
Scalable TCP Congestion ControlA thesis presentedbyRobert Tappan MorristoThe Division of Engineering and Applied Sciencesin partial full�llment of the requirementsfor the degree ofDoctor of Philosophyin the subject ofComputer ScienceHarvard UniversityCambridge, MassachusettsJanuary, 1999

c
 1999, Robert Morris. All rights reserved.

iiiAbstractRouters in IP packet-switched networks signal congestion to senders by discard-ing packets. Such discards, as a side-e�ect, are often the key factor determiningthe quality of network service perceived by users. For this reason network de-signers need techniques to explain, predict, and control the packet discard rate.This thesis explains the discard rate for TCP tra�c in terms of the inter-action between load and capacity. The key insights are that load should bemeasured as the number of senders actively competing for a bottleneck link,and capacity as the total network bu�ering available to those senders. The the-sis shows how to predict discard rates using these measures. It also proposes anew queuing method that can limit the discard rate over a wide range of loads.

ivAcknowledgementsH. T. Kung took me under his wing at a time when my prospects seemed dark.Since then I've pro�ted immensely from his wisdom and high standards.Mike Smith and Alan Chapman inspire me with their quiet excellence.Trevor Blackwell, Brad Karp, Dong Lin, and Koling Chang have sharedyears of ideas, arguments, and good times with me.Paul Graham, my particular friend, understands how to lead a worthwhilelife; would that I had his insight.Ingrid Bassett has stayed sweet and sane despite everything.Finally, my parents still love me.

Contents
1 Introduction 12 Background and Related Work 32.1 TCP . 32.1.1 Congestion Window . 42.1.2 Slow Start . 52.1.3 Congestion Avoidance . 52.1.4 Fast Retransmit . 62.2 Routers . 72.2.1 Drop-Tail and Random-Drop Routers 72.2.2 RED Routers . 82.3 Router Bu�er Provisioning . 82.4 Load and Congestion . 92.5 Coping with Many Flows . 103 Simulation Environment 124 Load and Number of Flows 154.1 Flow De�nition . 154.2 Detecting Flows . 164.3 Flow Counts . 164.3.1 Published Counts . 174.3.2 Counts from Published Traces 174.4 Harvard Trace Details . 184.5 Correlation of Loss and Flows . 184.6 Load and Access Link Rate . 215 TCP's Response to Load 245.1 TCP's Response to Loss . 255.1.1 Average Congestion Window Size 255.1.2 Timeouts . 255.1.3 Average Packets in Flight 285.2 Drop-Tail and Random Drop Analysis 285.2.1 Drop-Tail and Random Drop Discussion 30v

CONTENTS vi5.3 RED Parameter Analysis . 315.3.1 Derivation of Relationships 335.3.2 RED Parameter Simulations 345.3.3 Improving the Predictions 385.3.4 Setting RED Parameters 395.3.5 RED Scaling Discussion 406 FPQ: Supporting Large Router Queues 416.1 Bit-Vector Flow Counting . 426.2 Choosing the Target Queue Length 436.3 Achieving the Target Queue Length 456.4 Validation . 476.4.1 Queue Length . 476.4.2 Drop Rate . 476.5 Sensitivity to tclear . 496.6 FPQ Discussion . 517 Delay Analysis 527.1 Packets-Per-Flow Parameter . 537.2 Average Delay Comparison . 557.3 Delay Fairness Among Transfer Sizes 577.4 Delay Fairness in General . 587.4.1 Cumulative Delay Distribution 587.4.2 Percentile Ratios . 618 Conclusions 64

Chapter 1IntroductionBu�er space in Internet routers has traditionally been viewed as a way to absorbtransient imbalances between o�ered load and capacity. Choosing the amount ofbu�er memory has been something of a black art: too little risks high loss ratesand low link utilization, too much risks high queuing delay. Current practicefavors limiting bu�er space to no more than is required for good utilization.The result is that routers use loss to control congestion, by discarding packetswhen they run out or are in danger of running out of memory. Most Internettra�c sources respond to loss by decreasing the rate at which they send data,making loss feedback a reasonable approach to congestion control.Loss feedback misses an important factor. The TCP protocol that controlssources' send rates degrades rapidly if the network cannot store at least a fewpackets per active connection. Thus the amount of router bu�er space requiredfor good performance scales with the number of active connections. If, as incurrent practice, the bu�er space does not scale in this way, the result is highlyvariable delay on a scale perceptible by users. Evidence collected from busyparts of the Internet suggests that this e�ect might be signi�cant.The simultaneous requirement of low queuing delay and of large bu�er mem-ories for large numbers of
ows poses a problem. This thesis suggests the follow-ing solution. First, routers should have physical memory in proportion to themaximum number of
ows they are likely to encounter. Second, routers shouldenforce a dropping policy aimed at keeping the actual queue size proportionalto the actual number of active
ows. This system, referred to here as FPQ(Flow-Proportional Queuing), automatically chooses a good tradeo� betweenqueuing delay and loss rate over a wide range of loads. In particular, FPQallows a network administrator to set the loss rate to a low constant despitevarying load.FPQ provides congestion feedback using queuing delay, which it makes pro-portional to the number of
ows. TCP's window
ow control causes it to sendat a rate inversely proportional to the delay. Thus the combination of TCP andFPQ causes each TCP to send at a rate inversely proportional to the number ofTCPs sharing a link, just as desired. Under heavy load it turns out that FPQ's1

CHAPTER 1. INTRODUCTION 2delay feedback produces the same overall delay as the timeouts produced byloss feedback. FPQ, however, produces a fairer distribution of delays than lossfeedback: every transfer sees the same queuing delay in FPQ, whereas loss feed-back sharply segregates transfers into unluckly ones (which see timeouts) andlucky ones (which do not).Part of the reason that FPQ works is that number of active
ows is animportant measure of load in TCP networks, and the ability of the network tostore packets is an important measure of capacity. These are non-traditionalmeasures: bandwidth is typically used for both load and capacity. Much ofthis thesis is an exploration of the relationship among number of
ows, networkstorage, and loss rate. These ideas will prove useful not just in the design ofFPQ, but also in the analysis and tuning of existing router bu�ering systems.The remainder of the thesis starts (in the next chapter) with a tutorial onTCP and router design, along with a review of work in areas related to scalableTCP congestion control.Chapter 3 describes the simulation environment used by the rest of the thesis.Chapter 4 presents evidence about how many
ows busy Internet links carry,evidence about Internet loss rates, and informal support for the view that num-ber of
ows is a good measure of load.Chapter 5 considers this notion of load more thoroughly, exploring the in-teractions among number of
ows, bu�er space, and loss rate. It presents bothsimulations and predictive formulae. Particular attention is given to setting theparameters of the Random Early Detection (RED) queuing algorithm.Chapter 6 proposes a new packet dropping strategy called FPQ, designed tohelp a router adapt its queue length and loss rate to the measured number ofactive
ows.Chapter 7 uses simulation to show that FPQ causes the same average delayas traditional bu�ering techniques, but signi�cantly lower delay variation.Chapter 8 summarizes the lessons learned in this thesis.

Chapter 2Background and RelatedWorkThis chapter presents the details of TCP and IP router design required to un-derstand the rest of the thesis. It also reviews current research relevant toscalable TCP congestion control. Sections 2.1 and 2.2 are for review and arenot intended to be controversial or even interesting. Sections 2.3 through 2.5touch on areas in which this thesis extends or di�ers from previous work.2.1 TCPThe service that an IP network provides is the transport of individual packetsof data. These packets consist of a header and at most a few thousand bytes ofdata. The header contains the address of the destination computer (or \host").IP networks consist of routers connected by links. The routers contain tableswhich allow them to forward each packet from source to destination host, po-tentially along a path consisting of many routers and links. The network usuallydelivers the packet, but may instead discard it, corrupt it, or deliver it to thewrong host.Most applications need a higher level of service than this. First, they of-ten need to exchange more data than will �t in a packet. Second, often wantreliable in-order delivery of data. Third, they usually want to identify whichof many applications running on the destination host the data should be deliv-ered to. Fourth, a pair of communicating applications may want a notion of a\connection" suitable for a sustained conversation.TCP [46] provides these services in a generic way suitable for many applica-tions. When two applications on di�erent hosts wish to communicate, they eachcreate a TCP endpoint (or \socket") and each tell their local TCP software tocreate a connection between the sockets. The TCPs on the two host exchangeconnection setup packets, called \SYN" packets. When the applications indicatethat the conversation is over, the TCPs exchange \FIN" (or �nish) packets.3

CHAPTER 2. BACKGROUND AND RELATED WORK 4During the life of a connection the applications may send each other data.TCP divides this data into packets small enough for the IP network to transport.TCP numbers the packets and sends each packet's number in the packet header.The receiver uses these numbers to reconstruct the original stream of data inorder. These are called \sequence" numbers.When a TCP endpoint receives a data packet, it sends an acknowledgment(or \ACK") packet back to the sender. The ACK contains the lowest sequencenumber that the receiver has not yet received. Suppose, for example, that areceiver receives packets 1, 2, and 4. On receiving 4, it will return an ACKcontaining 3. This tells the sender two things. First, that the receiver haspackets 1 and 2, so the sender need never think about them again. Second, thatthe receiver has not received packets 3 and 4, so the sender may need to re-sendthem.After the sender sends a packet to the receiver, it sets a \retransmit timer."If the timer goes o� before the sender gets an ACK for the packet, the senderretransmits the packet. The sender sets the timer adaptively, by measuringthe \round trip time" between each packet transmission and the receipt of thecorresponding ACK. In practice, TCPs measure this time with a granularity ofhalf a second, and use a minimum retransmit timer of one second. If successiveretransmissions of the same packet fail, TCP doubles the retransmission timeoutafter each.2.1.1 Congestion WindowSuppose that a TCP sender waited for an ACK after sending each data packet.This has the valuable e�ect of causing the sender to send at a rate that isrelated to the network capacity: if the network is fast, the ACKs will comeback quickly and the sender will send quickly; if the network is slow, bothprocesses will proceed slowly. This prevents the sender from sending faster thanthe network capacity. It may also cause the sender to send far slower than thenetwork capacity. Suppose, for example, that the network can send 1000 packetsper second, but has a round-trip speed-of-light propagation delay of 0.1 second.Then a single TCP sender can send 10 packets per second, or just 1% of thenetwork capacity.To solve this problem, TCP sends a \window" of packets before waiting foran ACK. In the example above, TCP should set its window to 100 packets,which would keep the network busy for the 0.1 seconds until the return of the�rst ACK. Each time TCP receives an ACK, it sends another data packet. Thisprocedure tends to maintain a window of packets in
ight, and to keep thenetwork busy. In general the correct window size is the product of availablecapacity (or bandwidth) and round-trip propagation delay, or 1000 � 0:1 packetsin this case. Note that this window is mostly stored on the network links{asphotons moving through �bers, for example{and mostly not as packets bu�eredin routers.A TCP sender actually handles ACKs as follows. Suppose the desired win-dow size is cwnd. Whenever TCP receives an ACK, it calculates how much

CHAPTER 2. BACKGROUND AND RELATED WORK 5data is still in
ight{that is, how much data has been sent but for which thesender has received no ACK. Usually the answer will be cwnd less two packets{TCP receivers traditionally send an ACK for every other data packet. Then thesender sends enough new packets so that there are again cwnd packets in
ight;usually this means sending two new packets.While using a small window may cause under-utilization, using windowslarger than necessary also causes problems. Network routers must bu�er theexcess packets, causing either excessive delay or bu�er over
ow and packet loss.Since the \delay-bandwidth" product may vary by orders of magnitude betweendi�erent network paths, TCP cannot reasonably used a single �xed window size.However, TCP cannot directly determine either factor of the delay-bandwidthproduct, so it cannot directly decide an appropriate window. Instead it uses anadaptive \congestion window" algorithm [24], which e�ectively searches for themaximum reasonable window by increasing it until the network starts droppingpackets. The algorithm comes in two parts, called slow start and congestionavoidance.2.1.2 Slow StartTCP maintains a guess at the current reasonable window size, called the slow-start threshold (or ssthresh). Whenever TCP starts sending after being idle(or timing out), it would like to send with a window of size ssthresh. It turnsout to be a bad idea to send the entire window in a burst, which might forcea nearby router to bu�er the whole window; far better to spread the windowover a round-trip time, so that they are stored in transit on the links. TCPaccomplishes this using this algorithm, called \slow-start:"1. Initialize the window size, cwnd, to one packet.2. Whenever an ACK that acknowledges new data arrives (a \positive"ACK), increase cwnd by one packet.3. If the resulting cwnd is less than ssthresh, stay in slow-start. Otherwise,enter congestion avoidance mode, described in the next section.This doubles cwnd every round-trip time, so that TCP opens its window tossthresh in time proportional to log ssthresh instead of all at once.A typical initial ssthresh, used when a TCP connection is �rst created, is64 kilobytes. ssthresh is adjusted after packet loss as described below.2.1.3 Congestion AvoidanceA TCP in congestion-avoidance mode is searching for a reasonable window size.The goal is to increase the window slowly in case available network bandwidthhas increased, perhaps because of reduced competition from other connections{but to detect reductions in bandwidth and reduce the window accordingly. Con-gestion avoidance works as follows:

CHAPTER 2. BACKGROUND AND RELATED WORK 61. cwnd starts out at ssthresh due to slow-start.2. After each entire window of positive ACKs arrive, increase cwnd by onepacket.3. After a timeout (that is, a lost packet), set ssthresh to cwnd2 and enterslow-start.This algorithm has the e�ect of increasing the window by one packet perround-trip time when there is no loss. The rate at which TCP sends data isequal to one window per round-trip time, or cwndrtt . As long as cwnd is less thanthe delay-bandwidth product, increases in cwnd cause increases in send rate,because rtt is �xed at the round-trip propagation delay. However, once cwndexceeds the delay-bandwidth product, routers must bu�er the excess packets.This bu�ering increases the round-trip time by one packet transmission timeper bu�ered packet. If we measure rtt in units of packet transmission times, wecan see that increases in cwnd leave cwndrtt unchanged once cwnd is equal to thedelay-bandwidth product.At some point the congestion avoidance algorithm will increase cwnd somuch that some router runs out of bu�er memory{or perhaps some competingconnection will do so. At that point the router much drop one or more pack-ets. Once TCP notes the lost packet, it realizes that cwnd was too large ande�ectively halves it (by modifying ssthresh and entering slow-start). All otherthings being equal, TCP's window varies up and down by a factor of two overtime.Two router design considerations spring immediately from these algorithms.First, a router must provide about one delay-bandwidth of bu�ering if it wishesto make sure that a single TCP can sustain a send rate equal to the link band-width [51]. Otherwise TCP will send at less than the link rate after it cuts itswindow in half. Second, TCP will tend to keep router bu�ers full no matter howlarge they are. This means that building routers with huge bu�er memories isan invitation to excessive queuing delay.2.1.4 Fast RetransmitTCP traditionally waits at least one second before timing out and re-transmittinga lost packet. This causes packet loss to have a large impact on e�ciency; forexample, a packet loss rate of 5% would prevent TCP from sending faster than20 packets per second, no matter how fast the network. TCP uses a mechanismcalled \fast retransmit" [47] that can recover from a packet loss in a round triptime instead of a second.After a packet is lost, the TCP receiver sends ACKs for each of the remainingpackets in the window; each of these ACKs repeats the lost packet's sequencenumber to indicate that the packet wasn't received. The sender notes theseduplicated ACKs. If it sees three in a row, it retransmits the lost packet, setscwnd to half of ssthresh, and enters slow-start.

