
Technical Report OSU-CISRC-6/99-TR16, June 1999

Criteria for Testing Exception-Handling Constructs in Java

Programs

Saurabh Sinha and Mary Jean Harrold
Department of Computer and Information Science

The Ohio State University
395 Dreese Lab, 2015 Neil Avenue

Columbus, OH 43210 USA
{sinha,harrold}@cis.ohio-state.edu

Abstract

Exception-handling constructs provide a mechanism for raising exceptions, and a facility for des-
ignating protected code by attaching exception handlers to blocks of code. Despite the frequency of
their occurrences, the behavior of exception-handling constructs is often the least understood and poorly
tested part of a program. The presence of such constructs introduces new structural elements, such
as control-flow paths, in a program. To adequately test such programs, these new structural elements
must be considered for coverage during structural testing. In this paper, we describe a class of adequacy
criteria that can be used to test the behavior of exception-handling constructs. We present a subsump-
tion hierarchy of the criteria, and illustrate the relationship of the criteria to those found in traditional
subsumption hierarchies. We describe techniques for generating the test requirements for the criteria
using our control-flow representations. We also describe a methodology for applying the criteria to unit
and integration testing of programs that contain exception-handling constructs.

Keywords: Structural testing, exception handling, unit testing, integration testing.

1 Introduction

Structural testing techniques [16] use a program’s structure to guide the development of test cases. For

example, in branch testing, test cases are developed by considering inputs that cause certain branches in the

program under test to be executed; similarly, path testing considers test cases that execute certain paths in

the program [8]. Structural coverage techniques give a measure of how well the structural elements of the

program are executed by a given test suite. For example, the branch-coverage measure of a test suite is the

percentage of branches in the program that are executed by the test cases in the test suite.1

Control-flow-based structural testing criteria use a program’s control-flow structure to guide the selection

of test cases (e.g., [8, 9, 14]). Data-flow-based structural testing criteria use data-flow relationships in a

program to guide the selection of test cases (e.g., [3, 6, 10, 15, 18]). Structural testing can be performed at

several levels. Each level of testing has specific goals, and thus, has appropriate coverage criteria that are

directed towards attaining those goals. Unit testing, for example, tests each individual module in isolation.

Integration testing, on the other hand, tests the control and data interactions of the modules (e.g., [5, 7, 11]).
1For some branches, there may be no input that will cause the branch to execute — these branches are infeasible. We can

achieve 100% branch coverage only if we remove infeasible branches from consideration.

To evaluate the relative strengths of different test-selection criteria, the criteria are presented in a hi-

erarchy that describes the subsumption relationship between the criteria [3, 16, 18]. Criterion A subsumes

criterion B if and only if any test suite that satisfies A also satisfies B [3, 18]. Path testing is the strongest

criterion for testing but is usually infeasible because programs with loops can have an infinite number of

paths. Branch and statement testing, although frequently used, are the weakest criteria in these hierarchies,

and may fail to reveal many faults in the program under test. Other control-flow-based and data-flow-based

testing criteria fall between these two extremes.

Exception-handling constructs provide a mechanism for raising exceptions and a facility for designating

protected code by attaching exception handlers to blocks of code. Several languages, such as Java, C++,

and Ada, provide such constructs. A recent study of Java programs indicated that such constructs occur

frequently [20]. Despite the frequency of their occurrences, the behavior of exception-handling constructs

is often the least understood and poorly tested part of a program [19]. The presence of such constructs

introduces new structural elements, such as control-flow paths in a program. To adequately test such

programs, these new structural elements must be considered for coverage during structural testing.

Test requirements for exception-handling constructs are often stated informally, and lack rigor and dis-

cipline. For example, existing testing tools for Java programs provide coverage of all exception handlers in

a program [22]. Other informally-stated criteria require all exceptions to be raised in the program under

test. These criteria lack a systematic and structured approach to testing the behavior of exception-handling

constructs. The criteria require simple coverage of statements that raise exceptions, and those that handle

exceptions. The criteria do not require testing different types of exceptions that can be raised or handled

at the same statement; nor do they require a systematic testing of the data and control interactions within

and across modules that result from the presence of exception-handling constructs. These criteria therefore,

suffer from the same weakness as statement coverage.

One reason for the absence of a structured and disciplined approach to testing the behavior of exception-

handling constructs is the lack of a representation that depicts the behavior. In recent work [20], we described

intraprocedural (within a single module) and interprocedural (across modules) representations for programs

that contain exception-handling constructs. In this paper, we describe a class of adequacy criteria that can

be used to rigorously test the behavior of exception-handling constructs. We first describe the exception-

handling constructs in Java, and the control-flow representations for those constructs (Section 2). We then

present a hierarchy of exception testing criteria, and illustrate the relationship of the criteria to those found

in traditional data-flow testing criteria [3, 18] (Section 3). We also describe techniques for generating the

testing requirements for the criteria using our control-flow representations, and describe a methodology for

applying the criteria to unit and integration testing of programs that contain exception-handling constructs

(Section 4). Finally, we discuss related work (Section 5), and present conclusions (Section 6).

2 Background

In this section, we provide a brief overview of exception-handling constructs in Java, our language model;

details of the Java language can be found in Reference [4]. We also discuss our control-flow representations

that account for exception-handling constructs.

2

E2E1 E3

E

E21

class C2

 enter M1
 1 if <condition>
 2 throw new E3()

 3 while <condition>
 try
 4a call M2
 4b return M2
 5 finally
 6 if <condition>
 7 <statement>
 8 if <condition>
 9 continue
10 if <condition>
11 throw new E3()
12 <statement>
13 catch(E2 e2)
14 if <condition>
15 throw e2
16 print e2
17 <statement>
 exit M1

 enter M2

 try

 enter M
 try
27a call M1
27b return M1
28 catch(E e)

30 <statement>
 exit M

class C1

29 print e

 E e1;
18 if <condition>
19 e1 = new E1()
20 else e1 = new E21()
21 if <condition>
22 <statement>
23 else <statement>
24 if <condition>
25 throw e1
26 print e1
 exit M2

Figure 1: Pseudo-code for sample program that uses Java-like exception-handling constructs (above); hier-
archy of exceptions used in the sample program (below).

2.1 Exception-Handling Constructs

In Java, an exception is an object: it is an instance of a class derived from class java.lang.Throwable,

which is defined in the standard Java API. An exception can be raised at any point in the program, through

a throw statement. The expression associated with the throw statement denotes the exception object; the

expression may represent a variable (for example, throw e), a method call (for example, throw m()), or

a new-instance expression (for example, throw new E()). A try statement provides the mechanism for

designating guarded code, by associating exception handlers with the code. A try statement consists of a

try block and, optionally, a catch block and a finally block. The legal instances of a try statement are

try–catch, try–catch–finally, and try–finally. A try block contains statements whose execution is

monitored for exception occurrences. A catch block, which may be associated with each try block, is a

sequence of catch clauses that specify exception handlers. Each catch clause specifies the type of exception

it handles, and contains a block of code that is executed when an exception of that type is raised in the

associated try block. A catch clause also specifies a catch variable: a variable that is initialized with the

handled exception, and whose scope is limited to the block of code for that catch clause. A try statement

can have a finally block. The code in the finally block is always executed, regardless of the way in which

control transfers out of the try block: by reaching the last statement in the try block, through an exception

that may or may not be handled in the associated catch block, or by reaching a break, continue, or return

3

ex-exit M1(E3)

ex-exit 5(E3)

ex-exit M1(E21)ex-exit M1(E2)

ex-exit M1(E1)

ex-exit M2(E1)

enter M

exit M1

enter M1

5b(n)

5a(n)

5b(E21)

5a(E21)

5b(E1)

5a(E1)

exit 5

exter 5

exit M2

enter M2

exit M

23

14

15 16

6

8

9

10

11

22

21

26 25

24

2019

18

30
29

27b

27a

7

17

4b

12

4a

1

E2

E3

E21

E3
T

T F

T

T

T
F

F

T
F

T

T F

F

F

F

E21 E1

13(E2)

28(E)

ex-exit M2(E21)

3 2

Figure 2: Interprocedural control-flow graph for the sample program.

statement.

Figure 1 shows the pseudo-code of an example program that uses a Java-like syntax to illustrate instances

of a try statement; the inheritance hierarchy at the bottom of the figure illustrates the exception classes

used by the program. For example, the expression of the throw statement in line 2 of the program is a new-

instance expression; that statement raises an exception of type E3. The expression of the throw statement

in line 25, however, is a variable, and that statement can raise an exception whose type is either E1 or E21.

Method M in class C1 contains a try–catch statement; the catch clause of that statement handles exceptions

of type E and specifies catch variable e.

Java follows the non-resumable model of exception handling: after an exception is handled, control does

not return to the point at which the exception was raised, but continues at the first statement following

the try statement that handled the exception. A Java exception can be propagated up the call stack: if a

method raises but does not handle an exception, the exception is reraised in the context of the caller of that

method. For example, the exception raised in line 25 of method M2 is not handled in that method, and is

therefore propagated up to method M1, the caller of M2.

Exceptions in Java can be classified according to several criteria. These criteria reflect the semantics

of raising an exception, and impose requirements on the way in which an exception must be handled. For

example, a Java exception can be synchronous or asynchronous. A synchronous exception occurs at a

particular program point and is caused by an expression evaluation, a statement execution, or an explicit

throw statement. An asynchronous exception, on the other hand, can occur at arbitrary, non-deterministic

points in the program. For example, in a multithreaded program, one thread can cause an exception to

4

occur in another thread. A synchronous exception can be classified as explicitly raised or implicitly raised.

A synchronous exception is explicitly raised if the exception is raised by a throw statement in the application

being analyzed. A synchronous exception is implicitly raised if the exception is raised through a call to a

library routine, or by the runtime environment. The source of an implicitly raised exception, therefore, lies

outside the application being analyzed.

Our graph construction techniques [20] are based on the assumption that the program point at which an

exception is raised can be determined. Therefore, the techniques do not apply to asynchronous exceptions;

a safe approximation of program points that may raise such exceptions would include all statements in the

program. The techniques also do not apply to implicitly raised exceptions. The testing of these types of

exceptions is beyond the scope of this paper; our current work includes investigating ways to extend our

work to include them.

2.2 Control-Flow Representations

Before describing the control-flow representations, we introduce terminology to facilitate the discussion.

• A method or a block directly raises an exception if it lexically encloses a throw statement. A method

or a block indirectly raises an exception if it lexically encloses a call site such that the called method

propagates an exception.

• A method directly propagates an exception if it directly raises, but does not handle, an exception;

similarly, a method indirectly propagates an exception if it indirectly raises, but does not handle, an

exception.

• A catch clause is a local handler if it handles only those exceptions that are directly raised in the try

block associated with that catch clause. A catch clause is an interprocedural handler if it handles

only those exceptions that are indirectly raised in the try block associated with that catch clause. A

catch clause is a global handler if it is both a local handler and an interprocedural handler.

• A catch handler encloses a statement s if s appears in the lexical scope of the try block. A finally

block encloses a statement s if s appears in the lexical scope of the corresponding try block or a

corresponding catch handler.

Our graph construction techniques construct intraprocedural and interprocedural representations. Figure

2 shows the control-flow graphs (CFGs) for methods from the sample program (CFG edges are shown as

solid lines). We first illustrate the CFG construction using the sample program, and then describe the CFG

more formally.

The CFG-construction algorithm [20] creates nodes in the CFG to represent exception-handling con-

structs, and creates edges to represent the control flow caused by the exception-handling constructs. To

identify potential targets of a throw statement, the algorithm performs local type inferencing in each method

to determine exception types that can be raised at throw statements in that method. The algorithm then

creates out edges from a throw node for those exception types, and labels each edge with the corresponding

exception type. For example, the throw statement in line 25 of the sample program can raise one of two

types of exceptions; therefore, node 25 in the CFG for M2 has two out edges and each edge is labeled with

the exception to which it corresponds.

5

If the exception raised at a throw statement is handled in the same method, the algorithm connects the

throw node to the catch node for the appropriate catch handler. To model propagation of exceptions out

of a method, the technique creates exceptional-exit nodes: an exceptional-exit node is an exit point in the

CFG for a method M , and has a type T associated with it, and represents the propagation of an exception

of type T by M . For example, method M2 propagates exception types E1 and E21; therefore, the CFG for

M2 contains two exceptional-exit nodes (labeled “ex-exit M2(E1)” and “ex-exit M2(E21)”) corresponding to

those types; the in edge of one exceptional-exit node is labeled “E1”, whereas the in edge of the other is

labeled “E21”.

In Figure 2, nodes that correspond to catch handlers are labeled by the statement number and the

handler type. For example, the catch node that corresponds to the catch clause in line 13 of method M2 is

labeled “13(E2)”.

The presence of finally blocks creates complicated control-flow paths. In Java, a finally block can

execute in one of two contexts: a normal context or an exceptional context. A finally block executes in

a normal context when (1) control reaches the end of a try block or a catch block, or (2) control leaves

a try statement because of an unconditional transfer-of-control statement, such as break, continue, or

return. A finally block executes in an exceptional context when control leaves a try statement because of

an unhandled exception; the unhandled exception may have been raised directly or indirectly within the try

statement. The context of execution of a finally block determines where control flows from that finally

block: in a normal context, control flows to the statement that follows the try statement, or control flows

to the target of an unconditional transfer statement; in an exceptional context, control flows to an enclosing

finally block, an enclosing catch handler, or control exits the method with an unhandled exception. The

CFG-construction algorithm treats each finally block as a separate method. The algorithm creates a

separate CFG for each finally block, and inserts call nodes to those finally blocks for both contexts of

execution. Figure 2 illustrates the CFG created for the finally block that appears in line 5 of the sample

program; the entry and exit nodes of the CFG are labeled “entry 5” and “exit 5.” The figure also contains

three call and return nodes for calls to the finally block. The call node labeled “5a(n)” corresponds to

the execution of the finally block in a normal context. The call nodes labeled “5a(E1)” and “5a(E21)”

correspond to executions of the finally block in exceptional contexts. We now define a CFG formally.

Definition 1. Let M be a method. Let F = {F1, F2, . . . , F|f |}, |f | ≥ 0, be the finally blocks in M ,

and TS = {TS1, TS2, . . . , TS|f |} be the try statements that contain the finally blocks. A control-flow

graph (CFG) G = (N,E,EN,EX) for M is a directed graph.

N is the set of nodes in G.

• N contains one node for each executable statement in M excluding those that appear in the Fi.

• For a catch handler in M , N contains a catch node h.

