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Abstract

We propose a novel framework that combines penalization techniques with Partial
Least Squares (PLS). We focus on two important applications. (1) We combine
PLS with a roughness penalty to estimate high-dimensional regression problems
with functional predictors and scalar response. (2) Starting with an additive model,
we expand each variable in terms of a generous number of B-Spline basis functions.
To prevent overfitting, we estimate the model by applying a penalized version of
PLS. We gain additional model flexibility by incorporating a sparsity penalty. Both
applications can be formulated in terms of a unified algorithm called Penalized
Partial Least Squares, which can be computed virtually as fast as PLS using the
kernel trick. Furthermore, we prove a close connection of penalized PLS to precondi-
tioned linear systems. In experiments, we show the benefits of our method to noisy
functional data and to sparse nonlinear regression models.
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1 Introduction

The problem of high dimensionality in statistical data analysis has been tack-
led in many ways. Two generic strategies are (a) the reduction of the dimen-
sionality of the data by selecting variables or derived components and (b) the
regularization of the estimation process by imposing penalty terms that in-
corporate additional knowledge about the data. In this paper, we propose a
combination of the dimensionality reduction technique Partial Least Squares
with a penalization framework. Our motivation stems from two important
applications, namely the smoothing of functional data and the estimation of
additive models.
We speak of functional data [30] if the observed predictors are (discrete obser-
vations of) curves. Throughout this paper, we consider the case of functional
predictor variables and scalar response variables. An important example in the
context of chemometrics is near infra red (NIR) spectroscopy. The spectrum
of a sample can be interpreted as a discretized function of the wavelength.
Typically, the task is to predict a continuous response (e.g. the amount of fat)
based on the spectrum of a sample. The number of wavelengths is typically in
the range of a few hundreds, thus yielding a very high-dimensional regression
problem. Consequently, some sort of regularization is needed. The standard
approach in functional data analysis is to regularize the estimation process by
imposing smoothness conditions, e.g. by penalizing the curvature of the func-
tions. This penalization strategy typically yields smooth regression coefficients
and is particularly beneficial if the measurements of the curves are noisy or
if the observations are not measured at equidistant points. It is also common
to represent the spectra in terms of basis functions as B-Splines or wavelets
[22,4,26] before applying regression techniques [32,36]. A different approach
is to use dimensionality reduction techniques such as Partial Least Squares
(PLS) [42,43]. The main idea is to build a few components from the predictor
variables and to regress y on these components. As an additional benefit, the
derived components can be used for visualization and interpretation.
In this paper, we propose a combination of the penalization approach and
PLS by adding a multiplicative penalty term to the optimization criterion of
PLS. This is an extension of functional principal component analysis [39] to
a supervised setting. The new method shares a lot of properties of PLS and
its computation requires virtually no extra costs. In particular, we derive a
so-called kernel representation of the method, that scales with the number of
observations and not with the number of variables. More precisely, we prove
that penalized PLS is equivalent to ordinary PLS using a generalized inner
product that is defined by the penalty term.
A combination of PLS with penalty terms was first proposed in Goutis and
Fearn [10] for data derived from NIR spectroscopy. More precisely, they suggest
to incorporate an additive penalty term that leads to an eigenvalue problem
for each PLS component. Compared to our approach, this is computationally
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less efficient, moreover, it is – to our knowledge – not possible to derive a
kernel representation. Goutis and Fearn [10] report that in experiments, the
incorporation of a penalty term does not increase the performance of PLS on
spectral data. This originates from the fact that the data considered in [10]
are measured at equidistant points and smooth. In section 5, we illustrate in
a simulation study that if these conditions do not hold, penalized PLS leads
to considerably better predictions than PLS.
We highlight the close connection between penalized PLS and preconditioned
linear systems. It is already known that PLS is equivalent to the conjugate
gradient method [12] applied to the set of normal equations associated to a
linear regression problem. We prove that penalized PLS corresponds to a con-
jugate gradient method for a preconditioned set of normal equations, where
the preconditioner depends on the penalty term.
The second important application of our novel framework combining PLS di-
mensionality reduction with regularization is the estimation of additive mod-
els. Nonlinear regression effects may be modeled via additive models of the
form

Y =β0 + f1(X1) + . . . + fp(Xp) + ε , (1)

where the functions f1, . . . , fp are represented in terms of basis functions [11].
To prevent overfitting, there are two general approaches. In the first approach,
each function fj is the sum of only a small set of basis functions,

fj(x) =
Kj∑

k=1

βkjBkj(x) . (2)

