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ABSTRACT

We investigate how compact operators behave under / and K interpolation methods for N spaces
and two parameters. First we study those methods: relationship with those already existing in the
literature, estimates for the norms of interpolated operators, examples, characterization as Aronszajn-
Gagliardo functors,.... We also describe the relationship between Sparr and Fernandez methods and
we derive sharp estimates for the norms of interpolated operators in Fernandez' case. Then we
investigate the behaviour of compact operators. We begin with the case when one of the AMupIes
reduces to a single Banach space, and later we treat the general case by means of the approach
developed in [8].

0. Introduction

The behaviour of compact operators under interpolation is a question that has
received much attention during the last few years. We refer, for example, to the
articles by Cobos, Edmunds and Potter [5], Cobos and Fernandez [6], Cobos and
Peetre [8], Cwikel [9], and Cobos [3, 4]. All these papers deal with interpolation
methods for two spaces. In the present article we discuss a question which we left
open in [8]: the multidimensional case.

We restrict our attention to interpolation methods of the type used in the
classical real method but having two parameters (t and s instead of the classical t).

In the literature there are essentially four such methods: the / - and ^-methods
developed by Sparr [19] for, in the first non-trivial case, three spaces, and in
general, n spaces; and the other two studied by Fernandez [12] for four,
respectively 2", spaces. The relationship between them has not been satisfactorily
described yet. Moreover, although Fernandez' methods were introduced ten
years ago, it seems that only rough estimates are known for the norms of the
interpolated operators.

We start by studying a / - and a ^-method for N spaces that use two parameters
(t, s). The N spaces should be thought of as sitting on the vertices of a convex
polygon. The idea of carrying out such a generalization was suggested by Peetre
in [18]. In particular, for the case of the simplex we recover Sparr's spaces, and
for the case of the square we get Fernandez' ones. Our approach explains the
restriction on parameters in Fernandez' case.

This is done in § 1, where we also describe the relationship between the spaces
of Sparr and of Fernandez.

Then, in § 2, we establish estimates for the norms of interpolated operators. In
particular, we obtain a sharp estimate in Fernandez' case.

In § 3, we apply our interpolation methods to certain vector-valued sequence
spaces. We also describe the / - and ^-methods as Aronszajn-Gagliardo functors.
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fond for framjande av vetenskapen inom amnet matematik' of the Royal Swedish Academy of
Sciences (Kungl. Vetenskapsakademien).
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In the rest of the paper, we discuss the behaviour of compact operators under
these methods. We first derive Lions-Peetre type compactness results in this
multidimensional setting (§ 4). These theorems require that one of the TV-tuples
reduces to a single Banach space. To get rid of this assumption we use the
representation of the / - and ^-methods as Aronszajn-Gagliardo functors. This
description allows us to use certain projections on the Af-tuples of sequence
spaces that define the functors. We must be able to combine the information
given by the projections with our estimates for the norms of interpolated
operators. This is achieved by imposing a certain geometrical condition on the
polygon upon which the Af-tuples are sitting.

We call admissible those polygons having such a geometrical property. They
form a wide class including regular polygons. The investigation of admissible
polygons is carried out in § 5.

Finally, we combine all these results together with the approach developed in
[8] to obtain the general compactness results (§ 6).

1. / - and K-methods for N spaces and two parameters

Let n = P1/
>

2 ••• PN be a convex polygon in the affine plane U2, with vertices
Pj = (XJ, yj) (/ = 1, ..., N), and let A = {Al} ..., An} be a Banach AMuple, that is,
a family of N Banach spaces Aj (j = 1,..., N) all continuously embedded in some
Hausdorff topological vector space sd. Each space A} should be thought of as
sitting on the vertex Pj (see Fig. 1.1).

FIG. 1.1

Given any couple of positive numbers t, s, we define the K- and /-functional
by

r N N -|

K(t, s;a) = K(t, s;a;A) = inf J ) W IKIL; « = 2 «y> <*j e At ,

J(t,s;a) = J(t,s',a,A)= max

In this way we obtain a family of norms on 2.(A) = Al + A2 +... +AN

(respectively A(A) = Al nA2C\... C\AN), any two of them being equivalent.
Let 1 ^ q ss oo and let (a, /J) be any point in the interior of II ((a, /3) e Int II).

We define A^ap)q.K as the collection of all elements a e 2(^4) having a finite norm

Or00 f00

0 Jo

On the other hand, we let A^p)q;J be the space of all those elements a e
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which can be represented in the form

( u ) ,
Jo Jo * s

where u(t, s) is a strongly measurable A(A)-valued function and satisfies

(2) ( f f ( r •*-'/(*, 5 ; u{t, s))f —Y" < oo.

The norm ||-||(a>0)p(?;/ in A^a^q.j is given by the infimum of the values of the
integral (2) over all such representations (1) of a.

EXAMPLE 1.1. In the special case where II is equal to the simplex
{(0,0), (1,0), (0,1)} and a > 0, fi > 0 with a + 0 < 1, we recover Sparr spaces
Af«.P),q;K and AftttPU.j (see [19]).

EXAMPLE 1.2. If IT coincides with the unit square {(0,0), (1,0), (0,1), (1,1)},
then we obtain Fernandez spaces A[a ^ qK and A^a ^ qJ (see [12,13]). Now 0 < a,

In contrast to the classical case of Banach couples, where K- and /-methods
coincide to within equivalence of norms (see [2] or [20]), it is not true in general
that A(a>p)<g.K coincides with Aiap)q.j. Counter-examples for the cases of Sparr
and Fernandez spaces can be found in [19] and [10], respectively. We now have
only the following inclusion:

THEOREM 1.3. Let H, A, q and (a,j8) be as above. Then Ai<xp)(l.j is
continuously embedded in Aiap)q;K.