• N contains two sets of distinguished nodes, EN and EX , that represent the entry and exit points of

G, respectively. Nodes in EN have no predecessors in G: EN contains the entry node ne of G, and

the catch node for each interprocedural catch handler in M . Nodes in EX have no successors in G:

EX contains the exit node nx of G, and one exceptional-exit node ext for each exception of type t that

is directly propagated by M .

• For a call site in M , N contains a call node c and a return node r.

6

• For a finally block Fi in M , N contains a set of call nodes {nc[i], nc[i,ut1], nc[i,ut2], . . . , nc[i,utm]}
and a set of return nodes {nr[i], nr[i,ut1], nr[i,ut2], . . . , nr[i,utm]} for calls to Fi in normal contexts; nc[i]
represents the call that occurs at the end of the try block and the catch handlers in TSi; each nc[i,j]
represents the call that occurs after an unconditional transfer statement that appears within the lexical

scopes of the try block and the catch handlers in TSi, and that causes control to be transferred outside

TSi; m ≥ 0 is the number of such transfer statements.

• For a finally block Fi in M , N contains a set of call nodes {ec[i,t1], ec[i,t2], . . . , ec[i,tm]} and a set of

return nodes {er[i,t1], er[i,t2], . . . , er[i,tm]} for calls to Fi in exceptional contexts; each ec[i,tj] represents

the call that occurs because an exception of type tj is directly raised but not handled within the lexical

scopes of the try block and the catch handlers in TSi; m ≥ 0 is the number of such distinct types of

directly raised exceptions.

E is the set of edges in G.

• For a pair of nodes m and n (m,n ∈ N) such that there is a potential transfer of control from the

statement represented by m to the statement represented by n, E contains an edge (m,n)

• For a pair of call node c and corresponding return node r, E contains an edge (c, r).

• For a finally block Fi in M , E contains a set of edges {(n, nc[i]), (n1, nc[i]), . . . , (nm, nc[i])}, where n

represents the last statement in the try block in TSi, and the ni represent the last statements in the

catch handlers in TSi.

• For a finally block Fi in M , E contains an edge (nr[i], n), where n represents the first statement that

follows TSi.

• For an unconditional transfer statement utj that appears within the lexical scopes of the try block

and the catch handlers in TSi, and that transfers control outside TSi, E contains edges (utj , nc[i,utj])

and (nr[i,utj], n), where n represents the target of the unconditional transfer statement.

• For a throw node m and an exception type t that can be raised at the corresponding throw statement,

E contains an edge (m,n) that is labeled t, and n is one of three types of nodes:

1. If the raised exception is caught within M by catch handler Hi such that there is no finally

block in M that encloses m and is enclosed by Hi, n is the catch node for catch handler Hi.

2. If the raised exception is not caught within M and there is no finally block in M that encloses

m, n is the exceptional-exit node ext.

3. If there is a finally block Fj in M that enclosesm, and if the raised exception is caught within M ,

Fj is enclosed by the catch handler, n is the finally-call node ec[j,t] that calls Fj in an exceptional

context, and for each finally block Fk that also encloses m, Fj is enclosed by Fk.

• For a call to finally block Fi in an exceptional context for a directly raised exception of type t, E

contains an edge (er[i,t], n), where n is one of three types of nodes:

1. If the raised exception is caught within M by catch handler Hi such that there is no finally

block in M that encloses Fi and is enclosed by Hi, n is the catch node for catch handler Hi.

2. If the raised exception is not caught within M and there is no finally block in M that encloses

Fi, n is the exceptional-exit node ext.

3. If there is a finally block Fj in M that encloses Fi, and if the raised exception is caught within

7

M , Fj is enclosed by the catch handler, n is the finally-call node ec[j,t] that calls Fj in an

exceptional context, and for each finally block Fk that also encloses Fi, Fj is enclosed by Fk.

Each node in N that represents a predicate statement has exactly two successors;2 each node that represents

a throw statement has n ≥ 1 successors; all other nodes in N except those in EX have exactly one successor.

Each node in N is reachable from at least one node in EN , and at least one node in EX is reachable from

each node in N . 2

To create an interprocedural representation, the techniques construct an interprocedural control-flow

graph (ICFG) by connecting CFGs using interprocedural edges. Figure 2 shows the interprocedural edges

in the ICFG for the sample program as dashed lines. The ICFG-construction algorithm connects the CFGs

at call sites using call and return edges: a call edge connects a call node to the entry node of the called

method, and a return edge connects the exit node of the called method to the corresponding return node.

To represent the interprocedural control flow caused by propagation of exceptions on the call stack, the

algorithm creates exceptional-return edges: an exception-return edge is an interprocedural edge that connects

an exceptional-exit node of the called method to a catch node, a finally-call node, or an exceptional-exit

node in the calling method. For example, in Figure 2, exceptional-exit node ex-exit M2(E1) in the CFG for

method M2 is connected to finally-call node 5a(E1) by an exceptional-return edge. The algorithm also creates

unconditional-transfer edges: an unconditional-transfer edge is an interprocedural edge that connects a node

representing an unconditional transfer statement, such as break or continue, within a finally block (such

that the destination of the transfer lies outside the finally block) to the destination of that transfer. For

example, in Figure 2, node 9 is connected to node 3 by an unconditional-transfer edge. We now define an

ICFG formally.

Definition 2. Let P be a program with methods M1,M2, . . . ,Mn, let Gi = (Ni, Ei, ENi, EXi) be the

CFG for method Mi, and let Fi = {F(i,1), F(i,2), . . . , F(i,|fi|)} be the finally blocks in method Mi. An

interprocedural control-flow graph (ICFG) for P , G = (N , E , EN , EX), is a directed graph in which

• Each Ni is augmented with an exceptional-exit node ext for an exception of type t that is indirectly

propagated by Mi.3

• For a finally block F(i,j) inMi, Ni is augmented with a set call nodes {ec[(i,j),t1], ec[(i,j),t2], . . . , ec[(i,j),tm]};
and a set of return nodes {er[(i,j),t1], er[(i,j),t2], . . . , er[(i,j),tm]} for calls to F(i,j) in exceptional contexts

for indirectly raised exceptions;4 each ec[(i,j),tk] represents a call that occurs because an exception of

type tk is indirectly raised but not handled within the lexical scopes of the try block and the catch

blocks in TS(i,j); m ≥ 0 is the number of distinct types of indirectly raised exceptions.

• For a pair of call node ec[(i,j),t] and corresponding return node er[(i,j),t], Ei is augmented with the edge

(ec[(i,j),t], er[(i,j),t]).

• For a call to finally block F(i,j) in an exceptional context for an indirectly raised exception of type

t, Ei is augmented with an edge (er[(i,j),t], n), where n is one of three types of nodes:

1. If the raised exception is caught within Mi by catch handler H(i,j) such that there is no finally
2A switch statement can be represented by a sequence of predicates such that each predicate has only two outcomes.
3If an exception of type t is also directly propagated by Mi, ext is added to Ni during the construction of Gi, and is not

added again during the construction of G.
4Call and return nodes for a call to finally block F(i,j) in an exceptional context for exception type t are created during

the construction of G only if they were not created during the construction of Gi.

8

block in Mi that encloses F(i,j) and is enclosed by H(i,j), n is the catch node for catch handler

H(i,j).

2. If the raised exception is not caught within Mi and there is no finally block in Mi that encloses

F(i,j), n is the exceptional-exit node ext.

3. If there is a finally block F(i,k) in Mi that encloses F(i,j), and if the raised exception is caught

within Mi, F(i,k) is enclosed by the catch handler, n is the finally-call node ec[(i,k),t] that calls

F(i,k) in an exceptional context, and for each finally block F(i,l) that also encloses F(i,j), F(i,k)

is enclosed by F(i,l).

• N =
⋃

1≤i≤nNi.

• EN is the set of entry nodes of the methods in P such that for each ne ∈ EN , there is no call edge

(c, ne) ∈ E ; EX is the set of exit nodes of the methods in P such that for each nx ∈ EX , there is no

return edge (nx, r) ∈ E .

• E = (
⋃

1≤i≤nEi)−E(c,r), where E(c,r) is the set of edges that connect call nodes to their corresponding

return nodes.

• For a call site in a method Mi that calls a method Mj, E contains:

– A call edge (c, ne), where c is the call node in Gi and ne is the entry node of Gj
– A return edge (nx, r), where nx is the exit node of Gj and r is the return node in Gi

– A set of exceptional-return edges {(ext1 , n1), (ext2 , n2), . . . , (extm , nm)}, m ≥ 0, where each exti

is the exceptional-exit node in Gj for exception type ti that is propagated by Mj, and each ni is

one of three types of nodes in Gi:

1. If the raised exception is caught within Mi by catch handler H(i,j) such that there is no

finally block in Mi that encloses F(i,j) and is enclosed by H(i,j), ni is the catch node for

catch handler H(i,j).

2. If the raised exception is not caught within Mi and there is no finally block in Mi that

encloses F(i,j), ni is the exceptional-exit node exti .

3. If there is a finally block F(i,k) in Mi that encloses F(i,j), and if the raised exception is

caught within Mi, F(i,k) is enclosed by the catch handler, ni is the finally-call node ec[(i,k),ti]

that calls F(i,k) in an exceptional context, and for each finally block F(i,l) that also encloses

F(i,j), F(i,k) is enclosed by F(i,l).

– A set of unconditional-transfer edges {(ut1, n1), (ut2, n2), . . . , (utm, nm)}, m ≥ 0, where each uti

represents an unconditional transfer statement in Mj, and each ni represents the target in Mi of

that transfer.5

2

Let P be a program with methods M1,M2, . . . ,Mn, n ≥ 1. A flow graph of P is a CFG for M1 if n = 1,

or an ICFG for P if n > 1.

A path in flow graph G = (N,E,EN,EX) is a sequence of nodes (n1, n2, . . . , nm), m ≥ 0, such that for

all 1 ≤ i < m, (ni, ni+1) ∈ E. A complete path in flow graph G = (N,E,EN,EX) is a path (n1, n2, . . . , nm)

in G, m ≥ 2, such that n1 ∈ EN and nm ∈ EX . A realizable path in an ICFG G is a path p in G such

that each call edge in p is matched by its corresponding return, exceptional-return, or unconditional-transfer
5Unconditional-transfer edges are created only if Gj represents a finally block.

9

edge. A simple path in a flow graph G is a path in G in which all nodes, except possibly the first and the

last, are distinct. A loop-free path in a flow graph G is a path in which all nodes are distinct.

3 Criteria for Testing Exception-Handling Constructs

In this section, we first present definitions for the exceptions testing criteria. We then introduce the class of

criteria that test the behavior of exception-handling constructs.

3.1 Definitions for the Exception Testing Criteria

The exception testing criteria is a class of test selection criteria that, like the data-flow testing criteria [3, 18],

require test cases to exercise certain paths based on data-flow relationships.

An exception type is a type whose instantiation can be raised at a throw statement and carries information

from the point where the exception is raised to the point where that exception is handled. In Java, any

class that is a subtype of java.lang.Throwable is an exception type. The sample program in Figure 1 uses

five exception types: E, E1, E2, E3, and E21. An exception object is an instance of an exception type. For

example, the sample program contains four exception objects — those that are instantiated in lines 2, 11, 19,

and 20. In the discussion, we refer to these objects as eobj2, eobj11, eobj19, and eobj20. An exception variable

is a program variable whose static (declared) type is an exception type. The sample program contains three

exception variables — e1 in method M2, catch variable e2 in method M1, and catch variable e in method

M. We associate a temporary exception variable, evari, with each throw statement i whose expression is a

method call or a new-instance expression; evari provides a handle on the exception object that is either

created at statement i or returned by the method called at statement i. For example, the throw statement

in line 2 has the temporary exception variable evar2 associated with it. An exception object becomes an

active exception object when it is raised at a throw statement. At any point in the execution of a program,

there can be only one active exception object (that represents an unhandled exception at that point in the

execution), although several exception objects may exist at that point. We define a unique program variable,

evaractive, that keeps track of the active exception object: at any point in the execution of a program, the

value of evaractive is either undefined, if there is no unhandled exception at that point in the execution, or

eobjk, if eobjk is the active exception object at that point in the execution.

We associate definitions and uses of exception variables with nodes in a flow graph G (recall that G can

be a CFG or an ICFG, depending on the level of testing being done). For each node i in G, an exception

definition set, e-def(i), contains the set of exception variables that are defined at node i. A node i defines

an exception variable if:

1. i assigns a value to an exception variable v — e-def(i) contains v

2. i is a catch node — e-def(i) contains the catch variable of the associated catch clause

3. i is a throw node such that the expression associated the corresponding throw statement is a method

call or a new-instance expression — in this case, e-def(i) contains the temporary exception variable

evari

4. i is a throw node — e-def(i) contains evaractive

For example, in the sample program, e-def(19) contains e1 because statement 19 assigns a value to exception

10

Table 1: e-def and e-use sets for the sample program.

i e-def(i) e-use(i)

2 evar2, evaractive evar2

11 evar11, evaractive evar11

13 e2, evaractive evaractive
15 evaractive e2

16 e2

19 e1

20 e1

25 evaractive e1

26 e1

28 e, evaractive evaractive
29 e

variable e1. e-def(13) contains e2 because node 13 is a catch node, and e2 is the catch variable of the

corresponding catch clause. e-def(2) contains a temporary exception variable evar2 because node 2 represents

a throw statement whose expression is a new-instance expression. e-def(25) contains evaractive because node

25 is a throw node.

For each node i in G, an exception use set, e-use(i), contains the set of exception variables that are used

at node i.6 A node i uses an exception variable if:

1. i accesses the value of an exception variable v — e-use(i) contains v

2. i is a catch node — e-use(i) contains evaractive
3. i is a throw node such that the expression associated the corresponding throw statement is a method

call or a new-instance expression — in this case, e-use(i) contains the temporary exception variable

evari that is defined at the same node.

For example, e-use(15) contains e2 because node 15 uses the value of e2. e-use(13) contains evaractive
because 13 is a catch node. e-use(2) contains temporary exception variable evar2 because node 2 represents

a throw statement whose expression is a new-instance expression. Table 1 lists the e-def and e-use sets for

the sample program.

For each node i in G, an exception undefinition set, e-undef(i), contains the set of exception variables

that are undefined at node i. Each catch node undefines evaractive. An e-undef set is associated only with

a catch node, and contains a single element, evaractive.