The basis functions Bkj are chosen adaptively by a selection procedure. In the
second approach, we allow a generous number Kj ≫ 1 of basis functions in
(2). As this usually leads to high-dimensional and highly correlated data, we
penalize the coefficients βjk in the estimation process [9]. An efficient variant is
introduced in [44,45]. The smoothing parameters are estimated via a gradient
descent on a generalized cross-validation score.
As a linear approach, PLS probably fails to yield high prediction accuracy
in the case of nonlinear relationships as in (1). Therefore, it is necessary to
transform the original predictors prior to a PLS regression. This approach has
been proposed in two different variants. The first method [8] is based on a
variant of PLS that is computed via an iterative algorithm. This approach
incorporates spline transformations of the predictors within each iteration of
the iterative algorithm. In contrast, the method proposed by Durand [7] is
global. The predictors are first transformed using spline basis functions as a
preliminary step, then PLS regression is performed on the transformed data
matrix. The choice of the degree of the polynomial pieces and of the number
of knots is performed by an either ascending or descending search procedure
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that is not automatic.
For large numbers of variables, this search procedure is computationally in-
feasible and might overfit the data. As a second application of the penalized
PLS methodology presented in this article, we suggest to combine it with the
penalty strategy of Eilers and Marx [9] in the context of additive regression
models. We transform the initial data matrix nonlinearly using B-spline basis
functions. We then apply penalized PLS to the transformed data by penalizing
the (higher order) differences of weight vectors. As the estimated regression
coefficients are linear combinations of the smoothed weight vectors, the ob-
tained function is smooth as well. We introduce more flexibility by adding a
sparsity constraint, which leads to nonlinear variable selection for the additive
model (1). We illustrate the usefulness of this new method on a data set from
sensometrics.
The proposed methods are implemented in the R-package ppls [17] that is
publicly available at http://cran.r-project.org.

2 Background

In this section, we briefly recapitulate the main techniques that are needed
in the rest of the paper. We start with the smoothing based approaches for
functional data (Subsection 2.1) corresponding to our first application and
regression splines (Subsection 2.2) corresponding to our second application,
and then introduce the Partial Least Squares approach (Subsection 2.3).

2.1 Roughness Penalties for Functional Data

In a nutshell, we speak of functional data [30] if the variables that we observe
are discrete observations of curves. We focus on the case that the predictor
variables X1, . . . , Xp are measurements of curves x : T → R at p distinct points
t1 < . . . < tp in the interval T . The n observed functions xi : T → R (with
i = 1, . . . , n) are then represented by vectors xi ∈ R

p via

xi =(xi(t1), . . . , xi(tp))
⊤ . (3)

For each curve xi, we observe a scalar response yi ∈ R. The corresponding
linear regression model is given by

Yi = β0 +
∫

T

β(t)xi(t)dt + εi ,
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with β : T → R. We can transform this into a multiple regression prob-
lem by estimating β(t) at the discrete points t1, . . . , tp, i.e. we estimate β =

(β(t1), . . . , β(tp))
⊤. As this leads to a high-dimensional regression problem,

the ordinary least squares criterion

β̂ols =argminβ ‖y − β01n − Xβ‖ (4)

(with y = (y1, . . . , yn) and X = (x1, . . . , xn)
⊤) is regularized by imposing

a roughness penalty on β(t). Typically, the curvature of β, i.e the squared
second derivative of β(t), is penalized. This penalty term can be approximated
in terms of β by computing the second order differences of the coefficients.
For points t1 < . . . < tp, the penalty is given as

P (β) ≈ λβ⊤ (Dp−2Dp−1)
⊤ (Dp−2Dp−1) β = λβ⊤Pβ , λ ≥ 0 .

Here, the (K − 1) × K matrix DK

DK =




h1 −h1 . . .

. h2 −h2 . .

. . . . .

. . . hK−1 −hK−1




, hj =
1

tj − tj+1
(5)

defines the first order difference operator. Note that for equidistant measure-
ments, hj does not depend on j and in this case, we assume that hj = 1. We
remark that the penalty matrix λP is positive semi-definite. The roughness
penalty λβ⊤Pβ is added to the ordinary least squares criterion (4). The scalar
λ ≥ 0 controls the amount of smoothing. The penalization strategy is particu-
larly beneficial if the observations (3) of the curves are noisy or if the discrete
observations are not measured at equidistant points. To retrieve a function
β̂ : T → R from the discrete estimates β̂, one typically uses smoothing tech-
niques.

2.2 Penalized Regression Splines

The basic concept of penalized regression splines is to expand each predictor
variable Xj in basis functions as in (2) and to estimate the coefficients by
penalization techniques. As suggested by Eilers and Marx [9], B-splines [6] are
used as basis functions yielding so-called P-splines (for penalized B-splines).
Splines are one-dimensional piecewise polynomial functions of a certain degree
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d that are joined at a set of knots. For a given variable Xj, we consider a set of
K corresponding B-spline basis functions B1j , . . . , BKj. These basis functions

define a nonlinear map Φj(x) = (B1j(x), . . . , BKj(x))⊤ . By performing such
a transformation on each of the variables X1, . . . , Xp, an observation vector x̃i

of the original variables turns into a vector

xi = (B11(x̃i1), . . . , BK1(x̃i1), . . . , B1p(x̃ip), . . . , BKp(x̃ip))
⊤ = Φ(x̃i) (6)

of length pK. Here Φ = (Φ1, . . . , Φp) is the function defined by the B-splines.
The resulting data matrix obtained by the transformation of the original ob-
servations is denoted by X ∈ R

n×(pK). Cubic splines (i.e. d = 3) are the most
widely used splines.
The estimation of (1) is transformed into the estimation of the intercept β0

and the pK-dimensional vector that consists of the coefficients βjk:

β⊤ = (β11, . . . , βK1, . . . , β1p, . . . , βKp) =
(
β⊤

(1), . . . , β
⊤
(p)

)
.

Hence, the nonlinear additive function in (1) can be written as f = β0 +x⊤β.
As the transformed data are usually high-dimensional, the estimation of β by
minimizing the squared error (4) typically leads to overfitting. Following [9],
we use for each variable many basis functions, say K ≈ 25, and estimate by
penalizing the squared second derivative of the function f . Eilers and Marx
[9] show that the following difference penalty term is a good approximation of
the penalty on the second derivative of fj ,

Pj

(
β(j)

)
= λjβ

⊤
(j)(DK−1DK)⊤DK−1DKβ(j) .

