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Abstract: Although initially considered merely
“scavenger cells” that participate in immunologic
responses only after B and T lymphocytes have
performed their biological tasks, more recent evi-
dence suggests that macrophages play a key role in
host defense as well as in the maintenance of nor-
mal tissue structure and function. For macro-
phages to perform their biological functions, they
must be activated. This involves up-regulation of
an array of signaling pathways resulting in altered
gene expression and increased biochemical and
functional activity. Macrophages have been identi-
fied in almost all tissues of the body. However, the
basal activity of these cells, as well as their ability to
respond to inflammatory mediators, varies consid-
erably with their location. In addition, even within
a particular tissue, there is evidence of macro-
phage heterogeneity. The largest populations of
macrophages in the body are located in the liver
and lung. Because of the unique attributes of these
tissues, hepatic and pulmonary macrophages play
essential roles not only in nonspecific host defense
but also in the homeostatic responses of these tis-
sues. In this review, the functional and biochemical
activities of macrophages localized in the liver and
lungs are compared. Evidence suggests that these
represent distinct cell populations with unique
functions and responsiveness to inflammatory
agents. J. Leukoc. Biol. 70: 163–170; 2001.
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INTRODUCTION

Macrophages are derived from bone marrow precursors and
blood monocytes. Mature macrophages localize in tissues and
constitute the mononuclear-phagocyte or reticuloendothelial
system. They are present in connective tissue and around the
basement membrane of small blood vessels and are particularly
concentrated in the liver (Kupffer cells), alveolar spaces of the
lung (alveolar macrophages), and linings of splenic and lymph
node medullary sinusoids, where they are strategically local-
ized to filter foreign material. Other examples of macrophages
are Langerhan’s cells in the skin, mesangial cells in the kidney
glomerulus, brain microglia, and osteoclasts in bone. In gen-
eral, macrophages are characterized morphologically by an
enlarged horseshoe-shaped nucleus, significant rough-surfaced

endoplasmic reticulum, and large numbers of mitochondria
and cytoplasmic vacuoles, although these characteristics vary
depending on the tissue origin of the cell. Macrophages are
motile cells that typically appear at inflammatory sites within
24–48 h. They are relatively long-lived cells that exhibit
continuous secretory activity during inflammatory processes,
enabling them to destroy a range of cells, antigens, and patho-
gens [1, 2]. Macrophages are also highly phagocytic cells,
readily engulfing and digesting a variety of substances includ-
ing viruses, bacteria, effete red blood cells, tissue and cellular
debris, and some tumor cells [3]. Despite their origin from a
common bone marrow progenitor population [4], macrophages
display considerable tissue heterogeneity. Moreover, even
within tissues, there appear to be subpopulations of macro-
phages that exhibit unique characteristics. These findings sug-
gest that the microenvironment of a tissue regulates the phe-
notype of these cells. This is most clearly evident in macro-
phages localized in the liver and the lungs, and these
macrophages are the focus of this review.

LIVER MACROPHAGES

Macrophages were first identified in the liver histologically in
the late nineteenth century by the German pathologist, von
Kupffer. These cells, later referred to as Kupffer cells, are the
most abundant mononuclear phagocytes in the body. They are
predominantly localized in the lumen of hepatic sinusoids and
are anchored to the endothelium by long cytoplasmic processes
[5]. The major function of Kupffer cells is to clear particulate
and foreign materials from the portal circulation, primarily
through the process of phagocytosis. Kupffer cells possess both
Fc and C3 receptors and are known to phagocytize a wide
variety of both opsonized and nonopsonized particles [6].
Kupffer cells play a central role in the uptake and detoxifica-
tion of endotoxin from the portal circulation [7]. Like other
mononuclear phagocytes, they have the capacity to act as
antigen-presenting cells for the induction of T-lymphocyte
responses [8]. When activated by antigens or inflammatory
stimuli, Kupffer cells release superoxide anions, hydrogen
peroxide, nitric oxide, hydrolytic enzymes, and eicosanoids,
each of which can aid in antigen destruction [9–11]. Kupffer
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cells also release a number of different immunoregulatory and
inflammatory cytokines, including interleukin (IL)-1, IL-6, tu-
mor necrosis factor (TNF)-a, platelet-activating factor, trans-
forming growth factor-b and interferon (IFN)-g [9–11].