A definition-clear path (def-clear path) with respect to exception variable v is a path (i, n1, n2, . . . , nm, j)

in G, m ≥ 0, such that there is no definition or undefinition of v in n1, n2, . . . , nm.7

To generate test requirements for exception-handling constructs, we identify, for a definition of exception

variable v at node i, the set of nodes j that use the value assigned to v at i (a definition-use set). For example,

node 20 defines e1, node 25 uses e1, and there exists a def-clear path with respect to e1 from node 20 to

node 25. Node 25, therefore, appears in the definition-use set of node 20 with respect to exception variable

e1. The presence of exception-handling constructs induces a second type of definition-use set that crosses a

throw–catch statement pair. For example, the definition of e1 in node 20 is used in node 15, through the
6An e-use(i) can be classified as an c-e-use(i) or an p-e-use(i) based on whether node i uses an exception variable in a

computation or in a predicate [3, 18]. For simplicity, we use e-use(i) to represent both of those types of uses.
7If G is an ICFG, we consider only realizable paths in G.

11

Table 2: e-du sets for the sample program.

e-du e-du
(v, i) (v, i) (v→w, i) (v→w, i)

(evar2, 2) 2 (evar2→e, 2) 29
(evaractive, 2) 28 (evar11→e, 11) 29
(evar11, 11) 11 (e1→e2, 19) 15, 16

(evaractive, 11) 28 (e1→e2, 20) 15, 16
(e2, 13) 15, 16 (e1→e, 19) 29

(evaractive, 15) 28 (e1→e, 20) 29
(e1, 19) 25, 26 (e2→e, 13) 29
(e1, 20) 25, 26

(evaractive, 25) 13, 28
(e, 28) 29

mapping of e1 to e2 by the underlying exception-handling mechanism. Node 15, therefore, appears in the

definition-use set of node 20 with respect to the mapping e1→e2. Identification of such definition-use sets

enables a more thorough testing of exception-handling constructs.

To facilitate a formal definition of an exception definition-use set, we first define the following sets:

• For a throw node j and an exception variable v (v ∈ e-use(j)), a throw-variable definition set, tvar-

def(v, j), contains the set of nodes i such that v ∈ e-def(i) and there exists a def-clear path with respect

to v from i to j. tvar-def(v, j) stores nodes that contain definitions of v that reach the use of v at

throw node j. For example, tvar-def(e1, 25) = {19, 20}.
• For a catch node i and the associated catch variable v, a catch-variable use set, cvar-use(v, i), contains

the set of nodes j such that v ∈ e-use(j) and there exists a def-clear path with respect to v from i to

j. cvar-use(v, i) stores nodes that contain uses of v that are reachable from the definition of v at catch

node i. For example, cvar-use(e2, 13) = {15, 16}.
• For an exception variable v and throw node i (v ∈ e-use(i)), an exception mapping set, e-map(v, i),

contains the set of pairs <w, j> such that j is a catch node, w is the corresponding catch variable, and

there exists a path (i, n1, n2, . . . , nm, j), m ≥ 0, in G. For example, e-map(e1, 25) = {<e2, 13>, <e,

28>}.

An exception definition-use set, e-du, contains, for each definition of an exception variable, all reachable

uses of that definition, and is the union of the following two sets:

(1) e-du(v, i) (v is an exception variable) is the set of nodes j such that v ∈ e-def(i), v ∈ e-use(j), and

there exists a def-clear path with respect to v from i to j.

(2) e-du(v→w, i) (v and w are exception variables) is the set of nodes j such that i ∈ tvar-def(v, k), j ∈
cvar-use(w, l), <w, l> ∈ e-map(v, k), and there exists a def-clear path with respect to v from k to j.

Table 2 lists the e-du sets for the sample program.

An exception definition-use association (e-du association) is a triple (i, j, v) such that j ∈ e-du(v, i), or a

triple (i, j, v→w) such that j ∈ e-du(v→w, i). For example, (19, 25, e1) and (20, 16, e1→e2) are two of the

e-du associations in the sample program.

Apart from its normal state, an exception object has another state associated with it that indicates

whether that exception object is the active exception object. A throw statement activates an exception

object. A catch handler deactivates an exception object. An exception object can also be deactivated

12

Table 3: e-act and e-deact sets for the sample program.

i e-act(i) e-deact(i)

2 eobj2
9 eobj19, eobj20

11 eobj11 eobj19, eobj20

13 eobj20

15 eobj20

25 eobj19, eobj20

28 eobj2, eobj11, eobj19, eobj20

Table 4: e-ad sets for the sample program.

(eobjk, i) e-ad(eobjk, i)

(eobj2, 2) 28
(eobj11, 11) 28
(eobj19, 25) 9, 11, 28
(eobj20, 25) 9, 11, 13, 28

within a finally block when that block executes in the exceptional context, and (1) a throw statement is

reached in the finally block (that statement deactivates the active exception object and activates a different

exception object), (2) a break or continue statement is reached in the finally block that transfers control

out of the finally block, or (3) a return statement is reached in the finally block.

To support activations and deactivations of exception objects, we associate these operations with nodes

in G in a manner similar to definitions and uses: an activation is symmetric to a definition, whereas a

deactivation is symmetric to a use. For each node i in G, an exception activation set, e-act(i), contains the

set of exception objects that are activated at that node; similarly, an exception deactivation set, e-deact(i),

contains the set of exception objects that are deactivated at node i. For example, eobj20 appears in e-act(25)

and e-deact(13) because node 25 activates eobj20 and node 13 deactivates it. Table 3 lists the e-act and

e-deact sets for the sample program.

The other definitions related to e-def and e-use sets extend to e-act and e-deact sets. Like the computation

of uses that are rechable from a definition, we compute deactivations that are reachable from an activation.

An activation of exception object eobjm deactivates any active exception object eobjn. A deactivation of

exception object eobjm deactivates an active exception object eobjm. Therefore, for an activation of eobjm at

node i to reach a deactivation of eobjm at node j, the path p from i to j must be (1) free of an activation of

any eobjn, and (2) free of a deactivation of eobjm. However, because activation of any eobjn along p implies

a deactivation of eobjm, it is sufficient to impose only condition (2) on p to compute reachable deactivations.

A deactivation-clear path (deact-clear path) with respect to exception object eobjk is a sequence of nodes

(i, n1, n2, . . . , nm, j), m ≥ 0, such that there is no deactivation of eobjk in n1, n2, . . . , nm. An exception

activation-deactivation set, e-ad(eobjk, i), is the set of nodes j such that eobjk ∈ e-act(i), eobjk ∈ e-deact(j),

and there exists a deact-clear path with respect to eobjk from i to j. Table 4 lists the e-ad sets for the sample

program.

An exception activation-deactivation association (e-ad association) is a triple (i, j, eobjk) such that j ∈
e-ad(eobjk, i). For example, (2, 28, eobj2) is an e-ad association in the sample program.

13

A path (i, n1, n2, . . . , nm, j), m ≥ 0, is an e-du-path with respect to exception variable v (e-du-path(v))

if v ∈ e-def(i), v ∈ e-use(j), and (i, n1, n2, . . . , nm, j) is a def-clear simple path with respect to v. A path

(i, n1, n2, . . . , nm, j), m ≥ 2, is an e-du-path with respect to mapping v→w (e-du-path(v→w)) if i ∈ tvar-

def(v, k), j ∈ cvar-use(w, l), <w, l> ∈ e-map(v, k), and there exists a def-clear simple path with respect to

v from k to j. A path (i, n1, n2, . . . , nm, j), m ≥ 0, is an e-ad-path with respect to exception object eobjk
if eobjk ∈ e-act(i), eobjk ∈ e-deact(j), and (i, n1, n2, . . . , nm, j) is a deact-clear simple path with respect to

eobjk. An association is an e-du association, an e-du-path, an e-ad association, an e-ad-path, or a node.

A path p covers an association if p covers an e-du association, an e-du-path, an e-ad association, an

e-ad-path, or a node.

• A path p covers an e-du association (i, j, v) if p contains a def-clear path with respect to v from i to j.

• A path p covers an e-du-path q if q is a subpath of p.

• A path p covers an e-ad association (i, j, eobjk) if p contains a deact-clear path with respect to eobjk
from i to j.

• A path p covers an e-ad-path q if q is a subpath of p.

• A path p covers a node n if n appears in p.

A set of paths covers an association if some path from the set covers the association. A test covers an

association if the path traversed by that test covers the association.

An adequacy criterion C is a function C(P , T) that, given a program P and test suite T as inputs,

evaluates to true if and only if the paths traversed by the tests in T cover the associations required by C.

If C(P , T) evaluates to true, the pair (P , T) satisfies the criterion C. Criterion C1 subsumes criterion C2

if and only if each program–test suite pair (P , T) that satisfies C1 also satisfies C2. Criterion C1 strictly

subsumes criterion C2 if and only if C1 subsumes C2 and there exists a pair (P , T) that satisfies C2 but does

not satisfy C1. Criterion C1 is equivalent to criterion C2 if and only if C1 subsumes C2 and C2 subsumes

C1. Criteria C1 and C2 are incomparable if and only if neither criterion subsumes the other.

3.2 Exception Testing Criteria

We now present a class of exception testing criteria that can be used to guide the selection of test cases to

test the behavior of exception-handling constructs. We describe the subsumption hierarchy of the exception

testing criteria for a complete program P . We assume the following about P :

(1) All exceptions in P are raised explicitly;

(2) No exception is propagated out of P — any exception raised in P is handled within P ;

(3) P contains no unreachable catch handler — each catch handler in P is reachable through an exception

raised in P ;

(4) Each exception variable in P is defined before it is used.

In the next section, we illustrate how the criteria can be used to test an incomplete system during unit and

integration testing.

The exception testing criteria, like the data-flow testing criteria, require that operations on data elements

be exercised along various paths in the programs. Because the goal of the exception testing criteria is to test

the behavior of exception-handling constructs, the relevant data elements that are candidates for coverage

are restricted to exception variables and exception objects only.

14

all-edges

all-nodes

all-p-uses

all-p-uses/
some-c-uses

all-du-paths

all-uses

all-c-uses/
some-p-uses

all-c-uses

all-paths

all-defs

all-e-uses

all-e-ad-pathsall-e-du-paths

all-e-defs

all-e-deacts

all-throw all-catch

all-e-acts

Figure 3: The subsumption hierarchies of the data-flow testing criteria (left), and the exception testing
criteria (right).

Table 5: The exception testing criteria.

Criterion Associations required

all-e-defs ∀i(∀v ∈ e-def(i)
(some j ∈ (e-du(v, i) ∪ e-du(v→w, i))))

all-e-uses ∀i(∀v ∈ e-def(i)
(all j ∈ (e-du(v, i) ∪ e-du(v→w, i)))

all-e-du-paths ∀i(∀j ∈ e-du(v, i)
(all e-du-paths wrt v from i to j))

∀i(∀j ∈ e-du(v→w, i)
(all e-du-paths wrt v→w from i to j))

all-e-acts ∀i(∀ eobjk ∈ e-act(i)
(some j ∈ e-ad(eobjk, i)))

all-e-deacts ∀i(∀ eobjk ∈ e-act(i)
(all j ∈ e-ad(eobjk, i)))

all-e-ad-paths ∀i(∀j ∈ e-ad(eobjk, i)
(all e-ad-paths wrt eobjk from i to j))

Like the data-flow testing criteria, which require the coverage of definitions and subsequent uses of

variables, the exception testing criteria require the coverage of definitions and subsequent uses of exception

variables. Unlike the data-flow testing criteria, however, the exception testing criteria provide coverage of

an alternative, symmetric set of operations — activations and deactivations of exception objects. Exploiting

the symmetry between the two sets of operations yields two parallel subclasses of criteria, one based on

definitions and uses of exception variables, and the other based on activations and deactivations of exception

objects.

Figure 3 presents the subsumption hierarchy of the exception testing criteria. Table 5 describes the

15

Table 6: Test requirements for the sample program generated by the application each exception testing
criterion. Each e-du- and e-ad-path in the table is subscripted by the variable or the mapping for which the
path is defined.

Criterion Test requirement (Associations)

all-throw 2, 11, 15, 25

all-catch 13, 28

all-e-defs (2, 2, evar2), (2, 28, evaractive), (11, 11, evar11), (11, 28, evaractive), (13, 15, e2), (15, 28,
evaractive), (19, 26, e1), (20, 25, e1), (25, 13, evaractive), (28, 29, e)

all-e-uses (2, 2, evar2), (2, 29, evar2→e), (2, 28, evaractive), (11, 11, evar11), (11, 29, evar11→e),
(11, 28, evaractive), (13, 15, e2), (13, 16, e2), (13, 29, e2→e), (15, 28, evaractive), (19,
26, e1), (19, 25, e1), (19, 29, e1→e), (20, 25, e1), (20, 26, e1), (20, 15, e1→e2), (20, 16,
e1→e2), (25, 13, evaractive), (25, 28, evaractive), (28, 29, e)

all-e-du-paths (2, 2)evar2 , (2, ex exit E3, 28, 29)evar2→e, (2, ex exit E3, 28)evaractive , (11, 11)evar11 , (11,
ex exit E3, ex exit E3, 28, 29)evar11→e, (11, ex exit E3, ex exit E3, 28)evaractive , (13, 14,
15)e2, (13, 14, 16)e2, (13, 14, 15, ex exit E21, 28, 29)e2→e, (15, ex exit E21, 28)evaractive ,
(19, 21, 22, 24, 26)e1, (19, 21, 23, 24, 26)e1, (19, 21, 22, 24, 25)e1, (19, 21, 23, 24, 25)e1,
(19, 21, 22, 24, 25, ex exit E1, 5a, 5, 6, 8, 10, exit, 5b, ex exit E1, 28, 29)e1→e, (19, 21, 22,
24, 25, ex exit E1, 5a, 5, 6, 7, 8, 10, exit, 5b, ex exit E1, 28, 29)e1→e, (19, 21, 23, 24, 25,
ex exit E1, 5a, 5, 6, 8, 10, exit, 5b, ex exit E1, 28, 29)e1→e, (19, 21, 23, 24, 25, ex exit E1,
5a, 5, 6, 7, 8, 10, exit, 5b, ex exit E1, 28, 29)e1→e, (20, 21, 22, 24, 25)e1, (20, 21, 23, 24,
25)e1, (20, 21, 22, 24, 26)e1, (20, 21, 23, 24, 26)e1, (20, 21, 22, 24, 25, ex exit E21, 5a, 5, 6,
8, 10, exit, 5b, 13, 14, 15)e1→e2, (20, 21, 22, 24, 25, ex exit E21, 5a, 5, 6, 7, 8, 10, exit, 5b,
13, 14, 15)e1→e2, (20, 21, 23, 24, 25, ex exit E21, 5a, 5, 6, 8, 10, exit, 5b, 13, 14, 15)e1→e2,
(20, 21, 23, 24, 25, ex exit E21, 5a, 5, 6, 7, 8, 10, exit, 5b, 13, 14, 15)e1→e2, (20, 21, 22, 24,
25, ex exit E21, 5a, 5, 6, 8, 10, exit, 5b, 13, 14, 16)e1→e2, (20, 21, 22, 24, 25, ex exit E21,
5a, 5, 6, 7, 8, 10, exit, 5b, 13, 14, 16)e1→e2, (20, 21, 23, 24, 25, ex exit E21, 5a, 5, 6, 8, 10,
exit, 5b, 13, 14, 16)e1→e2, (20, 21, 23, 24, 25, ex exit E21, 5a, 5, 6, 7, 8, 10, exit, 5b, 13,
14, 16)e1→e2, (25, ex exit E21, 5a, 5, 6, 8, 10, exit, 5b, 13)evaractive , (25, ex exit E21, 5a,
5, 6, 7, 8, 10, exit, 5b, 13)evaractive , (25, ex exit E1, 5a, 5, 6, 8, 10, exit, 5b, ex exit E1,
28)evaractive , (25, ex exit E1, 5a, 5, 6, 7, 8, 10, exit, 5b, ex exit E1, 28)evaractive , (28, 29)e