Proof. Let a eAiap)iq.j and £>0, and let

f00 r . dtds
a=\ u(t,s)--

Jo Jo t s

be a representation of a such that

(f
t s

For any positive numbers w, z we have

r r dtds
,z;a)^\ K(w, z \u{t, s))- —

Jo Jo t s

* [ f min {(w/tyiz/sy>}J(t,s;u(t,s))--
Jo Jo i«/«/v / s

r r dtds
min {/ x's~y/}J(tw, sz ; u(tw, sz)) .

Jo Jo i«y*w t s
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Applying Minkowski's inequality, we get

«(«.«.,;**[[ [ (f f min {t-*>s»
U 0 Jo \Jo Jo l^j^N

^ dtds\qdwdzV/q

xj(tw,sz ;u(tw,sz))
t s / w z J

7 l
t S J

So it only remains to check that the integral factor is finite. Writing it in
exponential notation, we have

. «_v, dtds
/sp y>\

t s

= [ f min {t°
Jo JO l^j^N

/•OO /-00

min {e^-^W-^j
J_oo J_oo l=sy«A'

^ 2 IT e-^-V-W-rtdudv,
where

Ty = {(u, v)eU2: u(a -Xj) + v(f$ -yj)zz u(a -xk) + v(fi -yk), k = \, ..., A/}.

Put P = (oc, p) and recall that Pj = (xj} y;). For (u, v) e Tjt it follows from the fact
that

u{a - x,) + uQS - yj) ̂  u(a - xj+x) + v(p - yj+l)

that

In the same way, we see that

On the other hand, the convexity of the polygon n , together with the fact that
P € Int IT, gives that there are two positive numbers Xjt \ij such that

(see Fig. 1.2).

FIG. 1.2

Now making the change of variables

u* = <(«, v), PJ+l - Pj), v* = <(«, v), Py_i - />•>
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and taking into account the fact that

-u(a -Xj) - v(P -y,) = -((u, v), P - P})

= -kj({U, V), Pj+l - Pj) - Hj((U, V), Pj_, - P;

375

we derive

Here

N 1 />oo / .a

j=\ I//1 Jo A) y=l

This completes the proof.

Let us go back again to the question of when the K- and /-Fernandez spaces
coincide. According to an argument due to Milman [16, Theorem 4.1],

{"' \VM> A2,)aq, (A3, A4)aq)p q c A(ap) q-K

and

^\a,P),q;J Q VV-̂ »1> A2)aq, \A3, A4)a q)p q,

where (•, -)ep stands for the classical real method with parameters 8 and p.

FIG. 1.3

On the other hand, it follows directly from the definitions of the Fernandez
spaces that

and

(Au A2, A3, A4){aiP)tq.K=(Au A3) A2t A4)(PaU.

(Alt A2, A3, A4)^ap->tq.j = (Alt A3, A2, A4)^a)q.j
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Consequently, in order that the K- and /-spaces coincide, the following condition
is necessary:

(*) ((Au A2)a<q, {A3, A4)atq)Ptq = ((AU A3)M> (A2, A4)M)atg.

Equality (*) seems very natural from the geometrical point of view and one
might think that it is satisfied for any Banach 4-tuple. Nevertheless, this is not the
case. Consider the scalar sequence spaces

1 = \(L): £ ^ = 0and||(^)|U,= £ max(l, 2") |^
I. n = — oo n = — oo

2 = {««): £ ^=0and||(^)|U2= £ max(l, 2"") HJ

A, = {(£„): ll(Ulk= £ min(l,2-")|^|
I n = -oo

Then we have

((Au A2)i>u (A3, ^44)j.i)i.i

as can be checked by adapting the arguments given by Dore, Guidetti and Venni
[11] for the case of the complex method.

We close this section by discussing the relationship between Sparr and
Fernandez spaces.

Let A = {Alt A2, A3, A4} be a Banach 4-tuple and let

A = 4 ( )

be the Fernandez spaces as described in Example 1.2.
In order to interpolate the 4-tuple A by Sparr methods, we need three

independent parameters (tlf t2, t3) and three positive numbers (01} d2, 63) such
that 61 + 62 + 93 < 1; then spaces

AK = A(eitQ2iej)tq.K and Aj = A^eu

are defined similarly as in Example 1.1 but this time using the functional

£( ' i , h, h\a) = infl HflxlU, + tx \\a2\\A2 +12 \\a3\\Ai + t3 ||o4|U4: « = S «/] ,

Hh, h, h\a) = maxfllalU,, h \\a\\M, t2 ||a|U3, t3 ||a|UJ.

THEOREM 1.4. Let, in this context, 0 < a, fi < 1 and put

dy^ail-p), 02 = 0(1-or) and 63= a0.

Then the following continuous inclusions hold:

Proof. Take t3 = txt2. We have

) tx t2 l3 — lx
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Thus, for a = Ey=i fly,

LJo JO ^

r r°° r°° r°° /

L J Q JQ JQ '

= a Li*.

Here c = {ccf}q)xlq. This shows that AS
K<-+Ax. The inclusion Af<->/l£ is known

(see [19, Proposition 5.1]). Let us check the remaining embedding A5<-+Aj.
First note that it is possible to give discrete characterizations for spaces Aj and

Aj using sums instead of integrals, and then the following norms are equivalent:

N U 7 ~ i n f ( [ 2 (2-»>°-"*J(2n\2"*;unf,n2))<>] ": a= 2 un
lL(ni."2)eZ2 J (n,,n2)eZ2

11/7II - ? ~ i n f i V Cy-n\Q\-n202-niQ3jC)ri\ -}"2 ?«3 . , , \\<l \
\\a\\A] i n i 1 ZJ K^ J\L , L , L ,vnun2>rt3))

Let aeAj and let a = E(n)>W2)ez2"/i,.n2 be any representation of a as above.
Then we obtain a representation of a in the Sparr way by writing

V = <

""n2'n3 10 ootherwise.