CHAPTER 2. BACKGROUND AND RELATED WORK 7Note that this fast-retransmit mechanism only works if the window is fouror more packets.2.2 RoutersAn IP router consists of a number of ports connected to transmission links, amechanism to forward each packet from the port it arrives on to the appropriateoutput port, and memory at each output port to bu�er packets that cannotbe sent immediately. Routers are interesting because they are where speedmismatches occur. For example, a router may receive packets on a link withhigher capacity than the relevant output link. Or a router, all of whose linksare the same speed, may have multiple input streams converging on the sameoutput.In the short run a router can absorb excess tra�c by bu�ering it. This isnot sustainable in the long run; routers are built with �nite memory, and evenwith in�nite memory the queuing delays would grow without bound. Instead,overloaded routers send feedback to the data sources telling them to slow down.In practice this feedback takes the form of dropped packets, which interact withTCP's congestion window algorithms as described above.Within this framework two approaches are widely used or accepted: drop-tailrouters and RED routers.2.2.1 Drop-Tail and Random-Drop RoutersMost current routers use \drop-tail" queuing. Each output port has a single�rst-in �rst-out (FIFO) queue of packets. When a packet arrives on an input, itis appended to the relevant output's queue. Each output transmits the packetsfrom its queue, in order, as fast as it can. Each queue has a limit on the numberof packets allowed, typically from a few dozen to a few hundred. If a packetarrives and the queue is already at its limit, the router discards (drops) thearriving packet.Drop-tail queuing is simple and e�ciently implemented, but causes two prob-lems with TCP tra�c. First, when a queue gets full, the router tends to dropa packet from each connection using the queue [22, 45]. This causes \globalsynchronization" of the connections' window size decreases, leading to under-utilization.Second, it turns out that the probability that a drop-tail router drops apacket (i.e. has a full queue when the packet arrives) is not independent ofwhich connection the packet is from. TCP's ACK feedback mechanism causesrepeating patterns or \phase e�ects" in packet arrivals, which can cause di�erentconnections to experience di�erent loss rates [18].A variant of drop-tail called random-drop discards a randomly selectedpacket from the output queue when a packet arrives and the queue is full. Thearriving packet is queued. This approach helps eliminate phase e�ects [35, 18],but does not avoid global synchronization [19].

CHAPTER 2. BACKGROUND AND RELATED WORK 82.2.2 RED RoutersA technique called Random Early Detection (RED) [19] eliminates drop-tail'sglobal synchronization and phase e�ects, and treats transient bursts more fairly.A simpli�ed description of RED's workings will be helpful in understandingthis thesis. RED (like drop-tail) maintains a single FIFO queue per outputport. It remembers the average queue length qavg over recent time. The networkadministrator must set three RED parameters: minth, the minimum acceptablequeue length; maxth, the maximum acceptable queue length; and maxp, themaximum dropping probability. When a packet arrives, one of three thingshappen. If qavg < minth, the router always queues the packet. If qavg >=maxth, the router always drops the packet. Ifminth � qavg < maxth, the routerdrops the packet with probability proportional to the average queue length:maxp(qavg �minth)=(maxth �minth):RED computes the average queue length qavg from the instantaneous queuelength q each time a packet arrives with this �lter:qavg = (1� wq)qavg + wqqThe recommended value for wq is 0:002, which averages the queue length overabout 500 packet arrival times.Since RED drops packets with a probability governed by average queuelength, rather than instantaneous queue length, it tends to drop each packetwith equal probability. This distributes the drops among connections in propor-tion to their bandwidths. Since RED starts dropping with some low probabilityas soon as the average queue length exceeds minth, it tends to spread losses outover time, thus avoiding global synchronization. RED's averaging also allowsbu�ering of transient bursts, as long as they are noticeably shorter than thequeue averaging interval.2.3 Router Bu�er ProvisioningHow much packet bu�er memory should router ports contain? Previous worksuggests two answers. First, one delay-bandwidth product of packet storage.An abstract justi�cation for this is that it allows for the natural delay at whichthe end-systems react to signals from the network [31, 29]. A TCP-speci�cjusti�cation is that this is the minimum amount of bu�ering that will ensurefull utilization when a number of TCP connections share a drop-tail router[51]. With any less than a full delay-bandwidth product of router memory, theTCPs' windows would sum to less than a delay-bandwidth product after theyall halve their window sizes. At least one major router vendor [49, 48] uses adelay-bandwidth product of memory.Another answer is that bu�ering is only needed to absorb transient burstsin tra�c [4]. This is true as long as the tra�c sources can be persuaded tosend at rates that consistently sum to close to the link bandwidth. RED, with

CHAPTER 2. BACKGROUND AND RELATED WORK 9its ability to de-synchronize TCP window decreases, should be able to achievethis. This means that utilization with RED should be relatively insensitive toparameters such as bu�er size [25]. Since large bu�er memories contribute toundesirable queuing delay, the recommended RED bu�er size (i.e. maxth) isonly a few dozen packets [16]. Adding weight to the view that router bu�ersshould be small are studies of long-range dependent tra�c that conclude thatincreasing router bu�er space is not an e�ective way to control loss rate [20, 12].Both of these answers e�ectively use packet discard as the only mechanismto control load. As later chapters describe, this can lead to high variation inuser-perceived delay. This thesis suggests using a combination of queuing delayand discard instead.2.4 Load and CongestionMuch of this thesis deals with how a TCP network should cope with high loadand congestion. These are vague terms. Intuitively, \load" encompasses legiti-mate user actions tend to place the network under strain and cause it to behavebadly. Congestion is bad behavior caused by load. This thesis will argue that animportant source or measure of load in TCP networks is the number of simulta-neously active connections sharing a bottleneck, and that congestion amountsto loss rates high enough to force TCPs into timeout.An early de�nition of congestion in TCP networks focused on a phenomenoncalled \congestion collapse" [40]. As the load on the network increased, thethroughput, queuing delay, and loss rate also increased. Increases in loss anddelay caused increases in retransmission rates. These retransmissions themselvesincreased loss and delay, as well as consuming bandwidth to no useful purpose.The result was that after a certain point, increased load caused a precipitousdecrease in useful throughput. Other window-based
ow control systems sawsimilar phenomena [27].Congestion collapse was solved for TCP by careful window size [24] andretransmit timer [28] management. TCP now does a much better job of match-ing its window size (and send rate) to available network resources and of re-transmitting only lost packets.At this point Internet congestion manifests itself in high loss rates. Thisloss is not catastrophic, as in the days of congestion collapse. Lost packets do,however, waste network bandwidth up to the point where they are discarded.Packet loss rates are hard to characterize globally, but measurements from dif-ferent times and places are available. Bolot [3] reports loss rates on the order of9% between France and the US in 1992. Paxson [44] reports a loss rates 2.7%in late 1994 and 5.2% in late 1995, between a variety of pairs of hosts on theInternet. Handley [21] reported loss rates on the order of 10% in 1996 fromsites all over the Internet receiving MBone transmissions. Yajnik, Kurose, andTowsley [52] report losses of about 10% in 1995 and 1996, again from sites allover the Internet receiving MBone transmissions.High loss rates decrease TCP's average window size and thus TCP's send

CHAPTER 2. BACKGROUND AND RELATED WORK 10rate [14]. This is all to the good, since high loss rates indicate an excess of tra�c.However, high loss rates also tend to push TCP into retransmit timeouts, withdeleterious e�ects described in later chapters.2.5 Coping with Many FlowsThe idea that window
ow control in general has scaling limits because thewindow size cannot fall below one packet has long been known [1]. Villamizar[51] suggests that this might limit the number of TCP
ows a router couldsupport, and that increasing router memory or decreasing packet size couldhelp. Eldridge [11] notes that window
ow control cannot control the send ratewell on very low-delay networks, and advocates use of rate control instead ofwindow control; no speci�c mechanism is presented. In the somewhat di�erentcontext of ATM virtual circuit
ow control, Kung and Chang [30] describe asystem that uses a small constant amount of switch bu�er space per circuit inorder to achieve good scalable performance.One drawback of drop-tail and RED routers is that they must drop packetsin order to signal congestion, a problem particularly acute with limited bu�erspace and large numbers of
ows. These packets consume bandwidth on theway to the place they are dropped, and they also cause increased incidence ofTCP timeouts. An alternate strategy is to explicitly notify senders of conges-tion, either with a
ag in the packet header, or with a special packet. Floyd[15] presents simulations of a TCP and RED network using explicit congestionnoti�cation (ECN). Floyd observes that ECN reduces timeouts for interactive
ows, and thus provide lower-delay service.Feng et al. [13] note that ECN cannot prevent routers with limited bu�ermemory from dropping packets if the number of
ows is very large. As a solution,they implement Eldridge's rate-control proposal which allows TCP to send lessthan one packet per round trip time. The combination of rate-control andECN increases the number of TCPs that can coexist with limited bu�er space.Their rate increase algorithm is multiplicative: every time it sends a packet, itincreases the rate by a fraction of itself. This increase policy turns out to haveno bias towards fairness [7], so that di�erences in send rates among connectionswill be stable. In contrast, TCP's standard window algorithms use an additiveincrease of one packet per round trip time, and do tend towards fairness.Previous work also exists investigating modi�cations to routers to allow themto cope with large numbers of
ows. Nagle [41] observes that providing unlimitedbu�er space in a FIFO router does not help by itself. The fundamental problemis that sources that increase their send rates are rewarded with a larger shareof the bandwidth. Nagle proposes a separate queue for each
ow, with round-robin scheduling among the queues. In such an architecture,
ows that sendat their fair share or less are rewarded by low delay, and
ows that send fasterare penalized by increased delay. The optimum behavior with this kind of fairqueuing is for each
ow to bu�er just one packet in the router. If
ows reallyacted like this, routers could be built with unlimited bu�er memory, but only

CHAPTER 2. BACKGROUND AND RELATED WORK 11use it in proportion to the number of active
ows.In an e�ort to achieve the bene�ts of Nagle's fair queuing without the over-head of maintaining per-connection queues, Lin [34] proposes a fair droppingstrategy called FRED. Packets are stored in a FIFO, but no
ow is allowed tobu�er more than a handful of packets. This bounds the unfairness allowed, andrequires only per-
ow counting, not queuing. FRED should scale well with thenumber of
ows because it allows a router to built with a large amount of packetmemory, but only to use it in proportion to the current number of
ows.This thesis makes two contributions in this area. First, it presents analyticaland simulation results about the interaction between number of TCP
ows andbu�ering; these should help in con�guring conventional routers as well as inunderstanding their behavior. Second, it proposes the FPQ mechanism, whichprovides a good delay/loss/fairness tradeo� with signi�cantly less complexitythan previous systems.

Chapter 3Simulation EnvironmentMost of the simulations described in this thesis were performed on a uniformcon�guration designed to highlight bu�ering and
ow count issues. As picturedin Figure 3.1, this con�guration involves N TCP senders converging on routerA. Router A must send what data it can across its link to router B, and eitherbu�er or discard the rest. Thus router A is the bottleneck router, and the linkfrom A to B is the bottleneck link.The intent of this con�guration is to capture what happens on heavily loadedlinks. For example, the link from A to B might be the link from an InternetService Provider's backbone to a customer. Such links usually run slower thaneither the backbone or the customer's LAN, and thus act as bottlenecks.The simulations use the NS 1.4 simulator [36]. Unless otherwise noted, theyuse the parameters given in Figure 3.2.Note that Figure 3.2 implies that the average round-trip propagation delay is100 milliseconds. Since a 10 megabit link can send 2170 packets per second, thedelay-bandwidth product is 217 packets. This means that a single TCP with a64 kilobyte window can only use about half the link capacity. In addition, eachsender's link to router A only runs at 10 times its fair share; this means that if
B

Sender N

Sender 2

Sender 1

Receiver N

Receiver 2

Receiver 1

A

Figure 3.1: Standard simulation con�guration. Each of N TCP senders has itsown host and its own link to router A. Router A connects to router B over abottleneck link. 12

CHAPTER 3. SIMULATION ENVIRONMENT 13Packet size 576 bytesMaximum window 64 kilobytesTCP timer granularity 0.5 secondsTCP delayed-ACK timer 0.2 secondsA to B propagation delay 45 millisecondsA to B bandwidth 10 megabits/secondSender i to A propagation delay random, 0 to 10 millisecondsSender i to A bandwidth 10 � (10=N) megabits/secondMaximum drop-tail queue length 217 packetsRED maxth 217 packetsRED minth 5 packetsRED maxp 2%Maximum RED queue length no hard limitSimulation length 500 secondsFigure 3.2: Summary of simulation parameters.more than 90% of the senders are timing out or otherwise idle, the remainingsenders won't be able to use the whole link capacity. In practice this doesn'thappen.By default, each TCP sender has an unlimited amount of data to send. Thismeans that most of the simulations focus on the steady-state behavior of TCP,rather than its start-up behavior. Some of the simulations use �nite lengthtransfers, which the relevant chapters will describe as they arise.The simulations include randomness to avoid deterministic phenomena thatwould never occur in the real world [2]. The connection start times are randomlyspread over the �rst 10 seconds of the simulation and the senders' access linkpropagation delays are randomly selected over range of about 10% of the total.Except for the slight randomization, all connections experience about thesame round-trip time. This avoids unfairness due to TCP's tendency to usebandwidth in inverse proportion to the round-trip time.Except when noted, no transmission errors are simulated. Thus all packetloss is caused by router A discarding packets in response to congestion. Thesimulated drop-tail and random drop routers discard packets when the queuealready contains a full 217 packets. The RED router drops according to theRED algorithm; there is no hard limit on the amount of bu�er memory thatRED can use.The TCP version used in the simulations is Tahoe [47]. The main di�erencebetween Tahoe and the later Reno is that Tahoe invokes slow start after a fastretransmit, whereas Reno uses \fast recovery" [46] to continue in congestionavoidance. Section 5.1 will demonstrate that the behavior of Tahoe and Renoare similar for the purposes of this work.Many of the graphs in this thesis have number of
ows on the x axis, andsome simulation result (such as loss rate) on the y axis. Each point typically

CHAPTER 3. SIMULATION ENVIRONMENT 14represents the average of that result over a single 500-second simulation. Theupper bound on the number of
ows presented is typically about 1000. This isnot an unreasonable number of
ows to expect a 10 megabit link to support,since it results in the per-
ow fair share being somewhat slower than a modem.