all-e-acts (2, 28, eobj2), (11, 28, eobj11), (15, 28, eobj20), (25, 11, eobj20), (25, 28, eobj19)

all-e-deacts (2, 28, eobj2), (11, 28, eobj11), (15, 28, eobj20), (25, 13, eobj20), (25, 9, eobj20), (25, 11,
eobj20), (25, 28, eobj19), (25, 9, eobj19), (25, 11, eobj19)

all-e-ad-paths (2, ex exit E3, 28)eobj2 , (11, ex exit E3, ex exit E3, 28)eobj11 , (15, ex exit E21, 28)eobj20 ,
(25, ex exit E21, 5a, 5, 6, 8, 10, exit, 5b, 13)eobj20 , (25, ex exit E21, 5a, 5, 6, 7, 8, 10, exit,
5b, 13)eobj20 , (25, ex exit E21, 5a, 5, 6, 8, 9)eobj20 , (25, ex exit E21, 5a, 5, 6, 7, 8, 9)eobj20 ,
(25, ex exit E21, 5a, 5, 6, 8, 10, 11)eobj20 , (25, ex exit E21, 5a, 5, 6, 7, 8, 10, 11)eobj20 , (25,
ex exit E1, 5a, 5, 6, 8, 10, exit, 5b, ex exit E1, 28)eobj19 , (25, ex exit E1, 5a, 5, 6, 7, 8, 10,
exit, 5b, ex exit E1, 28)eobj19 , (25, ex exit E1, 5a, 5, 6, 8, 9)eobj19 , (25, ex exit E1, 5a, 5,
6, 7, 8, 9)eobj19 , (25, ex exit E1, 5a, 5, 6, 8, 10, 11)eobj19 , (25, ex exit E1, 5a, 5, 6, 7, 8, 10,
11)eobj19

associations required by each criterion in the hierarchy.

The first three criteria in Table 5 are based on definitions and uses of exception variables and are similar

to the corresponding data-flow testing criteria [3, 18]. The all-e-defs criterion requires the coverage of each

definition of each exception variable to some reachable use. The all-e-uses criterion requires the coverage of

each definition of each exception variable to all reachable uses. The stronger all-e-du-paths criterion imposes

a stricter requirement of covering all paths from each definition of an exception variable to all reachable uses.

The next three criteria are stated in terms of activations and deactivations of exception objects. The

all-e-acts criterion requires the coverage of each exception activation to some reachable deactivation. The

all-e-deacts criterion requires the coverage of each exception activation to all reachable deactivations. The

all-e-ad-paths criterion requires the coverage of all paths from each activation of an exception object to all

16

reachable deactivations.

Table 6 lists the test requirements for the sample program that are generated by the application of each

exception testing criterion to the sample program. A test requirement for a program P with respect to

criterion C is a set of associations that must be covered by tests in test suite T in order for (P , T) to satisfy

C. Some criteria, such as all-e-defs and all-e-acts, have several alternative test requirements; Table 6 lists

only one of those alternatives. For example, replacing the association (13, 15, e2) with the association (13,

16, e2) for all-e-defs yields a different test requirement that can also be used to satisfy all-e-defs.

Figure 3 shows the relationship of the existing criteria for testing exception-handling constructs — all-

throw and all-catch — to the exception testing criteria. All-e-uses and all-e-deacts subsume all-catch, and

all-e-defs and all-e-acts subsume all-throw.

Figure 3 also illustrates the relationship of the data-flow testing criteria to the exception testing criteria.

For example, the figure shows that the all-uses data-flow criteria subsumes the all-e-uses exception testing

criteria.

3.3 Proof of Correctness of the Subsumption Hierarchy

We now demonstrate the correctness the hierarchy shown in Figure 3: we prove each subsumption relationship

in the hierarchy, and we illustrate that each pair of criteria that is not shown to be related in the hierarchy

is incomparable. The subsumption proofs for the data-flow testing criteria are presented elsewhere [2, 18],

and we do not restate them here. Likewise, in illustrating the incomparability of pairs of criteria, we exclude

those pairs that comprise only data-flow testing criteria — for example, the incomparability of all-p-uses

and all-defs; these are substantiated in Reference [18].

Table 7 lists the strict subsumption relations that must be proved to establish the correctness of the

hierarchy shown in Figure 3. Each proof that criterion C1 strictly subsumes criterion C2 has the following

necessary and sufficient conditions: (a) C1 subsumes C2 (denoted C1 −→ C2 in Table 7), and (b) C2 does

not subsume C1 (denoted C1 6−→ C2 in Table 7). Table 7 lists the necessary and sufficient conditions for

each proof of strict subsumption, and enumerates the subparts of Theorem 1 (stated later in this section)

that outline the proofs. The table also reduces the number of non-subsumption relations that must be

demonstrated by identifying implications among the relations. For example, the relation “all-e-du-paths

does not subsume all-paths” that is used to prove that all-paths strictly subsumes all-e-du-paths, can be

inferred from another non-subsumption relation — “all-e-du-paths does not subsume all-nodes,” listed as

I7(b) in Table 9 — and therefore, need not be demonstrated. Lemma 1 proves the inference rule that is used

to derive implications among non-subsumption relations.

Lemma 1: Let predecessor(C) be a function that, given a criterion C, returns a set of criteria that

contains C and all predecessors of C in the subsumption hierarchy. Let successor(C) be a function that,

given a criterion C, returns a set of criteria that contains C and all successors of C in the subsumption

hierarchy. If criterion C1 does not subsume criterion C2, then for all C1succ ∈ successor(C1) and all

C2pred ∈ predecessor(C2), C1succ does not subsume C2pred .

Proof: Let C1 not subsume C2. Let C1succ be any element in successor(C1), and C2pred be any element

in predecessor(C2). Suppose that C1succ subsumes C2pred . By the definition of successor, C1 subsumes

C1succ , and by the definition of function predecessor, C2pred subsumes C2. Then by the transitivity of

subsumption, C1 subsumes C2, which leads to a contradiction. Therefore, C1succ does not subsume C2pred .

17

Table 7: Subsumption relations that must be proved to establish the correctness of the hierarchy shown in
Figure 3, the subparts of Theorem 1 that prove each subsumption, and implications among the proofs iden-
tified using Lemma 1 (−→ and 6−→ denote the relations “subsumes” and “does not subsume,” respectively).

Theorem 1 Strictly Necessary and Implied
subpart Criterion subsumes sufficient conditions by

S1 (a) all-paths all-e-du-paths all-paths −→ all-e-du-paths
(b) all-e-du-paths 6−→ all-paths I7(b)

S2 (a) all-e-du-paths all-e-uses all-e-du-paths −→ all-e-uses
(b) all-e-uses 6−→ all-e-du-paths I5(a)

S3 (a) all-e-uses all-e-defs all-e-uses −→ all-e-defs
(b) all-e-defs 6−→ all-e-uses I2(a)

S4 (a) all-e-uses all-catch all-e-uses −→ all-catch
(b) all-catch 6−→ all-e-uses I2(b)

S5 (a) all-e-defs all-throw all-e-defs −→ all-throw
(b) all-throw 6−→ all-e-defs I1(b)

S6 (a) all-paths all-e-ad-paths all-paths −→ all-e-ad-paths
(b) all-e-ad-paths 6−→ all-paths I4(b)

S7 (a) all-e-ad-paths all-e-deacts all-e-ad-paths −→ all-e-deacts
(b) all-e-deacts 6−→ all-e-ad-paths

S8 (a) all-e-deacts all-e-acts all-e-deacts −→ all-e-acts
(b) all-e-acts 6−→ all-e-deacts I3(a)

S9 (a) all-e-deacts all-catch all-e-deacts −→ all-catch
(b) all-catch 6−→ all-e-deacts I2(b)

S10 (a) all-e-acts all-throw all-e-acts −→ all-throw
(b) all-throw 6−→ all-e-acts

S11 (a) all-c-uses all-catch all-c-uses −→ all-catch
(b) all-catch 6−→ all-c-uses I8(b)

S12 (a) all-c-uses all-throw all-c-uses −→ all-throw
(b) all-throw 6−→ all-c-uses I8(b)

S13 (a) all-du-paths all-e-du-paths all-du-paths −→ all-e-du-paths
(b) all-e-du-paths 6−→ all-du-paths I7(b)

S14 (a) all-uses all-e-uses all-uses −→ all-e-uses
(b) all-e-uses 6−→ all-uses I7(b)

S15 (a) all-defs all-e-defs all-defs −→ all-e-defs
(b) all-e-defs 6−→ all-defs I10(b)

S16 (a) all-nodes all-catch all-nodes −→ all-catch
(b) all-catch 6−→ all-nodes I7(b)

S16 (a) all-nodes all-throw all-nodes −→ all-throw
(c) all-throw 6−→ all-nodes I7(b)

2

Table 8 lists each pair of criteria that must be shown to be incomparable to establish the correctness

of the hierarchy shown in Figure 3. Table 8 is an exhaustive enumeration of the pairs of incomparable

criteria, and illustrates the completeness of Theorem 1 by listing the subparts of Theorem 1 that prove each

incomparability relation. Each proof that criterion C1 is incomparable to criterion C2 has two necessary

and sufficient conditions: (a) C1 does not subsume C2, and (b) C2 does not subsume C1. Because there

are 59 incomparability relations listed in Table 8, 118 proofs of non-subsumption are required to prove

the relations. However, each incomparability relation need not be proved explicitly. Table 9, like Table 7,

reduces the number of non-subsumption relations that must be proved by identifying implications among

the relations. The table further reduces the number of proofs by grouping together pairs of incomparable

criteria such that incomparability of each pair in the group need not be proved. For example, the entry

18

Table 8: Incomparability relations that must be proved to establish the correctness of the hierarchy shown
in Figure 3, and the subparts of Theorem 1 that prove each incomparability.

Theorem Theorem
Criterion Incomparable with subpart Criterion Incomparable with subpart

all-e-du-paths all-e-ad-paths I1 all-edges all-e-du-paths I7
all-e-deacts I1 all-e-uses I7
all-e-acts I1 all-e-defs I7

all-e-uses all-e-ad-paths I1 all-e-ad-paths I4
all-e-deacts I1 all-e-deacts I4
all-e-acts I1 all-e-acts I4

all-e-defs all-e-ad-paths I1 all-nodes all-e-du-paths I7
all-e-deacts I1 all-e-uses I7
all-e-acts I1 all-e-defs I7
all-catch I2 all-e-ad-paths I4

all-catch all-e-acts I3 all-e-deacts I4
all-throw I2 all-e-acts I4

all-du-paths all-e-ad-paths I4 all-c-uses/ all-e-du-paths I8
all-e-deacts I4 some-p-uses all-e-uses I8
all-e-acts I4 all-e-ad-paths I9

all-uses all-e-du-paths I5 all-e-deacts I9
all-e-ad-paths I4 all-e-acts I9
all-e-deacts I4 all-defs all-e-du-paths I10
all-e-acts I4 all-e-uses I10

all-p-uses/ all-e-du-paths I6 all-e-ad-paths I11
some-c-uses all-e-uses I6 all-e-deacts I11

all-e-ad-paths I4 all-e-acts I11
all-e-deacts I4 all-catch I10
all-e-acts I4 all-c-uses all-e-du-paths I8

all-p-uses all-e-du-paths I7 all-e-uses I8
all-e-uses I7 all-e-defs I12
all-e-defs I7 all-e-ad-paths I9

all-e-ad-paths I4 all-e-deacts I9
all-e-deacts I4 all-e-acts I9
all-e-acts I4

for I1 in the table groups together nine pairs of incomparable criteria, which require proofs for eighteen

non-subsumption relations. However, the proofs of two non-subsumption relations imply each of the other

sixteen proofs. Lemma 2 proves the inference rule that is used to group together criteria in Table 9.

Lemma 2: Let C1 = {C1
1 , C

1
2 , . . . , C

1
m} and C2 = {C2

1 , C
2
2 , . . . , C

2
n} be two sets of criterion such that for

all 1 ≤ i < m, C1
i strictly subsumes C1

i+1, and for all 1 ≤ j < n, C2
j strictly subsumes C2

j+1. If C1
1 does not

subsume C2
n, and C2

1 does not subsume C1
m, then for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n, C1

i is incomparable

to C2
j .

Proof: Let C1
1 not subsume C2

n, and let C2
1 not subsume C1

m. By the definitions of functions predecessor

and successor, and by the definitions of sets C1 and C2, for all 1 ≤ i ≤ m, C1
i ∈ successor(C1

1) and

C1
i ∈ predecessor(C1

m), and for all 1 ≤ j ≤ n, C2
j ∈ successor(C2

1) and C2
j ∈ predecessor(C2

n). Then

by Lemma 1, for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n, C1
i does not subsume C2

j , and C2
j does not subsume C1

i .

Therefore, each C1
i is incomparable to each C2

j . 2

Lemma 3: Let p = (i,m1,m2, . . . ,mk, j) be a path in a flow graph G such that i defines a variable v,

and p is def-clear with respect to v. Then there exists a path q = (i, n1, n2, . . . , nl, j) in G such that q is a

loop-free path or a simple path, and q is def-clear with respect to v.

19

Table 9: A reduction of the incomparability relations listed in Table 8 using Lemmas 1 and 2, and the
subparts of Theorem 1 that prove each incomparability (−→ and 6−→ denote the relations “subsumes” and
“does not subsume,” respectively).