Moreover, by (3), we get

r V
L(«,,n2."3)eZ3 -I

r V'q
= S (2-"lflr-|l2'l/(2"',2-»;iiIIIil,a))« .

L(«,,/i2)eZ2 J

This gives the inclusion.

2. Interpolation of operators

Let Z? = {fix,..., BN} be another Banach N-tuple which we imagine as sitting
on the vertices of (another copy of) our convex polygon n = Px... PN. We write
T: A-+B to mean that T is a linear operator from 2(^4) into 2(Z?) whose
restriction to each Aj defines a bounded operator from Aj into Bj (y = 1, ..., N).
We put
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Again let (a, /5) e Int II and 1 =£q *soo. if T: A—>B, then clearly the restriction
of T to A(aip)itf.K defines a bounded operator

and

(4)

A similar estimate holds for the /-method, namely

In this section we shall obtain estimates which are sharper than (4) and (4').
For the case of the classical real method for Banach couples (A0} Ax)eq, the

convexity inequality

is an indispensible tool. This estimate extends to the case of K- and /-Sparr
spaces (Example 1.1). In fact, we have

u
and a similar estimate holds for /-spaces. But the situation is not so clear for
Fernandez spaces (Example 1.2). Theorem 1.4 and its connection with the
iterated real method (H) suggest that

and

Nevertheless, both estimates (5) and (5') fail, as can easily be shown from the fact
that for any 'diagonally equal' 4-tuple E = (E0, E1} Ex, Eo) one has (see [10,
Example 1.25])

and

E'{\,\),\j = EQC\EX.

This gives an idea of the kind of difficulty we are facing.
To proceed to our improvement of (4) and (4'), call Afy = HrU^^. and consider

the tf-case first. We have

K{tt s;Ta)^ inffe *V» || Taj\\Bj: a = J, 'j, "i e A
^j=l y = l

^ inf{2 k*'p»Mj(t/kY'{s/py \\aj\\: a = 2 af, ajeA,

^ max {kxifiy>M.}K(t/X, s/p ; a).
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Thus integrating and changing variables we derive

qdtd<s\
max {k*'iA»MJ}K{t/ks/ii'a))lras max {kiAMJ}K{t/k,s/ii,a))

o Jo \ i=sy=sjv I t s !

Of00 f °° / \qdtds\Vq

1 I (r°s-' m ) )
o Jo \ i«y= max {A*

Consequently,

and the same estimate remains true for /-spaces. This leads to the following
definition.

DEFINITION 2.1. Let TL = Px... PN be a convex polygon with Pj = (xj,yj) for
y = 1,..., N, and let (or, j8)elntll . Then for any N non-negative real numbers
Mu ..., MN, we put

Da p(Mx ,...,MN)= inf f max {f'-'s^-^Mj} 1.
*>0,i>0 Ll«y=sA' J

According to (6), in order to estimate the norm of the interpolated operator for
the K- (respectively /-) method we only need to study the function Dap. We do
that first for the case of Fernandez spaces.

THEOREM 2.2. Let II be the unit square, let 0< a, f$< 1, and let Dap be the
function associated to them.

For each 4-tuple of non-negative numbers (Mif M2, M3, Af4), let % =
x, M2, M3, M4) be the set formed by

and let <€* be the subset of <€ formed by those numbers Nj which only have positive
exponents (in other words, if, say, a > fi then N3 belongs to %* but N2 does not).

Then

, M2, M3, M4) = max{7Vy: Nj e <€•).
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Proof. Observe that

u M2, M3, M4) = inf [max{Mlt tM2, sM3,
t>0,s>0

^ inf I inf { m a x f ^ + sM^C", (M2 + sM4)t
s>0 Lt>0

= inf [(Mx + sM3)
l-a(M2

 p

s>0

= M\ aM4 inf f(s),
s>0

where

and

= MJM3) y = M2/M4.

Now we distinguish two cases.
Case 1: y^x. We have

f(s)
ifs^y,

rfi= l-

Since the function s p is decreasing, s1 p is increasing and sa p is increasing if
a 2* P and decreasing if a < p, we see that

• ff( \<z{xl<Xya~P ifa;*P>
s>o \x1~p if

Hence

^^Mx, M2, M3, M4)

$ = N3 i
aM^ = N2

Case 2: x =s y. This case is completely analogous. This time we have

, 1 - / 3 if y

so

•' i f *
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and therefore

u M2, M3, M4)

if a

if or

This shows that

Dtt^Mx, M2, M3, M4)

The reverse inequality can easily be checked by substituting each M, in terms of
max {Mi, tM2, sM3, tsM4) and taking into account the fact that the sum of all
exponents in each Nj is equal to 1.

As a direct consequence, we have

COROLLARY 2.3. Let II be the unit square and a = /? = \. For any A-tuple of
non-negative numbers (Mlf M2, M3, M4) we have

Di2ii2(Mu M2, M3, M4) = max{VM1M4, VM2M3}.

COROLLARY 2.4. Let II be the unit square, let Pj, PJ+1 be two fixed adjacent
vertices of n , and letO<a,p<l. Then

Da>p(Mu M2, M3>M4)^0 as Af,—»0 and MJ+l-+0.

Next we extend Corollary 2.4 to any convex polygon II.

THEOREM 2.5. Let IT = Px... PN be a convex polygon, let Pjt Pj+1 be two fixed
adjacent vertices of H, and let (a, f$) e Int II. Then

DatP(Mu ..., MN)^>0 as Mk^Oforalll^k^N with k =£/, j + 1.

Proof. Recall that Pk = (xk, yk). We have

Datfi(Mx,...,MN)^ inf 2 ' " " V ' - ' M *

= inf 2
u.veU k = i

Now consider the equation px + qy = r of the line through />• and /y+i (see Fig.
2.1).

