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Goals of Chapter 2

� What are the three basic algorithms in 
data mining?

� Importance of cleaning data
� Importance of derived attributes
� What is a consistent classifier?
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Chapter 2.  Basic Ideas

2.1 Nearest Neighbor Learning
2.2 Cluster-based Learning
2.3 Trees
2.4 Neural Networks
2.5 Derived Attributes
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2.1 Nearest Neighbor Learning
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Classification

� Assume data is arranged into rows (records) 
and columns (attributes or features)

� Assume each row is classified  A, B  or  C
� Goal: given unclassified record, to classify it.

Petal Len. Petal Width Sepal Len. Sepal Width Species

02 14 33 50 A

24 56 31 67 C

23 51 31 69 C

13 45 28 57 B
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k-Nearest Neighbor Learning

To classify 

1. find nearest 
three records

2. classify   
via majority 
vote

1. Assume 
records have 
features.  

2. Assume 
records are 
either or

Petal Length

Sepal 
Length

Petal Width

� View records as points in feature space
� Find k-nearest neighbors and take majority vote.
� Example of supervised learning. 
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(j, k) Nearest Neighbor Learning

� Choose j points from the test set to produce a 
model M[1].  Choose another j points to 
produce a Model[2], etc.  
– This gives an ensemble of models:

{M[1], …, M[p]}
– Selecting the j points can be done in many 

different ways.
� To classify a point,

1. evaluate each of the k-nearest neighbor 
models in the ensemble

2. use a majority vote to get an overall class
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Learning -
Map from Data to Models

Learning Sets (n data points)

Petal Len. Petal Width Sepal Len. Sepal Width Species

02 14 33 50 A

24 56 31 67 C

23 51 31 69 C

13 45 28 57 B

<pmml><nearest-neighbor>…
02 14 33 50 A
13 45 28 57 B
</nearest-neighbor></pmml>

Models or Rules (j points)
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Does the Model Generalize?

Learning 
Set D

Test Set

Validation Set

Model g

Accuracy 
L(g)

Space of 
Learning Sets

prob.
measure

� Rd x {0,1}-valued random pair (X,Y)
� L(g) = P ( g(X) = Y ), exp. accuracy E(L(g))
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2.2 Cluster-based Learning
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Learning via Clustering

Mortality

NOx
Education

� Form the k=3 “best” clusters in feature space.
� Example of unsupervised learning

– no prior knowledge needed about classification.
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K-Means Clustering

1. Set i = 0.  Choose k centroids a[i, 1], …, 
a[i, k] in feature space.

2. Assign each point in the test set to the 
nearest centroid (break ties using the 
lowest index) to form clusters C[1], …, 
C[k].

3. Compute the new centroid a[i+1, j] for 
each cluster C[j], j=1, …, k.

4. Repeat until the centroids converge.
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K-Means Clustering

Mortality

NOx
Education

Mortality

Education
NOx

Step i Step i+1

� Centroids       converge to the centroids of 
the final clusters
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Learning via Clustering

� Form the three “best” clusters.
� Example of unsupervised learning

– no prior knowledge is needed about the 
classification.

� Use as a basis for subsequent supervised learning.

To classify 

1. find nearest 
cluster

2. classify 

using nearest 
cluster
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Example: Polution vs. Mortality
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2.3 Trees

Following L. Breiman, J. Friedman, R. A. Olshen, C. J. 
Stone, Classification and Regression Trees, 1984, Chapman 
& Hall.
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Classification Trees

Petal Len. Petal Width Sepal Len. Sepal Width Species

02 14 33 50 A

24 56 31 67 C

23 51 31 69 C

13 45 28 57 B

� Want a function Y = g(X), which predicts the 
red variable Y using one or more of the blue 
variables X[1], …, X[4]

� Assume each row is classified A, B, or C
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Simple Classification Tree

Petal Width > 7?

Class 1

Class 3Petal Length > 49.5?

Class 2 Class 3

Petal Width > 17.5?

� Divide feature space into regions
� Use a majority vote to get class A, B, C, etc.
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Trees Partition Feature Space

Petal Width > 17.5?

A

B

C

C

Petal Len > 49.5?

Petal Length
B C Petal Width > 7

49.5

A C

Petal Width

7 17.5

� Trees partition the feature space into regions by 
asking whether an attribute is less than a threshold.
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Regression Trees

Education NOx SO2

11.4  15    59

32 62

10.9  63    278   

11.8 1     1   

City Mortality

Akron 921.87

Boston 12.1 934.70

Chicago 1024.89

Dallas 860.10

� Want a function Y = g(X), which predicts the red 
variable Y using one or more of the blue variables 
X[1], …, X[14]
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Regression Trees
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Regression Trees

� Divide training sets into buckets.
� Average the dependent variable in each bucket.

Education < 11.45

NOx < 7.5

Income<36634?851.2SO2 < 38

1024.0 978.47 882.3 912.1

SO2 < 7?

923.4
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ART and ACT
(Averaged Reg. & Class. Trees)

� Define a Cover of the Data. A cover U of 
the data x consists of a collection of sets U 
such that each record is in at least one U.

� Build Trees. Build a tree TU as usual for 
the data assigned to each set U in U.