Theorem 1 Minimal necessary and Implied
subpart Criteria Incomparable to sufficient conditions by

I1 (a) all-e-du-paths, all-e-uses, all-e-ad-paths, all-e-deacts, all-e-du-paths 6−→ all-e-acts I4(a)
(b) all-e-defs all-e-acts all-e-ad-paths 6−→ all-e-defs

I2 (a) all-e-defs, all-throw all-catch all-e-defs 6−→ all-catch I10(a)
(b) all-catch 6−→ all-throw

I3 (a) all-e-acts all-catch all-e-acts 6−→ all-catch
(b) all-catch 6−→ all-e-acts

I4 (a) all-du-paths, all-uses, all-e-ad-paths, all-e-deacts, all-du-paths 6−→ all-e-acts
all-p-uses/some-c-uses, all-e-acts

(b) all-p-uses, all-edges, all-e-ad-paths 6−→ all-nodes
all-nodes

I5 (a) all-uses all-e-du-paths all-uses 6−→ all-e-du-paths
(b) all-e-du-paths 6−→ all-uses I7(b)

I6 (a) all-p-uses/some-c-uses all-e-du-paths, all-e-uses all-p-uses/some-c-uses 6−→
all-e-uses

(b) all-e-du-paths 6−→ I7(b)
all-p-uses/some-c-uses

I7 (a) all-p-uses, all-edges, all-e-du-paths, all-e-uses, all-p-uses 6−→ all-e-defs
(b) all-nodes all-e-defs all-e-du-paths 6−→ all-nodes

I8 (a) all-c-uses/some-p-uses, all-e-du-paths, all-e-uses all-c-uses/some-p-uses 6−→
all-c-uses all-e-uses

(b) all-e-du-paths 6−→ all-c-uses

I9 (a) all-c-uses/some-p-uses, all-e-ad-paths, all-e-deacts all-c-uses/some-p-uses 6−→ I4(a)
all-c-uses all-e-acts all-e-acts

(b) all-e-ad-paths 6−→ all-c-uses

I10 (a) all-defs all-e-du-paths, all-e-uses, all-defs 6−→ all-catch
(b) all-catch all-e-du-paths 6−→ all-defs

I11 (a) all-defs all-e-ad-paths, all-e-deacts, all-defs 6−→ all-e-acts I4(a)
(b) all-e-acts all-e-ad-paths 6−→ all-defs I1(b)

I12 (a) all-c-uses all-e-defs all-c-uses 6−→ all-e-defs
(b) all-e-defs 6−→ all-c-uses I8(b)

Proof: Outlined in Reference [2], page 1323. 2

We now state and prove the theorem that establishes the correctness of the hierarchy shown in Figure 3.

Theorem 1: The family of data-flow testing and exception testing criteria is partially ordered by strict

subsumption as shown in Figure 3. Furthermore, criterion C1 strictly subsumes criterion C2 if and only if it

is explicitly shown to be so in Figure 3, or follows from the transitivity of the relationship.

Proof: We first prove the subsumption relations among the exception testing criteria. We then prove

the subsumption relations between the data-flow testing criteria and the exception testing criteria. Finally,

we demonstrate that pairs of criteria that are not shown to be related in Figure 3 are incomparable.

(S1) all-paths strictly subsumes all-e-du-paths.

(a) all-paths subsumes all-e-du-paths. Suppose that all-paths does not subsume all-e-du-paths. Then there

exist a program P and a test suite T such that (P , T) satisfies all-paths but does not satisfy all-e-du-paths.

Because (P , T) does not satisfy all-e-du-paths, there exists an e-du-path in P that is covered by no test in

T . This contradicts the assumption that tests in T cover all paths in P .

(b) all-e-du-paths does not subsume all-paths. Implied by I7(b). 2

20

(S2) all-e-du-paths strictly subsumes all-e-uses.

(a) all-e-du-paths subsumes all-e-uses. Suppose that all-e-du-paths does not subsume all-e-uses. Then there

exist a program P and a test suite T such that (P , T) satisfies all-e-du-paths but does not satisfy all-e-uses.

Let a be an e-du association that is not covered by tests in T . Let a be of the form (i, j, v). By definition

of a, v ∈ e-def(i), v ∈ e-use(j), and there exists a def-clear path p = (i,m1,m2, . . . ,mk, j) with respect to v

from i to j. Then by Lemma 3 and the definition of e-du-path, there exists a path q = (i, n1, n2, . . . , nl, j)

in the flow graph of P such that q is an e-du-path with respect to v. Because no test in T covers a, no test

in T traverses the path q, which contradicts the assumption that (P , T) satisfies all-e-du-paths. Similarly,

we can arrive at a contradiction for the case when the uncovered association a is of the form (i, j, v→w).

(b) all-e-uses does not subsume all-e-du-paths. Implied by I5(a). 2

(S3) all-e-uses strictly subsumes all-e-defs.

(a) all-e-uses subsumes all-e-defs. Suppose that all-e-uses does not subsume all-e-defs. Then there exist a

program P and a test suite T such that (P , T) satisfies all-e-uses but does not satisfy all-e-defs. Let v ∈
e-def(i) such that the definition is covered by no test in T . Then for all j ∈ e-du(v, i), no test in T covers

e-du association (i, j, v), which contradicts the assumption that (P , T) satisfies all-e-uses.

(b) all-e-defs does not subsume all-e-uses. Implied by I2(a). 2

(S4) all-e-uses strictly subsumes all-catch.

(a) all-e-uses subsumes all-catch. Suppose that all-e-uses does not subsume all-catch. Then there exist a

program P and a test suite T such that (P , T) satisfies all-e-uses but does not satisfy all-catch. Let j be a

catch node that is covered by no test in T . Because we assume that each catch handler in P is reachable,

there is a throw statement in P such that the exception raised at that statement is handled by the catch

handler corresponding to j; let i be the throw node for that throw statement. Then evaractive ∈ e-def(i),

evaractive ∈ e-use(j), and there exists a def-clear path with respect to evaractive from i to j. Therefore, (i,

j, evaractive) is an e-du association. Because no test in T covers catch node j, no test in T covers the e-du

association (i, j, evaractive). This contradicts the assumption that (P , T) satisfies all-e-uses.

(b) all-catch does not subsume all-e-uses. Implied by I2(b). 2

(S5) all-e-defs strictly subsumes all-throw.

(a) all-e-defs subsumes all-throw. Suppose that all-e-defs does not subsume all-throw. Then there exist a

program P and a test suite T such that (P , T) satisfies all-e-defs but does not satisfy all-throw. Let i be a

throw node that is covered by no test case in T . Because we assume that no exception is propagated out

of P , there is a catch handler in P such that the exception raised at the throw statement corresponding

to i is caught by that handler; let j be the catch node for that catch handler. Then evaractive ∈ e-def(i),

evaractive ∈ e-use(j), and there exists a def-clear path with respect to evaractive from i to j. Therefore, (i,

j, evaractive) is an e-du association. Because no test in T covers throw node i, for all j, no test in T covers

e-du association (i, j, evaractive). This contradicts the assumption that (P , T) satisfies all-e-defs.

(b) all-throw does not subsume all-e-defs. Implied by I1(b). 2

(S6) all-paths strictly subsumes all-e-ad-paths.

(a) all-paths subsumes all-e-ad-paths. Suppose that all-paths does not subsume all-e-ad-paths. Then there

exist a program P and a test suite T such that (P , T) satisfies all-paths but does not satisfy all-e-ad-paths.

Because (P , T) does not satisfy all-e-ad-paths, there exists an e-ad-path in P that is covered by no test in

T . This contradicts the assumption that tests in T cover all paths in P .

21

Table 1

 exit B
17 sum = sum + j
16 throw new E2()
15 if (j==0)
14 throw new E1()
13 if (j<0)
12 read j
 enter B

 exit M
11 print sum
10 i = i + 1
9 return
8 catch E e1
7 print "i = 9"
6 if (i==9)
5 finally
4b return B
4a call B
 try
 try
3 while (i<10)
2 sum = 0
1 read i
 enter M

Table 3

Table 2du associations

(1, 3, i)�

(1, 6, i)�

(1, 10, i)

(2, 11, sum)

(2, 17, sum)

(10, 3, i)�

(10, 6, i)�

(10, 10, i)

(12, 13, j)�

(12, 15, j)�

(12, 17, j)

(17, 11, sum)

(17, 17, sum)

e-ad associations e-ad-paths

(14, 8, eobj14) (14, ex exit B(E1), 5a(E1), enter 5, 6, exit 5, 5b(E1), 8(E))

(14, ex exit B(E1), 5a(E1), enter 5, 6, 7, exit 5, 5b(E1), 8(E))

(16, 8, eobj16) (16, ex exit B(E2), 5a(E2), enter 5, 6, exit 5, 5b(E2), 8(E))

(16, ex exit B(E2), 5a(E2), enter 5, 6, 7, exit 5, 5b(E2), 8(E))

e-du associations e-du-paths

(14, 14, evar14) (14)

(14, 8, evaractive) (14, ex exit B(E1), 5a(E1), enter 5, 6, exit 5, 5b(E1), 8(E))

(14, ex exit B(E1), 5a(E1), enter 5, 6, 7, exit 5, 5b(E1), 8(E))

(16, 16, evar16) (16)

(16, 8, evaractive) (16, ex exit B(E2), 5a(E2), enter 5, 6, exit 5, 5b(E2), 8(E))

(16, ex exit B(E2), 5a(E2), enter 5, 6, 7, exit 5, 5b(E2), 8(E))

1

5a(E2)

5b(E1)

5a(n)

10 exit 5
7

6

9

8(E)

enter M

5b(E2)

5a(E1)enter 5

exit B

5b(n)

TF

TF

T F

T
F 1617

15 14

13

12

enter B

11

exit M

4b

4a

3

2

ex-exit B(E2)

ex-exit B(E1)

Figure 4: Program Sum1 (top left). ICFG of Sum1 (top right). Different types of associations in Sum1 (bot-
tom): Table 1 lists du associations; Table 2 lists e-du associations, and e-du-paths for each e-du association;
Table 3 lists e-ad associations, and e-ad-paths for each e-ad association; each row in Tables 1 and 2 lists
associations for one definition; each row in Table 3 lists associations for one activation; each du or e-du
association that corresponds to a p-use is marked with an asterisk.

(b) all-e-ad-paths does not subsume all-paths. Implied by I4(b). 2

(S7) all-e-ad-paths strictly subsumes all-e-deacts.

(a) all-e-ad-paths subsumes all-e-deacts. Suppose that all-e-ad-paths does not subsume all-e-deacts. Then

there exist a program P and a test suite T such that (P , T) satisfies all-e-ad-paths but does not satisfy all-

e-deacts. Let (i, j, eobjk) be an e-ad association that is covered by no test in T . By the definition of an e-ad

association, eobjk ∈ e-act(i), eobjk ∈ e-deact(j), and there exists a deact-clear path p = (i,m1,m2, . . . ,mk, j)

with respect to eobjk from i to j. Then by Lemma 3 and the definition of e-ad-path, there exists a path

q = (i, n1, n2, . . . , nl, j) in the flow graph of P such that q is an e-ad-path with respect to eobjk. Because

no test in T covers the association (i, j, eobjk), no test in T traverses the path q, which contradicts the

assumption that (P , T) satisfies all-e-ad-paths.

(b) all-e-deacts does not subsume all-e-ad-paths. Let P be the program Sum1 shown in Figure 4. Sum1

22

Table 3Table 2

Table 1

du associations du-paths

(1, 19, sum) (1, 2a, enter B, 10, 11, 12, 16, 17, 19)

(1, 2a, enter B, 10, 11, 13, 14, 16, 17, 19)

(1, 2a, enter B, 10, 11, 13, 15, 16, 17, 19)

(10, 11, j)� (10, 11)

(10, 13, j)� (10, 11, 13)

(10, 17, j)� (10, 11, 12, 16, 17)

(10, 11, 13, 14, 16, 17)

(10, 11, 13, 15, 16, 17)

(10, 19, j) (10, 11, 12, 16, 17, 19)

(10, 11, 13, 14, 16, 17, 19)

(10, 11, 13, 15, 16, 17, 19)

(19, 9, sum) (19, exit B, 6b, 9)

(19, 19, sum) (19, exit B, 2b, 6a, enter B, 10, 11, 12, 16, 17, 19)

(19, exit B, 2b, 6a, enter B, 10, 11, 13, 14, 16, 17, 19)

(19, exit B, 2b, 6a, enter B, 10, 11, 13, 15, 16, 17, 19)

19 sum = sum + j
18 throw e1
17 if (j mod 2 != 0)
16 e1 = e
15 e = new E2()
 else
14 e = new E1()
13 else if (j>2)
12 e = new E1()
11 if (j<-2)
10 read j
 enter M

9 print sum
8 return
7 catch E e3
6b return B
6a call B
 try
5 return
4 print e2
3 catch E e2
2b return B
2a call B
 try
1 sum = 0
 enter M

 exit j

 exit M

e-du associations e-du-paths

(3, 4, e2) (3, 4)

(12, 16, e) (12, 16)

(14, 16, e) (14, 16)

(15, 16, e) (15, 16)

(16, 18, e1) (16, 17, 18)

(16, 4, e1!e2) (16, 17, 18, ex exit B(E1), 3(E), 4)

(16, 17, 18, ex exit B(E2), 3(E), 4)

(18, 3, evaractive) (18, ex exit B(E1), 3(E))

(18, ex exit B(E2), 3(E))

(18, 7, evaractive) (18, ex exit B(E1), 7(E))

(18, ex exit B(E2), 7(E))

e-ad associations

(18, 3, eobj12)

(18, 7, eobj12)

(18, 3, eobj14)

(18, 7, eobj14)

(18, 3, eobj15)

(18, 7, eobj15)

1

enter M

15

enter B

exit M

7(E)

4

2b

6a

6b

9 8

16

10

17

exit B

5

3(E)
F

19 18

T

FT

1312

11

14

FT2a

ex-exit B(E1)

ex-exit B(E2)

Figure 5: Program Sum2 (top left). ICFG of Sum2 (top right). Different types of associations in Sum2
(bottom): Table 1 lists e-ad associations; Table 2 lists du associations, and du-paths for each du association;
Table 3 lists e-du associations, and e-du-paths for each e-du association; each row in Table 1 lists associations
for one activation; each row in Tables 2 and 3 lists associations for one definition; each du or e-du association
that corresponds to a p-use is marked with an asterisk.

computes
∑n
i=1 xi, where each xi > 0; the program exits if it reads an xi ≤ 0. Let T be the following test

suite:

Test Input Path traversed

t1 i=1 j=−1 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 14, ex-exit B(E1), 5a(E1), enter 5,
6, exit 5, 5b(E1), 8(E), 9, exit M)

t2 i=1 j=0 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 15, 16, ex-exit B(E2), 5a(E2), enter
5, 6, exit 5, 5b(E2), 8(E), 9, exit M)

Then (P , T) satisfies all-e-deacts because tests in T cover all e-ad associations listed in Column 1 of Table

3 in Figure 4. (P , T) does not satisfy all-e-ad-paths because no test in T covers the e-ad-path (14, ex-exit

B(E1), 5a(E1), enter 5, 6, 7, exit 5, 5b(E1), 8(E)). 2

(S8) all-e-deacts strictly subsumes all-e-acts.