Chapter 4Load and Number of FlowsMuch of this thesis revolves around the notion that the number of active
owscompeting for a bottleneck is the best measure of load in a TCP network.\Load" in this context means some kind of stress that users can legitimatelyput on a network that may cause the network to behave badly. Stresses that�t this description include speed of users' access links, total amounts of datathat users want to send, the number of individual transfers that users wishto perform, the number of active users, and the number of active
ows. Thischapter presents
ow count estimates and then informal analyses motivatingthe choice of active
ow count as the most useful measure of load.4.1 Flow De�nitionThe de�nition of \active
ow" that makes sense in this work is an end of aTCP connection that has packets in
ight or is in retransmit timeout. Thiscorresponds to the number of distinct instances of TCP algorithms that areplacing a load on the network.Note that the de�nition includes TCPs in timeout, even though such TCPsaren't sending packets. Most timeouts occur because of congestion losses{thatis, they occur because the network has insu�cient capacity. Ignoring such
owswould misleadingly understate the load on the network.This de�nition of
ow works badly for transfers not limited by TCP's con-gestion control algorithms. Examples include the user-to-application directionof interactive applications such as telnet and the X window system. These
owstend to consist of very short packets, with too little data outstanding to becontrolled by TCP's window mechanism. Such
ows account for no more thanabout 8% percent of Internet backbone tra�c, and probably much less [50].This de�nition also ignores TCP ACK packets, which load network links inthe opposite direction from the corresponding data. Assuming one 40-byte ACKfor each pair of 576-byte packets, the ACK load amounts to less than 4% of thedata load. The e�ects of congestion on ACKs have been investigated elsewhere15

CHAPTER 4. LOAD AND NUMBER OF FLOWS 16[53]. For these reasons this thesis pays no special attention to ACKs.4.2 Detecting FlowsThe most convenient way to count
ows on a link is to monitor the packets
owing over the link. One possibility is to increment the count on seeing a TCPconnection setup (SYN) packet and decrement the count on a TCP �nish (FIN)packet, correcting for retransmitted SYN and FIN packets. This approach hasthe defect of counting all TCP connections, not just active connections. Let uscall this technique a SYN/FIN
ow count.One can target active
ows more speci�cally by counting the number ofdistinct TCP connection identi�ers that appear in the packet headers seen ineach interval. The connection identi�er consists of the IP addresses of the twohosts involved and the port number on each host. This technique ignores idleconnections. However, no choice of interval works perfectly. Intervals less thanone or two seconds will miss TCPs in retransmission timeout. Longer intervalsmay consider TCPs that never overlap in time as simultaneous, and may countmostly-idle TCPs as active. One or two seconds seems a reasonable compromise.Let us call this technique an active
ow count.An intermediate approach avoids problems with lost SYN/FIN packets, idle
ows that never terminate, and delicate choices of time interval. It records thetimes at which each
ow �rst and last sent a packet. Then, for each instantin time, it totals the number of
ows whose �rst and last times straddle thatinstant. Let us call this technique a known
ow count. As with the SYN/FIN
ow count, it over-estimates the number of active
ows.Many of the
ow counts presented in the following sections are from standardhalf-duplex Ethernet, in which there is no inherent idea of packets going in one oftwo directions. That is, even if the Ethernet is used primarily as a link betweentwo routers, the packets in both directions compete for the Ethernet bandwidth.Most WAN links, however, are full duplex: they have physically separate me-dia for the two directions between a pair of connected routers. Flow countsfrom half-duplex networks should be halved before comparing with counts fromotherwise comparable full-duplex networks.4.3 Flow CountsHow many simultaneous active
ows might one expect on a busy Internet link?Three sources of information are available, all using the techniques from Sec-tion 4.2: published measurements, publically available packet traces from whichmeasurements may be taken, and measurements taken by the author on nearbynetworks. The resulting statistics should be viewed as no more than sugges-tive of conditions on typical Internet links, since they are tiny samples from ahuge system. The statistics reported here also span almost ten years of Internetevolution, and particularly the era of rapid growth of Web tra�c.

CHAPTER 4. LOAD AND NUMBER OF FLOWS 174.3.1 Published CountsCaceres, Danzig, Jamin, and Mitzel [6] published statistics taken from the Uni-versity of California at Berkeley's wide-area link in October 1989. These statis-tics do not include
ow counts. They do include a count of about 1000 new
ows per hour, counted with a known
ow technique. Assuming
ows last anaverage of 20 seconds [50], one might guess that the link in question carriedabout 5 known
ows at any given time.Cla�y, Braun, and Polyzos [9] published active
ow counts observed on aT3 (45 megabit) link from the University of Illinois at Urbana-Champaign tothe NSFNET. These counts were taken on an afternoon in March 1993. Theyreport median and maximum
ow counts for a range of measurement intervals.For 2 seconds, they report a median of 400
ows and a maximum of 500. For 4seconds, a median of 500 and a maximum of 600.Newman, Lyon, and Minshall [42] published statistics taken in September1995 on an FDDI ring connecting the San Francisco Bay area to the Internetbackbone. They do not include
ow counts. They do include a count of about140 new TCP
ows per second. They used a known
ow technique, but usedonly IP addresses to distinguish
ows, not port numbers. Thus their counts arelower than others. They report an average
ow duration of about 50 seconds,so one might guess that the link carried about 7000 known
ows at any giventime.Thompson, Miller, and Wilder [50] report known
ow counts from an OC3(155 megabit) ATM link in internetMCI's backbone in September 1997. Thecount varied from 80000 at night to a sustained 200000
ows during the day.These numbers include all
ows, of which 75% are TCP. The average
ow lastedabout 20 seconds, and included about 20 packets.4.3.2 Counts from Published TracesAnother source of
ow counts is publically available packet trace �les. Thetraces are usually generated with the UNIX tcpdump [26, 37] program, whichmakes a record of every packet seen on a local network, including packets notaddressed to the host running tcpdump. The trace �les include a copy of eachpacket's header and the time at which the packet was observed. Only packetscontaining data contributed to the counts, e�ectively ignoring ACKs.Analysis of three such traces revealed the following per-second active
owcounts. The �rst trace [38], made available by Digital Equipment Corporation,was collected at 14:00 PST on a day in March 1995 on a 10 megabit Ethernet inPalo Alto that carried most of DEC's tra�c to the Internet backbone. Packetsfrom about 130 distinct TCP
ows are visible in this trace in each second. Theaverage
ow length was 45 packets and 31 seconds.The second trace [8] was collected on an FDDI ring at the FIX-West [5]interchange point in September 1996. It has packets from about 1300 distinctTCP
ows in each second.The third trace [39] was collected at 14:40 EST on March 13 1997 on a 10

CHAPTER 4. LOAD AND NUMBER OF FLOWS 18Name Year Count NotesCaceres &c 1989 5 Known
ows. My estimate.Cla�y &c 1993 400 Active
ows, 2 seconds.Newman &c 1995 7000 Known
ows. My estimate. Host pairs.DEC Trace 1995 130 Active
ows, 1 second.FIX-West Trace 1996 1300 Active
ows, 1 second.Harvard Trace 1997 200 Active
ows, 1 second.Harvard Trace 1998 350 Active
ows, 1 second.Figure 4.1: Summary of
ow counts from literature and traces.megabit Ethernet connecting Harvard's main campus to the Internet. This tracehas packets from about 200 distinct TCP
ows in each second. The average
owlength was 15 packets and 11 seconds. A second trace [23] taken on April 161998 at the same point in the network, but after a quadrupling in the speed ofHarvard's backbone link, showed 350 distinct
ows per second during the day.Figure 4.1 summarizes the
ow counts from this and the previous section.4.4 Harvard Trace DetailsSubsequent chapters will use a few
ow statistics such as day/night
ow countvariation and
ow durations. The numbers given below come from the Harvard1997 and 1998 traces, and are generally comparable to published �gures [50].Figure 4.2 shows active
ow count as a function of time of day from thetwo Harvard traces mentioned in Section 4.3.2. Each point is the average ofthe active
ow counts from 60 one-second intervals. The 1997 trace lasted fromabout 10am until the same time on the next day. The 1998 trace lasted from4pm on one day until 4pm on the next. Both are shown wrapped around on thegraph. The �rst trace was taken at a time when Harvard's backbone connectionwas a 10 megabit link, the second when it was a 45 megabit link. Note that thenumber of
ows varies by a factor of 3 to 1 from day to night.Figure 4.3 shows the distributions of three measures of
ow size: bytes,packets, and seconds of duration. These were measured between the �rst andlast packets of each
ow. For bi-directional
ows, the direction with more byteswas used, and the direction with less was ignored. The average number of byteswas 11600, with median 1700. The average number of packets 22, with median7. The average duration was 9 seconds, with median 2 seconds.4.5 Correlation of Loss and FlowsChapter 5 will present simulation and analytic evidence that the number of si-multaneous
ows directly drives the loss rate on busy TCP networks. Ideally

CHAPTER 4. LOAD AND NUMBER OF FLOWS 19

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20

N
um

be
r

of
 A

ct
iv

e
F

lo
w

s
pe

r
S

ec
on

d

Time of Day (EST Hours)Figure 4.2: Number of active TCP
ows in each second, averaged over one-minute intervals. Upper points are from the Harvard April 1998 trace; lowerpoints are from the Harvard March 1997 trace. Note the near-doubling of tra�cover a year, and the change from day to night.experimental evidence could be used to support this idea, perhaps by simulta-neously observing router bu�er over
ows at a bottleneck router along with
owcounts. Each of these numbers are available for a few points on the Internet,but not both. The best one can do is examine packet traces.One can estimate the number of lost packets in a trace by observing the se-quence numbers of successive TCP packets from each
ow. Doing this correctlyis hard [44, 43], since packets may appear out of order for reasons other thanloss. The loss estimates in this section are counts of gaps in sequence numbers,corrected for the gap caused by a timeout retransmission, and also corrected forpairs of out-of-order packets. This technique assumes that ACKs and data pack-ets following the same path experience the same loss rate. It assumes that eachcontiguous gap in the sequence number space corresponds to one lost packet;this probably leads to an under-estimation of the loss rate. Another cause ofunder-estimation is the possibility that entire windows of packets may be lost,resulting in no visible sequence number gaps.Figure 4.4 is essentially a scatter plot of the numbers of incoming
ows andincoming loss rates for each one-second interval of the Harvard March 1997trace. Instead of plotting each point, the points corresponding to each numberof
ows are summarized as a median and a bar from the 25th to 75th percentileof loss rate. The right-hand end of the x axis is the 95th percentile of numberof active
ows. The graph indicates a clear connection between number of
owsand loss rate.

CHAPTER 4. LOAD AND NUMBER OF FLOWS 20

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000 14000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Flow Size (Bytes)

March 1997

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Flow Size (Packets)

March 1997

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Flow Duration (Seconds)

March 1997

Figure 4.3: Cumulative distributions of bytes, packets, and seconds of durationfor
ows from the Harvard March 1997 trace.

CHAPTER 4. LOAD AND NUMBER OF FLOWS 21

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100 120 140

P
ac

ke
t L

os
s

R
at

e

Number of TCP FlowsFigure 4.4: Loss rates observed when di�erent numbers of
ows were active.Each bar indicates 25th percentile, median, and 75th percentile loss rates forall the one-second intervals with a particular number of
ows. From the March1997 Harvard trace.Flow count could be correlated with loss but not cause the loss. The mostlikely way this could happen is if
ow count and bandwidth used were correlated,and increases in bandwidth caused increases in loss. For example, each
owmight correspond to one modem's worth of bandwidth, and each
ow mightsend at a constant bit rate. To test this possibility, Figure 4.5 shows loss as afunction of bandwidth used in a style similar to that of Figure 4.4. The averagebandwidth used is 23% of the link rate, with standard deviation of 10%. Theright hand end of the x axis is the 95th percentile of utilization. This particulartrace exhibits a stronger correlation between
ow count and loss than betweenbandwidth and loss.These two graphs suggest that number of
ows is the more important con-tributor to loss, and thus the more interesting measure of load.4.6 Load and Access Link RateSuppose network users could control the amount of bandwidth they required.This might be relevant measure of load, since it might a�ect the network lossrate. Variation in desired bandwidth could happen in a number of ways, themost obvious being changes in the speeds of users' access links. For example,users might upgrade from modems to cable modem links. What can we sayabout whether such changes might matter more than changes in the number of

CHAPTER 4. LOAD AND NUMBER OF FLOWS 22

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ac

ke
t L

os
s

R
at

e

Fraction of Link UtilizedFigure 4.5: Loss rates observed when di�erent amounts of link bandwidth wereused. Each bar indicates 25th percentile, median, and 75th percentile loss ratesfor all the one-second intervals when particular amounts of bandwidth wereused. From the March 1997 Harvard trace.
ows?Figure 4.6 shows simulated loss rate as a function of user access link speed.The simulation involves 300 users, each with one active TCP
ow and a separateaccess link. The simulation con�guration involved the standard simulation con-�guration: a bottleneck link of 10 megabits, a round-trip propagation delay of100 ms, and RED with a maxth of 217. Each user's fair share of the bottleneckis 33 kilobits/second.If each user can send no faster than his fair share, no loss can occur. Asaccess link speed increases above one fair share, the loss rate also increases. Theloss rates quickly level o� as TCP's window algorithms start to be the limitingfactor. At this point the loss rate depends mostly on the number of
ows,as detailed in Chapter 5. This implies that access link speed is an importantmeasure of load only in networks with capacities close to the sum of the accesslink speeds. In the past such con�gurations have not been economical; muchmore common have been networks whose internal capacity is a modest multipleof the speeds of the fastest single access links.In conclusion, this chapter has informally argued that number of
ows is agood measure of TCP network load, and has presented a set of useful
ow statis-tics. The next chapter will provide a more rigorous analysis of the relationshipbetween number of
ows and loss rate.

CHAPTER 4. LOAD AND NUMBER OF FLOWS 23

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250 300

P
ac

ke
t L

os
s

R
at

e

Per-Flow B/W Limit (Kilo Bits/Second)Figure 4.6: Loss rate as a function of users' individual access link rates. Eachuser has one
ow that uses one access link. The bottleneck is a 10 megabit link,the two-way propagation time is 100 ms, and there are 217 router packet bu�ers.The x-axis shows each user's link rate. Each user's fair share is 33 kbits/second.Note that the access link rate has a modest e�ect on the loss rate except in anarrow region around the fair share.

