Data Mining for Scientific & Engineering Applications

Robert Grossman, Laboratory for Advanced Computing, University of Illinois & Magnify

Chandrika Kamath, Lawrence Livermore National Laboratory

Vipin Kumar, Army High Performance Research Center, University of Minnesota

Chapter 2 – Classification & Regression

Robert Grossman, Laboratory for Advanced Computing, University of Illinois & Magnify

Goals of Chapter 2

- What are the three basic algorithms in data mining?
- Importance of cleaning data
- Importance of derived attributes
- What is a consistent classifier?

- 2.1 Nearest Neighbor Learning
- 2.2 Cluster-based Learning
- 2.3 Trees
- 2.4 Neural Networks
- 2.5 Derived Attributes

2.1 Nearest Neighbor Learning

© R. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications

Classification

Petal Width	Sepal Len.	Sepal Width	Species
14	33	50	А
56	31	67	С
51	31	69	С
45	28	57	В
	Petal Width 14 56 51 45	Petal Width Sepal Len. 14 33 56 31 51 31 45 28	Petal Width Sepal Len. Sepal Width 14 33 50 56 31 67 51 31 69 45 28 57

- Assume data is arranged into rows (records) and columns (attributes or features)
- Assume each row is classified A, B or C
- Goal: given unclassified record, to classify it.

k-Nearest Neighbor Learning

- View records as points in feature space
- Find k-nearest neighbors and take majority vote.
- Example of supervised learning.

© R. Grossman, C. Kamath, V. Kumar

(j, k) Nearest Neighbor Learning

- Choose j points from the test set to produce a model M[1]. Choose another j points to produce a Model[2], etc.
 - This gives an ensemble of models: {M[1], ..., M[p]}
 - Selecting the j points can be done in many different ways.
- To classify a point,
 - 1. evaluate each of the k-nearest neighbor models in the ensemble
 - 2. use a majority vote to get an overall class

Learning -Map from Data to Models

Petal Len.	Petal Width	Sepal Len. Sepal Width		Species		
02	14	33	50	А		
24	56	31	67	С		
23	51	31	69	С		
13	45	28	57	В		
Learning Sets (n data points)						
<pmml><nearest-neighbor></nearest-neighbor></pmml>						
02	14	33	50	A		
13	45	28	57	В		
	Models or Rules (j points)					

© R. Grossman, C. Kamath, V. Kumar

Does the Model Generalize?

R^d x {0,1}-valued random pair (X,Y) L(g) = P (g(X) = Y), exp. accuracy E(L(g))

2.2 Cluster-based Learning

© R. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications

Ch 2/ 11

Learning via Clustering

• Form the k=3 "best" clusters in feature space.

Example of unsupervised learning

no prior knowledge needed about classification.

© R. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications

K-Means Clustering

- Set i = 0. Choose k centroids a[i, 1], ..., a[i, k] in feature space.
- 2. Assign each point in the test set to the nearest centroid (break ties using the lowest index) to form clusters C[1], ..., C[k].
- 3. Compute the new centroid a[i+1, j] for each cluster C[j], j=1, ..., k.
- 4. Repeat until the centroids converge.

K-Means Clustering

Centroids converge to the centroids of the final clusters

Ch 2/ 14

© R. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications

Learning via Clustering

Form the three "best" clusters.
Example of unsupervised learning

no prior knowledge is needed about the classification.

Use as a basis for subsequent supervised learning.

Example: Polution vs. Mortality

© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

2.3 Trees

Following L. Breiman, J. Friedman, R. A. Olshen, C. J. Stone, Classification and Regression Trees, 1984, Chapman & Hall.

© R. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications

Ch 2/ 17

Classification Trees

Petal Width	Sepal Len.	Sepal Width	Species
14	33	50	А
56	31	67	С
51	31	69	С
45	28	57	В
	Petal Width 14 56 51 45	Petal Width Sepal Len. 14 33 56 31 51 31 45 28	Petal WidthSepal Len.Sepal Width143350563167513169452857

- Want a function Y = g(X), which predicts the red variable Y using one or more of the blue variables X[1], ..., X[4]
- Assume each row is classified A, B, or C

Simple Classification Tree

Divide feature space into regions
Use a majority vote to get class A, B, C, etc.