(a) all-e-deacts subsumes all-e-acts. Suppose that all-e-deacts does not subsume all-e-acts. Then there exist

a program P and a test suite T such that (P , T) satisfies all-e-deacts but does not satisfy all-e-acts. Let

node i represent a throw statement that activates exception object eobjk such that the activation is covered

23

by no test in T . Then for all j ∈ e-ad(eobjk, i), no test in T covers e-ad association (i, j, eobjk), which

contradicts the assumption that (P , T) satisfies all-e-deacts.

(b) all-e-acts does not subsume all-e-deacts. Implied by I3(a). 2

(S9) all-e-deacts strictly subsumes all-catch.

(a) all-e-deacts subsumes all-catch. Suppose that all-e-deacts does not subsume all-catch. Then there exist

a program P and a test suite T such that (P , T) satisfies all-e-deacts but does not satisfy all-catch. Let j

be a catch node that is covered by no test in T . Because all catch handlers in P are reachable through an

exception raised in P , there exists a throw statement in P (with corresponding node i in the flow graph of

P) such that the exception raised at that throw statement is caught by the handler that corresponds to j.

Let eobjk ∈ e-act(i). Then eobjk ∈ e-deact(j) and there exists a deact-clear path with respect to eobjk from

i to j. Therefore, (i, j, eobjk) is an e-ad association. Because no test in T covers catch node j, no test is T

covers the e-ad association (i, j, eobjk). This contradicts the assumption that (P , T) satisfies all-e-deacts.

(b) all-catch does not subsume all-e-deacts. Implied by I2(b). 2

(S10) all-e-acts strictly subsumes all-throw.

(a) all-e-acts subsumes all-throw. Suppose that all-e-acts does not subsume all-throw. Then there exist a

program P and a test suite T such that (P , T) satisfies all-e-acts but does not satisfy all-throw. Let i be a

throw node that is covered by no test in T . Then for any eobjk that is activated at the throw statement that

corresponds to i, no test in T covers the activation. This contradicts the assumption that (P , T) satisfies

all-e-acts.

(b) all-throw does not subsume all-e-acts. Let P be the program Sum2 shown in Figure 5. Sum2 computes∑2
i=1 xi, where each xi is an even integer; the program exits if it reads an odd integer. Let T be the following

test suite:

Test Input Path traversed

t1 j=−3 (enter M, 1, 2a, enter B, 10, 11, 12, 16, 17, 18, ex-exit B(E1), 3(E), 4, 5,
exit M)

Then (P , T) satisfies all-throw because tests in T cover the only throw statement in Sum1 — that corresponds

to throw node 18. (P , T) does not satisfy all-e-acts because no test in T covers the activation of eobj14 at

throw node 18. 2

(S11) all-c-uses strictly subsumes all-catch.

(a) all-c-uses subsumes all-catch. Suppose that all-c-uses does not subsume all-catch. Then there exist a

program P and test suite T such that (P , T) satisfies all-c-uses but does not satisfy all-catch. Let j be a

catch node that is covered by no test in T . Then evaractive ∈ e-use(j), and the use of evaractive at j is

a c-use. Because all catch handlers in P are reachable through some exception that is explicitly raised in

P , there exists a throw statement (with corresponding node i is the flow graph P) such that the exception

raised at that statement is caught by the handler that corresponds to j. Then evaractive ∈ e-def(i), and

there exists a def-clear path with respect to evaractive from i to j. Therefore, (i, j, evaractive) is an e-du

association that must be covered by a test in T in order for (P , T) to satisfy all-c-uses. Because no test

in T covers catch node j, no test in T covers the e-du association (i, j, evaractive). This contradicts the

assumption that (P , T) satisfies all-c-uses.

(b) all-catch does not subsume all-c-uses. Implied by I8(b). 2

(S12) all-c-uses strictly subsumes all-throw.

24

(a) all-c-uses subsumes all-throw. Suppose that all-c-uses does not subsume all-throw. Then there exist a

program P and test suite T such that (P , T) satisfies all-c-uses but does not satisfy all-throw. Let i be a

throw node that is not covered by the tests in T . Then evaractive ∈ e-def(j). Because we assume that no

exception is propagated out of P , there exists a catch handler in P that handles the exception raised at the

throw statement corresponding to i; let j be the catch node for that handler. Then j contains a c-use of

evaractive, and there exists a def-clear path with respect to evaractive from i to j. Therefore, (i, j, evaractive)

is an e-du association that must be covered by a test in T in order for (P , T) to satisfy all-c-uses. Because

no test in T covers throw node i, no test in T covers the e-du association (i, j, evaractive). This contradicts

the assumption that (P , T) satisfies all-c-uses.

(b) all-throw does not subsume all-c-uses. Implied by I8(b). 2

(S13) all-du-paths strictly subsumes all-e-du-paths.

(a) all-du-paths subsumes all-e-du-paths. Suppose that all-du-paths does not subsume all-e-du-paths. Then

there exist a program P and test suite T such that (P , T) satisfies all-du-paths but does not satisfy all-

e-du-paths. Let p = (i, n1, n2, . . . , nm, j) be an e-du-path in P that is not covered by the tests in T . p

can be either an e-du-path(v) or an e-du-path(v→w) depending on whether p is defined with respect to

exception variable v or the mapping v→w. Let p be an e-du-path(v). By the definition of an e-du-path(v),

v ∈ e-def(i), v ∈ e-use(j), and (i, n1, n2, . . . , nm, j) is a def-clear simple path with respect to v from i to j.

But then p is also a du-path [18], which contradicts the assumption that (P , T) satisfies all-du-paths. Let

p be an e-du-path(v→w). By the definition of an e-du-path(v→w), i ∈ tvar-def(v, k), j ∈ cvar-use(w, l),

<w, l> ∈ e-map(v, k), and there exists a def-clear simple path with respect to v from k to j. Then v ∈
e-def(i), w ∈ e-use(j), and there exist def-clear paths with respect to v from i to k and with respect to

w from l to j. However, in our exception-handling model, v and w are aliases.8 Therefore, by the above

definitions, it follows that p is also a du-path, and p would be included in the all-du-paths test requirements

generated using a data-flow testing approach that considers the effects of aliases [13, 17]. This contradicts

the assumption that (P , T) satisfies all-du-paths.

(b) all-e-du-paths does not subsume all-du-paths. Implied by I7(b). 2

(S14) all-uses strictly subsumes all-e-uses.

(a) all-uses subsumes all-e-uses. Suppose that all-uses does not subsume all-e-uses. Then there exist a

program P and test suite T such that (P , T) satisfies all-uses but does not satisfy all-e-uses. Let a be an

e-du-association in P that is not covered by the tests in T . Then a can be either of the form (i, j, v) or

of the form (i, j, v→w). Let a be of the form (i, j, v). By the definition of a, v ∈ e-def(i), v ∈ e-use(j),

and there exists a def-clear path with respect to v from i to j. Then (i, j, v) is also a du association [18],

which contradicts the assumption that (P , T) satisfies all-uses. Let a be of the form (i, j, v→w). By the

definition of a, i ∈ tvar-def(v, k), j ∈ cvar-use(w, l), <w, l> ∈ e-map(v, k), and there exists a def-clear path

with respect to v from k to j. However, in our exception-handling model, v and w are aliases. By the

definitions of tvar-def and a, the path from i to j is def-clear with respect to v. In our exception-handling

model, w is aliased to v at the catch node l, the scope of w is limited to the corresponding catch handler,

and by the definition of cvar-use, the path from l to j is def-clear with respect to w. Therefore, (i, j, v)

is a du-association that is included in the all-uses test requirements generated using a data-flow testing

approach that considers the effects of aliases [13, 17]. But that association is not covered by tests in T ,
8An alias occurs at a program point if two names refer to the same memory location at that point.

25

which contradiacts the assumption that (P , T) satisfies all-uses.

(b) all-e-uses does not subsume all-uses. Implied by I7(b). 2

(S15) all-defs strictly subsumes all-e-defs.

(a) all-defs subsumes all-e-defs. The all-defs and all-e-defs criteria can generate a set of alternative test

requirements for a program P ; letRdefs andRedefs be the sets of alternative test requirements for P that are

generated by the all-defs and all-e-defs criteria, respectively. In general, given any pair of test requirements

R1 ∈ Rdefs and R2 ∈ Redefs, a test suite that covers the associations in R1 may not cover all associations in

R2. However, for any R1 ∈ Rdefs, there exists an element R2 ∈ Redefs such that the associations in R2 form

a subset of the associations in R1.9 This follows from the fact that the all-e-defs criterion is a specialization of

the all-defs criterion — all-e-defs considers definitions of only exception variables, whereas all-defs considers

definitions of all variables — and requires the coverage of a subset of the associations required by all-defs.

Therefore, given a test suite T , such that (P, T) satisfies all-defs by covering the associations in R1, (P, T)

also satisfies all-e-defs because T covers all associations in R2.

(b) all-e-defs does not subsume all-defs. Implied by I10(b). 2

(S16) all-nodes strictly subsumes all-throw.

all-nodes strictly subsumes all-catch.

(a) Each exception testing criterion listed above is a specialization of the corresponding data-flow testing

criterion, and requires a subset of the associations that are required by the corresponding data-flow testing

criterion. Therefore, each of the data-flow testing criterion subsumes the corresponding exception testing

criterion.

(b) all-catch does not subsume all-nodes. Implied by I7(b).

(c) all-throw does not subsume all-nodes. Implied by I7(b). 2

(I1) Each of all-e-du-paths, all-e-uses, and all-e-defs is incomparable to each of all-e-ad-paths, all-e-

deacts, and all-e-acts.

(a) all-e-du-paths does not subsume all-e-acts. Implied by I4(a).

(b) all-e-ad-paths does not subsume all-e-defs. Let P be the program Sum3 shown in Figure 6. Sum3 computes∑2
i=1 xi, where each xi ≥ −1; the program exits if it reads an xi < −1. Let T be the following test suite:

Test Input Path traversed

t1 i=1 j=−2 (enter M, 1, 2, 3, 4a, enter B, 10a, enter C, 17, 18, 19, 21, 22, exit C, 10b,
11, 12, 13, ex-exit B(E), 5(E), 6, 7, exit M)

Then (P , T) satisfies all-e-ad-paths because tests in T cover all e-ad-paths listed in Table 3 in Figure 6. (P ,

T) does not satisfy all-e-defs because no test in T covers the definition of sum at node 16. 2

(I2) Each of all-e-defs and all-throw is incomparable to all-catch.

(a) all-e-defs does not subsume all-catch. Implied by I10(a).

(b) all-catch does not subsume all-throw. Let P be Sum1, and let T be the following test suite:

Test Input Path traversed

t1 i=1 j=−1 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 14, ex-exit B(E1), 5a(E1), enter 5,
6, exit 5, 5b(E1), 8(E), 9, exit M)

Then (P , T) satisfies all-catch because tests in T cover catch node 8. (P , T) does not satisfy all-throw

because no test in T covers throw node 16. 2

9For a program that contains no exception variables, Redefs is empty, and the all-e-defs criterion is trivially satisfied by any
test suite.

26

Table 2Table 1

e-du associations

(5, 6, e1)

(13, 13, evar13)

(13, 5, evaractive)

(19, 14, e)�

(19, 21, e)�

(20, 14, e)�

(20, 21, e)�

du associations

(1, 3, i)�

(1, 8, i)

(2, 9, sum)

(2, 16, sum)

(8, 3, i)�

(8, 8, i)

(16, 9, sum)

(16, 16, sum)

(17, 11, j)�

(17, 12, j)�

(17, 16, j)

(17, 18, j)�

Table 3

e-ad associations e-ad-paths

(13, 5, eobj13) (13, ex exit B(E), 5(E))

8

6

7

9

enter M

1

2

3

12

11

14

1516

10b

10a

enter B

17

13

18

19 20

enter C

5(E)

exit M

exit B

21

22

exit C

4b

1 read i
2 sum = 0
3 while (i<10)

 enter M

 try
4a call B
4b return B
5 catch E e1
6 print e1
7 return
8 i = i + 1
9 print sum
 exit M

 enter B
10a call C
10b return C
11 if (j<0)
12 if (j<-1)
13 throw new E()
 else
14 if (e!=null)
15 return

T
F

T

T

F

F

F

T

T

F

 exit B
16 sum = sum + j

 enter C
17 read j
18 if (j<=0)
19 e = new E()
 else
20 e = null
21 if (e!=null)
22 print "j <= 0"
 exit C

T
F

4a

ex-exit B(E)

Figure 6: Program Sum3 (top left). ICFG of Sum3 (top right). Different types of associations in Sum3
(bottom): Table 1 lists du associations; Table 2 lists e-du associations; Table 3 lists e-ad associations, and
e-ad-paths for each e-ad association; each row in Tables 1 and 2 lists associations for one definition; each
row in Table 3 lists associations for one activation; each du or e-du association that corresponds to a p-use
is marked with an asterisk.

(I3) all-e-acts is incomparable to all-catch.

(a) all-e-acts does not subsume all-catch. Let P be Sum2, and let T be the following test suite:

Test Input Path traversed

t1 j=−3 (enter M, 1, 2a, enter B, 10, 11, 12, 16, 17, 18, ex-exit B(E1), 3(E), 4, 5,
exit M)

t2 j=3 (enter M, 1, 2a, enter B, 10, 11, 13, 14, 16, 17, 18, ex-exit B(E1), 3(E),
4, 5, exit M)

t3 j=1 (enter M, 1, 2a, enter B, 10, 11, 13, 15, 16, 17, 18, ex-exit B(E2), 3(E),
4, 5, exit M)

Then (P , T) satisfies all-e-acts because tests in T cover at least one e-ad association from each row of Table

1 in Figure 5. (P , T) does not satisfy all-catch because no test in T covers catch node 7.