Chapter 5TCP's Response to LoadThis chapter explains how TCP networks respond to changing numbers of
ows.Half of the story is TCP's response to the packet drop rate imposed by thenetwork. The other half is the way in which the number of
ows interact withTCP and router algorithms to determine the drop rate.The method in this chapter is to derive formulas based solely on TCP androuter algorithms, and to compare them with simulations. Since the formulasand simulations are independent, they can be used to verify each other. Theformulas are helpful not just in predicting TCP and router behavior, but alsoin con�guring routers; the chapter contains quantitative recommendations forsetting RED parameters.Most of the results in this thesis use the Tahoe [47] version of TCP, asdescribed in Section 2.1. Many Internet hosts use the more recent Reno TCP,which incorporates the \fast recovery" algorithm [46]. Fast recovery allowsTCP to use congestion avoidance after a fast retransmit, while Tahoe uses slowstart. Section 5.1 will plot simulation results for both versions' response topacket loss. The responses turn out to be nearly identical, since there is littledi�erence between slow start and congestion avoidance when the window size issmall. For this reason, subsequent sections will use only the simpler Tahoe.The analyses in this chapter assume that TCP's behavior is dominated bythe congestion window mechanism and single timeouts. The results are notaccurate when TCP spends a signi�cant amount of time in retransmit timerbacko�. Simulation suggests that the fraction of time that TCP spends inbacko� is roughly equal to the loss rate. This means that the results in thischapter are not likely to be accurate for loss rates larger than 5 or 10 percent.The main error that results from a high loss rate is that larger than expectednumbers of TCPs are idle, and do not contribute to queue length or loss rate.Thus the formulas in this chapter will tend to over-estimate queue length andloss rate when the load is very high.The initial result, Equation 5.1, is taken from existing work [14]. The re-mainder of the chapter is original. 24

CHAPTER 5. TCP'S RESPONSE TO LOAD 255.1 TCP's Response to LossSince packet loss is the primary way that the network communicates congestioninformation to TCP, it's important to understand TCP's response to packet loss.Of most interest is the number of packets that TCP keeps in
ight in responseto a given loss rate, as this number governs the bandwidth and bu�er space thatTCP uses. We can estimate this number by �rst estimating the average size ofthe congestion window as a function of the loss rate, and then estimating thefraction of time TCP spends sending rather than pausing in timeout.5.1.1 Average Congestion Window SizeSuppose that the fraction of packets that the network drops is l, and that thenetwork spaces these losses evenly. TCP's congestion window will go througha repeating pattern, experiencing a loss at some size wmax, cutting back towmax=2, and growing back to wmax again. The window grows by about 1 packetevery two windows (it would be 1 packet per window without the \delayed ACK"mechanism). Thus TCP will send about wmax windows of packets before thewindow has grown from wmax=2 to wmax. The average window size is about34wmax, so the window will grow from wmax=2 to wmax after sending about34w2max packets. We also know from the loss rate that the number of packetsTCP sends during this cycle is 1=l. Solving this equation yields wmax = q 43l .The average window size is then 34wmax, orwavg � 0:87pl (5.1)The point here is that the average congestion window size is determinedalmost solely by the loss rate. This observation is implicit in [24] and was ex-plicitly published in a di�erent form in [14]. Figure 5.1 compares this predictedvalue with the observed value of the sender's congestion window variable insimulations.Equation 5.1 over-estimates the number of packets in
ight in three ways.First, TCP implementations send only whole packets, which means they trun-cate non-integer congestion window sizes. This results in an average error of onehalf packet when the window size is two or more. Second, delayed ACK e�ec-tively reduces the number of packets in
ight by an average of one half packet.These two errors can be corrected by subtracting one from Equation 5.1, yieldingweff � 0:87pl � 1 (5.2)The third discrepancy, due to timeouts, requires more work to �x.5.1.2 TimeoutsIf TCP always kept one congestion window of packets in
ight, the discussionabove would be enough. However, a high loss rate or an unlucky loss pattern

CHAPTER 5. TCP'S RESPONSE TO LOAD 26

0

5

10

15

20

25

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ea

n
C

w
nd

Loss Rate

Predicted
tahoe
reno

Figure 5.1: Average TCP congestion window as a function of loss rate. Fromsimulations with a single TCP and a uniform probability of each packet beingdropped.may cause TCP to fall into retransmission timeout, causing to stop sending fora second or more. To a �rst approximation, if TCP Tahoe is to avoid timeouts,losses cannot be spaced less than 13 packets apart: three to generate enoughduplicate ACKs to trigger fast retransmit, and another ten to allow slow-startto increase enough that fast retransmit will work for the next loss. The fractionof losses followed by another loss within 13 packets is roughly 1� (1� l)13, sothe timeout rate o measured in timeouts per packet iso � l(1� (1� l)13) (5.3)The fraction of time TCP is likely to spend timing out, given an average windowsize w, a round trip time r, and assuming a timeout interval of one second, isO � 11 + rwo (5.4)These equations only work for window sizes greater than four, since a smallerwindow may not be able to recover from even a single lost packet. They are notaccurate for very large windows, either, since such windows make it easier torecover from losses. In addition, the precise value of 13 was chosen somewhatempirically. Figures 5.2 and 5.3 compare the predictions with TCP simulations.A word of caution: these timeout results assume uniform distribution oflosses. Bursty losses, coupled with TCP's tendency to send bursts of packets,mean that the losses may be concentrated in a small number of TCPs, forcing

CHAPTER 5. TCP'S RESPONSE TO LOAD 27

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
im

eo
ut

s
pe

r
P

ac
ke

t

Loss Rate

Predicted
tahoe
reno

Figure 5.2: Timeouts per Packet (o) as a Function of Loss Rate.

0

0.2

0.4

0.6

0.8

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

F
ra

ct
io

n
of

 T
im

e
in

 T
im

eo
ut

Loss Rate

Predicted
tahoe
reno

Figure 5.3: Fraction of Time in Timeout (O) as a Function of Loss Rate. RTT= 100ms.

CHAPTER 5. TCP'S RESPONSE TO LOAD 28

0

5

10

15

20

25

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ea

n
P

ac
ke

ts
 in

 F
lig

ht

Loss Rate

Predicted
tahoe
reno

Figure 5.4: Packets in
ight as a function of loss rate. RTT = 100ms.them into timeout. The more bursty the losses, the more timeouts will occur,even if the average loss rate stays the same. Drop-tail gateways tend to producebursts of loss, whereas one of RED's goals is to spread drops evenly over time.5.1.3 Average Packets in FlightRecall that our goal was to �nd how many packets TCP will keep in
ight as afunction of the loss rate imposed by the network. Equation 5.1 tells us TCP'swindow size when it is sending, and Equation 5.4 tells us how much of the timeTCP is sending. From them we can predict the average number of packets in
ight: (1�O)wavg (5.5)Figure 5.4 shows the number of packets TCP keeps in
ight derived fromsimulations. These numbers came from a simulated 10 megabit network with around trip time of 100 milliseconds.5.2 Drop-Tail and Random Drop AnalysisThe basic analysis of a single TCP's response to loss forms one part of a modelfor the behavior of multiple TCPs sharing a bottleneck. The other key part is thebottleneck router's packet discard policy. This section considers the drop-tailand random-drop policies, which turn out to have similar behavior. Section 5.3makes a similar analysis for RED. The overall goal is an understanding of therelationship between number of
ows and router bu�er space.

CHAPTER 5. TCP'S RESPONSE TO LOAD 29

0

100

200

300

400

500

0 20 40 60 80 100 120 140

M
ea

n
Q

ue
ue

 L
en

gt
h

Number of TCP Connections

Drop-Tail
Random Drop

Figure 5.5: Average queue length as a function of number of
ows, drop-tailand random drop. From simulations with 500 packet bu�ers.Consider n TCPs competing for a 10 megabit bottleneck link, fed by adrop-tail or random drop router with 500 packet bu�ers, and a 10 millisecondround trip time. Since TCP will expand its window until the router runs out ofbu�ers, we expect the router's queue to be mostly full; the simulation results inFigure 5.5 show this to be correct.The average queue length in Figure 5.5 for random drop is longer than fordrop-tail. Drop-tail forces more TCPs into timeout than random-drop, mostlydue to the higher drop rate it imposes (see below), but also because it tendsto concentrate each episode of loss in a few unlucky TCPs rather than overall TCPs with packets queued. Figure 5.6 compares fraction of time spent intimeout for drop-tail and random drop. With fewer TCPs active at any givenmoment, a drop-tail router tends to have a shorter queue.The drop-tail loss rate can be predicted by multiplying Equation 5.2 by nto yield q, the total bu�er space used by n
ows at loss rate l:q = n�0:87pl � 1�Solving for l as a function of n and q:l = 0:76n2(n+ q)2 (5.6)Random drop di�ers from this model because it deletes packets from themiddle of the queue rather than the end. The TCPs see losses and cut their

CHAPTER 5. TCP'S RESPONSE TO LOAD 30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120 140

F
ra

ct
io

n
of

 T
im

e
in

 T
im

eo
ut

Number of TCP Connections

Drop-Tail
Random Drop

Figure 5.6: Fraction of time in timeout as a function of number of
ows, drop-tailand random drop. 500 packet bu�ers.windows half a window earlier than with drop-tail, causing the average conges-tion window to be half a packet smaller. As a result the loss and queue lengthformulas for random drop are:q = n�0:87pl � 1:5�l = 0:76n2(1:5n+ q)2 (5.7)Figure 5.7 shows the simulated loss rate as n varies for the example con�g-uration, along with Equations 5.6 and 5.7 for q = 500. The predictions stopbeing accurate as the number of
ows approaches 100; at that point too fewpacket bu�ers are available to support fast retransmit, so signi�cant numbersof
ows fall into timeout.5.2.1 Drop-Tail and Random Drop DiscussionDrop-tail and random drop scale similarly with the number of
ows. Equa-tions 5.6 and 5.7 imply that loss rate is proportional to n2 when n is substantiallyless than q. If n is large compared to q, the predicted loss rate approaches someconstant as n grows; the real loss rate is less than predicted due to timeouts.The main di�erence between the two policies is that random drop e�ectivelysends back congestion noti�cation earlier by dropping from the middle of thequeue, resulting in a lower loss rate. Figures 5.8 and 5.9 illustrate this with

CHAPTER 5. TCP'S RESPONSE TO LOAD 31
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 20 40 60 80 100 120 140

D
ro

p
R

at
e

Number of TCP Connections

Simulated Drop-Tail
Predicted

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 20 40 60 80 100 120 140

D
ro

p
R

at
e

Number of TCP Connections

Simulated Random Drop
Predicted

Figure 5.7: Drop rate as a function of number of
ows, drop-tail and randomdrop. 500 packet bu�ers.plots of queue length over time for drop tail and random drop simulations.Careful inspection shows that periods of time during which the queue is full(and dropping packets) are longer in the drop-tail simulation. In this respect,random drop acts somewhat like drop-front [32].A drop tail or random drop router designed to support up to n
ows musthave about 5n packet bu�ers. Since the queue is likely to be full even withfew
ows, such a router e�ectively exhibits best case loss rate and worst casedelay. The only way to control delay is to decrease the bu�er space. The lossrate, however, is inversely proportional to the square of the bu�er space. Thistradeo� makes drop tail and random drop unattractive when n is large.As pointed out in [19], drop tail and random drop routers share a tendencyto synchronize the congestion window cycles of the TCPs using them. That is,when the queue �lls up, such routers drop packets from many
ows at about thesame time, causing them all to decrease their windows. Figure 5.9 illustrates theimpact of this synchronization on router queue length. The oscillation visiblein Figure 5.9 is the reason why the FPQ system presented in Chapter 6 doesnot use random drop to control the queue length. It is also the reason whydrop-tail routers should be equipped with at least one delay-bandwidth productof bu�ering { otherwise the router may run out of bu�ered packets to sendafter all the TCPs halve their windows, causing the link to go idle. Finally,one of RED's primary goals is to prevent TCP synchronization and consequentunder-utilization.5.3 RED Parameter AnalysisWhile the structure of RED is well motivated [19], little has been publishedregarding rules for setting RED parameters. Using number of
ows as a loadmetric, we can derive the relationships between load, parameters, and perfor-mance, and con�rm them with simulations. These rules should be useful whencon�guring RED equipment for known levels of load. They will also point the

CHAPTER 5. TCP'S RESPONSE TO LOAD 32

0

50

100

150

200

250

300

350

400

450

500

100 105 110 115 120

Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Time (Seconds)Figure 5.8: Queue length over time for a single drop tail simulation with 30competing
ows. Note the oscillation in queue length caused by synchronizedwindow decreases.

0

50

100

150

200

250

300

350

400

450

500

100 105 110 115 120

Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Time (Seconds)Figure 5.9: Queue length over time for a single random drop simulation with 30competing
ows. Note that the queue stays full for less time than in Figure 5.8.

CHAPTER 5. TCP'S RESPONSE TO LOAD 33way to a bu�ering system that automatically adapts to load, described in Chap-ter 6.The RED parameters most subject to tuning are maxp and maxth. maxthis the highest average queue length (qavg) the router will tolerate; the routerdrops all incoming packets when qavg exceeds maxth. maxp controls the droprate when qavg is less than maxth, in approximately this relationship:l = 2 �maxp � qavgmaxth (5.8)Existing suggestions for settingmaxp have ranged from 0.02 [19] to 0.10 [17],with an implication that maxp should be related either to the actual networkloss rate or to the desired network loss rate. Even less advice is available forsetting maxth, mostly by way of examples in which it has values around a fewdozen.RED's most valuable advantage over drop-tail is its ability to discard ran-domly chosen packets, rather than just the packets that happen to arrive whenthe queue is full. The random choice avoids unfair phase e�ects [18] and biasagainst bursty tra�c. The ability to drop before the queue is full avoids syn-chronization of TCP window decreases and consequent low utilization. In orderto achieve these bene�ts, a RED router must maintain the following:� Keep qavg noticeably below maxth and the physical memory size. Thisallows RED to space packet discards out evenly, avoiding drop-tail-likeforced drops, TCP window synchronization, and low utilization. A con-trolled queue size also avoids high delay.� Keep qavg non-zero so that link bandwidth isn't wasted.With appropriate parameter choices RED can achieve these goals automat-ically, by varying the drop rate in proportion to the queue length. But howshould one set the parameters?5.3.1 Derivation of RelationshipsWe can approximate how the load and the parameters a�ect RED's queue lengthand discard rate as follows.Equation 5.1 approximates how many packets one TCP keeps in
ight giventhe loss rate. We can �nd how many packets N TCPs will jointly keep in
ightat a given loss rate thus: b = 0:87Npl (5.9)We will assume that most of the b packets that the TCPs keep in
ight willbe bu�ered in RED's queue, so that b = qavg . We can solve Equation 5.8 to�nd what queue length would be required to produce a given loss rate:b = l �maxth2maxp (5.10)

CHAPTER 5. TCP'S RESPONSE TO LOAD 34l / N2=3 l / maxp2=3 l / maxth�2=3b / N2=3 b / maxp�1=3 b / maxth1=3Figure 5.10: Dependence of RED drop rate l and bu�er use b on number of
ows N and RED parameters maxp and maxth.Assuming an equilibrium between Equations 5.10 and 5.9 is reached, it mustlook like this: l �maxth2maxp = 0:87Npl (5.11)We can solve for the equilibrium loss rate l:l = 1:4N2=3maxp2=3maxth2=3 (5.12)Substituting back into Equation 5.10 we can �nd the equilibrium queue size:b = 0:7N2=3maxth1=3maxp1=3 (5.13)While these equations ignore a number of details, they show the order ofmagnitude relationships. Figure 5.10 summarizes.The most critical lesson from Figure 5.10 is that the loss rate is much easierto control than the queue length. For example, we can keep l constant despitea doubling of N by halving maxp. However, the end result will be a doublingin the average queue length. Keeping control of the queue length is important:most routers have physical limits on bu�er memory, and RED abruptly increasesthe loss rate to 100% when the queue exceeds maxth.5.3.2 RED Parameter SimulationsEquations 5.12 and 5.13 ignore four important details:� RED abruptly raises the discard probability to 100% when the averagequeue length exceeds maxth. This causes RED queues to be shorter thanpredicted by the equations, especially under heavy load.� The network e�ectively stores one delay-bandwidth product of packetson the wire. The equations assume these packets are stored in the REDqueue, so they over-estimate queue length and drop rate, especially whenthe delay-bandwidth product is large compared to maxth.� Figure 5.1 shows that Equation 5.1 over-estimates the congestion windowsize, in that case by 20%. This causes Equation 5.13 to over-estimatequeue length, and Equation 5.12 to over-estimate the loss rate.

