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A Random Matrix Model of Communication Via
Antenna Arrays

Ralf R. Müller, Associate Member, IEEE

Abstract—A random matrix model is introduced that prob-
abilistically describes the spatial and temporal multipath
propagation between a transmitting and receiving antenna array
with a limited number of scatterers for mobile radio and indoor
environments. The model characterizes the channel by itsrichness
delay profile which gives the number of scattering objects as a
function of the path delay. Each delay is assigned the eigenvalue
distribution of a random matrix that depends on the number of
scatterers, receiving antennas, and transmitting antennas. The
model allows one to calculate signal-to-interference-and-noise
ratios (SINRs) and channel capacities for large antenna arrays
analytically and quantifies to what extent rich scattering improves
performance.

Index Terms—Antenna arrays, channel models, eigenvalue dis-
tribution, fading channels, information rates, intersymbol inter-
ference, multiuser communications, random matrices, Stieltjes
transform.

I. INTRODUCTION

COMMUNICATION via antenna arrays allows a signifi-
cant increase in spectral efficiency—the information rate

per communication link [1], [2]. While several recent proposals
[1], [3]–[5] aim to utilize this advantage, it is still not suffi-
ciently understood how the physical properties of these channels
translate into achievablesignal-to-interference-and-noise ratios
(SINRs) and therefore the supported information rates. On the
physical side, channel models are based on propagation mea-
surements. They provide statistics of the propagation between
a pair of transmitter arrays and receiver arrays in terms of de-
lays, received powers, and directions of arrival and departure.
Statements about the information rates capable in the channel,
however, are given in terms of the eigenvalues related to the ma-
trix-algebraic description of the communication link. This work
aims to build a bridge between propagation scenarios and the
eigenvalues of the covariance matrices of the channel in order
to allow for predictions of channel capacity based on the mor-
phology of the physical medium.

It is natural to describe a linear time-invariant mul-
tiple-input–multiple-output (MIMO) system by its ma-
trix-valued impulse response. The matrix-valued taps of the
impulse response of the antenna array channel depend on
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various parameters such as the exact locations of all antenna
elements and all scattering objects, which are usually modeled
as random variables in mobile communications. The quality of
the communication link, however, is mainly determined by the
singular values of these matrix taps.

It is well known [6]–[8] that the singular values of a large
class of random matrix ensembles show fewer random fluctu-
ations the larger the matrices are, and become deterministic in
the limit of infinite matrix size. In the large-matrix limit, the in-
fluences of many properties of the matrix entries are lost, such
as the shapes of their distributions, and in some cases even the
statistical dependencies among them. Reference [9] is a good
example of the influence of statistical dependencies on singular
values vanishing in the asymptotic limit.

Though the asymptotic distribution of singular values is only
an approximation to the distribution in the case of finite-dimen-
sional matrices, it offers two important advantages.

• In contrast to finite-dimensional matrices, the singular
value distribution of asymptotically large random ma-
trices can be calculated analytically in many cases.

• In the asymptotic limit, only those physical parameters
survive that show significant influence on the singular
value distribution.

With these two properties, the limiting singular value distribu-
tion can help to analytically extract which physical parameters
of the radio propagation channel largely determine the quality
of a MIMO communication link.

Motivated by reasons such as these, random matrix theory
was used for analysis of antenna arrays in [10]–[13]. These ref-
erences modeled the antenna-array channel as memoryless with
a channel matrix composed of independent and identically dis-
tributed random entries. This simplifies the analysis, but may
ignore some important properties of the channel. In particular,
measurements have demonstrated that multipathrichness—a
parameter that does not occur in [10]–[13]—heavily influences
the singular values of the channel [14]–[16]. In order to include
this effect, the recent reference [17] has classified MIMO chan-
nels into high-rank and low-rank channels. The present paper
handles the more general case with an arbitrary number of scat-
terers at different delay times. This allows for arbitrary ranks of
the channel matrices and also includes multipath propagation
that causes intersymbol interference.

