy against First Fit and then we
describe how the adversary alters the strategy when playing against an arbi-
trary on-line graph coloring algorithm A. We then prove that A can do no
better than First Fit.

11

It the adversary is playing against First Fit, then in the first phase, he
presents X; independent nodes. First Fit assigns them all the color 1. In
the second phase, the adversary presents X, nodes each of which is adjacent
to a node that has been assigned color 1. First Fit will assign these nodes
the color 2. In general, during phase p, every new node will be adjacent
to p — 1 nodes each of which is assigned a different color in {1,...,p — 1}.
The adversary will only be able to do this if there are enough slots of colors
1
color p. Let FF;(p) denote the number of slots of color ¢ remaining after
phase p. We prove that the X;’s are chosen in such a way that that following
lemma holds:

,-..,p— 1. If he succeeds, then every node in phase p will be assigned the

Lemma 5 For any phase p < ¢, and for every ¢ < p,
(A) FF,_1(p) > 2d+ FFy(p) and FF,(p) = dX,
(B) FEvery node in phase p is assigned the color p.

Proof: By induction on p. Assuming the claim is true for every phase
through phase p, we prove the claim for phase p 4+ 1. Since for every ¢ < p,
color ¢ has at least dX, slots and d X, > X, 1, there are enough slots of colors
1,...,pso that every node in phase p41 can be adjacent to nodes that have
been assigned colors 1,...,p. First Fit will assign each new node the color
p+1, which proves Part B of the lemma. In addition, the same number of slots
of each color is used up, so we have for ¢ < p, F'F;_1(p+1) > 2d+ FF;(p+1).
Each of the new nodes is assigned the color p + 1 and each new node has d
slots, so F'F,11(p+ 1) = dX,41. The number of slots of color p after phase
p+1is dX, — X,41, because X,;; slots were used up in phase p. Since
dX, >2d+ (d+ 1)Xp41, FF,(p+1)>2d+ FF,pi(p+1). O

Now suppose the adversary plays against an arbitrary algorithm A. Let
Ai(p) denote the number of slots that algorithm A has of color 7 after phase
p. We name each color according to the number of slots it has where color 1
has the most slots (i.e. A;(p) > Aix1(p)). If the relative number of slots of
the colors changes, the colors are renamed accordingly. When the adversary
plays against algorithm A, his goal is to keep A’s distribution of slots among
colors as spread out as First Fit’s distribution. Specifically, after each phase
p, he wants to maintain the following two properties:

12

o Property 1: Y/, A;j(p) <d+ Y., FFj(p) for any i < p

o Property 2: 3-;51 Aj(p) = 251 FFi(p)

If both Properties hold after phase p, A has used at least p colors because
the total number of slots A has is more than the number of slots it has in
the first p — 1 colors after phase p. That is, since, F F,(p) > (d+ 1),

Y Aip) = Y FFElp)

i>1 i>1

p—1

> d+ > FFp) > pz:: Ai(p)

=1

If the adversary has maintained both properties after phase p — 1, he wants
to choose the edges for the nodes in phase p such that no matter what valid
coloring A uses on the nodes of phase p, both properties will be maintained.
Notice that when the adversary plays against First Fit, he adds exactly
(p — 1)X, edges and X, nodes to the graph in phase p. Thus the total
number of slots increases by dX, — (p — 1)X,. The adversary adds the same
number of edges and nodes per phase when playing against any algorithm.
This ensures Property 2 because the change in the total number of slots is
the same for both A and First Fit. The adversary then must decide where
to place these edges in order to maintain Property 1.

We define the following variables that determine the amount of “slack”
in between A’s distribution and First Fit’s. s; is the slack variable for color
t. The slack variables are chosen in such a way that Algorithm A could add
(d + 1)s; more slots to color ¢ for every ¢« < p — 1 and Property 1 would still
hold after phase p — 1.