Although the liver tissue is uniform at the level of histology,
it is heterogeneous with respect to morphometry and histo-
chemistry. This heterogeneity appears to be related to the
blood supply. Thus cells located in the upstream or periportal
regions of the liver lobule differ from those in the downstream
or centrilobular (perivenous) regions in several key enzymes,
receptors, and subcellular structures and therefore have dif-
ferent functional capacities [12, 13]. Kupffer cells have been
reported to be about twofold more abundant in periportal than
centrilobular regions of the liver lobule [13, 14]. Moreover, in
situ experiments have demonstrated that Kupffer cells in per-
iportal regions are larger, possess greater lysosomal enzyme
activities, and are more phagocytic than cells in centrilobular
regions but generate less superoxide anion [5, 14, 15]. These
data suggest that Kupffer cell functional heterogeneity and size
are related to the location of these cells within the liver acinus
[14]. Subpopulations of Kupffer cells that differ in size have
also been isolated from the livers of rodents and characterized.
Whereas the majority of Kupffer cells of all sizes display an
endogenous peroxidase pattern characteristic of resident tissue
macrophages and show positive staining for macrophage mark-
ers such as nonspecific esterase (NSE), ED1, and ED2, het-
erogeneity in intensity of staining has been observed [16]. In
general, the intensity of staining for these markers decreases
with decreasing cell size, suggesting that these cells display a
more immature phenotype [14]. Phenotypic heterogeneity of
human liver macrophages has also been observed histologi-
cally, using monoclonal antibodies that recognize the macro-
phage antigens CD68 and 25-F9. Whereas most macrophages
in normal human liver are positive for CD68, fewer mature
macrophages express the macrophage differentiation antigen
25-F9 [17, 18]. Moreover, although some cells are doubly
positive for these antigens, others are only CD68 positive.
Quantitative analysis has confirmed these differences, suggest-
ing that liver macrophage maturation is heterogeneous.

Functional heterogeneity has also been described in macro-
phages of different sizes isolated from rat livers. Thus large
macrophages are more phagocytic and generate increased
quantities of lysosomal enzymes, TNF-a, IL-1, and prostaglan-
din E (PGE), when compared with small liver macrophages [5,
13, 14, 19–25]. In contrast, the smaller macrophages express
greater quantities of Ia antigen, release more nitric oxide and
superoxide anion, and exhibit increased cytotoxic activity to-
wards tumor cells [14, 15, 19, 25–28]. These cells also appear
to be more susceptible to activation [20, 23, 29]. These obser-
vations suggest that there is a relationship between Kupffer cell
functionality, maturation, and size. The findings that large liver
macrophages located in periportal regions appear to provide
more scavenger functions and are less active in inflammatory
reactions may in part explain the relative immunological tol-
erance of the liver for immunogens entering from the portal
vein [19]. Figure 1 is a schematic summarizing the relation-
ship between size, maturation, function, and location of mac-
rophages in the liver.

LUNG MACROPHAGES

Like Kupffer cells in the liver, pulmonary macrophages play an
important role in nonspecific host defense, as well as in spe-
cific immune responses in the lung. This is mediated through
their phagocytic, microbicidal, and secretory functions [30]. At
least two different subpopulations of macrophages, alveolar
macrophages and interstitial macrophages, are localized in
distinct anatomical compartments in the lung, including the air
spaces and lung connective tissue, respectively [31, 32]. Al-
veolar macrophages reside within the alveolus and are often
seen protruding from the alveolar epithelial walls into the
lumen of the lungs. They occupy a relatively unique position
within the body because they are exposed directly to a rela-
tively hyperoxic environment and are in intimate contact with
both air- and blood-borne materials. Alveolar macrophages are
strategically located to function as a primary defense of the
lung against inhaled particulate matter, microorganisms, and
environmental toxins [30, 33, 34]. Damage to these cells is an
important factor in increased host susceptibility to airborne
bacterial infection and toxicants [31]. Interstitial macrophages
are also quite prominent in the lung, constituting approxi-
mately 40% of the total macrophages in tissue [35]. Morpho-
metric studies show that the number of macrophages within the
interstitium of normal lung approximates or exceeds the num-
ber of alveolar macrophages [30, 32]. Moreover, because in-
terstitial macrophages are in direct contact with matrix and
other pulmonary connective-tissue components, the release of
mediators or enzymes by these cells may have greater biolog-
ical and/or pathological effects than those released by macro-
phages in the alveolar compartment.