(b) all-catch does not subsume all-e-acts. Let P be Sum2, and let T be the following test suite:

27

Test Input Path traversed

t1 j=−3 (enter M, 1, 2a, enter B, 10, 11, 12, 16, 17, 18, ex-exit B(E1), 3(E), 4, 5,
exit M)

t1 j=4, 3 (enter M, 1, 2a, enter B, 10, 11, 13, 14, 16, 17, 19, exit B, 2b, 6a, enter
B, 10, 11, 13, 14, 16, 17, 18, ex-exit B(E2), 7(E), 8, exit M)

Then (P , T) satisfies all-catch because tests in T cover all catch nodes in Sum2, but (P , T) does not satisfy

all-e-acts because no test in T covers the activation of eobj15 at throw node 18. 2

(I4) Each of all-du-paths, all-uses, all-p-uses/some-c-uses, all-p-uses, all-edges, and all-nodes is incom-

parable to each of all-e-ad-paths, all-e-deacts, and all-e-acts.

(a) all-du-paths does not subsume all-e-acts. Let P be Sum2, and let T be the following test suite:

Test Input Path traversed

t1 j=−4, 4 (enter M, 1, 2a, enter B, 10, 11, 12, 16, 17, 19, exit B, 2b, 6a, enter B,
10, 11, 13, 14, 16, 17, 19, exit B, 6b, 9, exit M)

t2 j=4, 2 (enter M, 1, 2a, enter B, 10, 11, 13, 14, 16, 17, 19, exit B, 2b, 6a, enter
B, 10, 11, 13, 15, 16, 17, 19, exit B, 6b, 9, exit M)

t3 j=2,−4 (enter M, 1, 2a, enter B, 10, 11, 13, 15, 16, 17, 19, exit B, 2b, 6a, enter
B, 10, 11, 12, 16, 17, 19, exit B, 6b, 9, exit M)

t4 j=3 (enter M, 1, 2a, enter B, 10, 11, 13, 14, 16, 17, 18, ex-exit B(E1), 3(E),
4, 5, exit M)

t5 j=1 (enter M, 1, 2a, enter B, 10, 11, 13, 15, 16, 17, 18, ex-exit B(E2), 3(E),
4, 5, exit M)

t6 j=4, 5 (enter M, 1, 2a, enter B, 10, 11, 13, 14, 16, 17, 19, exit B, 2b, 6a, enter
B, 10, 11, 13, 14, 16, 17, 18, ex-exit B(E1), 7(E), 8, exit M)

t7 j=2, 1 (enter M, 1, 2a, enter B, 10, 11, 13, 15, 16, 17, 19, exit B, 2b, 6a, enter
B, 10, 11, 13, 15, 16, 17, 18, ex-exit B(E2), 7(E), 8, exit M)

Then (P , T) satisfies all-du-paths because tests in T cover each du-path and e-du-path listed in Tables 2

and 3 in Figure 5. (P , T) does not satisfy all-e-acts because no test in T covers the activation of eobj12 at

throw node 18.

(b) all-e-ad-paths does not subsume all-nodes. Let P be Sum3, and let T be the following test suite:

Test Input Path traversed

t1 i=1 j=−2 (enter M, 1, 2, 3, 4a, enter B, 10a, enter C, 17, 18, 19, 21, 22, exit C, 10b,
11, 12, 13, ex-exit B(E), 5(E), 6, 7, exit M)

Then (P , T) satisfies all-e-ad-paths because tests in T cover all e-ad-paths listed in Table 3 of Figure 6. (P ,

T) does not satisfy all-nodes because no test in T covers node 16. 2

(I5) all-uses is incomparable to all-e-du-paths.

(a) all-uses does not subsume all-e-du-paths. Let P be Sum1, and let T be the following test suite:

Test Input Path traversed

t1 i=10 (enter M, 1, 2, 3, 11, exit M)
t2 i=1 j=−1 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 14, ex-exit B(E1), 5a(E1), enter 5,

6, exit 5, 5b(E1), 8(E), 9, exit M)
t3 i=1 j=0 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 15, 16, ex-exit B(E2), 5a(E2), enter

5, 6, exit 5, 5b(E2), 8(E), 9, exit M)
t4 i=8 j=1, 2 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 15, 17, exit B, 4b, 5a(n), enter 5, 6,

exit 5, 5b(n), 10, 3, 4a, enter B, 12, 13, 15, 17, exit B, 4b, 5a(n), enter
5, 6, exit 5, 5b(n), 10, 3, 11, exit M)

Then (P , T) satisfies all-uses because tests in T cover each du and e-du association listed in Tables 1 and

2 in Figure 4. (P , T) does not satisfy all-e-du-paths because no test in T covers the e-du-path (14, ex-exit

28

B(E1), 5a(E1), enter 5, 6, 7, exit 5, 5b(E1), 8(E)).

(b) all-e-du-paths does not subsume all-uses. Implied by I7(b). 2

(I6) all-p-uses/some-c-uses is incomparable to each of all-e-du-paths and all-e-uses.

(a) all-p-uses/some-c-uses does not subsume all-e-uses. Let P be Sum2, and let T be the following test suite:

Test Input Path traversed

t1 j=4,−6 (enter M, 1, 2a, enter B, 10, 11, 13, 14, 16, 17, 19, exit B, 2b, 6a, enter
B, 10, 11, 12, 16, 17, 19, exit B, 6b, 9, exit M)

t2 j=1 (enter M, 1, 2a, enter B, 10, 11, 13, 15, 16, 17, 18, ex-exit B(E2), 3(E),
4, 5, exit M)

Then (P , T) satisfies all-p-uses/some-c-uses because tests in T cover each du and e-du association that

corresponds to a p-use (listed in Tables 2 and 3 in Figure 5); in addition, for each definition that has no

p-uses, tests in T cover at least one association that corresponds to a c-use. (P , T) does not satisfy all-e-uses

because no test in T covers the e-du association (18, 7, evaractive).

(b) all-e-du-paths does not subsume all-p-uses/some-c-uses. Implied by I7(b). 2

(I7) Each of all-p-uses, all-edges, and all-nodes is incomparable to each of all-e-du-paths, all-e-uses, and

all-e-defs.

(a) all-p-uses does not subsume all-e-defs. Let P be Sum3, and let T be the following test suite:

Test Input Path traversed

t1 i=8 j=−1, 0 (enter M, 1, 2, 3, 4a, enter B, 10a, enter C, 17, 18, 19, 21, 22, exit C, 10b,
11, 12, 16, exit B, 4b, 8, 3, 4a, enter B, 10a, enter C, 17, 18, 19, 21, 22,
exit C, 10b, 11, 14, 15, exit B, 4b, 8, 3, 9, exit M)

t2 i=9 j=1 (enter M, 1, 2, 3, 4a, enter B, 10a, enter C, 17, 18, 20, 21, exit C, 10b,
11, 14, 16, exit B, 4b, 8, 3, 9, exit M)

Then (P , T) satisfies all-p-uses because tests in T cover each du and e-du association that corresponds to a

p-use (listed in Tables 1 and 2 in Figure 6). (P , T) does not satisfy all-e-defs because no test in T covers

the definition of e1 at node 5.

(b) all-e-du-paths does not subsume all-nodes. Let P be Sum1, and let T be the following test suite:

Test Input Path traversed

t1 i=1 j=−1 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 14, ex-exit B(E1), 5a(E1), enter 5,
6, exit 5, 5b(E1), 8(E), 9, exit M)

t2 i=9 j=1,−1 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 15, 17, exit B, 4b, 5a(n), enter 5, 6,
exit 5, 5b(n), 10, 3, 4a, enter B, 12, 13, 14, ex-exit B(E1), 5a(E1), enter
5, 6, 7, exit 5, 5b(E1), 8(E), 9, exit M)

t3 i=1 j=0 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 15, 16, ex-exit B(E2), 5a(E2), enter
5, 6, exit 5, 5b(E2), 8(E), 9, exit M)

t4 i=9 j=0 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 15, 16, ex-exit B(E2), 5a(E2), enter
5, 6, 7, exit 5, 5b(E2), 8(E), 9, exit M)

Then (P , T) satisfies all-e-du-paths because tests in T cover each e-du-path listed in Table 2 in Figure 4.

(P , T) does not satisfy all-nodes because no test in T covers node 11. 2

(I8) Each of all-c-uses/some-p-uses and all-c-uses is incomparable to each of all-e-du-paths and all-e-uses.

(a) all-c-uses/some-p-uses does not subsume all-e-uses. Let P be Sum3, and let T be the following test suite:

29

Test Input Path traversed

t1 i=10 (enter M, 1, 2, 3, 9, exit M)
t2 i=1 j=−2 (enter M, 1, 2, 3, 4a, enter B, 10a, enter C, 17, 18, 19, 21, 22, exit C, 10b,

11, 12, 13, ex-exit B(E), 5(E), 6, 7, exit M)
t3 i=8 j=−1,−1 (enter M, 1, 2, 3, 4a, enter B, 10a, enter C, 17, 18, 19, 21, 22, exit C, 10b,

11, 12, 16, exit B, 4b, 8, 3, 4a, enter B, 10a, enter C, 17, 18, 19, 21, 22,
exit C, 10b, 11, 12, 16, exit B, 4b, 8, 3, 9, exit M)

t4 i=9 j=1 (enter M, 1, 2, 3, 4a, enter B, 10a, enter C, 17, 18, 20, 21, exit C, 10b,
11, 14, 16, exit B, 4b, 8, 3, 9, exit M)

Then (P , T) satisfies all-c-uses/some-p-uses because tests in T cover each du and e-du association that

corresponds to a p-use (listed in Tables 1 and 2 in Figure 6); in addition, for each definition that has no

c-uses, tests in T cover at least one association that corresponds to a p-use. (P , T) does not satisfy all-e-uses

because no test in T covers the e-du association (19, 14, e).

(b) all-e-du-paths does not subsume all-c-uses. Let P be Sum1, and let T be the following test suite:

Test Input Path traversed

t1 i=1 j=−1 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 14, ex-exit B(E1), 5a(E1), enter 5,
6, exit 5, 5b(E1), 8(E), 9, exit M)

t2 i=9 j=1,−1 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 15, 17, exit B, 4b, 5a(n), enter 5, 6,
exit 5, 5b(n), 10, 3, 4a, enter B, 12, 13, 14, ex-exit B(E1), 5a(E1), enter
5, 6, 7, exit 5, 5b(E1), 8(E), 9, exit M)

t3 i=1 j=0 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 15, 16, ex-exit B(E2), 5a(E2), enter
5, 6, exit 5, 5b(E2), 8(E), 9, exit M)

t4 i=9 j=0 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 15, 16, ex-exit B(E2), 5a(E2), enter
5, 6, 7, exit 5, 5b(E2), 8(E), 9, exit M)

Then (P , T) satisfies all-e-du-paths because tests in T cover each e-du-path listed in Table 2 in Figure 4.

(P , T) does not satisfy all-c-uses because no test in T covers du association (17, 11, sum) that corresponds

to a c-use. 2

(I9) Each of all-c-uses/some-p-uses and all-c-uses is incomparable to each of all-e-ad-paths, all-e-deacts,

and all-e-acts.

(a) all-c-uses/some-p-uses does not subsume all-e-acts. Implied by I4(a).

(b) all-e-ad-paths does not subsume all-c-uses. Let P be Sum3, and let T be the following test suite:

Test Input Path traversed

t1 i=1 j=−2 (enter M, 1, 2, 3, 4a, enter B, 10a, enter C, 17, 18, 19, 21, 22, exit C, 10b,
11, 12, 13, ex-exit B(E), 5(E), 6, 7, exit M)

Then (P , T) satisfies all-e-ad-paths because tests in T cover all e-ad-paths listed in Table 3 in Figure 6. (P ,

T) does not satisfy all-c-uses because no test in T covers du association (16, 9, sum) that corresponds to a

c-use. 2

(I10) all-defs is incomparable to each of all-e-du-paths, all-e-uses, and all-catch.

(a) all-defs does not subsume all-catch. Let P be Sum2, and let T be the following test suite:

Test Input Path traversed

t1 j=4,−6 (enter M, 1, 2a, enter B, 10, 11, 13, 14, 16, 17, 19, exit B, 2b, 6a, enter
B, 10, 11, 12, 16, 17, 19, exit B, 6b, 9, exit M)

t2 j=1 (enter M, 1, 2a, enter B, 10, 11, 13, 15, 16, 17, 18, ex-exit B(E2), 3(E),
4, 5, exit M)

Then (P , T) satisfies all-defs because tests in T cover at least one du and e-du association from each row in

Tables 2 and 3 in Figure 5. (P , T) does not satisfy all-catch because no test in T covers catch node 7.

(b) all-e-du-paths does not subsume all-defs. Let P be Sum1, and let T be the following test suite:

30

Test Input Path traversed

t1 i=1 j=−1 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 14, ex-exit B(E1), 5a(E1), enter 5,
6, exit 5, 5b(E1), 8(E), 9, exit M)

t2 i=9 j=1,−1 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 15, 17, exit B, 4b, 5a(n), enter 5, 6,
exit 5, 5b(n), 10, 3, 4a, enter B, 12, 13, 14, ex-exit B(E1), 5a(E1), enter
5, 6, 7, exit 5, 5b(E1), 8(E), 9, exit M)

t3 i=1 j=0 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 15, 16, ex-exit B(E2), 5a(E2), enter
5, 6, exit 5, 5b(E2), 8(E), 9, exit M)

t4 i=9 j=0 (enter M, 1, 2, 3, 4a, enter B, 12, 13, 15, 16, ex-exit B(E2), 5a(E2), enter
5, 6, 7, exit 5, 5b(E2), 8(E), 9, exit M)

Then (P , T) satisfies all-e-du-paths because tests in T cover each e-du-path listed in Table 2 in Figure 4. (P ,

T) does not satisfy all-c-uses because no test in T covers the du association (17, 11, sum) that corresponds to

a c-use. 2

(I11) all-defs is incomparable to each of all-e-ad-paths, all-e-deacts, and all-e-acts.

(a) all-defs does not subsume all-e-acts. Implied by I4(a).

(b) all-e-ad-paths does not subsume all-defs. Implied by I1(b). 2

(I12) all-c-uses is incomparable to all-e-defs.

(a) all-c-uses does not subsume all-e-defs. Let P be Sum3, and let T be the following test suite:

Test Input Path traversed

t1 i=10 (enter M, 1, 2, 3, 9, exit M)
t2 i=1 j=−2 (enter M, 1, 2, 3, 4a, enter B, 10a, enter C, 17, 18, 19, 21, 22, exit C, 10b,

11, 12, 13, ex-exit B(E), 5(E), 6, 7, exit M)
t3 i=8 j=−1,−1 (enter M, 1, 2, 3, 4a, enter B, 10a, enter C, 17, 18, 19, 21, 22, exit C, 10b,

11, 12, 16, exit B, 4b, 8, 3, 4a, enter B, 10a, enter C, 17, 18, 19, 21, 22,
exit C, 10b, 11, 12, 16, exit B, 4b, 8, 3, 9, exit M)

Then (P , T) satisfies all-c-uses because tests in T cover each du and e-du association that corresponds to a

c-use (listed in Tables 1 and 2 in Figure 6). (P , T) does not satisfy all-e-defs because no test in T covers the

definition of e at node 20.