Fore=1 to p—1,

Si = MANp_1>k> {Xp,
j=1

LRE(p-1) - Aipp-1)| &
Z d+1 “_;SJ}

If s,_1 < X, then for ¢ > p,

o 52

13

Otherwise, s; = 0 for all ¢ > p.

We prove the following lemma

Lemma 6 [If Properties 1 and 2 hold after phase p — 1 and the slack
variables are chosen as indicated above, then for all © where 1 <1 < p—1,
s; >0 and

d+iFFj Z — Xp 4+ (d+1)s)]

Proof: Since FFj(p—1)— X, = FFj(p) for all ¢ < p— 1, we just have

to prove s; > 0 and
d+) FFi(p— Z +(d+1)s5].

Since all variables are integers, this follows if s; > 0 and

Zi: FFi(p— il)—l__lAj(p - l)w — Z;;S]‘ > 0.

i=1

The proof is by induction on z. We prove that for any k where p—1 >k > 1,

5 FFi(p— 11)+_1Aj(p - 1% _ 25j >0 (1)

i=1

Property 1 ensures that the claim is true for « = 0. Now assume the claim
is true for . Since s;;1 is chosen to be the minimum over & of the value in
Line 1, then s;44 is just the minimum of a set of non-negative numbers and
hence, s;11 > 0. Furthermore, since for any k& where p— 1>k >+ 1,

FFF(p—1)—A;(p—1 :
ELICIETAETIES

i=1

we have that

S FFi(p—1)—Aj(p—1)| &
> ()
]Z:; d+1 ZS]—

14

a

The adversary chooses the edges for the next phase as follows: For 1 <
t < p—1, X, —s; of the nodes in phase p are adjacent to nodes of color
?. For © > p, 8; of the nodes in phase p are adjacent to nodes of color z.
If S0 s > > i>p Sis the adversary then adds S ls — 2i>p Si extra edges
between any node in phase p and any node from phase 1,...,p — 1.

When the adversary plays against First Fit, (p — 1)X, edges are used
in phase p, thus Property 2 holds if the adversary uses the same number
of edges against algorithm A. Exactly (p — 1)X, edges have been added in
phase p against A, if Y77 s; — >ispsi = 0.

If s,-1 = X,, the claim clearly follows because 3,5, s; = 0. Otherwise, if
s; < X,, then from from the choice of the s;’s,

Ai(p—1)
p—1 | p—1 FF(p—-1)—A(p—-1)
;32 > ; (d+1)

FF(p—1)—Alp—1)
Z (d+1)

>p >1

=0

7
|'
7
Y

To prove that Property 1 holds after phase p, we first evaluate how the
number of slots of each color has changed after algorithm A has colored all
the nodes added in phase p. We verify that the claim holds before reordering
the colors according to their new number of slots. Then we verify that the
claim holds after the colors are renumbered. For each color: < p—1, X, —s;
slots are used up and at most ds; new slots are added.

S A < i{Axp—l)—(Xp—smdsﬂ)
Z — X, + (d+1)s4] (3)

15

Line 3 and Lemma 6 imply that Property 1 holds before the colors
have been renumbered according to their new number of slots. We use the
following lemma to prove that Property 1 holds after the colors have been
renumbered.

Lemma 7 Suppose j < ¢ and Aj(p) < Ai(p) before the colors are re-
ordered, then

(1) ift <p—1, then for every | <i—1,A;(p) < Ailp—1)— X, + (d+ 1)s
(2) ift >p—1, then for every | < p—1,A:(p) < Ailp—1) = X, + (d+ 1)s

Lemma 7 together with Line 3 implies that for ¢ < (p—1), 3%, A;(p) <
2;21 Aj(p—1)— X, + (d+ 1)s; even after the colors are reordered according
to their new number of slots. Thus using Lemma 6, Property 1 for e < p—1
holds after renumbering. Property 1 holds for ¢ = p because First Fit and
A have the same total number of slots, and First Fit has only used colors

{17 A 7p}7
P P
> Ailp) < Ailp) =) FFi(p)=)_Flip)
=1 >1 >1 =1
Thus Property 1 still holds after the colors are reordered.
Proof of Lemma 7: We prove that if j < ¢ and if A;(p) < A;(p) before
the colors are reordered, then
(1) for i < p—1, Ai(p) < Aia(p
(2) for i > p—1, Ai(p) < Apa(p
In addition we prove that for every ¢ < p —1,

Alp—1) = X, +(d+1)s; < Aisi(p—1) — X, + (d + 1)si_y.