CHAPTER 5. TCP'S RESPONSE TO LOAD 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 50 100 150 200 250 300

D
ro

p
R

at
e

Number of Flows

Simulated
P1
P2

0

200

400

600

800

1000

0 50 100 150 200 250 300

M
ea

n
Q

ue
ue

 L
en

gt
h

(P
ac

ke
ts

)

Number of Flows

Simulated
P1
P2

Figure 5.11: Drop rate and queue length as a function of number of
ows.maxth = 500, maxp = 0:02.� The equations don't account for timeouts. TCPs in timeout don't con-tribute to queue length, so the equations over-estimate queue length andconsequently loss rate. This e�ect is most noticeable with high loss rate.The e�ect is ampli�ed by small round trip times, which increase the pro-portion of time spent in timeout.This over-estimation of queue length and drop rate is apparent in Fig-ures 5.11 through 5.13. These graphs show the results of simulations varyingjust one parameter at a time. The base simulation con�guration involves 100
ows competing for a 10 megabit bottleneck. The round trip propagation timeis 10 milliseconds. The default maxth is 500 576-byte packets, and the defaultmaxp is 0.02. Each graph includes simulation results labeled Simulated, predic-tions from Formulas 5.12 and 5.13 labeled P1, and predictions labeled P2 whichthe next section will explain.All but two of the graphs conform roughly to the relationships in Figure 5.10.The queue length in Figure 5.11 abruptly stops rising because it reaches maxth,at about 200
ows. More puzzling, the predicted drop rate as a function ofmaxp in Figure 5.12 seems to bear little resemblance to the simulation. Most ofthe error stems from timeouts, which the predictions don't model. Figure 5.15shows the average fraction of time a TCP spent timing out in the simulations.For example, when maxp = 0:08, half the TCPs were in timeout at any giventime; this e�ectively means there were half as many
ows as expected, with acorrespondingly lower drop rate and queue length.Increasing maxp or decreasing maxth both have the e�ect of decreasingqueue length and increasing the loss rate. This has a double in
uence on thefraction of time spend in timeout. First, the higher drop rate increases theprobability that TCP will encounter two drops close enough together to forcea timeout. Second, the smaller queue decreases the round trip time, increasingthe ratio of time spent in timeout to time spent transmitting. These e�ectsconspire to blunt the e�ectiveness maxp at controlling drop rate.

CHAPTER 5. TCP'S RESPONSE TO LOAD 36

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.02 0.04 0.06 0.08 0.1 0.12

D
ro

p
R

at
e

RED maxp Parameter

Simulated
P1
P2

0

200

400

600

800

1000

0 0.02 0.04 0.06 0.08 0.1 0.12

M
ea

n
Q

ue
ue

 L
en

gt
h

(P
ac

ke
ts

)

RED maxp Parameter

Simulated
P1
P2

Figure 5.12: Drop rate and queue length as a function of maxp. 100
ows,maxth = 500.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 200 400 600 800 1000 1200 1400

D
ro

p
R

at
e

RED maxth Parameter

Simulated
P1
P2

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400

M
ea

n
Q

ue
ue

 L
en

gt
h

(P
ac

ke
ts

)

RED maxth Parameter

Simulated
P1
P2

Figure 5.13: Drop rate and queue length as a function of maxth. 100
ows,maxp = 0:02.

CHAPTER 5. TCP'S RESPONSE TO LOAD 37

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

F
ra

ct
io

n
of

 T
im

e
in

 T
im

eo
ut

Number of FlowsFigure 5.14: Fraction of time in timeout as a function of number of
ows.maxth = 500, maxp = 0:02.

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1 0.12

F
ra

ct
io

n
of

 T
im

e
in

 T
im

eo
ut

RED maxp ParameterFigure 5.15: Fraction of time in timeout as a function of maxp. 100
ows,maxth = 500.

CHAPTER 5. TCP'S RESPONSE TO LOAD 38

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

F
ra

ct
io

n
of

 T
im

e
in

 T
im

eo
ut

RED maxth ParameterFigure 5.16: Fraction of time in timeout as a function of maxth. 100
ows,maxp = 0:02.5.3.3 Improving the PredictionsThe previous section noted a number of ways in which its predictions of REDperformance were
awed. The predictions can be improved to account for pack-ets stored on the wire and the fact that some TCPs are timing out. The cost,however, is that the resulting equations have to be solved numerically. Thislimits their intuitive appeal, but they still have use in verifying the simulations,in evaluating the explanation of the errors in the last section's predictions, andperhaps in con�guring networks.The �rst improvement is to make use of Equation 5.4 to predict the fractionof time spent in timeout: o(l) � l(1� (1� l)13)O(l; r; w) � 11 + rw�o(l)This yields a version of Equation 5.5 which we'll call pif, for average packets in
ight: w(l) � 0:87plpif(l; r) � (1�O(l; r; w(l)))w(l)For convenience we'll turn Equation 5.10 into the function redq:redq(l;maxth;maxp) � l �maxth2maxp

CHAPTER 5. TCP'S RESPONSE TO LOAD 39Observing that the number of packets kept in
ight by the n TCPs must equalthe queue length plus the packets stored on the link, we get this equality:redq(l;maxth;maxp) + (pps � r) = n � pif(l; r) (5.14)pps is the bottleneck rate in packets per second, and r is the round trip time;these are 2170 and 0.01 respectively for the simulations on the previous section.The P2 curves in Figures 5.11 through 5.13 come from numerical solutionsof Equation 5.14 for l. These curves are all closer to the simulations than theP1 curves because they correct for timeouts and packets stored on the link.5.3.4 Setting RED ParametersThe preceding sections show that RED's performance depends on the inter-action between the number of
ows and the RED parameter settings. Givena known
ow count, a network administrator needs to know how to set theRED parameters to achieve a good tradeo� among utilization, delay, and TCPtimeout probability.To avoid excess timeouts an ideal router for TCP should allow somewhatmore than four packets of bu�ering per
ow. RED cannot do this in general,because it doesn't provide a linear relationship between
ow count and averagebu�er size. It can, however, be tuned to operate well for a range of
ow counts.For example, Figure 5.11 shows a router that works well for between 10 and40
ows, providing 6 and 4 bu�ers per
ow respectively. Outside that range iteither bu�ers more packets than necessary or imposes an uncomfortably highloss rate.Figure 5.13 implies that maxth can be used to tune a RED router for atarget number of
ows. For the 100
ows simulated, a maxth of 1000 yieldsabout four packets of bu�ering per
ow.On the other hand, maxp has a narrow useful range. In the example situ-ation, values below about 1% cause the queue to stay close to maxth, riskingepisodes of 100% loss. Values above about 2% cause TCP to spend a substantialamount of time in timeout.These considerations suggest the following procedure for selecting RED pa-rameters. First, measure the typical number n of simultaneously active TCP
ows. Second, choose a maximum desirable loss rate l; this should probably beless than 3% to allow TCP a window of four packets. Third, choose a maxthsomewhat larger than the number of packets that n TCPs will keep in
ightwith a loss rate of l: maxth = 3=2 � n � pif(l; r)At this point the choice of maxp is limited to a value which will keep the queuesomewhat less than full: maxp = 34 lFew users of routers have free choice of maxth, since router bu�er memoryis often physically limited. In such cases the best one can do is pick a maxp

CHAPTER 5. TCP'S RESPONSE TO LOAD 40which will cause the queue to be somewhat less than full, given the known nand maxth. We can get a reasonable guess at this by equating Equation 5.13to 34maxth and solving for maxp:maxp = 0:81n2maxth25.3.5 RED Scaling DiscussionRED's main strength is that, given a known load, it can be tuned for highutilization and low queuing delay. It could still be improved:� A given set of RED parameters work well only across a limited range ofnumbers of
ows. This means that network administrators must manuallytune RED parameters to get good performance.� RED tempts network administrators to optimize for high utilization alone.For example, increasing maxp in response to higher load should increaseutilization by decreasing TCP window synchronization. While some rec-ommend this approach [17, 13], Figure 5.15 shows that its cost is is a highlevel of TCP timeouts.One could imagine a manufacturer equipping a RED router with a largemaxth in an e�ort to make the router's performance scale gracefully with largenumbers of
ows. For example, a 10 megabit router port should be able to han-dle 300 33-kilobit modem
ows without any queuing at all. Since the Internethas been remarkably unforgiving about under-estimates of its growth rate, ourmanufacturer might want to ensure good behavior with up to an order of mag-nitude more than 300
ows. Support for 3000
ows implies a maxth of 15000packets. The same 10-megabit port might also be used on a LAN with only afew
ows. Equation 5.13 implies that with 20
ows, for example, the router'squeue length would be about 500 packets. This is a quarter second of queuingdelay, intolerably high for many interactive LAN users.Note that the above example is not in the apparent spirit of RED parametertuning [17]. In practice RED implementations seem to tend to the oppositeextreme: small maxth, low queuing delay, and (presumably) many timeouts,but with a high maxp to keep utilization high. The point is that RED presentsthe network administrator with an uncomfortable choice between queuing delayand TCP timeouts.This suggests a router bu�ering system that automatically adapts to thenumber of
ows, with the simultaneous goals of limiting timeouts, limiting queuelength, and maintaining high utilization. Chapter 6 proposes just such a system.

Chapter 6FPQ: Supporting LargeRouter QueuesThe implication of the existence of large numbers of
ows and TCP's behaviorwith small windows is that routers should have large bu�er memories. A rea-sonable target is �ve packets per
ow for the maximum number of
ows that arouter might ever have to support. Assuming 14 kbit/second modem
ows, thisworks out to one packet of bu�ering per 2800 bits/second of link bandwidth. Thecommon current practice of providing one delay-bandwidth product of bu�eringworks out to one packet per 46080 bits/second of link bandwidth, assuming around-trip propagation delay of 0.1 seconds and a packet size of 576 bytes. Pro-visioning bu�ers based on
ow count would require 16 times as much memoryas current practice. The result should be dramatically decreased loss rate, butthe cost might be excessive queuing delay.If the number of
ows a router would have to handle were �xed and pre-dictable at the factory, routers could be shipped with parameters set to achievea reasonable tradeo� between loss rate and queuing delay. However, a routermanufacturer must expect any particular model of router to be used in situa-tions ranging from connecting LANs with a few dozen
ows to ISP/ISP peeringwith tens of thousands of
ows. A queuing con�guration appropriate for a LANwill impose a high loss rate on an ISP/ISP connection; a good ISP/ISP queuingcon�guration will impose excessive queuing delay in a LAN. An ideal routerwould automatically adapt its queuing con�guration to the load.What should an adaptive queuing scheme look like? Ideally, it would� provide �ve packets of bu�ering per active
ow,� preserve the simplicity of FIFO queuing,� preserve RED's resistance to phase e�ects and TCP window synchroniza-tion, and� require no manual tuning. 41

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 42This problem divides naturally into three parts. First, a mechanism to countactive
ows. Second, a choice of target queue length and drop rate based on the
ow count. Third, a mechanism to enforce the targets on a FIFO queue whileavoiding the global synchronization and phase e�ects mentioned in Section 2.2.1.The rest of this chapter describes a queue management system that �ts theserequirements. For convenience we will call it FPQ, for Flow-Proportional Queu-ing.6.1 Bit-Vector Flow CountingOne way to count TCP connections might be to have the router participatein an explicit connection setup/teardown protocol. This could be a separateprotocol, as in ATM [10] networks, or an additional use of TCP's existing setup(SYN) and teardown (FIN) protocol. One reason this would not work well isthat a
ow's path through the network may change: the path taken by the setuppackets may not the same as that taken by the data packets. Another problemis that many connections are idle some of the time, and only active connectionsare of interest here.A better counting scheme would observe all packets rather than just setupand teardown packets, count a connection active if it had sent packets recently,and not count it if idle. The router must remember if it has already counteda
ow as active, so that if more packets arrive on that
ow, the router doesn'tcount the
ow again. How much state does this require? One option is toremember the identity of each currently active
ow, perhaps using IP addressesand port numbers. The router could hash the identity of each packet to indexinto a table of the identities of
ows already included in the count.Even the above mechanism is more complex than required. The countingmechanism does not need to be precise, and does not need to support anyoperation other than deciding if a
ow has already been counted. For example,it does not need to be able to recover the actual identities of counted
ows.Thus it should be su�cient to store just one bit of state per
ow.A router can count
ows with just one bit of state per
ow as follows. Createa vector of vmax bits called v. The index for v is the hash of a packet identi�er.Maintain the count of bits set in v in a variable c. When a packet arrives andthe bit in v for its identi�er isn't set, set it and increment c. Clear bits out ofthe table incrementally, so that every bit is cleared, and c decremented if thebit was set, after the passage of tclear seconds.This scheme under-counts due to hash collisions. If packets from f distinct
ows have caused bits in v to be set, and the hash function is uniform, theprobability of a bit in v being zero is�vmax � 1vmax �f