FIG. 2.1
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Since (a,P)e Int II, it follows that

pa + qf$>r and pxj + qyj = r,

so that p(x.j - a) + q(yj - 0) < 0. In the same way we see that

Hence, given any e > 0, we can choose real numbers u, v such that

(Take u, v proportional to p, q.) Then, taking all Mk for k=frj,j + \ sufficiently
small, we get

Combining the last two inequalities, we finally obtain

\e = e.
*=1

For later use, we close this section with the following consequence of
Theorem 2.5.

COROLLARY 2.6. Let II = Px... PN be a convex polygon, let Pjf Pj+l be two fixed
adjacent vertices of IT, and let (a, /S) e Int IT. Assume further that A =
{Alf ...,AN} and B — {BX, ..., BN) are Banach N-tuples and let (7 ,̂)™=, be a
sequence of bounded operators

Tm: A^B form = 1,2,....

/ / supm.N{||rm|U/ifl/, ||rm|U|+1>B/+1}<oo and ||rM|Uttaft-»0 as m^cc for all
l^k^N with k =£/, / + 1, then

and

3. Some examples

Let II = Px... PN be again our convex polygon with vertices Pt = (xjt y,), and let
(a, f3) 6IntII. Consider further a sequence of Banach spaces (Fmn)^mn)eZ2.

For j = 1, ..., N, we write F'm „ to mean the space Fmn normed by
2-^ -^ l l -H^ , , that is,

pi =2-m*j-»y,p —(p 2~mx>~nyi II-We. )
1 m,n *• 1m,n ^m.tt) ** II \\Fmn)'

Moreover, if 1 ^q ss°°, we denote by lq(F'mr) the vector-valued lq space, that is
to say,

lq{F'm,n) = [(*«.„): xm.n G Fm,n and

( \S(2-^-^n^.j|Fm.nr
m n f

Uq
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In order to derive the interpolation properties of these spaces, we shall use the
following discrete representation of K- and /-spaces: a eA^ap)q.K if and only if

| 0 | | ( « . 0 ) . * ; * - 2u \ l "K(Z , l ,a)y\
L(m,n)e22 J

a eA{aiPU.j if and only if

<oo;

a = 2 um,n (convergence in
(m,n)eZ2

with (umtH) c A(A) and

r ^ Vlq
I I I / . . \ | | | — > (O~mxi~nyiTflm 9" • ti \\i <r oo
IIKMwi.nj|||(a.^).«|;y- Z» VZ JKZ >* , Um,n)) < 00-

L(m,n)eZ2 J

The discrete norm of the /-space is given by

\\a\\ia,p),q.j = \nf\\\(unttn)\\\^pU,J,

where the infimum is taken over all representations (um „) of a as above.
We remark that although we denote discrete and continuous norms by the

same symbol, in fact they are only equivalent. This will cause no confusion.

THEOREM 3.1. Let 1 =^^i,..., qN, q ^°°. Then
(lqj(FJ

m,n))(a,P),q-K = (lqj(F
1m,n))(a,P),q;J = ^ ( 2 " ° ^ " ^ " ^ , , ^ )

(with equivalence of norms).

Proof. We start by checking that
(7) (L(FUn)\a.P),q,K^lq(2-ar'

Let (bmn) e (L(FJ
mtn))iatpU.K, and let

be any decomposition of (bmn) with (b'mn) € L(F'mn). We have

rmn{2^-^'+^-"^\\bmJ\Fmn}

lin {2(v-m)x>+(fX-n)y' \\bk
mJ\Fmn)

t= i i « / « \

N
S? 7vxk+iiykfy-mxk-nyk \\f,k \\_ \

Thus

sup
(m,n)eZ2
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Hence

= 2 (2-—
(m,n)eZ2

s* 2 [2-^2-^ sup (min {2{m~v)x^n-»)yi\\bmn\\F } ) ] '
(m.n)eZ2 L (v,,u)eZ2 \l=sy=s;V ' ' /J

2= 2 (2-am2-^||6m,n||Fm/i)"
(m,«)622

Next we establish that

(8) lq(2-am-pnFmJ c* (^(Fi, . , , ))^^,^

Given any b = {bm,n)elq(2—H-pHFm.n), define um<n = bm>n as the double
sequence having all coordinates equal to zero except for the (m, n)th one which is
bm<n. Then

b = 2 um,n (convergence in the sum).
(m.n)eZ2

Moreover,

J(2m, 2n ;umn)= max {2mx>+ny> \\um „!' x

= max

Therefore

[2 H 7(2 ,2 ,Mm>w)f- Z (2

(m.n)eZ2 (m,n)eZ2

and this implies (8).
Now take any l ^ i , . . . , ^/v^°°. According to (7), (8) and Theorem 1.3, the

following continuous inclusions hold:

The proof is complete.

In order to see a concrete example, take all Fm „ equal to the scalar field IK.
Then lq(F'mn) is nothing but lq^2~mx'~ny'), that is, the scalar sequence space lq with
weight 2~mx~ny' on the (m,n)th coordinate, where (m, n) e Z2, and we obtain
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COROLLARY 3.2. Let 1 «s q =s= oo. Then

(i O-nvej-nyfW — I O-am-pn\
t/oo</ ')){«.p),<r,K — lq\t )

and

(1 (l~mxi~nyi\\ — I Cy-<xrn-Pn\

Next we shall show that the interpolation formulae stated in Corollary 3.2
characterize K- and /-interpolation methods in a certain way. For this object, we
need the multidimensional analogues of the two Aronszajn-Gagliardo functors
[1] (cf. [14,17]).

