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Goals of Chapter 2

e What are the three basic algorithms iIn
data mining?

e Importance of cleaning data
e Importance of derived attributes
e What is a consistent classifier?
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Chapter 2. Basic Ideas

2.1 Nearest Neighbor Learning
2.2 Cluster-based Learning
2.3 Trees

2.4 Neural Networks

2.5 Derived Attributes

© R. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications Ch2/4




2.1 Nearest Neighbor Learning
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Classification

Petal Len.  Petal Width Sepal Len.  Sepal Width Species

02 14 33 50
24 56 31 67
23 51 31 69
13 45 28 57

A
C
C
B

e Assume data is arranged into rows (records)

and columns (attributes or features)

e Assume each row is classified A,B or C
e Goal: given unclassified record, to classify it.
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k-Nearest Neighbor Learning

To classify o
1. Assume Sepal A
records have Length ° . 1. find nearest

three records

features. o o)
® 2. classift o
2. Assume OCe . 1Ly
via majority
records are
> | vote

either o @ or o

Petal Width

4« Petal Length
e View records as points in feature space

e Find k-nearest neighbors and take majority vote.
e Example of supervised learning.
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(J, k) Nearest Neighbor Learning

e Choose j points from the test set to produce a
model M[1]. Choose another j points to
produce a Model[2], etc.

— This gives an ensemble of models:
{M[1], ..., M[p]}
— Selecting the j points can be done in many
different ways.

e To classify a point,

1. evaluate each of the k-nearest neighbor
models in the ensemble

2. use a majority vote to get an overall class
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Learning -
Map from Data to Models

Petal Len. Petal Width  Sepal Len. Sepal Width  Species
02 14 33 50 A
24 56 31 67 C
23 51 31 69 C
13 45 28 57 B

l Learning Sets (n data points)

<pmml><nearest-neighbor>...
02 14 33 50 A
13 45 28 Y4 B

</nearest-neighbor></pmml>

Models or Rules (j points)
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Does the Model Generalize?

- I — Accuracy

L(g)
:> . Validation Set&

- I = B
Space of Learning
Learning Sets Set D

=
;rob...

measure
O m
]

Test Set Model g

o R9x {0,1}-valued random pair (X,Y)
e L(g) =P (9g(X)=Y), exp. accuracy E(L(g))
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2.2 Cluster-based Learning
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Learning via Clustering

Mortality

oy
e

>

NOx
Education

e Form the k=3 “best” clusters in feature space.

e Example of unsupervised learning
— no prior knowledge needed about classification.
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K-Means Clustering

1. Seti=0. Choose k centroids a[i, 1], ...,
a[i, k] in feature space.

2. Assign each point in the test set to the
nearest centroid (break ties using the
lowest index) to form clusters C[1], ...,
CIK].

3. Compute the new centroid a[i+1, j] for
each cluster CJ[j], j=1, ..., k.

4. Repeat until the centroids converge.
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K-Means Clustering

Mortality

Education

A

& MortalityA I :j :

>

NOXx NOx

Education

Stepi ®E)  Step i+l

e Centroids e converge to the centroids of
the final clusters

© R. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications Ch 2/ 14




Learning via Clustering

e Form the three “best” clusters.

e Example of unsupervised learning

— no prior knowledge is needed about the
classification.

e Use as a basis for subsequent supervised learning.

A © To classify @
1. find nearest
cluster

@ 2. classify ©

> using nearest

cluster
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Example: Polution vs. Mortality
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2.3 Trees

Following L. Breiman, J. Friedman, R. A. Olshen, C. J.
Stone, Classification and Regression Trees, 1984, Chapman
& Hall.
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Classification Trees

Petal Len. Petal Width
02 14
24 56
23 51
13 45

Sepal Len.
33
31
31
28

Sepal Width
50
67
69
57

Species

A

C
C
B

e Want a function Y = g(X), which predicts the
red variable Y using one or more of the blue

variables X[1], ..

. X[4]

e Assume each row is classified A, B, or C
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Simple Classification Tree

Petal Width > 7?

Class 1 Petal Width > 17.5?

Petal Length > 49.5? Class 3

Class 2 Class 3

e Divide feature space into regions
e Use a majority vote to get class A, B, C, etc.
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Trees Partition Feature Space

Petal Length
B C Petal Width > 7
49.5
A C Petal Width > 17.5?
Petal Width
Petal Len > 49.5?
C
7 17.5

e Trees partition the feature space into regions by
asking whether an attribute is less than a threshold.
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Regression Trees

City Education
Akron 11.4
Boston 12.1
Chicago 10.9
Dallas 11.8

NOXx
15
32
63

1

SO2
59
62
278

Mortality
921.87
934.70
1024.89
860.10

e Want a function Y = g(X), which predicts the red
variable Y using one or more of the blue variables

X[1], ..., X[14]
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Regression Trees
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Regression Trees

(). Education <11.45

(X NOx<75 (. 802 < 72
() SO02<38 () 851.2 ) Income<366347?
O ) O O
O
9234  1024.0 978.47 8823  912.1

e Divide training sets into buckets.
e Average the dependent variable in each bucket.
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ART and ACT
(Averaged Reg. & Class. Trees)

e Define a Cover of the Data A cover U of
the data x consists of a collection of sets U
such that each record is in at least one U.

e Build Trees. Build a tree T, as usual for
the data assigned to each set U in U.

e Average Trees. Fix a finite probability
measure o, on U. Given an object x, ART
uses the score:

ZOLU TU(X)9

e This defines an ensemble of trees.
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Basic Ildea: ART

'* 1. Define a cover
U={U,U, U}
of the data x.
2. Construct a tree Ty
on each set U of the

COVCT.