There are five cases.

1) — X, +(d+1)s,4
1) — X, + (d + 1)519—1

e Case 1: s; =0. Since A;(p — 1) < A;_1(p — 1), then it is clear that
Ailp—1) = Xp+ (d+1)s; < Aima(p— 1) — X, + (d + 1)si_1.

If s; = 0 then all X, nodes in phase p are adjacent to a node of color
z, and color ¢ can not gain more slots relative to color 5. Thus, it can
not be the case that for j < ¢, A;(p) < Ai(p).

16

o Case 2a: 1 <p—1ands;_; =X,.

Ailp) < Ailp—1) — (X, — i) +ds;
< A(p—1) = X, +(d+1)s;
< Ai—l(p - 1) - Xp+ (d + 1)Xp

Ai—l(p — 1) - X, + (d + 1)82'—1

o Case 2b: ¢+ <p—1, s, <X, and s; > 0. s;_1 was chosen so that for

some k where : — 1 < k <p-—1,

LFF(p-1)—A(p—1)| &
0= Z d—l—l —]Z:;S]‘

i=1

If £ > ¢, then s; = 0 because s; is chosen so that

L EEp-1D) -Aipp-1)| &
8 < Z ’ - —Zsl.
=1 d+1 a7
So we have that
(CLPE(p-1) - A(p-1)] S
0— j j _ ,
Y 2

From the choice of the s;’s,

LFFi(p-1)—A(p—1)| &
Z d+1 “_JZZ;S]

i=1

5 <

Subtracting Line 4 from Inequality 5,

. < {FFz'(p - ;)Jr—lAi(p - 1)} ‘

Rearranging,

17

Using Lemma 5, we can upper bound F F;(p—1)+d by FF,_1(p—1)—d.
To upper bound FF;,_1(p — 1), we know from the choice of the s,’s,

0< iz_%FFj(p_il)—l__lA](p_l) _gsj (7)

Subtracting Line 7 from Line 4 and rearranging,
FFE_(p—1)—d< Aisa(p—1) + (d 4 1)siy (8)
Putting Inequalities 6 and 8 together,
Ailp— 1)+ (d+1)si < Aisa(p— 1) + (d + 1)siy
We can now bound the number of slots of color ¢ after phase p.

Ai(p)

IA

Ai(p — 1) — (Xp — Si) + dSZ'
Aisi(p—1) = Xp + (d 4 1)si

IA

o Case 3a: ¢ > p and s,_; = X,. Since at most dX,, slots can be added
to any color,

Ai(p)

IA

Ai(p — 1) —|— pr
Ap—l(p - 1) + pr
Ap—l(p - 1) — X, + (d + 1)519—1

IA

e Case 3b: ¢ > pand s, < X,.

18

To bound the number of slots of color ¢ after phase p, X, — s; nodes
can be added and s; slots are used up. Thus,

Ailp) < Ailp— 1) +d(X, — i) — s
< dX, +d
< FE(p)+d < FF,a(p) —d

FE, (p—1)—X, —d
Since s, < X,, from the argument in Case 20,
FFp—l(p_ 1) —d< Ap—l(p_l) +(d‘|’1)5p—1 (9)

and

Ai(p) S Apa(p—1) = X, + (d+ 1)sp1

5 On-line Coloring with Lookahead

Suppose the on-line model is slightly altered by allowing the algorithm to see
the next [nodes before assigning a color to the present node. The adversary
presents the nodes one at a time. The nodes are numbered in the order in
which the adversary presents them. When each node is presented, its edges
to previously presented nodes are also given. Vertex ¢ must be assigned a
color before node 2 4+ [4 1 is presented. In this case, we say that the graph
is colored on-line with lookahead [.