� Average Trees. Fix a finite probability 
measure �U on U.  Given an object x, ART 
uses the score:

��U TU(x), 
� This defines an ensemble of trees.
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Basic Idea: ART

1. Define a cover 
U = {U1, U2, U3} 
of the data x.

3. Average the trees:
� �j  = 1
�j  > 0

2. Construct a tree TU
on each set U of the 
cover.

+ +�2 �3�1

U1 U2 U3

U1
T U2

T U3
T



information = 0.64objects have attributes

Split using 
Entropy

split 1

split 2 split 3

split 4

vs

split 1

split 2 split 3

split 4

increase in information = 0.32 increase in information = 0
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Growing the Tree
Step 1. Class proportions.
Node u with n objects
n1 of class A (red)
n2 of class B (blue), etc.

Step 2.  Entropy
I (u) = - � nj /n log nj /n

Step 3. Split proportions.
m1 sent to child 1– node u1
m2 sent to child 2– node u2

Step 4. Choose attribute
to maximize
� = I(u) - � mj /n  I (uj)

blue

blue

red

red

blue

u

u1 u2
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Split Using GINI Impurity
Step 1. Class proportions.
Node u with n objects
n1 of class 1 (red)
n2 of class  2 (blue), etc.

Step 2.  Compute Gini Index
Gini (u) = 1 – � (nj /n)2

Step 3. Split proportions.
m1 sent to child 1– node u1
m2 sent to child 2– node u2

Step 4. Choose split to min
Gini of Split = � mj /n  Gini (uj)

blue

blue

red

red

blue

u

u1 u2
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2.4 Neural Networks
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Perceptron

� Inputs x1, x2, …, xn,
� Ouput +1 or -1
� Perceptron is determined by weights

– w0, w1, …, wn (define x0 = 1)
� Output ŷ = sgn(w ● x)
� Given a learning set L = { (x,y) }
� Perceptron Training Rule

– wi � wi + � wi,
– � wi = �� (y - ŷ ) xi

� Weights are unchanged when y = ŷ, increased 
otherwise by factor �� xi
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Gradient Descent

� Inputs x1, x2, …, xn,
� Output ŷ = w ● x
� Given a learning set L = { (x,y) }, define the
� Training error

E(w) = (1/2) �L (y - ŷ)2

� Gradient Descent Rule
– wi � wi + � wi,
– � wi = �- � � E  / �� wi
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Multilayer Neural Networks

Input1

Input2

Input3

Input4

Input5

Output
(Class)

Hidden
Layer

�

w1
w2

w3

� Inputs xjifrom node i to node j, with weight wji
� Output ŷj = ��( �i wji xji ),  where threshold uses 

smooth logistic function �(y) = 1/ (1 + exp(-y))
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Back Propagation Algorithm for NN

1. Node i in the network may be input, hidden 
layer, or output; let wji denote the weight from 
node i to node j

2. Propagate an input xij forward through the NN 
3. Propagate the errors from the output and the 

hidden layers backwards through the neural 
network; let E denote the total error as before

4. update the weights
– wij � wij + � wij
– � wij = �- � � E  / �� wij
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2.5 Derived Attributes
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Derived Attributes

� In practice, statistical models are not 
computed from the raw data attributes, but 
rather from derived attributes computed from 
the data attributes.

� Derived attributes are often aggregated from 
multiple records
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Example: The Shuttle

� Problem: determining whether it is safe to 
launch the Space Shuttle

� Data consists thousands of tables, graphs, 
spreadsheets and reports
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The Data

� Thousands of reports, charts, & graphs
� Data below

– date, temperature, details of O-ring erosion
8 8/30/83 73
9 11/28/83 70

41-B 2/3/84 57 0.39 0.75 0.04 3
41-C 4/6/84 63 0.034 1.8 some some
41-D 8/30/84 70 0.046 4 0.028 3
41-G 10/5/84 78
51-A 11/8/84 67
51-C 1/24/85 53 0.01 4.25 0.038
51-D 4/12/85 67 0.68 6 0.011 2.12
51-B 4/29/85 75 0.005 3.4 0.171 1.59
51-G 6/17/85 70 0.023 0.88 0.013 1.12
51-F 7/29/85 81
51-I 8/27/85 76 0.064 13.5
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Key Idea

� Introduce severity of erosion (SOE) as 
derived attribute

� Ignore most of the details concerning the 
erosion

� Count number of eroded incidents per 
type
– normal or blow by

� Take weighted average to obtain SOE 
attribute
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The Results
Damage Index
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2.6 Consistent Classifiers

Following L. Devroye, L. Gyorfi, and G. Lugosi, A 
Probabilistic Theory of Pattern Recognition, Springer-
Verlag, New York, 1996.
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What is a Classifier?

� A classifier is a map

	: Data Space Pattern Space
where the pattern space is of lower 
dimension

� Example: binary classifier (model)

g : Rd {0, 1}      x        y

� Because of uncertainty, consider 
Rd x {0,1}-valued random pair (X,Y)

� Probability of error
L(g) = P ( g(X) = Y )
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What is a Consistent Classifier?

� Supervised learning is a map from iid
sequences 

Dn = X1, Y1, X2, Y2, …, Xn, Yn
� to a classifier (model)

Y = gn (X; X1, Y1, X2, Y2, …, Xn, Yn)
� conditional probability of error

Ln = L (gn) = P (gn( X; Dn ) = Y | Dn ) .
� rule consistent if  E(Ln) Loptimal.
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Nearest Neighbor Learning

� Given data Dn = X1, Y1, X2, Y2, …, Xn, Yn 
and a query point X, classify Y by YJ, where  
XJ is the nearest point to X .

� Cover-Hart:  lim sup E Ln < 2 Loptimal.

To classify 

1. find nearest 
three objects

2. classify via 
majority vote
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