Analytical results are given in terms of the distribution of
the eigenvalues of the spatio–temporal covariance matrix of the
channel as the number of antennas at both ends as well as the
number of scattering objects grow large, but their ratios remain
fixed. The asymptotic eigenvalue distribution is characterized in
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two different ways. By its probability density function and
by its Stieltjes transform1

(1)

This goes along with the need for different descriptions for
different engineering aims. The probability density function
is useful for an intuitive insight into the behavior of the
channel. The Stieltjes transform is a well-known tool for easily
calculating performance measures such as SINRs. In presence
of additive white Gaussian noise (AWGN) of variance , for
instance, and space–time equalization according to the linear
minimum mean-squared error (MMSE) criterion, the SINR can
be calculated directly in the Stieltjes domain

SINR (2)

See Section IV-A.
The paper is organized as follows. Section II introduces the

channel model in matrix-algebraic notation and the assumptions
that are needed for analytical tractability. Section III derives
the asymptotic eigenvalue distribution of the channel. This is
used to derive asymptotic expressions for channel capacity and
SINRs that are achievable with two kinds of linear space–time
processing at the receiver site in Section IV. Section V gener-
alizes the results to multiple users at different locations. Sec-
tion VI summarizes the main results and conclusions. A dis-
cussion about the physical meaning of the assumptions made in
Section II and the proofs of various theorems are presented in
Appendixes A and B, respectively.

II. RANDOM MATRIX MODEL

Consider a communication channel withtransmitting and
receiving antennas. Let there be scattering objects each

corresponding to a propagation path with excess delay. Fur-
ther, allow for the follwing assumption.

Assumption 1:On its way from the transmitter to the re-
ceiver, each signal is bounced off a scattering object exactly
once.

Assumption 1 ensures that there is no line of sight between
the transmitter and the receiver. It also excludes multifold scat-
tering. In order to propose a discrete-time model, quantization
in space and time is required.

Assumption 2:The delays of all scattering objects can be
expressed in discrete time.

Assumption 3:All scattering objects are located in such a
way that they can be separated in either space or time.

A pair of objects that violates Assumption 3 is simply con-
sidered a single scattering object. A more detailed discussion of
Assumptions 1–3 is given in Appendix A-A.

1Sometimes the Stieltjes transform is also defined with negative sign ofs. In
our context, the definition (1) that follows [18] turns out more intuitive.

The received signal that is received at antennais given by

(3)

where is the signal transmitted by antenna, and ,
, , and are the relative carrier phases at theth re-

ceive and th transmit antenna, the attenuation of theth path,
and the number of scattering objects, respectively, all at delay.
Note that each of the relative carrier phases depends on the dis-
tance between the individual antenna element and the scattering
object.

The propagation coefficient from antennato antenna at
delay is given as

(4)

The number of scatterers may vary with delay. This effect is
modeled by the scatterer count delay profilein addition to
the well-known power-delay profile

(5)

The received signal at time instantcan be written in vector
notation as

(6)

where the entries of the matrix are defined in (4).
It is obvious from (4) that those entries show strong statistical
dependencies even if , , and are statistically
independent for all , , and . These dependencies are exam-
ined in greater detail in the following.

Define the two and matrices

...
...

... (7)

and

...
...

... (8)

respectively, as well as . Then,
may be expressed as

(9)

with denoting complex conjugate transpose. Note that the
matrix describes the propagation from the transmitter array
to the scattering objects, while the matrix models the prop-
agation from the scattering objects to the receiver array.

The further development of the paper will require the fol-
lowing additional assumptions.

Assumption 4:The entries of the matrices and are
independent and identically distributed random variables with
zero mean and unit variance for all delays.
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In Appendix A-B, it is shown that Assumption 4 cannot be
true exactly, but it is a reasonable approximation to make, in
view of the accuracy of the final results, and the analytical
tractability that results from this assumption. Further basis
for Assumption 4 is outlined in Appendix A-B. One further
assumption is needed to allow analytical tractability of the
proposed random matrix model.

Assumption 5:The matrices and become uni-
tarily invariant for all delays , as their sizes grow large.

This assumption is a rather technical one; see Appendix A-C for
further discussion.

III. A SYMPTOTIC EIGENVALUE DISTRIBUTION

For what follows we condition on the path delay and drop
the index for ease of notation where misunderstanding is un-
likely. The performance of communication of a large class of
linear channels described by a matrix is determined by the

eigenvalues of the normalized covariance matrix

(10)

In general, not all eigenvalues are nonzero, as

(11)

Their empirical distribution2

(12)

denotes the fraction of eigenvalues that fall below a certain
threshold .

Theorem 1: Condition on a particular realization of and
let Assumptions 4 and 53 hold. Then all positive moments of
(12) converge almost surely to nonrandom limits as
tend to infinity, but the ratios

and (13)

remain fixed.

Theorem 1 is a special case of a more general result in [8];
see Appendix B-A for details.

The asymptotic limits hopefully serve as good estimates for
the eigenvalues in the nonasymptotic case. This has been veri-
fied for code-division multiple-access (CDMA) systems in [20]
and is assumed to extend to a broader class of communication
systems described by large random matrices. In the following,
we find the asymptotic distributions of the eigenvalues.