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 43Thus the expected count c of one bits in v isc = vmax 1� �vmax � 1vmax �f!Solving for f yields a formula that converts a count of one bits into an expectednumber of
ows: f = ln�1� cvmax�ln�vmax�1vmax � (6.1)The router can apply Equation 6.1 to the count of bits at the expense of someCPU time or clever approximating. It turns out that f and c are within 10% ofeach other as long as vmax is at least �ve times as large as f , so the computationcould be eliminated at some expense in memory.Figure 6.1 contains pseudo-code for this
ow counting algorithm. The inputis a stream of data packets, and the output is an estimate f of the currentnumber of active
ows.The algorithm has only two tunable parameters. vmax should be set to themaximum number of
ows expected at the router. The only penalty to settingit too high is the expense of incrementally clearing it. Setting vmax too lowgradually reduces the accuracy of f .tclear controls how fast the algorithm forgets about old
ows. It should behigher than the maximum round trip time in the network including queuingdelay. Setting tclear too low will cause the algorithm to be unstable. Settingtclear too high will increase the number of idle or terminated connections countedin f , which will allow too much bu�er space to be used in the router.The hash function h(p) should be uniform to ensure that Equation 6.1 fullycorrects for hash collisions.6.2 Choosing the Target Queue LengthOnce equipped with the current count of
ows, f , a FPQ router must choose atarget queue length q, drop rate l, and per-
ow congestion window size w. Thisis really one decision: q is w � f , and w and l are related by Equation 5.2.With only one TCP
ow, a router can only achieve high throughput byallowing the
ow to bu�er an entire delay-bandwidth product of packets. Thiscauses the TCP's window to be two delay-bandwidth products just before therouter drops a packet. Thus after the drop the TCP's window will be just largeenough to use the entire link bandwidth.More generally, the number of bu�ers that a small number f of
ows requiresfor full utilization depends on the delay-bandwidth product r (measured inpackets) as follows: q = r2f � 1 (6.2)

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 44
Initialization:v(0::vmax � 1) 0c 0f 0tlast current timeas each packet p arrivesh h(p)if v(h) = 0v(h) 1c c+ 1t current timenclear vmax t�tlasttclearif nclear > 0tlast tfor i 0 to nclear � 1r random(0::vmax � 1)if v(r) = 1v(r) = 0c c� 1f Equation 6.1Variables:v(i) Vector of vmax bits. v(i) indicates if a packet from a
ow with hash ihas arrived in the last tclear seconds.c Count of one bits in v.f Current estimated
ow count.tlast Time at which bits in v were last cleared.r Randomly selected index of a bit to clear in v.Constants:vmax Size of v in bits; should be larger than the number of expected
ows.tclear Interval in seconds over which to clear all of v.h(p) Hashes a packet's
ow identifying �elds to a value between 0 and vmax.Figure 6.1: Flow-counting pseudo-code.

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 45q = max� r2f � 1 ; 5f�l = min0@ 0:87q+rf + 1!2; 0:0161AFigure 6.2: FPQ target queue length and loss rate as a function of number f of
ows and round trip time r in packets.The crucial observation for this is that RED spreads out the window decreasesover time, so that only one TCP cuts its window at a time. For full utilization,we want the bu�er space to equal the amount that one TCP will cut its window.The average window size is r+qf , so each TCP cuts its window by r+q2f packetsat a time. Thus we want q = r + q2fSolving for q yields Equation 6.2. The corresponding loss rate l can be derivedfrom Equation 5.2: l = 0:87q+rf + 1!2With more than a few
ows the main considerations in choosing w, q, andl are minimizing queuing delay and preventing TCP from falling into timeout.The target average window size should be somewhat larger than four so thatTCP's fast retransmit works. We use 5, a choice justi�ed in Section 7.1. Fig-ure 5.1 indicates that a loss rate of about 1.6% will produce an average windowof 5. The router's target queue size should be 5f and its target loss rate shouldbe 1.6%.A loss rate of 1.6% is neither wonderfully low nor disastrously high. Fig-ure 5.2 indicates that well under one percent of packets will incur timeouts witha loss rate of 1.6%, so the typical web transfer will complete without interrup-tion.Figure 6.2 summarizes the target q and l for both cases. Figure 6.3 showsthe target queue length as a function of f for a network with a delay bandwidthproduct of 217 packets.6.3 Achieving the Target Queue LengthOnce the
ow counting mechanism determines a target queue length q and droprate l, the router must enforce them. As described above, q = w � f , where f isthe current
ow count and w is the desired per-TCP window size.One possibility is a dropping scheme with a direct queue limit, such as drop-tail or random drop. Even without dropping or window size changes, however,

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 46

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50

F
P

Q
 T

ar
ge

t Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Number of TCP ConnectionsFigure 6.3: FPQ target queue length as a function of number of active
ows.RTT of 217 packets.queue lengths in a TCP network tend to oscillate. A �xed queue limit wouldclip the peaks from queue length cycles. These drops themselves contribute tooscillation by forcing the a�ected TCPs to reduce their windows. Further, theyforce the actual average queue length to be shorter than the maximum by anamount di�cult to predict. Thus a simple maximum queue length does notwork well to achieve a target average queue length.A better scheme would use average queue length to decide when to drop.However, it turns out that the idea of a maximum queue length is not appro-priate, even with averaging. The desired e�ect is that all the active TCPs use aparticular average congestion window size. The best way to do that is to imposea steady loss rate, as in Equation 5.1. Dropping only when the queue exceedssome limit will cause the loss rate to oscillate. With some cleverness the droprate could be made to vary around the desired average, but the maximum queuelength mechanism seems to have no advantage to o�set its complex behavior.The ideal scheme would drop packets based on average queue length qavgas follows. Recall that the previous section described how to choose a targetqueue length q and loss rate l based on a target window size w and countednumber of
ows f . When qavg equals q, impose the loss rate l. This shouldcause each TCP to use an average window of w. Vary the loss rate around l inproportion to the di�erence between qavg and q. The combination of averagingand a predictive model for drop rate should keep the queue length steady at thedesired target.This dropping mechanism �ts into a RED framework: set RED's maxp tol=2, maxth to q, and minth to a small value such as �ve. In this context RED's

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 47maxp = 2l2 = l, maxth = 2q, minth = 5Figure 6.4: RED parameters as set by FPQ, based on f from Figure 6.1 and land q from Figure 6.2.policy of dropping 100% of packets when qavg exceeds maxth isn't desirable.Two other issues might also cause trouble. First, the relationship between lossrate and window size isn't linear, so RED's linear queue length to drop ratefunction isn't quite what FPQ needs. Second, RED averages the queue lengthover some number of packets. This number probably needs to be longer thanany possible queue length in order to provide enough damping, so it may needto be orders of magnitude larger than in existing RED con�gurations.Proportionally higher values of maxth and maxp allow FPQ to use REDwithout interference from RED's 100% drop policy. Figure 6.4 shows the REDsettings used by FPQ in the rest of this work.6.4 ValidationThis section presents simulation results validating FPQ's ability to maintainthe desired queue size and drop rate under a range of loads. The simulationcon�guration is a 10 megabit bottleneck link. The network has a 100ms roundtrip propagation delay. The FPQ algorithm is as described in Figures 6.1, 6.2,and 6.4, with parameters vmax = 5000 and tclear = 4 seconds. The goal is tosupport up to 1400
ows: a 10 megabit link has enough bandwidth to support700 14.4 kilobit modem
ows, and the extra factor of two is to handle inevitableoverload.6.4.1 Queue LengthFigure 6.5 shows how the router's queue length varies with the number of
ows.Figure 6.6 displays packets bu�ered per
ow, derived by dividing the queuelength by the number of
ows. FPQ comes quite close to achieving its targetof �ve packets per
ow across a wide range of numbers of
ows. The queuelength is slightly lower than FPQ's target because of packets stored in
ight inthe network links. A per-
ow packet count that includes packets in
ight, as inthe left graph in Figure 6.6, comes closer to the target.6.4.2 Drop RateHand-in-hand with FPQ's low queuing delay is the loss rate it must impose tokeep the queue short. The main problem with packet loss at the levels involvedhere is timeouts. Figure 6.7 shows that FPQ imposes well under one timeoutper hundred packets.

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 48
0

1000

2000

3000

4000

5000

6000

7000

0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Number of TCP Connections

FPQ
Target

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Number of TCP Connections

FPQ
Target

Figure 6.5: Average queue length (with detail) as a function of number of
ows.RTT of 217 packets.
0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

P
ac

ke
ts

 P
er

 F
lo

w

Number of TCP Connections

FPQ

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

P
ac

ke
ts

 P
er

 F
lo

w

Number of TCP Connections

FPQ

Figure 6.6: Average packets stored per
ow as a function of the number of
ows.The left graph includes both router bu�ering and the 217 packets stored on thelinks. The right graph includes only router bu�ering. RTT of 217 packets.
0

0.005

0.01

0.015

0.02

0.025

0.03

0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 D
ro

p
R

at
e

Number of TCP Connections

FPQ

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0 200 400 600 800 1000 1200 1400

T
im

eo
ut

s
P

er
 P

ac
ke

t

Number of TCP Connections

FPQ

Figure 6.7: Drop rate and timeouts per packet as functions of the number of
ows.

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 49

0

100

200

300

400

500

600

700

80 85 90 95 100

Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Time (Seconds)Figure 6.8: Queue length over time from a simulation with 300
ows and tclear =0:05 seconds.6.5 Sensitivity to tclearA potential problem with FPQ is that tclear, the
ow counting interval, mightbe set too low. A low tclear might cause FPQ to undercount
ows in time-out and
ows with low send rates. This section describes the consequences ofmiscon�guration and explores the range of tclear values.Figure 6.8 shows a primary symptom of excessively low values of tclear : queuelength oscillation. The graph plots queue length over time in a simulation with300
ows and tclear equal to 0.05 seconds. Packets from at most about 100
owscan arrive at the router in 0.05 seconds, so FPQ will never count more than 100
ows or allow more than about 500 packets of bu�ering. This is far short of the1500 packets required by 300
ows. In this con�guration, FPQ acts like a REDrouter with maxth set too low or maxp too high. That is, FPQ drops burstsof packets, causing the TCPs to synchronize their windows and create queuelength oscillations. The oscillations seen in Figure 6.8 disappear once tclear isgreater than about 0.2 seconds.Even if tclear is large enough to avoid oscillation, it might be so small as tocause FPQ to substantially under-count
ows, provide too few bu�ers, and thusforce TCPs into timeout. Figure 6.9 presents the e�ect of tclear on the accuracyof FPQ's
ow counts. Each point is the number of
ows counted by FPQ,averaged over the life of a simulation with 300
ows. Values of tclear much belowthe round trip time (on the order of half a second) or the minimum retransmittimeout (one second) work badly: they cause FPQ to count substantially fewerthan 300
ows. Figure 6.10 shows the packet discard rate and the per-packet

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 50

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7

A
ve

ra
ge

 F
lo

w
s

C
ou

nt
ed

Clearing Interval (Seconds)Figure 6.9: E�ect of varying tclear on FPQ's ability to count
ows. The correctanswer is 300
ows.timeout probability from the same simulations. Increasing tclear much beyonda few seconds has little e�ect.It might be the case that the patterns of tra�c in a real network could causeFPQ to over-count short
ows or under-count low bandwidth
ows. Flows thatlast much less than tclear are a problem because FPQ will allocate bu�er spacefor them for a whole tclear interval, increasing queuing delay needlessly. Such
ows are not the common case on WANs: most TCP
ows, even most Web
ows, last more than 10 seconds [50]. Low bandwidth
ows that send less thanone packet per tclear interval are less of a problem. FPQ will under-count them,but they don't need as much bu�er space as a greedy
ow. In any event, Cla�yet al. [9] show that changing the counting interval has a relatively small e�ecton the
ow count in real Internet tra�c.Another troublesome possibility is a sustained rapid increase in the numberof
ows. This should not cause errors in the FPQ
ow count, since FPQ countsnew
ows as soon as they send their �rst packet. But it might break implicitassumptions about the fraction of counted
ows that are genuinely active. Thiskind of problem is probably best addressed by raising number of packets thatFPQ allocates per
ow; see Section 7.1 for more discussion.The most important aspect of tclear is that its value isn't critical as longas it is more than a few seconds. Perhaps it will need to be tuned for bestperformance, but it can also safely be left at some default value.

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 51
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 1 2 3 4 5 6 7

D
ro

p
R

at
e

Clearing Interval (Seconds)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 1 2 3 4 5 6 7

T
im

eo
ut

s
pe

r
P

ac
ke

t

Clearing Interval (Seconds)Figure 6.10: Discard rate and timeouts per packet as functions of FPQ's tclearparameter. From simulations with 300
ows. The target discard rate is 0.016.6.6 FPQ DiscussionThe basic motivation for FPQ is that the best tradeo� between queuing delayand TCP performance depends on the number of active
ows. Counting
owsrequires router state, but FPQ's bit-vector mechanism requires an attractivelylow quantity of per-
ow state: one bit. FPQ uses RED to enforce its targetqueue length and drop rate because of RED's ability to avoid oscillation.FPQ takes an unusual view of loss rate and bu�ering. FPQ isn't forced todrop packets as a reaction to overload or incipient overload. Instead it alwaysdrops packets at a steady rate calculated to make TCP use an appropriatewindow size. FPQ only varies the loss rate to the extent that its model ofTCP's reaction to loss is not correct, or at the margins of extremely high or lowload.Similarly, a FPQ router expects a persistently long queue: just long enoughto let each TCP
ow avoid timeouts, and thus as short and low-delay as isreasonable. Since FPQ causes the queuing delay to vary in proportion to thenumber of
ows, and TCP sends at a rate inversely proportional to the queuingdelay, FPQ e�ectively uses the queuing delay to force each TCP to send at itsfair-share bandwidth. This approach di�ers from dropping policies aimed atkeeping the queue no longer than is required for high utilization.While FPQ caters primarily to networks with very large numbers of
ows,it should also reduce delay on high-speed links with few
ows. Such links areoften provisioned with a delay bandwidth product of bu�ering so that a single
ow can use the entire link. Equation 6.2 shows that this is more bu�ering thanrequired when there is more than one
ow. By combining
ow counting withRED's de-synchronization, FPQ can cut the queuing delay substantially belowone round trip time without decreasing utilization.