The matrix DK of first order differences of adjacent parameters is defined
in (5) with hj = 1. Hence, we penalize the second order differences for each
vector β(j). The penalty term Pj coincides with the roughness penalty term
for functional data introduced in Section 2.1 in the case of equidistant mea-
surements.
Setting K2 = (DK−1DK)⊤DK−1DK , we conclude that the penalty term
equals

P (β) =
p∑

j=1

Pj

(
β(j)

)
= β⊤(∆λ ⊗ K2)β = β⊤Pβ . (7)

Here ∆λ is the p × p diagonal matrix containing λ1, . . . , λp on its diagonal
and ⊗ is the Kronecker product. The generalization of this method to higher-
order differences of the coefficients of adjacent B-splines is straightforward.
Note furthermore that P is a block-diagonal and symmetric matrix that is
positive semi-definite.
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2.3 Partial Least Squares

If the number n of observations is small compared to the number p of predictor
variables, ordinary least squares (OLS) regression usually fits the training data
perfectly and one cannot expect the fitted model to perform well on a new
data set. Partial Least Squares (PLS) [42,43] is an alternative regression tool
which is more appropriate in the case of highly correlated predictors and high-
dimensional data. PLS is a standard tool e.g. for analyzing chemical data [23],
and the success of PLS has lead to applications in other scientific fields such
as chemoinformatice, physiology or bioinformatics [37,35,2].
The main idea of PLS is to build orthogonal components t1, . . . , tm from the
data X and to use them as predictors in a least squares fit (4). There are
different PLS techniques to extract these components, and each of them gives
rise to a different variant of PLS. It is not our aim to explain all variants
(an we refer to an overview of different forms of PLS in [33]). A component
is a linear combination of the original predictors that hopefully reflects the
relevant structure of the data, and PLS extracts components that have a large
covariance with y. We now formalize this concept. A latent component t is a
linear combination t = Xw of the predictor variables. The vector w is called
the weight vector. We want to find a component with maximal covariance
to y, that is, for the first component t1 = Xw1 we maximize the empirical
squared covariance

w1 = argmaxw

cov2 (Xw, y)

w⊤w
= argmaxw

w⊤X⊤yy⊤Xw

w⊤w
. (8)

The solution of (8) is unique up to a scalar and equals w1 = X⊤y. Subsequent
components t2, t3, . . . are chosen such that they maximize (8) subject to mu-
tual orthogonality of all components ti. This can be achieved by deflating the
original predictor variables X. That is, we only consider the part of X that
is orthogonal to all components tj, j < i. For any matrix V , let us denote by
PV the orthogonal projection to the space that is spanned by the columns of

V . In matrix notation, we have PV = V
(
V ⊤V

)+
V ⊤ . Here, the superscript

”+” denotes the Moore-Penrose inverse. The deflation of X with respect to
the components t1, . . . , ti−1 is defined as

Xi = X − Pt1,...,ti−1
X = Xi−1 − Pti−1

Xi−1 . (9)

For the computation of the ith component, X is replaced by Xi in (8). This
method is called the NIPALS algorithm [42], and is summarized in algorithm
1. In order to obtain the response for new observations, we have to determine
the vector of regression coefficients β̂m that are defined via

ŷm = Pt1,...,tm
y = Xβ̂m .
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Algorithm 1 NIPALS algorithm

Input: X1 = X, y, m
for i=1,. . . ,m do

(a) wi = X⊤
i y (weight vector) (b) wi = wi/‖wi‖ (normalization)

(a) ti = Xiwi (component) (b) ti = ti/‖ti‖ (normalization)
Xi+1 = Xi −Pti

Xi (deflation)
end for

This can be done efficiently [20]. More details are discussed in Section 3.
We note that de Jong [14] introduced the SIMPLS algorithm for PLS which
avoids the explicit deflation step (9). The optimization criterion for the weight
vectors wj is

wj = argmax
w

cov2 (Xw, y)

w⊤w
subject toXwj ⊥ Xwi , i < j . (10)

For univariate response vectors y, both algorithms – NIPALS and SIMPLS –
are equivalent.

3 Penalized Partial Least Squares

We now introduce a general framework to combine PLS with penalization
terms. Functional data analysis and additive models with splines are the two
main motivating applications which we consider in this article. However, our
method is not limited to these particular cases. For this reason, we only assume
that P is a symmetric positive semi-definite matrix.

3.1 General Framework

We modify the optimization criterion (8) of PLS in the following way. The
first component t1 = Xw1 is defined by the solution of the problem

argmaxw

w⊤X⊤yy⊤Xw

w⊤w + w⊤Pw
. (11)

We obtain w1 = MX⊤y with M = (Ip + P )−1 . Subsequent weight vec-
tors and components are computed by deflating X as described in (9) and
then maximizing (11) with X replaced by Xi. In particular, we can com-
pute the weight vectors and components of penalized PLS by simply replacing
wi = X⊤

i y by wi = MX⊤
i y in algorithm 1. This leads to the penalized PLS

algorithm 2.
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Algorithm 2 Penalized PLS algorithm

Input: X1 = X, y, m, P

M = (I + P )−1

for i=1,. . . ,m do

(a) wi = MX⊤
i y (weight vector) (b) wi = wi/‖wi‖ (normalization)

(a) ti = Xiwi (component) (b) ti = ti/‖ti‖ (normalization)
Xi+1 = Xi −Pti

Xi (deflation)
end for

Let T = (t1, . . . , tm) and W = (w1, . . . , wm) denote the matrices of com-
ponents and weight vectors that are defined by the penalized PLS algorithm
2. The following proposition shows how to compute the vector of regression
coefficients for penalized PLS.