© R. Grossman, C. Kamath, V. Kumar

Trees Partition Feature Space

• Trees partition the feature space into regions by asking whether an attribute is less than a threshold.

© R. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications

Regression Trees

City	Education	NOx	SO2	Mortality
Akron	11.4	15	59	921.87
Boston	12.1	32	62	934.70
Chicago	10.9	63	278	1024.89
Dallas	11.8	1	1	860.10

 Want a function Y = g(X), which predicts the red variable Y using one or more of the blue variables X[1], ..., X[14]

Regression Trees

© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

Ch 2/ 22

Regression Trees

- Divide training sets into buckets.
- Average the dependent variable in each bucket.

© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

ART and ACT (Averaged Reg. & Class. Trees)

- Define a Cover of the Data. A cover U of the data x consists of a collection of sets U such that each record is in at least one U.
- Build Trees. Build a tree T_U as usual for the data assigned to each set U in U.
- Average Trees. Fix a finite probability measure α_U on U. Given an object x, ART uses the score:

$$\Sigma \alpha_U T_U(x),$$

This defines an ensemble of trees.

Basic Idea: ART

1. Define a cover $U = \{U_1, U_2, U_3\}$ of the data x.

2. Construct a tree T_U on each set U of the cover.

```
3. Average the trees:
```

 $\Sigma \alpha_j = 1$ $\alpha_i > 0$

increase in information = 0.32

increase in information = 0

Split Using GINI Impurity

Step 1. Class proportions. Node u with n objects n_1 of class 1 (red) n_2 of class 2 (blue), etc.

Step 2. Compute Gini Index Gini (u) = $1 - \sum (n_j/n)^2$

Step 3. Split proportions. m_1 sent to child 1– node u_1 m_2 sent to child 2– node u_2

Step 4. Choose split to min Gini of Split = $\sum m_i / n$ Gini (u_i)

Data Mining for Scientific and Engineering Applications

2.4 Neural Networks

© R. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications

Ch 2/ 29

Perceptron

- Inputs x₁, x₂, ..., x_n,
- Ouput +1 or -1
- Perceptron is determined by weights
 - $-w_0, w_1, ..., w_n$ (define $x_0 = 1$)
- Output ŷ = sgn(w x)
- Given a learning set L = { (x,y) }

Perceptron Training Rule

$$- \mathbf{w}_{i} \leftarrow \mathbf{w}_{i} + \Delta \mathbf{w}_{i,}$$
$$- \Delta \mathbf{w}_{i} = \eta (\mathbf{y} - \hat{\mathbf{y}}) \mathbf{x}_{i}$$

© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

Gradient Descent

- Inputs $x_1, x_2, ..., x_n$,
- Output ŷ = w x
- Given a learning set L = { (x,y) }, define the
- Training error

$$E(w) = (1/2) \sum_{L} (y - \hat{y})^2$$

• Gradient Descent Rule

$$-\mathbf{w}_{i} \leftarrow \mathbf{w}_{i} + \Delta \mathbf{w}_{i,}$$
$$-\Delta \mathbf{w}_{i} = -\eta \ \partial \mathbf{E} \ / \ \partial \mathbf{w}$$

Multilayer Neural Networks

Inputs x_{ji}from node i to node j, with weight w_{ji}
 Output ŷ_j = σ(Σ_i w_{ji} x_{ji}), where threshold uses smooth logistic function σ(y) = 1/ (1 + exp(-y))

© R. Grossman, C. Kamath, V. Kumar

Back Propagation Algorithm for NN

- Node i in the network may be input, hidden layer, or output; let w_{ji} denote the weight from node i to node j
- 2. Propagate an input x_{ij} forward through the NN
- 3. Propagate the errors from the output and the hidden layers backwards through the neural network; let E denote the total error as before
- 4. update the weights $- \mathbf{w}_{ij} \leftarrow \mathbf{w}_{ij} + \Delta \mathbf{w}_{ij}$ $- \Delta \mathbf{w}_{ij} = -\eta \ \partial \mathbf{E} \ / \ \partial \mathbf{w}_{ij}$

© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

2.5 Derived Attributes

© R. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications

Ch 2/ 34

Derived Attributes

- In practice, statistical models are not computed from the raw data attributes, but rather from *derived* attributes computed from the data attributes.
- Derived attributes are often aggregated from multiple records

Example: The Shuttle

- Problem: determining whether it is safe to launch the Space Shuttle
- Data consists thousands of tables, graphs, spreadsheets and reports

The Data

Thousands of reports, charts, & graphs

Data below

date, temperature, details of O-ring erosion

8	8/30/83	73							
9	11/28/83	70							
41-B	2/3/84	57	0.39	0.75			0.04	3	
41-C	4/6/84	63	0.034	1.8			some	some	
41-D	8/30/84	70	0.046	4			0.028	3	
41-G	10/5/84	78							
51-A	11/8/84	67							
51-C	1/24/85	53					0.01	4.25	0.038
51-D	4/12/85	67	0.68	6	0.011	2.12			
51-B	4/29/85	75	0.005	3.4	0.171	1.59			
51-G	6/17/85	70	0.023	0.88	0.013	1.12			
51-F	7/29/85	81							
51-l	8/27/85	76	0.064	13.5					

Key Idea

- Introduce severity of erosion (SOE) as derived attribute
- Ignore most of the details concerning the erosion
- Count number of eroded incidents per type
 - normal or blow by
- Take weighted average to obtain SOE attribute

2.6 Consistent Classifiers

Following L. Devroye, L. Gyorfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer-Verlag, New York, 1996.

© R. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications

What is a Classifier?

- A classifier is a map
 - κ : Data Space \longrightarrow Pattern Space

where the pattern space is of lower dimension

Example: binary classifier (model)

$$g: \mathbb{R}^d \longrightarrow \{0, 1\} x \mapsto y$$

- Because of uncertainty, consider R^d x {0,1}-valued random pair (X,Y)
- Probability of error L(g) = P (g(X) ≠ Y)

© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

What is a Consistent Classifier?

Supervised learning is a map from iid sequences

$$D_n = X_1, Y_1, X_2, Y_2, ..., X_n, Y_n$$

to a classifier (model)

$$Y = g_{n} (X; X_{1}, Y_{1}, X_{2}, Y_{2}, ..., X_{n}, Y_{n})$$

conditional probability of error

$$L_n = L(g_n) = P(g_n(X; D_n) = Y | D_n).$$

• rule consistent if $E(L_n) \longrightarrow L_{optimal}$

Nearest Neighbor Learning

Given data D_n = X₁, Y₁, X₂, Y₂, ..., X_n, Y_n and a query point X, classify Y by Y_J, where X_J is the nearest point to X.
 Cover-Hart: lim sup E L_n ≤ 2 L_{optimal}.

© R. Grossman, C. Kamath, V. Kumar

References

Tom M. Mitchell, Machine Learning, WCB McGraw-Hill, Boston, 1997 - a concise introduction to machine learning from the AI perspective.

- Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone, Classification and Regression Trees, Chapman & Hall, New York, 1984. - A classic introduction to trees and their applications to classification and prediction.
- Luc Devroye, Laszlo Gyorfi, Gabor Lugosi, A Probabilistic Theory of Pattern Recognition, Springer-Verlag, New York, 1996 - proves probabilistic error estimates for many of the common data mining algorithms.

References

- Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning, Springer-Verlag, New York, 2001 - data mining algorithms from a statistical point of view.
- N. Vapnik, The Nature of Statistical Learning Theory, Second Edition, Springer-Verlag, 2000 - an technical book covering VC dimension and related concepts.
- Nello Cristianini and John Shawe-Taylor, An Introduction to Support Vector Machines, Springer-Verlag, New York, 2000 - one of the first books on support vector machines, which are emerging as a powerful data mining technique.