Chapter 7Delay AnalysisThe main performance goal of FPQ, along with TCP, is to give users fair ande�cient access to the network. For networks like the Internet that are dominatedby short interactive transfers, a reasonable performance metric is the total delayincurred by a TCP transferring a short �le. The optimum delay is easy tocalculate and compare against, the delay distribution captures fairness, andusers experience delay more directly than metrics such as bandwidth.This chapter compares FPQ's delay performance against that of the dropapproach; that is, it compares the queuing delays caused by FPQ with the time-out delays caused by the drop approach. FPQ's average performance is shownto be the same as that of the drop approach. FPQ, however, produces sub-stantially less variation in delay than the drop approach. In other words, FPQimproves the fairness and predictability of network service. This improvementis the central point of FPQ.As the basis for comparison is the delay incurred by �nite-length trans-fers, we need a model for TCP transfer lengths. Since this chapter comparesFPQ against existing bu�ering practice, rather than against a particular net-work scenario, the model need be no more elaborate than required to e�ectthe comparison. Measurements on the Internet [50] suggest that the averageTCP transfer length is about 20 packets. The fact that transfer lengths aredistributed around this average will turn out to matter; we use an exponentialdistribution to approximate the observation [6] that most transfers are shorterthan average but most bytes come from longer-than-average transfers.Some of this chapter's sections compare FPQ against a traditional routercon�guration: RED bu�ering with one delay-bandwidth product of bu�er mem-ory. This comparison does not re
ect on the RED algorithm, but on typicalchoices for RED parameters. In fact, direct comparison of RED and FPQ maynot be meaningful, since RED's performance depends on parameter settings.Published work on RED has explicitly left proper parameter settings for fu-ture work, and this thesis is part of that future. Such RED guidelines as exist[19, 17, 51] implicitly assume small numbers of
ows, and this thesis is aimedat reconsidering that assumption. Thus the RED results in this chapter should52

CHAPTER 7. DELAY ANALYSIS 53

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Per-Transfer Delay (Seconds)

PPF = 1
PPF = 3
PPF = 5
PPF = 7

Figure 7.1: Cumulative per-transfer delay distribution, 500
ows performing20-packet transfers. Shows e�ect on fairness of di�erent choices of FPQ packetsper
ow. The goal is for every transfer to take 4.6 seconds.not be taken as re
ecting on RED so much as on the way in which it is used. Toemphasize this point, we refer to the RED con�guration used in many of thischapter's simulations as RED217, after the fact that its maxth is 217 packets.7.1 Packets-Per-Flow ParameterFPQ's main tunable parameter is the number of packets per
ow (PPF). A lowvalue will provoke TCP timeouts, causing users unfair variations in delay. Ahigh value will encourage unnecessary queuing delay. Varying PPF allows oneto choose a tradeo� between delay and fairness.We use simulation to �nd the delay involved in transferring a short �le withdi�erent choices of packet bu�ers per
ow. Each TCP connection transfers a �leof 20 576-byte packets, waits for the acknowledgment for the last packet, resetsthe TCP state to that of a new connection, and starts another 20-packet trans-fer. 500 such connections share an otherwise standard simulation environment.Figure 7.1 shows the cumulative distribution of per-transfer delays for variousdi�erent choices of FPQ packets per
ow.The optimum result would be for each transfer to take 4.6 seconds, theamount of time required to send 20 576-byte packets at one 500th of the 10megabit link bandwidth. The transfers actually segregate into two types: trans-fers with no timeouts, and transfers with one or more timeouts. The transferswith no timeouts have lower than expected delay because they use the band-

CHAPTER 7. DELAY ANALYSIS 54PPF Loss Rate Avg Queue Median Delay Avg Delay Std Dev Delay1 7.3% 270 3.5 4.6 3.53 2.4% 890 3.7 4.6 1.95 0.9% 1120 4.2 4.6 1.37 0.4% 1210 4.5 4.6 0.9Figure 7.2: E�ects of varying FPQ packets per
ow. 500
ows and 20-packettransfers. Delays are in seconds.width left idle by the transfers in timeout. For example, Figure 7.1 shows thatwith 3 packets per
ow, about 65% of transfers complete without a timeout.Increasing the number of packets per
ow increases the proportion of transfersthat complete without timeouts, and thus makes the system fairer.Figure 7.2 shows statistics from the same simulations as Figure 7.1. Chang-ing PPF does not a�ect average transfer delay, since this is a function onlyof link bandwidth and transfer size. Increased PPF increases the median de-lay because a higher fraction of the transfers actively compete for bandwidthrather than pause in time-out. This increase cannot be considered a defectbecause it re
ects a fairer allocation of an unchanged average. On the otherhand, increased PPF decreases the variation in transfer delay by decreasing theincidence of timeouts. This decrease is the main point of FPQ.In the preceding discussion, the increase in queuing delay caused by increasedPPF has no e�ect on average transfer delay because it merely shifts queuedpackets from the end systems to the router. This apparent lack of negativee�ects from increasing PPF is misleading. When transfers have di�erent lengths,increased queuing delay hurts shorter transfers and helps longer transfers. Wecan see this e�ect by simulating transfers with exponentially distributed lengthsaveraging 20 packets, rather than lengths of exactly 20. Figure 7.3 shows theaverage and standard deviation of transfer delay for transfers of fewer than 20packets separately from those of 20 or more packets. Each point's Y value isa delay statistic (in seconds) from a simulation with PPF indicated by the Xvalue. Transfers that are too short to keep PPF packets in
ight have delaysdominated by queuing time, and so experience higher delay when PPF increases.Longer transfers are more sensitive to timeouts, and so experience lower delaywhen PPF increases. Both kinds experience less variation with increased PPF.The reason why a PPF of about 5 works well is that TCP's fast retrans-mit mechanism depends on keeping at least four packets in
ight. Variants ofTCP that can recover with smaller windows [33] would require correspondinglysmaller PPFs.PPF may have to be adjusted based on experience of what fraction of
owshave packets in
ight at any given time. The value 5 suggested above is con-servative: it assumes that all
ows are greedy and need bu�ering. If signi�cantnumbers of
ows are low bandwidth or very short, a lower PPF could safely beused. On the other hand, PPF must include some headroom for unexpected

CHAPTER 7. DELAY ANALYSIS 55
0

2

4

6

8

10

0 2 4 6 8 10

A
ve

ra
ge

 D
el

ay
 (

S
ec

on
ds

)

Packets Per Flow

Short
Long

0

2

4

6

8

10

0 2 4 6 8 10

S
td

. D
ev

. o
f D

el
ay

 (
S

ec
on

ds
)

Packets Per Flow

Short
Long

Figure 7.3: Per-transfer delay average and standard deviation for short andlong transfers. 500
ows performing transfers with exponential distributionaveraging 20 packets. Increased PPF improves average delay for long
ows buthurts average delay for short
ows.increases in average
ow bandwidth or length.7.2 Average Delay ComparisonBefore comparing the fairness of FPQ and the drop approach, we need to makesure FPQ provides the same average performance as the drop approach. FPQcould only fail in this by reducing the total useful throughput in the network,thus making the average transfer experience higher total delay. This is mostlylikely to happen because of a high loss rate. It might also happen in conjunctionwith a number of
ows small enough that their window sizes don't sum to thenetwork's delay-bandwidth product. Similarly it might happen with transfersshort enough to limit the per-
ow window size.To explore these possibilities we simulate a network with transfers that av-erage 20 packets, with exponential distribution. The average transfer takes sixwindows (assuming delayed ACK) and has an average window size of about 3packets. With 576-byte packets and a 100ms round trip propagation delay, theaverage
ow sends no faster than 140000 bits per second. Thus it takes at least70
ows to saturate a 10 megabit link. Figure 7.4 shows the total throughputused in this con�guration as the number of
ows increases. Neither FPQ andRED217 prevent the TCP
ows from using all the bandwidth they can. Inparticular, FPQ provides the same average throughput as RED217.Average per-transfer delay is a function only of average transfer size, totaluseful throughput, and number of
ows. Since FPQ and RED217 provide thesame useful throughput, we should expect them to provide the same averageper-transfer delay. They do: Figure 7.5 presents the average per-transfer delayas a function of number of
ows for the same simulation con�guration as theprevious paragraph. FPQ and RED217 do not di�er in this respect.The mechanisms by which FPQ and RED217 produce delays are not the

CHAPTER 7. DELAY ANALYSIS 56

0

2e+06

4e+06

6e+06

8e+06

1e+07

0 50 100 150 200 250

T
ot

al
 U

se
fu

l T
hr

ou
gh

pu
t (

bi
ts

/s
ec

on
d)

Number of TCP Connections

RED217
FPQ

Figure 7.4: Useful throughput as a function of number of
ows. Transfer lengthsexponentially distributed with an average of 20 576-byte packets. RTT is 100ms.

0

5

10

15

20

0 200 400 600 800 1000

A
ve

ra
ge

 D
el

ay
 (

S
ec

on
ds

)

Number of TCP Connections

RED217
FPQ

Figure 7.5: Average per-transfer delay as a function of number of
ows.

CHAPTER 7. DELAY ANALYSIS 57
0

500

1000

1500

2000

2500

0 200 400 600 800 1000

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Number of TCP Connections

RED217
FPQ

0

0.02

0.04

0.06

0.08

0.1

0.12

0 200 400 600 800 1000

P
ac

ke
t D

ro
p

R
at

e

Number of TCP Connections

RED217
FPQ

Figure 7.6: Average queue length and drop rate as functions of number of
ows.same. Figure 7.6 compares queue length and drop rate for FPQ and RED217.Clearly FPQ produces delay with queuing, while RED217 produces delay byloss-induced timeouts. For example, with 600
ows FPQ maintains a queuingdelay of about 0.74 seconds, for a total round trip time of 0.84 seconds. Theaverage 20-packet
ow takes six windows, for a total per-transfer delay of slightlyover 5 seconds, just as simulated in Figure 7.5.In the RED217 simulation with 600
ows, the average 20-packet
ow canexpect just under two packet losses. Since the average window size with suchshort transfers is quite small, each packet loss is likely to incur a timeout. Eachtimeout turns out to last about 2 seconds, rather than the 1.5 seconds typical oflong transfers, since the initial timeout is 3 seconds. Thus the typical transfercan expect to spend about 4 seconds in timeout. Because the timeouts reducethe window size to one and take the connection out of slow start, each transferis likely to use an average window size of roughly two packets. With a roundtrip time totaling 0.2 seconds (0.1 of propagation delay, 0.1 of queuing), it takesabout 2 seconds of RTTs to transfer 20 packets. The total is 6 seconds, againclose to the actual simulated value in Figure 7.5.In general, then, FPQ and RED217 produce similar average per-transferdelays, one with queuing delay, the other with timeouts. However, becausethey produce this delay with di�erent mechanisms, the distribution of delaysproduced by the two systems is not the same.7.3 Delay Fairness Among Transfer SizesAs Section 7.1 explains, the long queues favored by FPQ tend to increase delaysfor short transfers and decrease them for long transfers. Figure 7.7 comparesFPQ and RED217 delays for short and long transfers as the number of
owsincreases. The simulation scenario is the same as in the previous section. FPQreacts to increased number of
ows by increasing the queue length, which hurtsshorter transfers. RED217 reacts by increasing the loss rate, which primarily

CHAPTER 7. DELAY ANALYSIS 58
0

5

10

15

20

0 200 400 600 800 1000

A
ve

ra
ge

 D
el

ay
 (

S
ec

on
ds

)

Number of TCP Connections

RED217 (short)
FPQ (short)

0

5

10

15

20

0 200 400 600 800 1000

A
ve

ra
ge

 D
el

ay
 (

S
ec

on
ds

)

Number of TCP Connections

RED217 (long)
FPQ (long)

Figure 7.7: Average per-transfer delay as a function of number of
ows. Transferlengths exponentially distributed with average of 20 packets. Left graph showsjust transfers of fewer than 20 packets, right graph shows just transfers with 20or more packets.hurts transfers long enough to have window sizes limited by loss.Figure 7.8 shows the relationship between transfer size and transfer delayfor a single simulation with 661 connections. Again, FPQ has a bias in favor oflonger connections when compared to RED217.This bias against short transfers arises from TCP itself; FPQ increases it butdoes not create it. Short transfers limit the window size. Small windows preventfull utilization with long RTTs and prevent TCP's fast retransmit mechanismfrom working.7.4 Delay Fairness in GeneralThis section attempts to characterize the improved fairness that FPQ providesin comparison to the drop approach. A fair system should cause identical users'network transfers to complete in the same amount of time. The extent towhich identical users experience varied completion times is a basic measure ofunfairness. Within this basic framework we present a number of comparisonsof FPQ with RED217.7.4.1 Cumulative Delay DistributionFigure 7.9 presents the cumulative distribution of per-transfer delays. The sim-ulated network con�guration involved 661 connections, each making repeatedtransfers of exponentially distributed length and average size of 20 576-bytepackets. Each graph includes only the transfers of a particular size, to make thedelays comparable. The vertical line on each graph marked Perfect representsamount of time it should take to send a transfer in a perfectly fair system: thetransfer size divided by 1=661 of 10000000 bits per second.

CHAPTER 7. DELAY ANALYSIS 59

0

5

10

15

20

0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 D
el

ay
 (

S
ec

on
ds

)

Transfer Size (Packets)

RED217
FPQ

Figure 7.8: Average delay for transfers of each size. From a single simulationwith 661
ows, transfer sizes exponentially distributed with an average of 20packets.Examine the graph for 20-packet transfers. With FPQ, about 80% of trans-fers take almost exactly the fair 5.4 seconds. These transfers are all delayedthe same amount since they encounter the same queuing delay (averaging 1580packets). The other 20% of transfers encounter one or more timeouts. Thismakes sense since the loss rate is about 1%, so the probability of a 20-packettransfer encountering one or more losses is (1� 0:9920) = 0:18.The 20-packet RED217 transfers in Figure 7.9, however, mostly have eithersigni�cantly above- or below-fair delays. The large majority of transfers su�erone or more timeout delays, since the loss rate is 9%. We expect (1� 0:9120) =15% of transfers to su�er no loss, and indeed somewhat more than this fractioncomplete in 2 seconds. This is roughly the minimum time in which TCP cansend 20 packets with a round trip time of 0.2 seconds.The 10- and 40-packet graphs have similar explanations. RED217's delayvariation is lower with shorter than with longer transfers, because shorter trans-fers have a smaller probability of encountering a timeout. FPQ provides lowvariation even for the longer transfers. Note that FPQ's median delay is higherthan perfect for short transfers and lower than perfect for long transfers, andthat RED217 demonstrates an opposite tendency; this is the e�ect mentionedin Section 7.3.FPQ, then, provides less delay variation than RED217. Much of the rea-son for this is that FPQ has an explicit mechanism (the queuing delay) thatmakes most transfers experience equal delays. RED217's reliance on dropping,however, tends to produce both transfers with no timeouts (and low delay)

CHAPTER 7. DELAY ANALYSIS 60

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Per-Transfer Delay (Seconds) for 10-packet Transfers

RED217
FPQ

Perfect

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Per-Transfer Delay (Seconds) for 20-packet Transfers

RED217
FPQ

Perfect

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Per-Transfer Delay (Seconds) for 40-packet Transfers

RED217
FPQ

Perfect

Figure 7.9: Cumulative per-transfer delay distributions from a simulation with661
ows. Each
ow performs repeated transfers with exponentially distributedlength and average 20 packets. Each graph includes the transfers of just onesize: 10, 20, or 40 packets. The FPQ delays are clustered more tightly thanthose of RED217.