In normal lung tissue, alveolar macrophages are considered
the end stage of development of blood monocytes. A number of
studies have suggested that interstitial macrophages are actu-
ally an intermediary stage in the maturation of alveolar mac-
rophages [36, 37]. Morphologic studies have shown that alve-
olar macrophages are large, mature cells, with an increased
cytoplasm/nucleus ratio which resembles other tissue macro-
phages, whereas interstitial macrophages are smaller, more

Fig. 1. Schematic diagram illustrating liver macrophage heterogeneity. Phe-
notypic and functional characteristics of liver macrophages (Kupffer cells) are
related to their location within the hepatic sinusoid.
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uniform in size, have blunt pseudopodia, contain few intracy-
toplasmic lamellar inclusions or lysosomes, and in general
more closely resemble peripheral blood monocytes [38–44].
Based on these observations, it has been suggested that the
pulmonary interstitium provides an environment for late-stage
maturation or preconditioning of blood monocytes prior to their
entrance into the air space [36]. Nevertheless, there is consid-
erable evidence to support the concept that alveolar and inter-
stitial macrophages represent distinct cell populations with
unique functional attributes and that each population has the
capacity to contribute to pulmonary inflammatory and immune
responses [45]. Thus, although alveolar macrophages exhibit
greater functional activity related to inflammation and antimi-
crobial defense including increased chemotaxis, phagocytosis,
cytotoxicity, and release of reactive oxygen and nitrogen inter-
mediates, PGE, TNF-a, and IFN, interstitial macrophages
express greater quantities of C3 receptor and intercellular
adhesion molecule 1, are more active in secreting IL-1 and
IL-6 and exhibit greater Ia antigen expression along with a
stronger accessory function [36, 40, 45–56]. These capabilities
demonstrate that interstitial macrophages display pronounced
immunoregulatory capacity and suggest that they are more
involved in specific immune responses. Interstitial macro-
phages have also been reported to exhibit a significantly
greater proliferative capacity when compared with alveolar
macrophages [40], and this capacity is thought to play a role in
maintaining the lung macrophage pool under homeostatic and
pathologic conditions [57]. Figure 2 summarizes the differ-
ences between alveolar and interstitial macrophages.

Alveolar macrophages are the best studied of the lung mac-
rophages, in part because of their ease of isolation by bron-
choalveolar lavage. A number of studies have demonstrated
that these cells are not homogeneous and can be separated into
subpopulations with distinct morphologic and functional prop-
erties on the basis of adherence to the alveolar walls, flow-
cytometric parameters, expression of surface receptors, and
density [36, 38, 43, 58–67]. Most studies have focused on cells
grouped by density. In general, alveolar macrophages of higher
density are smaller and appear less mature when compared
with lower-density cells [64]. However, these cells are more
functionally active. Thus, high-density alveolar macrophages
exhibit increased NSE staining and express greater numbers of
C3 and immunoglobulin (Ig) receptors, as well as Ia antigen
[54, 58]. They are also more phagocytic and chemotactic, and
they generate increased amounts of superoxide anion, ly-
sozyme, IL-1, TNF-a, neutrophil chemotactic factor, and PGE
when compared with low-density alveolar macrophages [43, 45,
50, 59, 65–77]. High-density alveolar macrophages also ex-
hibit greater cytotoxicity towards neoplastic cells and more
effectively support T-cell proliferation [43, 66, 77, 78]. In
contrast, low-density alveolar macrophages, which have been
characterized cytochemically as more mature cells [78], dis-
play increased procoagulant activity and ectoenzyme function
[64, 79–82]. Several investigators have suggested that mor-
phologic and cytochemical maturation is associated with de-
creasing cell density and increasing cell size [59, 60, 64, 79,
83]; thus, density centrifugation has been proposed as a
method to separate alveolar macrophages at different stages of
maturation. However, it is also possible that heterogeneity in
alveolar macrophages reflects the existence of macrophage
subpopulations with functionally distinct roles in airway im-
munity and is derived from distinct bone marrow precursors
[84].

As observed in alveolar macrophages, considerable hetero-
geneity with respect to size, morphology, function, and antigen
expression has also been observed within the interstitial mac-
rophage population [32, 39]. Separation of interstitial macro-
phages by density has yielded results similar to those reported
for alveolar macrophages. Thus, higher-density interstitial
macrophages exhibit increased chemotaxis, phagocytosis, and
Fc receptor expression, as well as increased prostaglandin
biosynthesis, when compared with lower-density fractions [45,
46, 54]. As suggested for alveolar macrophages, these differ-
ences may reflect distinct maturational stages of these cells,
although differences could also be related to the anatomical
location of cells within the tissue.

ARE LIVER AND LUNG MACROPHAGES
DIFFERENT?