Proposition 1 The matrix

(Rm =) R =T⊤X W

is upper bidiagonal, that is rij = t⊤i Xwj = 0 if i > j or i+1 < j. The matrix

R is invertible. Furthermore, setting D̃ = diag(1/‖t1‖, . . . , 1/‖tm‖), we have

XW =
(
TD̃

) (
D̃R

)
. (12)

In particular, the columns of T and the columns of XW span the same space,
and the penalized PLS regression vector obtained after m steps is

β̂m = WR−1T⊤y . (13)

This is an extension of a result for ordinary PLS that can be found e.g. in [20].
Note that (12) is in fact the QR-decomposition of XW .
This result is beneficial for two reasons. First, the inverse of R can be com-
puted very fast as the matrix is upper-triangular. Second, for all PLS compo-
nents i ≤ m the inverse of Ri is simply the submatrix of the inverse of Rm

that consists of the first i rows and columns. Combining this result with the
PLS algorithm 2, we obtain the penalized PLS algorithm 3. Furthermore, (13)
shows that the regression vector is a linear combination of the weight vectors
wi. Hence a smoothing of the weight vectors leads to smooth estimates of β.

It is also possible to derive penalized PLS with the help of the SIMPLS al-
gorithm by replacing the covariance by the penalized covariance in criterion
(10). As we consider a univariate response, both methods can be shown to be
equivalent [16].
We now illustrate the influence of the penalty term λP and the number m
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Algorithm 3 Penalized PLS algorithm

Input: X1 = X, y, m, P

M = (Ip + P )−1

for i=1,. . . ,m do

wi = MX⊤
i y (weight vector)

ti = Xiwi (component)
Xi+1 = Xi −Pti

Xi (deflation)
end for

L =
(
T⊤XW

)−1
(inverse of Rm)

for i=1,. . . ,m do

Li (first i rows and columns of L)
β̂i = (w1, . . . , wi) Li (t1, . . . , ti)

⊤
y (regression vector)

end for

of components for B-Spline transformations with one predictor. The BOD
(biochemical oxygen demand) data set [21] consists of six measurements. The
predictor variable is the time of measurement, the response variable is the
biochemical oxygen demand. This data set is part of the R software [29]. We
use penalized PLS on the B-spline transformed data. We fix the number of
knots to 25 and choose cubic splines, i.e. d = 3. In Figure 1 we plot the fitted
functions obtained from penalized PLS for different numbers of components
(from left to right: 1, 2, 3) and different values of the smoothing parameter λ
(from top to bottom: λ = 2000; 20; 0). If we compare the results for different
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Fig. 1. Penalized PLS for different numbers of components (from left to right: 1; 2; 3)
and different values of the smoothing parameter λ (from top to bottom: 2000; 20; 0).

values of λ (i.e. from top to bottom) we see that the penalty term indeed con-
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trols the curvature of the functions. With no penalization (bottom line), the
model already overfits for one PLS component. Moreover, the number of PLS
components also controls the smoothness of the estimated functions. For small
values of m, the obtained functions are very smooth. For higher values of m,
they adapt themselves more and more to the data, which leads to overfitting.
To summarize, the two model parameters influence the shape of the functions
in opposite directions. High values of λ and low values of m lead to smooth
functions.

3.2 Kernel Representation of Penalized Partial Least Squares

The computation of the penalized PLS estimator as presented in algorithm
3 involves matrices and vectors of dimension p × p and p respectively. If the
number of predictors p is very large, this leads to high computational costs.
In this subsection, we show that we can represent this algorithm in terms of
a so-called kernel matrix (of dimension n × n) and y. This strategy is known
as the kernel trick [38,25]. Note that kernel versions of PLS have been derived
in [31,34].
We define the n×n kernel matrix KM = (〈xi, xj〉M) = XMX⊤ . It consists
of the inner product of observations xi and xj, where the inner product is
defined via the positive definite matrix M . The key is to find a representation
β̂m = MX⊤α̂m of the regression vector in terms of kernel coefficients α̂m ∈
R

n. This can be accomplished by noting that

wi = MX⊤
i y = MX⊤ (In − PT ) y = MX⊤ (y − ŷi−1) = MX⊤ui

with ui = y−ŷi−1 defined as the residuals in each step. Furthermore, it follows
from the bidiagonality of R that

ti = Xiwi =
(
In − Pti−1

)
Xwi =

(
In −Pti−1

)
KMui .

Finally, we have R = T⊤XW = T⊤KMU with U = (u1, . . . , um). We can
now derive algorithm 4 for the kernel coefficients.