Theorem 8 [If (¢ is a d-inductive graph on n nodes , then G can be
colored on-line with lookahead | using O(min{dlogn, dT”) colors.

Proof: If dlogn < (d + 1)%, then ignore the lookahead and use I'F' to
color the graph. By Theorem 1, F'F' will use O(dlogn) colors.

If dlogn > (d+1)%, then divide the nodes into T groups of I consecutive

nodes. (Consecutive in the order presented). The algorithm can see the

19

subgraph induced by the nodes in an entire group before having to assign
a color to the first node in the group. Since the subgraph induced by each
group is d-inductive, it can be colored using d+1 colors. At most d+1 colors
are used for every group, and at most (d 4 1)7 total colors are used. O

The following theorem shows that this is asymptotically the best possible.

Theorem 9 For every on-line graph coloring algorithm A with looka-
head 1, and for every d, there is a family of d-inductive graphs G such
that for every m > d°, there is a G € G where G has n nodes and
A(G) = Q(min {dlogn, 2})

We first prove the weaker bound of Q(min {dlogn,%}) . Let ¢ =
min{%,dlogn}. The graph is chosen exactly according to the strategy for
Theorem 4 except that the adversary inserts [independent nodes after each
phase. This means that the algorithm with lookahead [cannot see any of
the nodes in a subsequent phase. The adversary does not count the slots
from the [independent nodes in determining where to add edges for the next
phase. Thus, when phase p — 1 is over, the adversary can already determine
the edges for the phase p nodes. This implies that the adversary can force
an algorithm with lookahead [to use ¢ colors. The number of nodes in the
graph is bounded by 2n.

To prove the stronger bound we alter the adversary strategy in Theorem 4
so that there are ©(logn) phases. After the p'* phase, any on-line algorithm
will have used Q(pd) colors. Then when playing against an algorithm with
lookahead, the adversary adds [nodes after each phase, but there are now
only O(logn) phases. Let d' = |d/2]. In phase p, the adversary presents
X, d'-cliques. Now each node has at least d’ slots. In the proof we attribute
exactly d’ slots to each node when it first arrives. If the size of the graph is n,
then the adversary chooses the number of phases, ¢, to be min{%},log(n/d*)}.
He chooses the X;’s as follows: X, = 4d"* and X; = 2X;y +4d’. O(n) nodes
are used in the phases, and at most n nodes are used between phases. Since
d’" colors are used per phase, A will use Q(min {dlogn, dT”) colors.

The nodes within a clique are all adjacent to the same set of nodes. When
the adversary plays against First Fit, each node in each clique presented in
phase p is adjacent to nodes assigned colors {1,...,(p—1)d'}. First Fit uses

20

d' colors per phase. Let FAFZ'(p) be the number of slots of color ¢ First Fit
has after phase p under the new strategy.

Lemma 10 For any phase p < ¢, and for every ¢+ < p — 1 and for any
1<y, k< d,

(A) FFunasi(p) > 4d? + FFiai(p) and FF o nar(p) = d'X,
(B) FFiax(p) = FFiay;(p)
(

C) Fach node in a clique presented in phase p is assigned a color in

{(p=1d +1,....pd —1,pd'}.