Although only a few studies have directly compared liver and
lung macrophages, these clearly indicate that significant het-
erogeneity exists between these two populations. Thus, whereas
normal Kupffer cells are highly phagocytic, alveolar macro-
phages produce significantly greater quantities of reactive-
oxygen species and reactive-nitrogen intermediates (Table 1).
This difference most likely reflects the nature of the mediators

Fig. 2. Schematic diagram illustrating lung macrophage heterogeneity. Phe-
notypic and functional characteristics of lung macrophages are related to their
location within the alveolus or interstitium.
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and pathogens to which these cells are exposed in vivo, as well
as the needs of the tissue. For example, the liver is the major
site for clearance of gut-derived endotoxin. Thus, Kupffer cells
localized in hepatic sinusoids have developed a highly efficient
phagocytic capacity to remove endotoxin from the portal cir-
culation. Moreover, since Kupffer cells are continuously ex-
posed to endotoxin, they are in a chronic state of low-level
activation. In this regard, resident Kupffer cells have been
reported to constitutively express enzymes such as cyclooxy-
genase-2 and nitric oxide synthase-2, which mediate the for-
mation of inflammatory prostaglandins and reactive-nitrogen
intermediates, respectively [85]. In contrast to interstitial mac-
rophages, alveolar macrophages are primed by exposure to
inhaled pathogens and particulates to generate increased quan-
tities of cytotoxic mediators that aid in their destruction. The
relative functional capacities and antigenic differences be-
tween alveolar macrophages and Kupffer cells are shown in
Table 1. For comparison purposes, we also included peritoneal
macrophages. Although all three macrophage populations ex-
hibit characteristic features of mononuclear phagocytes, levels
of these activities vary considerably, demonstrating clearly that
functional, antigenic, and morphologic heterogeneity exists

both within and between tissues. A question arises, however, as
to whether heterogeneity observed within the macrophage fam-
ily stems from differences in the stage of differentiation or
activation state of a single highly dynamic macrophage/mono-
cyte lineage or the existence of multiple distinct macrophage/
monocyte lineages. Whereas animals studies have supported
the concept that macrophage subpopulations arise from distinct
bone marrow precursors [4], in humans, this remains to be
determined [86].

SUMMARY AND CONCLUSIONS

The role of macrophages in host defense and tissue injury is
now well established, not just in the liver and lungs but also in
almost all other tissues of the body [1, 2, 87, 88]. Although
there is considerable evidence demonstrating macrophage het-
erogeneity between tissues, accumulated data suggest that
there is also heterogeneity within each tissue. A question arises
about the relationship among cell size, density, and function.
Based on the literature surveyed, it appears that smaller,
denser macrophages might play a more prominent role in

TABLE 1. Comparison of Kupffer Cells, Alveolar Macrophages, and Peritoneal Macrophages

Kupffer
cells

Alveolar
macrophages

Peritoneal
macrophages References

Antigen Expression
MHC II 1 11 1111 47, 56, 89
ICAM-1 111 11 111 90, 91
b2-Integrin 111 1111 111 91–93
CR3 111 11 1111 6, 34, 49, 54, 92, 94, 95
Fc Receptor 11 11 111 17, 34, 73, 94, 96, 97
ED1 111 111 1111 16, 92, 98–100
ED2 111 ND 11 99–101
CD68 1111 1111 111 17, 89, 102–105
25-F9 111 111 111 17, 18, 49, 106–111
CD14 1 11 11 17, 94, 112, 113

Immunohistochemistry
NSE 11 1111 11 16, 41, 58, 114
Peroxidase 111 1 1 5, 114

Functional Responses
Phagocytosis 1111 11 111 5, 6, 91, 115
Chemotaxis 1111 111 1111 73, 91, 115
Ag Presentation 11 1 1111 8, 13, 77, 92
Tumor Cytotoxicity 111 11 111 47, 56, 73, 108, 116
Bactericidal 111 1 1111 34, 49, 92, 117, 118
Fungicidal 1111 1111 1 49, 92, 119

Mediator Production
RNI 11 1111 111 23, 47, 49, 52, 91, 120
Superoxide anion 1 1111 1111 9, 15, 115, 119, 121
Prostaglandins 1111 111 1 9, 23, 45, 49, 75, 114, 122
IFN-g 11 11 111 123–129
IL-10 1 ND 1111 123, 130–134
TNF-a 11 111 111 9–11, 20, 24, 135
IL-1 11 11 1111 47, 72, 74, 135–137
PAF 111 111 111 9–11, 138–140
IL-6 11 11 111 47, 56, 72, 135
MIP-1 11 1111 11 141–144
MCP-1 11 11 111 115, 141, 142, 145

Quantitative comparisons of phenotypic and functional characteristics of Kupffer cells, alveolar macrophages and peritoneal macrophages were made using an
arbitrary scale of 1 (minimal) to 1111 (maximal). Relative values were obtained by comparing data presented in the cited references or by contrast with a
common standard (e.g., blood monocytes). Most data are derived from rodent models; data from human cells are cited when available. ND, not detected.
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immune regulation while larger, less dense cells are engaged in
anti-inflammatory/antimicrobial activity. Whether this is true
for tissues other than the liver and lung remains to be deter-
mined. For the future, a focus on understanding the functional
importance of macrophage subpopulation heterogeneity will be
important in designing new and potentially more effective
approaches to limiting inflammation and cytotoxicity.
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