The kernel algorithm 4 reveals that penalized PLS equals ordinary PLS with
the canonical inner product replaced by the inner product 〈x, z〉M = x⊤Mz .
Why is this a sensible inner product? Let us consider the eigen decomposition
of the penalty matrix, P = SΘS⊤. We prefer direction s such that s⊤Ps

is small, as these directions are smooth. Hence, we prefer directions that are
defined by eigenvectors si of P with a small corresponding eigenvalue θi. If
we represent the vectors x = Sx′ and z = Sz′ in terms of the eigenvectors of
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Algorithm 4 Kernel Penalized PLS algorithm

Input: X1 = X, y, m, P

M = (Ip + P )−1, KM = XMX⊤, ŷ0 = t0 = 0

for i=1,. . . ,m do

ui = y − ŷi−1 (residuals)

ti =
(
In −Pti−1

)
KMui (component)

ŷi = ŷi−1 + Pti
y (fitted values)

end for

L =
(
T⊤KMU

)−1
(inverse of Rm)

for i=1,. . . ,m do

Li = first i rows and columns of Lm

α̂i = (u1, . . . , ui) Li (t1, . . . , ti)
⊤

y (kernel coefficients)
end for

P , we conclude that

〈x, z〉M = (x′)
⊤

(Ip + Θ)−1
z′ =

p∑

i=1

1

1 + θi

x′
iz

′
i .

This implies that directions si with a small eigenvalue θi receive a higher
weighting than directions with a large eigenvalue.

3.3 Penalized Partial Least Squares and Krylov Subspaces

It is well-known that PLS is closely connected to Krylov subspaces and con-
jugate gradient methods. Quite generally, linear regression problems can be
transformed into algebraic problems in the following way. The OLS estimator
is the solution of the minimization problem (4). This is equivalent to finding
the solution of the associated normal equation

Aβ = b (14)

with b = X⊤y and A = X⊤X . If the matrix A is invertible, the solution
of the normal equations is the OLS estimator β̂ = A−1b. If A is singular,
the solution of (14) with minimal Euclidean norm is A+b. In the case of
high dimensional data, the matrix A is often (almost) singular and the OLS
estimate performs poorly on new data sets. A popular strategy is to regularize
the least squares criterion (4) in the hope of improving the performance of the
estimator. This often corresponds to finding approximate solutions of (14). For
example, Ridge Regression corresponds to the solution of the modified normal
equations (A + λIp) β = b . Here λ > 0 is the Ridge parameter. Principal
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Components Regression uses the eigen decomposition of A and approximates
A+ and b via the first m eigenvectors of A.
It can be shown that the PLS estimators are equal to the approximate solutions
of the conjugate gradient method [12]. This is a procedure that iteratively
computes approximate solutions of (14) by minimizing the quadratic function

φ(β) =
1

2
β⊤Aβ − β⊤b =

1

2
〈β, Aβ〉 − 〈β, b〉 (15)

along directions that are A-orthogonal. The approximate solution obtained
after m steps is equal to the PLS estimator obtained after m iterations. The
conjugate gradient algorithm is in turn closely related to Krylov subspaces and
the Lanczos algorithm [19]. The latter is a method for approximating eigen-
values. The connection between PLS and these methods is well-elaborated in
[28].
We now establish a similar connection between penalized PLS and the above
mentioned methods. Set AM = MA and bM = Mb . Recall that M is the
symmetric and positive definite matrix

M =(Ip + P )−1 .

We now illustrate that penalized PLS finds approximate solutions of the pre-
conditioned normal equation

AMβ = bM . (16)

Let us denote the space spanned by the sequence bM, AMbM, . . . , Am−1
M

bM

as the Krylov space Km of AM and bM.

Lemma 2 The space spanned by the weight vectors w1, . . . , wm of penalized
PLS equals Km.

This is the generalization of a result for ordinary PLS and can be shown via
induction. Note that it follows from lemma 2 and the fact that T and XW

span the same space that the penalized PLS estimator is the solution of the
optimization problem (4) with the constraint β ∈ Km.
We now present the conjugate gradient method for the equation

AMβ = bM . (17)

Note that in general, the matrix AM is not symmetric with respect to the
canonical inner product, but with respect to the inner product 〈x, x̃〉M−1 =

13



x⊤M−1x̃ defined by M−1. We can rewrite the quadratic function φ defined
in (15) as

φ(β) =
1

2
〈β, AMβ〉

M−1 − 〈β, bM〉
M−1 .

We replace the canonical inner product by the inner product defined by
M−1 and minimize this function iteratively along directions that are AM-
orthogonal. We start with an initial guess β0 = 0 and define d0 = r0 =
bM − AMβ0 = bM. The quantity dm is the search direction and rm =
bM − AMβm−1 is the residual. For a given direction dm, we have to de-
termine the optimal step size am ∈ R that minimized φ (βm + amdm). It is
straightforward to check that

am =
〈dm, rm〉M−1

〈dm, AMdm〉M−1

.

The new approximate solution is then

βm+1 =βm + amdm . (18)

After updating the residuals via

rm+1 = bM − AMβm+1,

we define a new search direction dm+1 that is AM -orthogonal to the previous
search directions. This is ensured by projecting the residual rm to the space
that is AM-orthogonal to d0, . . . , dm. We obtain

dm+1 = rm+1 −
m∑

i=0

〈rm+1, AMdi〉M−1

〈di, AMdi〉M−1

di .

Theorem 3 The penalized PLS algorithm is equal to the conjugate gradient
algorithm for the preconditioned system (17), that is βm defined in (18) equals
the penalized PLS estimator β̂m.