In what follows, Z = {Zlf..., ZN} stands for a fixed Banach N-tuple, while Z
denotes a fixed intermediate space for Z, that is,

Given any Banach N-tuple B = {Blt ..., BN}, let

= {R: R: B-+Z

be the collection of all bounded linear operators R from the N-tuple B to Z
having norm

\\R\\B,Z= max {\\R\\B),Zi)

less than or equal to 1.
If W is any of the spaces Z, Zx,..., ZN, A(Z), 2(Z), we write

laXyiB), W) to denote the Banach space formed by all bounded W-valued
families w = {wR} with V as indexed set. The norm of LlW] is given by

For b e 2(2?), we write

ib = {Rb}ReY.

Note that the family ib belongs to
Now we are ready to introduce the Aronszajn-Gagliardo maximal ('co-orbit')

functor. Define

H{B) = H[Z ; Z](B) = {b: be 2(B), ib e L[Z]}.

The space H{B) becomes a Banach space when endowed with the natural
induced norm. Moreover, H is an interpolation functor. That is to say, if
T: A^>B, then T: H(A)^>H(B).

Next we turn to the dual construction: the Aronszajn-Gagliardo minimal
('orbit') functor.

Given any Banach Af-tuple A = {Alt..., AN}, put

and let li[W] = ̂ (^(A), W), the Banach space of all absolutely summable
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families v = {vs} of elements of W indexed by °ti. The norm of l\[W] is given by

IMI/,[w]= 2 \\vs\\w
Se°U

For 2 = {zs} e /,[2(Z)], let nz = £5 6 % Szs.
We define

G(A) = G[Z ; Z](A) = {a: a e 2(i4), 3z e /,[Z], a = JZZ),

and we endow G(A) with the natural quotient norm (as a quotient of lx[Z]). In
this way, we obtain another interpolation functor:

T: A^>B implies T: G(A)-*G(B).

Now we are in a position to show the announced relationship between formulae
in Corollary 3.2 and K- and /-functors.

THEOREM 3.3. Let H = PX... PN be a convex polygon with vertices Pj = (jcy, ») ,
let (a, /3) e Int II and let l^q^™. Then for any Banach N-tuple A =
{Au ...,AN) we have

H[{L(2-™<-"»)} I /,(2—~Pn)](A) =A(a,PU;K,

and

with equality of (discrete) norms.

Proof. The result can be checked by adapting the arguments used in the case
of the classical real method (see [14] and [7]).

4. Lions—Peetre type compactness results

In 1964 Lions and Peetre [15] established compactness theorems for general
functors on Banach couples assuming that one of the couples reduces to a single
Banach space. These theorems turned out to be essential tools in the proofs of all
(classical and modern) compactness results. See, for example, [5, 6, 8, 9] (see
also, however, [3]). In this section we derive multidimensional compactness
results of Lions-Peetre type.

THEOREM 4.1. Let H = PX...PN be a convex polygon with Pk = (xk, yk), let
Pj, Pj+y be two fixed adjacent vertices of II, let (a, /3)eIntII and, finally, let
l^q^co. Assume that A = {Ax, ..., AN} is a Banach N-tuple, that B is a Banach
space and that T is a linear operator T: A—*B.

IfT: Ak^B is compact for alll^k^N with k =£y, j + 1, then

T: A(aJiU;K-* B

is also compact.

Proof. Since

we may assume that q = <».
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Let D be any bounded subset of A{ap)O0.<K. We are going to show that T(D) is
a precompact subset of B, from which follows the compactness of

Put

Mk = \\T\\Ak,B and C = sup{||a||(^)>00;/f: a eD},

where this time we are using the continuous norm of A(ap)oo.<K given by

Halle.*).-*- sup {r*s-'K(t,s',a)}.
/>0,5>0

For each t and s, we can decompose any ae D as a = Ttk=i«* with akeAk and
\\ak\\Ak^lCta~Xks^~yk. Proceeding as in the proof of Theorem 2.5, we see that
given any e > 0, we can choose / and s such that

\\Taj\\A. e/N

and

\\TaJ+1\\Af+l

With these t and s fixed, define

e/N.

Dk = \akeAk: 3a eD with a = £ ak and

Since Dk is bounded in Ak, we can use the compactness assumption on T to find
finite subsets

{*>AT,V}V=I <= B, w i t h ;, j + 1,

satisfying

T(Dk)c:0{bk.v+{beB: \\b\\B*e/N}}.
v = l

Thus, if a eD, we have

W H

Choosing bkVk for 1 =s k ^ N, k =£/, y + 1, such that

now gives

Ta -

This shows the precompactness of T(D).
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By Theorem 1.3, A.^ap)g.j
<^A^a^q;K, so that we also have

COROLLARY 4.2. Under the same assumptions as in Theorem 4.1, the operator

is compact.

Our next results refer to the case when the Banach space is the domain of the
operator.

THEOREM 4.3. Let U = Pt... PN be a convex polygon, let Pj} Pj+l be two fixed
adjacent vertices of II, let (a, f$) e Int II and 1 «s g =s <». Assume that B =
{Blf..., BN} is a Banach N-tuple, that A is a Banach space and that T is a linear
operator T: A—>B.

IfT: A^Bkis compact for alll^k^N with k # / , / + 1, then

T: A—>B(ap)q.j
is also compact.

Proof. This time we may assume that q = 1 because

^)qx,j for l ^ o ^

Note also that there is a constant C > 0 such that, for any b e A(2?) and any t>0,
5>0,

(9)
This follows easily from the discrete characterization of B^^.j.

Let (an) be any bounded sequence in A. We are going to show that (Tan) has a
convergent subsequence in B^a ̂  l;J.

By the compactness assumption, we can find a subsequence (an>) of (an) such
that (Tan) converges in Bk for_ all l^k^N with ki=j,j + l. Let us see that
(Tan) is a Cauchy sequence in Biap)tl.j.