CHAPTER 7. DELAY ANALYSIS 61
0

5

10

15

20

0 200 400 600 800 1000

5t
h

P
er

ce
nt

ile
 D

el
ay

 (
S

ec
on

ds
)

Number of TCP Connections

RED217
FPQ

0

5

10

15

20

0 200 400 600 800 1000

95
th

 P
er

ce
nt

ile
 D

el
ay

 (
S

ec
on

ds
)

Number of TCP Connections

RED217
FPQ

Figure 7.10: 5th and 95th percentiles of per-transfer delay as functions of thenumber of
ows. Just for transfers of 20 packets.and transfers with multiple timeouts (and high delay), with no particular biastowards the fair delay value.7.4.2 Percentile RatiosThe previous section discussed fairness at just one level of load. In order toassess fairness across a range of loads we need a single fairness metric subjectto comparison. We use the ratio of the 95th percentile of delay to the 5thpercentile. This re
ects the extent to which unlucky transfers get a worse dealthan lucky ones. As above, we compare only transfers of the same length.Figure 7.10 shows the 5th and 95th percentiles of delay as a function ofnumber of competing
ows. The left-most extremes of both graphs are
atbecause there are too few
ows to use the entire link bandwidth, and thusneither queuing nor packet loss. The 5th percentile graph for RED217 slopesup very gradually because only transfers that experienced no timeout are luckyenough to be included. The delay for these transfers depends only on the �xed0.2 second RTT, not on total number of
ows. The 5th percentile graph forFPQ increases with number of
ows because all transfers experience the sameincreasing queuing delay. RED217's and FPQ's 95th percentile delays bothincrease with the number of
ows because in both cases the
ows involvedare those subject to timeouts. RED217's 95th percentile delay is higher thanFPQ's because RED217 produces more timeouts. These graphs suggest thatthe behavior evident in Figure 7.9 occurs across a wide range of loads.Dividing the two percentile graphs yields Figure 7.11. The combination ofslightly higher 95th percentile delays and unfairly low 5th percentile delays givesRED217 a higher ratio for most loads. Worse, the di�erence between RED217'sand FPQ's ratio increases as the load increases. This re
ects RED217's tendencyto let a �xed number of
ows enjoy most of the bandwidth while the rest timeout.Figure 7.12 shows ratios for 10 and 40 packet
ows. As expected, RED217

CHAPTER 7. DELAY ANALYSIS 62

0

2

4

6

8

10

0 200 400 600 800 1000

R
at

io
 o

f 9
5t

h
to

 5
th

 P
er

ce
nt

ile
 D

el
ay

Number of TCP Connections

RED217
FPQ

(20-packet xfers only)

Figure 7.11: Ratio of 95th to 5th percentile of delay as a function of the numberof
ows. Just for transfers of 20 packets.has a lower ratio for short
ows than for long
ows. FPQ's ratio is substantiallylower in both cases.

CHAPTER 7. DELAY ANALYSIS 63

0

2

4

6

8

10

0 200 400 600 800 1000

R
at

io
 o

f 9
5t

h
to

 5
th

 P
er

ce
nt

ile
 D

el
ay

Number of TCP Connections

RED217
FPQ

(10-packet xfers only)

0

2

4

6

8

10

0 200 400 600 800 1000

R
at

io
 o

f 9
5t

h
to

 5
th

 P
er

ce
nt

ile
 D

el
ay

Number of TCP Connections

RED217
FPQ

(40-packet xfers only)

Figure 7.12: Ratio of 95th to 5th percentile of delay as a function of the numberof
ows. For transfers of just 10 and 40 packets.

Chapter 8ConclusionsThe central contribution of this thesis is the observation that congestion loss inbusy TCP networks depends primarily on the number of active
ows and thetotal storage in the network. Though the details vary, the general relationshipis l / n2b2 (8.1)where l is loss rate, n is the number of active
ows, and b is the total storage.Total storage includes both router bu�er memory and packets in
ight on longlinks.Holding b constant in Equation 8.1 approximates the behavior of existingIP routers, which have �xed-sized bu�er memories. Chapter 5 analyzes sometypical router con�gurations from this point of view, and derives guidelines foradjusting router bu�ering parameters. A constant b causes routers to signalcongestion to senders by varying the loss rate. This approach has the desirablee�ect of capping the queuing delay at a low value. However, it produces highloss rates as the number of
ows increases, causing long and unfair timeoutdelays.Chapter 6 proposes a more scalable \Flow Proportional Queuing" (FPQ) sys-tem for TCP congestion control. FPQ provides congestion feedback by varyingthe queue length in proportion to the number of
ows. In terms of Equation 8.1,FPQ varies b in proportion to n, keeping the loss rate l roughly constant. Thenetwork administrator can arrange for l to maintain a low value despite varyingload. Since every user sees low loss and similar queuing delay, this approachshould be fairer and more predictable than loss feedback under heavy load.An FPQ router may cost more than a conventional router. First, FPQassumes large amounts of bu�er memory: a few packets for each of the maximumexpected number of
ows. Second, FPQ requires that a router count the numberof
ows. This thesis presents a simple
ow-counting algorithm that takes a fewinstructions per packet and uses just one bit of state per
ow. Other than thesetwo costs, an FPQ router could be built with the same architecture that currentrouters use. 64

CHAPTER 8. CONCLUSIONS 65FPQ's intentional use of queuing delay may seem to invite higher user-visiblelatency, but in fact does not. Simulation of web-like tra�c in Chapter 7 showsthat FPQ provides the same average transfer latency as loss feedback; FPQ'squeuing delay and loss feedback's timeouts have the same average e�ect. FPQhas an advantage in the delay distribution, however; FPQ distributes delays andbandwidth more fairly than loss feedback, and this advantage increases with thenumber of competing
ows.FPQ enjoys these advantages over conventional drop-tail and RED queuing:� FPQ scales automatically with the number of
ows, without the manualparameter tuning required by drop-tail and RED routers.� FPQ allows routers to include very large bu�er memories without riskingunnecessarily high delay.� FPQ eliminates most of the timeouts and unfairness caused by drop-tailand RED with large numbers of
ows.For these reasons the performance of TCP networks such as the Internet shouldbene�t from the deployment of FPQ routers.

Bibliography[1] Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice Hall,Englewood Cli�s, New Jersey, 1987.[2] Trevor Blackwell. Applications of Randomness in System PerformanceMeasurement. PhD thesis, Harvard University, 1998.[3] Jean-Chrysostome Bolot. Characterizing end-to-end packet delay and lossin the internet. In Proceedings of ACM SIGCOMM, 1993.[4] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ra-makrishnan, S. Shenker, J. Wroclawski, and L. Zhang. Rfc2309: Recom-mendations on queue management and congestion avoidance in the inter-net. Technical report, Internet Assigned Numbers Authority, Jon Pos-tel, USC/ISI, 4676 Admiralty Way, Marina del Rey, DA 90292, 1998.http://info.internet.isi.edu/in-notes/rfc/�les/rfc2309.txt.[5] Hans-Werner Braun. What is �x-west?http://oceana.nlanr.net/NA/�xwest.html, 1997.[6] Ramon Caceres, Peter Danzig, Sugih Jamin, and Danny Mitzel. Character-istics of wide-area tcp/ip conversations. In Proceedings of ACM SIGCOMM,1991.[7] Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algo-rithms for congestion avoidance in computer networks. Computer Networksand ISDN Systems, 17:1{14, 1989.[8] Kim Cla�y. Fix-west network traces from the national laboratory for ap-plied network research. ftp://ftp.nlanr.net/Traces/FR+/960926, 1996.[9] Kim Cla�y, Hans-Werner Braun, and George Polyzos. A parameterizablemethodology for internet tra�c
ow pro�ling. IEEE Journal on SelectedAreas in Communications, 13(8), October 1995.[10] ATM Forum Technical Committee. ATM User-Network Interface Speci�-cation. Prentice Hall Software, 1995.66

BIBLIOGRAPHY 67[11] Charles Eldridge. Rate controls in standard transport layer protocols. Com-puter Communications Review, 22(3), July 1992.[12] Ashok Erramilli, Onuttom Narayan, and Walter Willinger. Experimentalqueueing analysis with long-range dependent packet tra�c. IEEE/ACMTransactions on Networking, 4(2):209{223, April 1996.[13] Wuchang Feng, Dilip Kandlur, Debanjan Saha, and Kang Shin. Techniquesfor eliminating packet loss in congested tcp/ip networks. Technical report,University of Michigan, 1997. CSE-TR-349-97.[14] Sally Floyd. Connections with multiple congested gateways in packet-switched networks part 1: One-way tra�c. Computer CommunicationsReview, 21(5), October 1991.[15] Sally Floyd. Tcp and explicit congestion noti�cation. ACM ComputerCommunication Review, 24(5), October 1994.[16] Sally Floyd. Red: Discussions of setting parameters. http://www-nrg.ee.lbl.gov/
oyd/REDparameters.txt, November 1997.[17] Sally Floyd. Red: Discussions of setting parameters, 1997. http://www-nrg.ee.lbl.gov/
oyd/REDparameters.txt.[18] Sally Floyd and Van Jacobson. On tra�c phase e�ects in packet-switchedgateways. Internetworking: Research and Experience, 3(3), September1992.[19] Sally Floyd and Van Jacobson. Random early detection gateways for con-gestion avoidance. IEEE/ACM Transactions on Networking, August 1993.[20] Henry Fowler and Will Leland. Local area network tra�c characteristics,with implications for broadband network congestion management. IEEEJournal on Selected Areas in Communications, 9(7):1139{1145, September1991.[21] Mark Handley. An examination of mbone performance. Technical report,University of Southern California Information Sciences Institute, 1997.ISI/RR-97-450.[22] Eman Hashem. Analysis of random drop for gateway congestion con-trol. Master's thesis, Massachusetts Institute of Technology, 1989.MIT/LCS/TR-465.[23] Adon Hwang. Observations of network tra�c patterns at an end network:Harvard university. Master's thesis, Harvard College, 1998.[24] Van Jacobson. Congestion avoidance and control. In Proceedings of ACMSIGCOMM, 1988.

BIBLIOGRAPHY 68[25] Van Jacobson. Notes on using red for queue management and congestionavoidance. http://www.nanog.org/mtg-9806/ppt/vj-nanog-red.pdf, June1998.[26] Van Jacobson, Craig Leres, and Steve McCanne. tcpdump. anonymous ftpat ftp.ee.lbl.gov.[27] Raj Jain. A timeout-based congestion control scheme for window
ow-controlled networks. IEEE Journal on Selected Areas in Communications,SAC-4(7):1162{1167, October 1986.[28] Phil Karn and Craig Partridge. Improving round-trip time estimates inreliable transport protocols. In Proceedings of ACM SIGCOMM, 1987.[29] H. T. Kung, Trevor Blackwell, and Alan Chapman. Credit-based
ow con-trol for atm networks: Credit update protocol, adaptive credit allocation,and statistical multiplexing. In Proceedings of ACM SIGCOMM, 1994.[30] H. T. Kung and Koling Chang. Receiver-oriented adaptive bu�er allocationin credit-based
ow control for atm networks. In Proceedings of IEEEInfocom, 1995.[31] H. T. Kung and Alan Chapman. The fcvc (
ow controlled virtual channels)proposal for atm networks. In Proceedings of the International Conferenceon Network Protocols, 1993.[32] T. Lakshman, A. Neidhardt, and T. Ott. The drop from front strategy intcp and in tcp over atm. In Proceedings of IEEE Infocom, 1996.[33] Dong Lin and H. T. Kung. Tcp fast recovery strategies: Analysis andimprovements. In Proceedings of IEEE Infocom, 1998.[34] Dong Lin and Robert Morris. Dynamics of random early detection. InProceedings of ACM SIGCOMM, 1997.[35] Allison Mankin. Random drop congestion control. In Proceedings of ACMSIGCOMM, 1990.[36] Steve McCanne and Sally Floyd. Ns (network simulator). http://www-nrg.ee.lbl.gov/ns/, June 1998.[37] Steve McCanne and Van Jacobson. The bsd packet �lter: A new architec-ture for user-level packet capture. In Proceedings of the Winter USENIXConference, 1993.[38] Je�rey Mogul. Dec-pkt-4. http://ita.ee.lbl.gov/, March 1995.[39] Robert Morris and Shieyuan Wang. Harvard network traces.http://www.eecs.harvard.edu/net-traces/, March 1997.

BIBLIOGRAPHY 69[40] John Nagle. Rfc896: Congestion control in ip/tcp internetworks.Technical report, Internet Assigned Numbers Authority, Jon Postel,USC/ISI, 4676 Admiralty Way, Marina del Rey, DA 90292, 1984.http://info.internet.isi.edu/in-notes/rfc/�les/rfc896.txt.[41] John Nagle. Rfc970: On packet switches with in�nite storage.Technical report, Internet Assigned Numbers Authority, Jon Postel,USC/ISI, 4676 Admiralty Way, Marina del Rey, DA 90292, 1985.http://info.internet.isi.edu/in-notes/rfc/�les/rfc970.txt.[42] Peter Newman, Tom Lyon, and Greg Minshall. Flow labelled ip: A con-nectionless approach to atm. In Proceedings of IEEE Infocom, 1996.[43] Vern Paxson. Automated packet trace analysis of tcp implementations. InProceedings of ACM SIGCOMM, 1987.[44] Vern Paxson. End-to-end internet packet dynamics. In Proceedings of ACMSIGCOMM, 1987.[45] Scott Shenker, Lixia Zhang, and David Clark. Some observations on thedynamics of a congestion control algorithm. In Proceedings of ACM SIG-COMM, 1990.[46] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols.Addison-Wesley, 1994.[47] W. Richard Stevens. Rfc2001: Tcp slow start, congestion avoidance,fast retransmit, and fast recovery algorithms. Technical report, Inter-net Assigned Numbers Authority, Jon Postel, USC/ISI, 4676 AdmiraltyWay, Marina del Rey, DA 90292, 1997. http://info.internet.isi.edu/in-notes/rfc/�les/rfc2001.txt.[48] Cisco Systems. Memory options for cisco 4000 series (product bulletin#419). http://www.cisco.com/warp/public/728/4000/419 pb.htm, 1996.[49] Cisco Systems. Cisco 12000 series gigabit switchrouters (gsrs) packet-over-sonet/sdh line card data sheet.http://www.cisco.com/warp/public/733/12000/gsont ds.htm, 1998.[50] Kevin Thompson, Gregory Miller, and Rick Wilder. Wide-area internettra�c patterns and characteristics. IEEE Network, November/December1997.[51] Curtis Villamizar and Cheng Song. High performance tcp in ansnet. Com-puter Communications Review, 24(5), October 1994.[52] Maya Yajnik, Jim Kurose, and Don Towsley. Packet loss correlation in thembone multicast network. In IEEE Global Internet Conference, 1996.

BIBLIOGRAPHY 70[53] Lixia Zhang, Scott Shenker, and David Clark. Observations on the dynam-ics of a congestion control algorithm: The e�ects of two-way tra�c. InProceedings of ACM SIGCOMM, 1991.