The presentation of the conjugate gradient method above and the proof of its
equivalence to penalized PLS are an extension of the corresponding results for
PLS that is given in [28].
We conclude this subsection by remarking that the correspondence between
penalized PLS and approximate solutions of the preconditioned equations (17)
implies that after at most p iterations, the penalized PLS estimator equals
A+

M
bM. If A is non-singular, this equals the OLS estimate.
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4 Variable Selection in the Additive Model

For the estimation of additive models (1), penalized PLS depends on two types
of model parameters (assuming that the number of knots is fixed). First, the
number m of components and second, the degree of penalization λj for each
variable Xj . Optimizing all p + 1 model parameters is computationally infea-
sible for large values of p and might lead to overfitting. Therefore, we define
a global penalty parameter λ = λ1 = . . . = λp. This of course restricts the
flexibility of the model. Moreover, by definition of penalized PLS, the obtained
model is not sparse. In general, all estimated functions fj in (1) are non-zero.
To overcome this restriction, we propose to add a sparsity constraint to pe-
nalized PLS.
Recall that the matrix X of B-spline transformed data (6) consists of p blocks
X(j) of pj columns – with the jth block corresponding to the transformation
of the jth variable. Moreover, the penalty matrix is a block-diagonal matrix,
with each block Pj penalizing the (higher order) differences of the jth block of
variables. This implies that the weight vector w for penalized PLS can be de-
composed into p blocks, and the jth block maximizes the penalized covariance
of y to the jth block of variables:

wi =
(
w

(1)
i , . . . , w

(p)
i

)

w
(j)
i =(I + Pj)

−1
(
X

(j)
i

)⊤
y

A sparse additive model (1) corresponds to weight vectors wi that are blockwise

sparse, i.e. some of the vectors w
(j)
i are equal to 0. Therefore, in each iteration

step, we propose to select the block j∗ that maximizes the penalized covariance
to y and to define the penalized PLS vector only in terms of this one block:

j∗ =argmax‖w(j)‖=1

1

pj

cov2
(
X

(j)
i w(j), y

)
(19)

wi =
(
0, . . . , 0, (I + Pj∗)

−1
(
X

(j∗)
i

)⊤
y, 0, . . . , 0

)

In this way, only one block enters the model in each iteration step. The com-
putation of the latent components ti = Xiwi and the deflation step remain
unchanged. We note that the term 1/pj in (19) is added to remove the bias
introduced by different sizes of the blocks X(j).
It is straightforward to show that all results of proposition 1 still hold, except
for the fact that the matrix R is only upper-triangular, not upper bidiagonal.
In particular, (13) shows that the linear combination of the block-wise sparse
weight vectors wi leads to a block-wise sparse regression vector β. The spar-
sity is controlled by the number of components. In the next section, we discuss
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an application of this method to a data set from sensometrics.

5 Experiments and Discussion

In this section, we assess the performance of penalized PLS. The first two
Subsections 5.1 and 5.2 correspond to the modeling of functional data, and
the last Subsection 5.3 corresponds to additive models.
In all experiments, the model parameters are optimized via cross-validation.
We use a two-dimensional grid defined by a range of penalty terms and a
range of components. An R-implementation of penalized PLS including model
selection is available [17]. As penalized PLS is equal to Kernel PLS for a gen-
eralized inner product (see Subsection 3.2), it is possible to derive an unbiased
estimate of its degrees of freedom [18]. Hence, model selection strategies based
on information criteria are possible as well.

5.1 Simulation Study: Noisy Functional Data

First, we investigate the effect of noise to the prediction performance of PLS
and penalized PLS. The importance of the effect of noise in the predictor
variables is studied e.g. in [26]. The following example 1 is taken from [27] and
is also discussed in [3]. The data consist of a training set of size 39 and a test
set of size 31. The task is to predict with high accuracy the amount of fat in
biscuit dough based on its NIR spectra. For each of the n = 39 + 31 = 70
observations of biscuit dough, the amount of fat and the reflectance of NIR
light for p = 700 equidistant wavelengths in the range from 1100 to 2398
nanometers are measured. For each example, we obtain a discretized function
xi of the reflectance, which is called a spectrum.
The simulation set-up is as follows. For a fixed level σ = 0, 0.01, . . . , 0.09, 0.1,
we add noise to each sample

x
noisy
i = xi + εi ∈ R

700 εi ∼ N
(
0, σ2I700

)
.

Figure 2 displays a noisy observation for three different values of σ.

We then split the whole data set into a training set of size 39 and a test set
of size 31. We estimate the optimal PLS and penalized PLS model on the
training data using 10fold cross-validation. The quality of the two models are
assessed by computing the mean squared error (mse) on the test data. This
procedure is repeated 20 times for each value of σ. Figure 3 displays the results.

1 available at: http://www.stat.tamu.edu/~mvannucci/webpages/codes.html
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Fig. 2. One sample of the biscuit dough data set with with added noise. The noise
levels are σ = 0 (left), σ = 0.05 (center) and σ = 0.1 (right)

It shows the median mse ± the median absolute deviation over the 20 runs.
The figure indicates that the penalization approach significantly improves the
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Fig. 3. Mean Square Error (mse) for PLS and penalized PLS. Boxplot of the mse for
both methods as a function of the noise level σ. The upper curve (black) corresponds
to PLS, the lower curve (red) corresponds to penalized PLS.

performance of PLS in the presence of noise. While penalization does not lead
to better results in the noise-free scenario (which reproduces the findings in
[10]), its increase in predictive performance becomes larger for higher values
of σ.