Given any e >0, using the same argument as in the proof of Theorem 2.5, we
can choose t > 0 and s > 0 such that

max{2CLf*>-V'-", 2CLf^~ V+'-"} ^ e,
where

L = sup{||r«J|fl/: neN, l^j^N}.
Then, by (9), we get

\\Tan> - Tam.\\iotfP)>1.j

^ - V ' ^ \\Tan. - Tam.\\B., G * ' " " V ^ " ' \\Tan. - Tam.\\Bj+l,

max {C^-asy^\\Tan.-Tam.\\Bk)\

, max {C^-asy^ \\Tan. - Tam.\\Bk}].
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Choosing n' and m' big enough so that

max {ax'-s»-p\\TaH.-Tam.\\Bk}*e

now gives that

\\Tan.-Tam.\\itttp)tlij*Z£.

This shows the compactness of T: A-^B{a^<UJ.

Combining Theorem 4.3 and Theorem 1.3, we derive

COROLLARY 4.4. Under the same assumption as in Theorem 4.3, the operator

T: A-*B(aP)q.K

is also compact.

5. Admissible polygons

Our next aim is to get rid of the assumption that one of the N-tuples reduces to
a single Banach space.

For the case of the classical real method for couples, this was done in [8] using
the description of the real method as an Aronszajn-Gagliardo functor. The key
of this approach is the fact that on the couple (llt /i(2~y)) (and (/«,, /00(2~y))) we
can consider the operators {Pn}™=i, {Qn}™=i arjd {Qn}™=i defined by

P£ = (..., 0, 0, §_„ , . . . , S - i , So, Si, -.., S«, 0 , . . . ) ,

G;TS = ( - , o,o, S»+i, S«+2,...),

and

e;S = (.-.,S—2, S-»-i, o,o,...),
for any sequence | = (..., £_2, £_i, | 0 , §i> l?2> •••)> and these operators satisfy the
following conditions:

(I) they are uniformly bounded and Pn maps lx + /i(2"y) to lx n /i(2~y) for
each n e N;

(II) the identity operator / on (llf /i(2~y)) can be decomposed as

(III) the sequence of norms

{IIGJlkLp-/)}"-!, {\\Qn\\lt(2->),lt}n = l
converges to 0 when n —> ».

The characterization of / - and ^-spaces in terms of Aronszajn-Gagliardo
functors, given in Theorem 3.3, suggests that in our multidimensional context we
should work with the Af-tuples

{ll(2~mx'~ny')}jLi (and {U2~mx>~ny>)}"=x).

Moreover, in order to be able to use Corollary 2.6, given any v e N we should
construct projections {G/}i«/=sw such that a condition of the following type is
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satisfied: given any QJ and any vertex Pk of IT with ki=j,j + l (Pjf PJ+l being
again adjacent vertices) one has (writing L^i) for /1(2~mx'""#w))

or

Assuming that each projection QJ is defined in the more natural way, that is,
making all coordinates of § equal to 0 except for those %m>n when (m, n) belongs
to a certain subset RJ of U2, we are led to the following question:

(T) Is it true that for each v e N there is a covering {RJ}i*j*N of a
neighbourhood of the point «> in U2 such that, given any l^j^N and any
l^k^N with k =£;, / + 1, then one of the following conditions holds:

(1°) {{m, n), Pk-Pj)^-v for any (m, n) e RJ, or
(2°) <(m, n), Pk - PJ+l) ^ - v for any (m, n) e /?/?

Let us check that the answer to (T) is 'yes' in some important cases.

EXAMPLE 5.1. If II is the simplex with vertices Pi = (0, 0), P2 = (l,0), P3 =
(0,1), then given any v e fol we write

R\={(u,w)eU2: w^-v}, RZ={(u, w)eU2: u^v}

and
R%={(u, w)eU2: u-w^-v}.

Then, given any j = 1, 2, 3 and taking k=j — \, we have

((u,w),Pk-Pj)^-v for any (u, w) e RJ.

Moreover, {/?/}i«y<» is a covering of the point °° as the picture in Fig. 5.1 shows.

FIG. 5.1
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EXAMPLE 5.2. Now let II be the unit square with vertices Px = (0,0),
P2 = (1, 0), P3 = (1, 1), P4 = (0, 1). Given any v e N we put

R\={(u, w)eU2: w^-v}, R$= {(u, w)eU2: u^v},

Rl = {(u, w) € U2: w s* v}, Rl = {(u, w) eU2: u^ - v}.

Then it is not hard to check that for any two vertices Pj, Pk with k =£/, j + 1, one
has (1°) or (2°). Again {Rf}^** is a covering of » as the picture in Fig. 5.2
indicates.
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FIG. 5.2

Next we show that the answer to (T) is also 'yes' for a wide class of polygons.
In what follows, n = Px... PN denotes a convex polygon in the affine plane U2,

with vertices {PJ}JLI. For / > N or j < 1, we put

Pj = Ph if / a / 0 (mod A0, 1 =s/o ^ N.

DEFINITION 5.3. The convex polygon n is said to be admissible if for each edge
PjPj+i (j = l,...,N) there is another PkPk+l satisfying the following two
conditions:

(a) the extension of the segment PjPk+l in the direction of Pf meets the
extension of PJ+1PJ+2 in the direction of Pj+1; and

(b) the extension of the segment Pj+xPk in the direction of Pj+l meets the
extension of Pj-iPj in the direction of Pj.

See Fig. 5.3.

EXAMPLE 5.4. If n is a regular polygon with at least five edges, then it is clear
that II is admissible.
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FIG. 5.3

For admissible polygons, (T) has also a positive answer as the next theorem
shows.

THEOREM 5.5. Let U be an admissible polygon. Then for each v e N there is a
covering {RJ}\^J<SN °fa neighbourhood of the point °° in R2, formed by closed sets
such that given any vertices Pj,PkeTl with k^j,j + \, then one of the two
following conditions holds:

(1°) <(M, W), Pk - Pj) ^-vfor any {u, w) e RJ, or
(2°) <(«, w), Pk - Pj+1) ^ -vfor any (u, w) € RJ.