(b) all-e-defs does not subsume all-c-uses. Implied by I8(b). 2

4 Application of the Criteria

In this section, we briefly discuss the approach we use to compute test requirements that satisfy the exceptions

testing criteria.

4.1 Computation of Test Requirements

To generate the test requirements, we add a definition of evaractive at each throw node, and a use of evaractive
followed by an undefinition of evaractive at each catch node. To compute e-du associations, we use a reaching

definitions, data-flow analysis algorithm. This algorithm first gathers alias8 information about the program

using a technique at the desired level of precision (e.g., [12, 21]), then it uses the alias information to compute,

reaching definitions, and finally it uses the reaching definitions to compute the du associations. We then

select those du associations that are associated with exception objects.

For the e-ad associations, we first determine activation and deactivation points. We then compute the

e-act set for each activation point. Finally, we compute e-deact sets and e-ad associations by computing

31

ex-exit M1(E3)

ex-exit 5(E3)

ex-exit M1(E21)ex-exit M1(E2)

ex-exit M1(E1)

ex-exit M2(E1)

enter M1

5b(n)

5a(n)

5b(E21)

5a(E21)

5b(E1)

5a(E1)

exit 5

exter 5

exit M2

enter M2

exit M1

15 16

6

7

9

10

11

14

2322

21

26 25

24

2019

18

17

8

12

4a

4b

E2

E3

E21

E3
T

T F

T

T

T
F

F

T
F

T

T F

F

F

F

E21 E1

13(E2)ex-exit M2(E21)

3 2

1

Figure 7: Control-flow representation of class C2 that is used for unit testing of the class.

reaching activations for each deactivation. An exception activation at node i reaches a deactivation at node

j if there exists a def-clear path with respect to evaractive from i to j.

4.2 Using the Criteria for Unit Testing

Unit testing focuses on testing individual modules of a program. The goal of unit testing is to establish

confidence in the correctness of a module independent of the interaction of that module with other modules.

During unit testing, drivers and stubs are used to simulate the interactions of the module being tested with

other modules.

The exception testing criteria described in the previous section fails to provide the required test selection

when applied to the testing of an incomplete program, such as a unit. For example, if an exception that

is activated in the unit being tested is deactivated only outside the unit, the all-e-acts criterion does not

require an association that covers the activation of that exception. Consider class C2 as the module that

is being unit tested;10 Figure 7 shows the control-flow representation for the class that is used for applying

the exception testing criteria. As the figure illustrates, the activation of eobj20 in statement 15 has no

reachable deactivation in the same unit; that deactivation occurs in a different unit (C2) that is being tested

independently.

A similar problem occurs for covering deactivations: if all reaching activations for a deactivation lie

outside the unit being tested, that deactivation is not covered by the all-e-deacts criterion. For example,

the catch handler in line 28 of method M1 deactivates several exception activations in the program, but all

those activations lie outside the unit being tested. Therefore, the all-e-deacts criterion does not require a
10In an object-oriented program, a class is usually considered to be the basic unit of testing [5].

32

Table 10: Associations required by select criterion for unit testing of class C2.

Associations required
before addition of after addition of

Criterion dummy deacts dummy deacts

all-throw 2, 11, 15, 25 2, 11, 15, 25

all-e-acts (25, 13, eobj20) (25, 13, eobj20)
(2, ex-exit E3, eobj2)

(11, ex-exit E3, eobj11)
(15, ex-exit E21, eobj20)

all-e-deacts (25, 9, eobj19) (25, 9, eobj19)
(25, 9, eobj20) (25, 9, eobj20)
(25, 11, eobj19) (25, 11, eobj19)
(25, 11, eobj20) (25, 11, eobj20)
(25, 13, eobj20) (25, 13, eobj20)

(2, ex-exit E3, eobj2)
(11, ex-exit E3, eobj11)
(15, ex-exit E21, eobj20)
(25, ex-exit E1, eobj19)

test case to cover that handler. Such omissions not only lower our confidence in the quality of unit testing,

but also limit the applicability of the exception testing criteria.

When applied to incomplete programs, some of the subsumption relationships shown in Figure 3 do

not hold. For example, the all-e-acts criterion fails to be equivalent to the all-throw criterion; instead, the

all-e-acts criterion is subsumed by the all-throw criterion. This is illustrated in Figure 7 where the all-

throw criterion requires the coverage of statement 15, whereas the all-e-acts criterion does not require that

statement to be covered.

To overcome the deficiencies of the exception testing criteria for testing incomplete programs, we add

dummy uses of exception variables and dummy deactivations of exception objects at relevant exceptional-exit

nodes. For example, in the CFG for M1, we add the following dummy deactivations: e-deact(ex-exit E21) =

{eobj20}, e-deact(ex-exit E3) = {eobj2, eobj11}, and e-deact(ex-exit E1) = {eobj19}.
Table 10 illustrates the differences in the required associations for the all-e-acts criterion before and

after the addition of the dummy deactivations. Before the addition of the nodes, all-e-acts did not subsume

all-throw, whereas after the addition it does.

Similar to exit points, we add dummy definitions and activations at relevant catch nodes. For example,

catch node 28 in method M requires dummy activations. The addition of dummy activations to that node

causes an exception testing criterion, such as all-e-acts, to require more rigorous coverage of method M.

Because M is tested independent of the contexts in which it may be used, to gain confidence in the correctness

of the catch handler in M, the handler must be tested for all possible exception types that can be deactivated

at that handler: all subtypes of the declared type of the handler. During the actual testing process, the stub

that is called at the call site in line 27 is suitably implemented to activate exceptions of each type.

4.3 Using the Criteria for Integration Testing

Integration testing combines the individually tested modules of a program to incrementally build a working

program [11]. During integration testing, the emphasis shifts from testing the algorithmic correctness of an

individual module to testing the interactions of modules.

33

Table 11: Differences in testing requirements for the all-e-deacts criterion for exhaustive and selective testing
of the integration of classes C1 and C2.

Associations required for
Criterion exhaustive testing selective testing

all-e-deacts (2, 28, eobj2) (2, 28, eobj2)
(11, 28, eobj11) (11, 28, eobj11)
(15, 28, eobj20) (15, 28, eobj20)
(25, 28, eobj19) (25, 28, eobj19)
(25, 9, eobj19)
(25, 9, eobj20)
(25, 11, eobj19)
(25, 11, eobj20)
(25, 13, eobj20)

Because integration testing incrementally builds a system, a complete program is not available until the

final integration step. Integration testing exposes the same deficiencies in the exception testing criteria as

unit testing did because both these testing techniques share the common property that they are incomplete

programs. These deficiencies are overcome through a similar solution that creates dummy uses/deactivations

at exit points of the partially-built system, and dummy definitions/activations at entry points of the system.

Ideally, integration testing should test only the interactions of the new module that is added to the

partially-built system at each integration step. Test requirements that are not generated based on these

interactions repeat much of the testing that was done at previous integration steps or during unit testing of

the individual modules, and therefore, waste time and resources.

Consider the situation in which classes C1 and C2 of the sample program are being integrated together after

being unit-tested individually. The exception testing criteria can be used to identify test requirements for

testing the behavior of exception-handling constructs at this integration step. However, the criteria should be

adapted so that they do not generate redundant test requirements, but only the necessary ones. For example,

a naive application of the all-e-deacts criterion at the integration step uses the testing requirement described

in Table 5, and generates the associations shown in the left column in Table 11. An adapted version of the

all-e-deacts criterion, however, generates only those ad-associations in which the activation occurs in class C2,

and the deactivation occurs in class C1. The right column of Table 11 lists the associations generated by the

adapted criteria. The data illustrates that the adapted criterion avoids selecting five redundant associations:

these associations were exercised during the unit testing of C2 and provide no additional benefit when they

are reexercised during the integration of C1 and C2.

A general adaptation of the all-e-deacts criterion to the integration of modules A and B occurs as

follows: if a method in module A invokes a method in module B, generate those e-ad associations in which

the activation occurs in B and the deactivation occurs in A. Each exception testing criterion can be adapted

similarly to avoid generating redundant test requirements during integration testing.

5 Related Work

Chatterjee and Ryder [1] identify definition-use relationships between throw and catch statements caused

by exception objects. They also identify other definition-use relationships (with respect to ordinary program

variables) that arise along control-flow paths induced by the flow of exceptions. The du associations arising

34

from these relationships should be covered by a data-flow-based testing strategy. Chatterjee and Ryder

provide an algorithm for computing such du associations for a language model that provides a subset of the

Java exception-handling mechanism; their language model excludes finally blocks, and includes only one

version of the throw statement. The intent of their work is to compute such du associations and others that

arise because of aliasing between method parameters, polymorphism, and dynamic dispatch; their intent is

not to explore ways to test the behavior of exception-handling constructs. Therefore, they do not investigate

in any detail the relationships introduced by exception-handling constructs, and they do not define adequacy

criteria that cause these relationships to be exercised.

6 Conclusions

In this paper, we have presented a set of adequacy criteria for use in testing exception-handling constructs.

Although we described the testing criteria for a Java-like exception-handling model, with some modifications,

the criteria can be applied to exception-handling constructs in other languages, such as Ada and C++.

We described the relationships among our testing criteria, and described the relationships among our

criteria and the well-known data-flow criteria. These relationships, depicted as subsumption hierarchies,

show that our criteria subsume the criteria used in most commercial tools. Therefore, we expect that

testing with our criteria would provide a greater degree of confidence in the correctness of the behavior of

exception-handling constructs. These relationships also show that data-flow criteria do not subsume some

of our criteria. Thus, our criteria provide additional coverage of exceptions over that provided by data-flow

coverage, and focus the testing effort on the behavior of exceptions.

We also described the way in which test requirements can be computed for a program using our in-

traprocedural and interprocedural representations, and presented a methodology for applying the criteria to

unit and integration testing of programs that contain exception-handling constructs. Our criteria are thus

applicable at different levels of testing.

In this paper, we evaluated the exception testing criteria only in terms of subsumption relationships.

Other issues, such as cost of applying the criteria and fault-detection capabilities of the criteria, are also

important; our future work will address these issues.

We have implemented an analysis system, written in Java, to provide program analyses of Java subjects.

This analysis system takes a set of compiled Java byte-code files, constituting a program, as input, and

builds a control-flow graph for every method in the subject. The system uses data-flow information and

type inferencing to connect them into one interprocedural control-flow graph. Our future work includes

experiments for comparing path covers for the various exception testing criterion, comparing exception

testing criteria with data-flow testing criteria, and evaluating the effectiveness of exception testing criteria

in detecting faults in Java programs. In future work, we will also investigate ways to extend the exception

testing criteria to include implicitly-raised exceptions.

7 Acknowledgments

This work was supported in part by NSF under NYI Award CCR-9696157 and ESS Award CCR-9707792

to Ohio State University.

35

References

[1] R Chatterjee and B. G. Ryder. Data-flow-based testing of object-oriented libraries. Technical Report
DCS-TR-382, Rutgers University, Mar. 1999.

[2] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A formal evaluation of data flow path
selection criteria. IEEE Transactions on Software Engineering, 15(11):1318–1332, November 1989.

[3] P. Frankl and E. J. Weyuker. An applicable family of data flow testing criteria. IEEE Trans. on Softw.
Eng., 14(10):1483–1498, Oct. 1988.

[4] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley, Reading, MA,
1996.

[5] M. J. Harrold and G. Rothermel. Performing dataflow testing on classes. In Proceedings of the Second
ACM SIGSOFT Symposium on Foundations of Software Engineering, pages 154–163, December 1994.

[6] M. J. Harrold and M. L. Soffa. Interprocedural data flow testing. In Proc. of the Third Symp. on Softw.
Testing, Analysis, and Verification, pages 158–167, Dec. 1989.

[7] M. J. Harrold and M. L. Soffa. Selecting data for integration testing. IEEE Softw., pages 58–65, Mar.
1991.

[8] W. E. Howden. Methodology for the generation of program test data. IEEE Trans. on Computers,
C-24(5):554–559, May 1975.

[9] C. Huang, J. An approach to program testing. ACM Computing Surveys, 7(3):114–128, Sep. 1975.

[10] J. W. Laski and B. Korel. A data flow oriented program testing strategy. IEEE Trans. on Softw. Eng.,
SE-9(3):347–354, May 1983.

[11] H. K. N. Leung and L. J. White. A study of integration testing and software regression at the integration
level. In Proc. of the Conf. on Softw. Maint., pages 290–300, November 1990.

[12] D. Liang and M. J. Harrold. Efficient points-to analysis for whole-program analysis. In Proc. of 7th
Intl. Symp. on the Foundations of Softw. Eng., Sep. 1999. to appear.

[13] D. I. S. Marx and P. G. Frankl. The path-wise approach to data flow testing with pointer variables. In
Proc. of the ACM Int’l. Symp. on Softw. Testing and Analysis, pages 135–146, January 1996.

[14] J. McCabe, T. A complexity measure. IEEE Transaction on Software Engineering, SE-2(4):308–320,
Dec. 1976.

[15] S. Ntafos. On required elements testing. IEEE Trans. on Softw. Eng., SE-10(6):795–803, Nov. 1984.

[16] S. Ntafos. A comparison of some structural testing strategies. IEEE Trans. on Softw. Eng., 14(6):868–
874, June 1988.

[17] T. J. Ostrand and E. J. Weyuker. Data flow-based test adequacy analysis for languages with pointers.
In Proc. of the Third Symp. on Softw. Testing, Analysis, and Verification, pages 74–86, October 1991.

[18] S. Rapps and E. J. Weyuker. Selecting software test data using data flow information. IEEE Trans. on
Softw. Eng., (4):367–375, Apr. 1985.

[19] C. F. Schaefer and G. N. Bundy. Static analysis of exception handling in Ada. Software—Practice and
Experience, 23(10):1157–1174, Oct. 1993.

[20] S. Sinha and M. J. Harrold. Analysis of programs that contain exception-handling constructs. In Proc.
of Int’l Conf. on Softw. Maint., pages 348–357, Bethesda, MD, Nov. 1998.

[21] B. Steensgaard. Points-to analysis in almost linear time. In Proc. of POPL’96 ACM Symp. on Prin. of
Prog. Lang., pages 32–41, 1996.

[22] Sun Microsystems. JavaScope User’s Guide, Aug. 1998. www.sun.com/suntest/products/JavaScope.

36