Proof: Similar to lemma 5. O

The adversary would like to use the same strategy as before in choosing
the edges for the upcoming phase. However, the distribution F F;(p) had the
property that for every ¢ < p, FF,_1(p) > FFi(p) 4+ 2d. Now FAFZ'(p) has the
property that the colors can be grouped into blocks of d' consecutive colors.
Colors within a block have the same number of slots, and a color from a lower
block has at least 4d"* more slots than a color from a higher block. In order
to be able to use the same method as before, we define a new distribution
FF. FF has the property that FF;(p) > 4d' + FF.1(p). Tt is defined as
follows:

FFi(p) = FFi(p) + 4d'(d' — i (mod d'))
Furthermore we have the property that

FFi(p) < FFi(p) < [4d” + FF(p)] (10)
Because F'F;(p) > 4d"™, for all i+ < pd’,

lpd’/2] lpd’/2]
> IFi(p) < 3 [(p) +4d”] (11)
7=1

i=1

Lpd’/2] pd’

< Y ERip) 4+ Y 4d? (12)
= j=lpa]2)41

< S FFip) (13)

i>1

21

Now when playing against an algorithm A, we would like to ensure the fol-
lowing two properties:

o Property 1: Y0, A;(p) < (2d' — 1) + iy FF,(p) for any i < pd’

7=1
o Property 2’: 3.5, A;(p) = X5 FAF](p)

From the two properties and the bound from line 13, we know that A has
used at least at least pd'/2 colors after phase p. The slack variables for phase
p are chosen after phase p — 1 as follows: For7i =1 to pd — 1,

S FFin) 4%, = Ajfp 1% _ Z}

2d'

S = MANpd—1>k>4 {Xp,
=1

If spar—1 < X, then for ¢+ > pd’,

e o 27

Otherwise, s; = 0 for all 7 > pd'.

We use the following lemma.

Lemma 11 [f Property 17 and 2’ hold after phase p — 1 and the slack
variables are chosen as indicated above, then for all i where 1 <1 < pd —1,
s; >0 and

(2d" — 1) + Z FFi(p) > i[Aj(p —1) = d'X, + 2d's}]

i=1

The proof for Lemma 11 is similar to the proof for Lemma 6. The adversary
chooses the edges for phase p so that if ¢ < pd’ — 1, then X, — s; cliques
are adjacent to color ¢ nodes. (If a clique is adjacent to color-i nodes, then
all the nodes in the clique are adjacent to nodes that have been assigned
the color ¢.) If ¢ > pd', then s; cliques in phase p are adjacent to color-:
nodes. The adversary uses d”?(p—1)X,, slots in phase p when playing against

First Fit. He uses d’(Z?ill_l(Xp — 5;) + X j>pa 57) against algorithm A. The
adversary then adds d’(Z?ill_l 8; = Yispar 8 — (d' —1)X,) edges between any
node in phase p and any node from a previous phase. Property 2’ follows

from Lemma 12:

22

Lemma 12 Zpd LS = Yispar 55— (d' — 1) X, > 0.
Proof: Let 2 be the largest integer such that : < pd —1 and s; < d'X,,.
o Case ie>d'(p—1). Leti=d'(p—1)+ 1.

LFF(p) + d'X, — Ap— 1)

: 4 j p
]Z:;SJ > Z 2!

7=1
Aj(p—1)
Y8 = >~
Jj>pd ' Jj>pd 2d

and

ZQd/S]‘ — Z Qd/S]‘
7=1

jzpd!

i[FfF()+ d'X, — A — > Ai(p

J=1 j>pd’

IV

7

> SFF(p) +d'X,) — 0 Ayp

=1 i>1

Since FF(p) +d'X, = FF;(p—1)for j <d(p—1), and

d'(p—1) d'(p—1)
Y Ailp—1) = > FFip-1)< Y FFip-1)
izl j=1 j=1

we have that

Jj=1 Jj>pd
dp=D+H
= Y. [FFip)+dX,]
Jj=d'(p—1)+1
> 241X,

Since s; = X, for 2 < j < pd’,
pd!—1

Yosi— Y s> (d=1)X,
7=1

jzpd
o Case 2: 1 < d'(p—1) Since s; — X, =0 for d'(p — 1) < j < pd’, and
s; =0for j > pd,
pd'—1

d'(p—1)
(> si— > si—(d=1)X,)= > s;>0.
j=1 7=1

Jj>pd

To prove that Property 17 holds, for ¢ < pd' —1, d'(X, — s;) slots are used
up and at most s; nodes are added to color 7. Thus,

Adp) < Adp—1)—d(X, —s:) + d's;
= AZ(p — 1) — d/Xp + Qd/SZ’

Thus using Lemma 11, Property 1’ holds before the colors are reordered.