Proof. Given v e f̂ J, put

RJ= {(M, W): <(U, W), P,-X - Pj) «s - c v }

where c is a sufficiently large positive constant that will be fixed later.
Since n is admissible, given PJPJ+I there is another edge PkPk+l satisfying

Conditions (a) and (b). We may assume that, for example, k>j. Now let
l^h^N with h±j,j + \. Then iij + Kh^k, the vector Ph -Pj+1 belongs to

FIG. 5.4
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the positive cone generated by Pj-X - Pj and Pj+2 — Pj+\, while if h 2* k + 1, then it
is the vector Ph - Pj which belongs to such a cone. See Fig. 5.4.

Hence there are non-negative real numbers och = ochi and fih = f}hj with
<*H + Ph > 0 and

Ph - PJ+l = * „ ( / } _ ! - Pj) + ph(PJ+2 - PJ+X) if h ^ k

or

Let

Ph-Pj= a.iPj-r - Pj) + ph(PJ+2 -PJ+l) if h ^ k + 1.

1
c ^

minhJ (ahtJ

(u, W), Py + 2 -

It remains to check that {/?/}i«/«vv is a covering of the point » . Let /?/ and /?/+,
be any two adjacent sets. Let y be the angle between the edges PJPJ+I and
Pj+iPj+2- Since 7?/ has an edge which is orthogonal to PJ+lPj+2, and RJ+l another
one orthogonal to PJPJ+I, it follows that the angle between such edges is also y
(see Fig. 5.5).

Then we have if, for example, h^j and (M, W) e RJ,

<(M, W), P , " Pj) = Ofc<(K, W), Pj., - Pj) + j8fc

^ — ahcv — j8/,cv ^ — v.

FIG. 5.5
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Therefore the intersection between RJ and RJ+1 is not empty. This completes the
proof.

EXAMPLE 5.6. In the case of a regular hexagon or a regular octagon we have
drawn the boundary of the neighbourhood of °o in question with the help of the
computer program Mathematica using the general construction in Theorem 5.5.
The results are shown in Figs 5.6 and 5.7.

FIG. 5.6 FIG. 5.7

Let Sv be the bounded subset of U2 which we should add to the sets {/?/}
in Theorem 5.5 to obtain a covering of the whole ofU2,

Also, put

and :, for

Then, for each v e N, {Sv, K\,..., KV
N} is a partition of U2.

Next, given any v e N and any sequence | = (§„,,„), we define

F I = (Mm,«) where ^ m n = ' ^
10 otherwise,

and, for y = 1, . . . , N,

e vf- / \ u f̂ wrt if (w, «) 6/L/,

/§ = (Pm,J where pm>n= ' / y

10 otherwise.
It follows from Theorem 5.5 and the previous discussion that the sequences of

operators {Fv}ve(^ and {QJ}i^N,veN satisfy the desired conditions (the multi-
dimensional analogues of (I), (II) and (III)). Let us state them with precision.

THEOREM 5.7. Let Il = Pl... PN be the simplex, the unit square, or any
admissible polygon, let {Fv}veN and {G/li^y^veN be the sequences defined
above, and consider the Banach N-tuple ~lx = {/i(2~mr>~liy>)}j!1 where Pj = (*y, _yy),
1 =*; =s N. Then these sequences of operators have the following properties on lx.
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(i) They are uniformly bounded in llt

sup{||Fl7Ii7l, HG/llu: U/^iV,v6N

and Fv maps S ^ ) to A(/}) for each veN.
(ii) The identity operator I on U can be decomposed as

7 = 1

(iii) Letl^j^N and letl^k^N with k*j,j + l. Then one has either
(a) for any veH, QJ maps /1(2~mx*-^) to WT^i) and the sequence of

norms {||<2/lk(*).M/)}v=i> where Ll(i) = ll(2-mx>-ny<), converges to 0 when
V—»oo; or

(b) for any veN, QJ maps Itf-™*-"*) to /1(2-wur/+>-'l»+') and the sequence of
norms {||G/||z.I(*)fLI(/+i)}v=i converges to 0 when v-»oo.

Conditions (i), (ii), (iii) remain true if we replace the N-tuple Jx by L =

6. General compactness results

In this final section we prove the compactness results for general AMuples
without any approximation condition on them. We shall follow the approach
developed in [8]. We start with the /-method.

THEOREM 6.1. Let H = Pl...PN be the simplex, the unit square, or any
admissible polygon, let (a, )3) e Int n and 1 ^ q ^ » . Assume that A =
{Ax, ..., AN} and B = {Bx, ..., BN) are Banach N-tuples, and that T: A^*B is a
linear operator such that, for any 1 ^y =s N, T: Aj—> B} is compact. Then

T'. ^(a-,0),?;/-* B{a,fi),q;J

is also compact.

Proof. By Theorem 3.3 we have

G(A) = P

and

G{B) =

Here (xj, y,) are the coordinates of the vertex />• for each 1 ^y; ^ N.
According to Theorem 5.7, there exist sequences of projections {Fv}veN and

{G/}i«/*w.v6iM on the N-tuple {/1(2-mjt'-">'0}y-l1 satisfying Conditions (i), (ii) and
(iii). These operators can be extended in a natural way to the N-tuple
l\ - {l\[l\Q~mx'~ny')\} (m t n e notation of § 3) by defining the image of a summable
family (£$) as the family (QJ%s) formed by the images of its elements. The new
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maps (denoted by the same letters) still preserve Properties (i), (ii). and (iii), as
can easily be checked.