5.2 Application: Derivatives of Spectra

Instead of predicting the amount of fat based on the spectrum itself, it is also
common to consider (discrete approximations of the) derivatives of the spec-
trum. In Figure 4, we plot the spectrum and its first and second derivative for
one of the 70 observations. While the spectrum itself is smooth, the approx-
imate derivatives are not, and typically, smoothing techniques are needed to
compensate. We now show that in the case of non-smooth spectra, penalized
PLS outperforms PLS.
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Fig. 4. NIR spectrum of biscuit dough and its derivatives. Left: Original spectrum.
Center: First derivative. Right: Second derivative.

First, we derive two data sets from the original data X by computing the
discretized first and second derivative using the difference operator (5), i.e. we

transform X via X ′ =
(
D700X

⊤
)⊤

and X ′′ =
(
D699(X

′)⊤
)⊤

respectively. We
then compare PLS and penalized PLS on these three data sets. We randomly
split the whole data set into a training set of size 39 and a test set of size
31. On the training set, we derive the optimal model parameters for PLS and
penalized PLS via 10fold cross-validation. We then measure the performance
of the two methods on the test set. This procedure is repeated 30 times. Table
1 displays the mean test error and their standard deviations. We conduct a
Wilcoxon rank sum test to test the alternative hypothesis that the test error
of penalized PLS is lower than the test error of PLS. The p-values can also be
found in Table 1.

Table 1
Test error for the biscuit dough data set.

original data 1st derivative 2nd derivative

PLS 0.181 ± 0.073 0.349 ± 0.103 3.319 ± 0.803

penalized PLS 0.208 ± 0.126 0.161 ± 0.041 0.243 ± 0.077

p-value 0.5484 3.685e-09 7.254e-12

The lowest test error is achieved on the first derivative of the data, i.e. in this
example, the linear transformation X → X ′ indeed improves the performance.
More importantly, penalized PLS leads to a significantly lower test set error
compared to PLS on the two data sets X ′ and X ′′ that correspond to non
smooth spectra.

5.3 Application to additive models with spline transformations: Orange Juice
Data

In the remainder of this section, we present a quantitative and qualitative
analysis of the orange juice data that is discussed in [7]. The data consist of
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24 samples of orange juice and 10 input variables that describe the miner-
alogical properties of the juices. These are the conductivity CON , the eight
mineralogical characters SiO2, Na, K, Ca, Mg, Cl, SO4, HCo3, and the SUM
of the eight characters [7]. The information on the response variable is hidden
due to confidentiality.
Table 2 displays the correlation matrix of the 10 predictors. In Figure 5, the

Table 2
Correlation matrix for the orange juice data set

SiO2 Na K Ca Mg Cl SO4 HCO3 Sum

CON -0.10 0.04 0.10 0.98 0.97 -0.04 0.96 0.24 0.96

SiO2 0.26 0.84 -0.14 -0.11 0.07 -0.12 0.06 -0.07

Na 0.03 -0.11 -0.05 0.74 -0.08 0.09 -0.01

K 0.08 0.11 -0.08 0.11 -0.09 0.09

Ca 0.95 -0.16 0.99 0.20 0.97

Mg -0.11 0.93 0.23 0.93

Cl -0.14 0.13 -0.07

SO4 0.15 0.96

HCO3 0.41

10 predictor variables are plotted versus the response variable. The corre-
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Fig. 5. Scatter plot of the orange juice data. The x-axis corresponds to the respective
predictor variable, the y-axis corresponds to the response variable.

lation matrix in Table 2 reveals that some of the input variables are highly
redundant, with correlation ≥ 0.95. Furthermore, [7] conclude from visual and
quantitative analysis that the data contain nonlinear structure.
We fit several regression models to the data set. We apply two linear regres-
sion methods, (a) PLS and (b) Lasso [41]. As nonlinear methods, we compare
(c) penalized PLS on B-spline transformations with variable selection (as de-
scribed in Section 4), and (d) mgcv, an automatic estimation of the smoothing
parameters for each variable [44,45] that is described in Section 1. The lat-
ter is the gold standard for fitting generalized additive models. For penalized
PLS, we choose a range of possible λ’s from 500 to 5000, which ensures that
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the first component is very smooth and is in fact very close to a linear fit.
Recall that the number of components influences the number of variables in
the model, so a-priori, we should allow a generous number of components. For
this data, we choose m = 1, . . . , 30. For all methods, we compute the nested
leave-one-out error. We compute the median over all 24 absolute test errors
± their median absolute deviation. The results are displayed in 3. In addi-
tion, we use a Wilcoxon rank sum test to test the alternative hypothesis that
the absolute test errors of penalized PLS are lower. The p-values are given
in the last column of the table. The nonlinear methods outperform the linear

Table 3
Test error for the juice data set.