We can prove the following lemma which is sufficient to prove that Prop-
erty 17 holds after the colors have been renumbered.

Lemma 13 Suppose j < ¢ and Aj(p) < Ai(p) before the colors are re-
ordered, then

(1) if i < pd —1, then for any | <i—1,A;(p) < A(p—1) —d'X, + 2d's,
<

(2) if i > pd — 1, then for any | < pd —1,A;(p) < Ai(p — 1) —d'X, + 2d's,

The proof of Lemma 13 parallels the proof of Lemma 7.

6 Open Questions

The graph constructed by the adversary in the proof that (dlogn) colors
are needed to color d-inductive graphs is not necessarily chordal. Since trees

24

are chordal, there is a lower bound of Q(logn) for the performance ratio on
chordal graphs, but it remains open if for any d and any on-line coloring
algorithm A, there is a chordal graph with chromatic number d such that A
uses Q(dlogn) colors to color the graph.

Finally for the question of lookahead, is there a class of graphs for which
less lookahead is required before the on-line performance improves? Or is
there a general technique to extend lower bounds on the number of colors
required without lookahead to the number of colors required with lookahead?
Can one prove for more classes of graphs that if the lower bound for the
number of colors required by an on-line algorithm to color a graph, G in the
class is ¢(n, Y(G)), then for any [< m, the lower bound still holds to
within a constant factor?

Acknowledgements

I would like to thank Dick Karp for suggesting the original problem, and
Prabhakar Raghavan for the suggestion to extend it to on-line coloring with
lookahead. Both of them also provided many helpful comments in preparing
this manuscript. Special thanks also to Bill Burley for his careful reading of
numerous versions of this manuscript and for his many insightful comments.

References

[1] C.G. Chaitin. Register allocation and spilling via graph coloring. Pro-
ceedings of Sigplan Symposium on Computer Construction, Sigplan,
Note 17, 6, pages 98-105, June 1982.

[2] F.K. Chung, R. Graham, M.E. Saks. A dynamic location problem for
graphs. Combinatorica, Vol. 9, No. 2, pages 111-131, 1989.

[3] U.Faigle, W. Kern, G. Turan. On the performance of on-line algorithms
for partitioning problems. Acta Cybernetica Vol. 9, pages 107-119, 1989.

[4] A. Gyarfas, J. Lehel. On-line and first fit colorings of graphs. Journal
of Graph Theory, Vol. 12, No. 2, pages 217-227, 1988.

25

[5]
[6]

[10]

[11]

[12]

H. Karloff. Personal communication.

H.A. Kierstead. The linearity if first-fit coloring of interval graphs. STAM
Journal of Discrete Mathematics, Vol. 1, No. 4, November 1988, pages
526-530.

H.A. Kierstead, W.A. Trotter. An extremal problem in recursive com-
binatorics Congressus Numerantium 33, pages 143-153, 1981.

L. Lovasz, M.E. Saks, W.A. Trotter. An on-Line graph coloring algo-
rithm with sublinear performance ratio. Discrete Mathematics, Special
Volume on Graph Theory and Combinatorics , pages 319-326, 1988.

D.A. Patterson. Reduced instruction set computers. Communications

of the ACM, Vol. 28, No. 1, January 1985.

D.D. Sleator, R.E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, Vol. 28, pages 202-208,
February 1985.

M. Szegedy. Personal communication, transmitted through [8].

S. Vishwanathan. Randomized online coloring of graphs. st Annual
Symposium on the Foundations of Computer Science, 1990.

26