Let n be the operator introduced in the definition of the functor G. Then
clearly

T: A{a>p)>q;J-+ B(a>P)>q.j is compact

if and only if

f = TJZ: lx[lq{2-am-fin)\^ G(B) is compact.
In order to show the compactness of f consider the following diagram of

bounded operators (again we write Lx(j) for lx(2~mx>~nyi))\

G(JX) - ^ p lx[Lx(j)] c—> lx[Lx(j)]
7 = 1

The assumption on T and Theorem 4.3 imply that the sequence (7FV: G(lx)
G(B)) is formed by compact operators, we claim that

f: G(lx) = G({/1[/1(2-'"'-"'0]})-» G(B)

is the limit of a subsequence (TFV) of (TFV).
In fact,

fII ? - TFv\\G{ll)tG{§)^f,

and so to prove our claim, we must show that there is a subsequence (v') such
that, for each l^j^N, one has

(10) l|fG7'llo(7I).o(a)->0 asv '^oo.

Fix l^j^N and choose any k such that l^k^N and k^j,j + l. It follows
from the fact that

that there are a subsequence (TQJ1) of (TQJ) and a bounded sequence
(Iv.) <= lx[lx(2~mXk~nyk)] such that the sequences

(l|fG71ll/lIi.1(*)l.Bj and (||fQ7'iVl||aJ

both converge to the same number, say A.
Since ((2/'£Vl) is a bounded sequence in lx[lx^l~mXk~nyk)\, the compactness of

f: lx[h(?TmXk~Hyk)\-*Bk

implies, by passing to another subsequence if necessary, that (fQJ2f-V2) converges
to some element, say b, in Bk. Thus 11611̂  = A.

By Condition (iii), we derive that (TQJ2!;V2) converges to 0 in 2(5). Whence
A = 0.
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Consequently, we can find a subsequence (TQJ) of (TQJ) such that

for any l^k^N, k^j,j + \. Applying Corollary 2.6, we see that such a
subsequence satisfies

f ' > 0 asv'->oo,

and this proves (10).
So far, we have established that

f:
is compact. To complete the proof, we have only to realize that

This embedding can be verified by applying the same argument as in [8, Lemma
2.1].

Combining Theorem 6.1 and Theorem 1.3, we get

COROLLARY 6.2. Under the same assumption as in Theorem 6.1, the operator

T: A(atP)>q.j^ Bia>P)i(}.K
is also compact.

In what follows, we will deal with the AT-method exclusively.
Given any Banach Af-tuple A = {Ax,..., AN), we denote by ^4°= {A°x, ..., A%}

the Banach N-tuple formed by the closures of Ao n Ax in Ajt for 1 =£y =s N.
In the case of the classical real method, it follows easily, from the equivalence

between the /- and ^-methods, that

(Ao, Ax)e g = {AQ, AI)0 q.

In our multidimensional context, such equivalence fails, so it is not clear that

holds in general. In fact, this is not the case. Consider the 'diagonally equal'
4-tuple A = {lu L, L, / J . Clearly ^4°= {lx, c0, c0, / J . But applying the Fernan-
dez ^-method (Example 1.2) with ar = /3 = 2 and q = (X>, one has (see [10,
Example 1.25])

We end the paper by describing the behaviour of compact operators under the
multidimensional JC-method. We again use the notation introduced in § 3.

THEOREM 6.3. Let U = P1...PN be the simplex, the unit square, or any
admissible polygon, let (a, /S) € Int n and l^q^oo. Assume that A =
{Alf ..., AN} and B = {Bx, ..., BN) are Banach N-tuples, and that T: A-*B is a
linear operator such that, for any l^j ^N,

T: Aj-* Bj is compact.
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Then

T- A0 _». R°

is also compact.

Proof. First of all, note that, for any 1 ss/ =£ vV,

T: A^BJ
is still compact.

According to Theorem 3.3, we have this time

H(A°) =

and

H(B°) = , i , P U i

Let {Fv}veN and {QJ}I^J^N,V€N be the sequences of operators on the N-tuple
{/oo(2~m*'~'iy')}>!Li given by Theorem 5.7. Extend them in the natural way to the
AMuple L={L[L(2-mxi-n*)]}jLu and observe that Properties (i), (ii), (iii)
still hold.

Put f = iT. We have that

T: A°(<XtPU.K^ B°ia,f}U;K is compact

if and only if

f = iT: G(A0)-^L[lq(2-am-pn)] is compact.

With the aim of showing that f is compact, and letting L.(y) = /Oo(2"mAr'~">''),
consider the diagram

A

Applying Theorem

Next we show that

Since

4.1

the

t
—> L[L(

, we get

JU)Y

.(AO:
that

Fvf'- H(A°\

sequence (F

f: /

\\T-FvT\l

\
c

iy

, for

vf)

* N

any veN,

/(L) is compact,

converges to
()-»//(L).

N
• v i

II Q I ^ T ' I U M 0 ) , «(/„)>

it suffices to see that each term to the right goes to 0 as v—»°°.
Take any l^yss/V and let l=sfc=£/V with Jfc=£/,/ + l. Since T: A°k-* B°k is

compact, given any e > 0 , we can find a finite subset {alt..., ap} c= A(A°) with
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, and such that for any aeA°k with | |a |Uo^l, we have

min

where C is the constant of Condition (i). Hence, given any a eA°k with ||fl|Uj^ 1,
we obtain

\\Qjta\\L[Uk)]^ \\QJ(Ta - tar)\\L[uik)] + \\Q]ta,\\uum

^ 2£ + \\Qj\\lJLLjUc)].IJLLJU)] l l ^ r l l l

and the last term can also be made smaller than \e by taking v sufficiently large
(Condition (iii)).

Then

for all 1 =£k«sN with k=frj,j + \, and consequently, by Corollary 2.6,

\\Qif\\H{A%HCu)-^^ asv->«>.

Thus

t: H(A°)^>H(L) is compact.

A reasoning similar to the one in [8, Lemma 3.1] now gives that

Whence

t:
is also compact. This completes the proof.
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