PLS Lasso penalized PLS mgcv

absolute error 1.613 ± 1.780 1.657 ± 1.334 0.890 ± 0.961 1.087 ± 1.200

p-value 5.379 × 10−2 1.574 × 10−2 – 3.317 × 10−1

methods PLS and Lasso, which confirms that the data exhibits a nonlinear
structure. Penalized PLS with variable selection is on par with mgcv.
Next, we estimate the optimal penalized PLS model on the whole data set
with leave-one-out cross-validation. Figure 6 displays the fitted additive com-
ponents for each variable. The plot reveals a linear relationship in most of the
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Fig. 6. Additive model fitted by penalized PLS. Each figure displays the nonlinear
function fj(Xj) of the additive model (1).

components, except for Na. Note that the obtained model is sparse, as the
3 predictors Ca, Mg, Sum do not enter the model. Recall that Ca and Sum
are highly correlated to Cond, and therefore might not carry much additional
information.
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6 Conclusion

In this work, we propose an extension of Partial Least Squares Regression
using penalization techniques. Apart from its computational efficiency (it is
virtually as fast as PLS), it also shares a lot of mathematical properties of
PLS. Furthermore, a representation in terms of kernel matrices provides an
intuitive geometric interpretation of the penalty term. Experiments on simu-
lated and real world data show that penalized PLS is particularly successful
for non-smooth and noisy observations.
Partial Least Squares iteratively minimizes a quadratic loss function, which
is most suited for regression problems. Recent extensions of PLS that allow
arbitrary convex loss functions [24] further increase its applicability. An exten-
sion of this framework that incorporates penalization is a promising research
direction.
Penalty terms that control the roughness of the estimated functions are dis-
cussed in this paper. While these are the most prominent types of applications,
our method might be used in a semi-supervised framework [5] as well. In a
semi-supervised setting, a penalty term based on the graph Laplacian of the
unlabeled data can be used to improve the prediction performance. Adding
this type of penalty to PLS then leads to semi-supervised dimensionality re-
duction.
We highlighted the close connection between penalized PLS and precondi-
tioned conjugate gradients (cg) . While cg and Krylov methods are commonly
used in numerical linear algebra, their benefits for data analysis have not yet
been exploited sufficiently. Only recently [13,15], they are utilized explicitly
in a statistical framework. We strongly believe [1] that the interplay between
numerical linear algebra and statistics will stimulate the analysis of data fur-
ther.
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A Proofs

We recall that for k < i
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Xi =
(
In − Pt1,...,ti−1

)
X =

(
In − Ptk,...,ti−1

)
Xk . (A.1)

Proof of Proposition 1

We first proof a weaker version of 1, namely that the matrix R is upper
triangular. We emphasize that this result does not depend on the form of the
weight vectors. In particular, the result holds for the sparse penalized PLS
algorithm introduced in Section 4 as well.
First note that (A.1) is equivalent to X = Xj + Pt1,...,tj−1

X . It follows that

Xwj = Xjwj + Pt1,...,tj−1
X wj = tj +

j−1∑

i=1

t⊤i Xwj

t⊤i ti

ti , (A.2)

which proves (12). As all components ti are mutually orthogonal, t⊤i Xwj = 0
for i > j and t⊤i Xwi = t⊤i ti 6= 0. We conclude that R is an upper triangular
matrix with all diagonal elements 6= 0. Plugging (12) into the formula for the
projection operator, and using the orthonormality of the columns of TD̃, we
have

ŷm =
(
T D̃

) (
TD̃

)⊤
y = XW

(
D̃R

)−1
D̃⊤T⊤y = XWR−1T⊤y .

This proves (13). To show the bidiagonality of R, we note that the condition
i > j implies Xiwj = Xjwj − Pt1,...,ti−1

Xjwj = tj − tj = 0 . From this we
can conclude directly that the weight vectors of penalized PLS are mutually
M−1-orthogonal. This follows as for i > j

〈wi, wj〉M−1 =
〈
MX⊤

i y, wj

〉
M−1

= y⊤Xiwj = y⊤0 = 0 . (A.3)

It follows from lemma 2 and the fact that T and XW span the same space
that ti ∈ XKm. We can conclude that

MX⊤ti ∈ MX⊤XKi = AMKi ⊂ Ki+1 = span {w1, . . . , wi+1} .

In particular,

MX⊤ti =
i+1∑

k=1

αkwk . (A.4)

Now recall (A.3). We conclude that for j > i + 1

t⊤i Xwj = 〈MX⊤ti, wj〉M−1
(A.4)
= 〈

i+1∑

k=1

αkwk, wj〉M−1
(A.3)
=

i+1∑

k=1

αk0 = 0 . 2
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Proof of Theorem 3

First note that it can be shown via induction that span {d0, . . . , dm−1} = Km .
It follows from the iterative definition of βm that

βm =
m−1∑

i=0

〈di, bM〉
M−1

〈di, AMdi〉M−1

di . (A.5)

Hence, it suffices to show that 〈di, ri〉M−1 = 〈di, bM〉
M−1 . Note that

ri = bM −
i−1∑

j=0

ajAMdj .

As di is AM-orthogonal to all directions dj , j < i, (A.5) holds. Now, as T

and XW span the same space, we have

ŷm = PXWy = XW
(
W⊤X⊤XW

)−1
W⊤X⊤y = Xβ̂m .

Finally, as the search directions di span the Krylov space Km, we can replace
the matrix W in this equation by D = (d0, . . . , dm−1). As the search directions
are AM-orthogonal, we have

β̂m = D
(
D⊤AD

)−1
D⊤b

= D
(
D⊤M−1AMD

)−1
D⊤M−1bM

=
m−1∑

i=0

〈di, bM〉
M−1

〈di, AMdi〉M−1

di ,

and this equals (A.5). 2
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