3. Average the trees:
oy =1
o > 0
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O Split using :.

Entropy

objects have attributes information = 0.64

increase in imformation = 0.32 increase in information = 0



Growing the Tree

Step 1. Class proportions.

=== Node u with n objects

blue red

n, of class A (red)
n, of class B (blue), etc.

Step 2. Entropy
[(u)=-2n/nlogn/n

Step 3. Split proportions.
m, sent to child 1-node u,
m, sent to child 2—node u,

Step 4. Choose attribute
to maximize

A=1(u)- 2 m/n I(u)
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Split Using GINI Impurity

% Step 1. Class proportions.

Node u with n objects
n, of class 1 (red)
n, of class 2 (blue), etc.

Step 2. Compute Gini Index
Gini (u) = 1 — X (n, /n)?

Step 3. Split proportions.
m, sent to child 1-node u,
blue red m, sent to child 2—node u,

Step 4. Choose split to min
Gini of Split = 2. m;/n Gini (u;)
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2.4 Neural Networks
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Perceptron

e Inputs x,, x,, ..., X

e Ouput +1 or -1

nJ’

e Perceptron is determined by weights

— Wg, Wy, «ony W,

(definex,=1) o

e Output y = sgn(w « Xx) o O

e Given a learning set L = { (x,y) }

— W< W;+Aw;
—Awi=n(y-y

e/ Perceptron Training Rule

) X;

e Weights are unchanged when y = y, increased
otherwise by factor n x;
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Gradient Descent

e Inputs x,, x,, ..., X
QOUtpUty=Wo X
e Given a learning set L = { (x,y) }, define the

n’

e Training error
E(w) = (1/2) 2 (y - §)?
LWY-Y
e/ Gradient Descent Rule

— W< W;+Aw;
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Multilayer Neural Networks

Inputl
Input2

Input3

Input4

Input5

e Inputs x;from node i to node j, with weight w;

e Output y; = o( %; w;; X;; ), where threshold uses

smooth Ilogistic function co(y) = 1/ (1 + exp(-y))
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Back Propagation Algorithm for NN

1. Node i in the network may be input, hidden
layer, or output; let W; denote the weight from
node i to node |

2. Propagate an input x; forward through the NN

3. Propagate the errors from the output and the
hidden layers backwards through the neural
network; let E denote the total error as before

4. | update the weights
- W< w;t A Wj;
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2.5 Derived Attributes
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Derived Attributes

¢ In practice, statistical models are not
computed f’rom_the raw data attributes, but
rather from derived attributes computed from
the data attributes.

e Derived attributes are often aggregated from
multiple records
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Example: The Shuttle

e Problem: determining whether it is safe to
launch the Space Shuttle

e Data consists thousands of tables, graphs,
spreadsheets and reports
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The Data

e Thousands of reports, charts, & graphs

e Data below

— date, temperature, details of O-ring erosion

8 8/30/83

9 11/28/83
41-B 2/3/84
41-C 4/6/84
41-D 8/30/84
41-G 10/5/84
51-A 11/8/84
51-C  1/24/85
51-D 4/12/85
51-B 4/29/85
51-G 6/17/85
51-F 7/29/85
51-1 8/27/85

73
70
57
63
70
78
67
53
67
75
70
81
76

0.39
0.034
0.046

0.68
0.005
0.023

0.064

0.75
1.8

6
3.4
0.88

13.5

0.011
0.171
0.013

0.04 3
some some
0.028 3

0.01 425 0.038
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e Introduce severity of erosion (SOE) as
derived attribute

e Ignore most of the details concerning the
erosion
e Count number of eroded incidents per
type
— normal or blow by

e Take weighted average to obtain SOE
attribute
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The Results

Damage Index
(SOE)

12
10

+ Damage Index

S N B~ OO ©

0 20 40 60 80 100
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2.6 Consistent Classifiers

Following L. Devroye, L. Gyorfi, and G. Lugosi, A
Probabilistic Theory of Pattern Recognition, Springer-
Verlag, New York, 1996.
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What is a Classifier?

e A classifier is a map

k: Data Space > Pattern Space

where the pattern space is of lower
dimension

e Example: binary classifier (model)

g:RY - {0,1} x>y

o Becguse of uncertainty, consider
R" x {0,1}-valued random pair (X,Y)

e Probability of error
L(g) =P (g(X)~#Y)

© R. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications Ch 2/ 41




What is a Consistent Classifier?

e Supervised learning is a map from iid
sequences

D, =Xq, Y, Xo, Yo, ooty X, Y,
e to a classifier (model)
Y=9g,(X; X, Y, X5, Yo, ooy X, Y1)
e conditional probability of error
L,=L(9,)=P(9,(X;D,)=Y|D,)-

o rule consistentif E(L,) — Lgptimal-

© R. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications Ch 2/ 42




Nearest Neighbor Learning

o To classify @
o 1. find nearest
three objects

2. classity via
majority vote

e Given data Dn = X1, Y1, X2, Y2, cnny Xn, Yn

and a query point X, classify Y by Y ;, where
X, is the nrgarest point to X)., o

e Cover-Hart: IimsupEL,<2L

optimal*
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