The distribution of the eigenvalues is conveniently repre-
sented in terms of its Stieltjes transform (1). It follows from
[11] (see also [21]) that the Stieltjes transform of the asymptotic

2j � j denotes the cardinality of a set.
3A recent more general proof in [19] shows that Assumption 5 is actually not

required. However, the proof given in Appendix B-A makes use of Assump-
tion 5.

eigenvalue distribution of the matrix is
given by

(14)

Note that the same formula applies to the matrix
if is replaced by . It will turn out helpful for

calculation of to consider the matrix

(15)

instead of the original matrix (10) in the following. Be-
cause of (69), the nonzero eigenvalues ofare identical to the
nonzero eigenvalues of . It is shown in Appendix B-B that this
implies that their respective eigenvalue densities satisfy

(16)

In the Stieltjes domain, this reads

(17)

Next, we will focus on and return to later via (17).

A. Equal Power Case

The asymptotic eigenvalue distribution depends on the distri-
bution of the powers over the paths with fixed delay. Assuming
that path loss is the only means of attenuation, all paths with
identical delays are attenuated by the same amount. With (5),
this means the following.

Assumption 6:

(18)

Note that this model still includes the independent and identi-
cally distributed Gaussian ensemble considered in [11], [12] as
a special case for and .

Assumption 6 gives

(19)

According to Assumptions 4 and 5, is the product of two
random matrices that are unitarily invariant in the asymptotic
limits. The Stieltjes transforms of the asymptotic densities of
the factors in the product are available from (14).

A machinery that yields the Stieltjes transform of a matrix
product, given the Stieltjes transforms of the factors, is found in
[22, Sec. 3.6] and calledmultiplicative free convolution. It can
be applied if the factors of the matrix product form a free family
in the large matrix limit. This condition is shown to hold in the
proof of Theorem 1. Its key tool is the-transform which
is defined in terms of Stieltjes transforms as

(20)

(21)

with the auxiliary function and its inverse with respect
to composition . The auxiliary function also has
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some practical meaning; it follows from the definition of the
Stieltjes transform (1) and the Taylor expansion of its kernel that

(22)

where denotes theth moment of the eigenvalue density and
the -transform of the sequence of moments.

The -transforms corresponding to the factors in (19) can be
shown with (20) and (21) by straightforward algebra to be

(23)

and

(24)

respectively. Since the-transform of a product is the product
of the factors’ -transforms (see [22, Theorem 3.6.3]) we get

(25)

Definitions (20) and (21) yield

(26)

and

(27)

respectively.
Note that for any positive and any

random variable . Thus, the eigenvalue densities satisfy

which reads in the Stieltjes domain [18, Ch. 14] as

The previous equations are symmetric inand . This prop-
erty does not occur for

(28)

Returning to via (17) finally yields

(29)

Although (29) can be resolved with respect to via Car-
dano’s formula, the result is omitted here, as it gives no new
insight.

Additional insight into (29) is obtained by defining the ratio

(30)

Note that in the theory of CDMA [23], where the number of
receive and transmit antennas correspond to the spreading factor
and the number of users, respectively [11],is known as the

load of the system. For convenience it is namedsystem loadin
the context of antenna arrays as well. With (30), the parameter

may be eliminated from (29), giving

(31)

In (31), the Stieltjes transform is parameterized by the system
load and therichnessof the channel . The system load gives
the size ratio of the channel matrix. Therichnessof the channel
is the number of scatterers normalized by the number of re-
ceiving antennas. This richness in scattering is associated in the
literature [24]–[26] with high channel capacities for communi-
cation via antenna arrays.

Rewriting (31) in terms of instead of the richness as

(32)

discloses a nice symmetry inand . Since the parameterhas
formally the same meaning to (32) as the system load, we call

(radio) channel load, in what follows.
Since it is required in Section V-A, we calculate the asymp-

totic eigenvalue distribution of the matrix as well.
Replacing by in (17), this is a straightforward exercise
leading to

(33)

Previously, the asymptotic eigenvalue distribution was char-
acterized in terms of its Stieltjes transform. In the following, the
Stieltjes transform is used to derive the asymptotic eigenvalue
distribution.

In order to invert the Stieltjes transform implicitly, we make
use of the Stieltjes inversion formula (see [8, eq. (3.1.5)]4 )

(34)

As shown in Appendix B-C, this leads to the following construc-
tion for the probability density.

Theorem 2: Under Assumptions 4–6, the asymptotic proba-
bility density of the eigenvalues of is composed of a point
mass at zero that is only nonvanishing for and
a continuous part with compact support. The continuous part is
given by where is the unique positive solution to

(35)
for and elsewhere. Here the function
represents the (up to three) real solutions of

(36)

4The difference of the sign in the reference is due to the different definition
of the Stieltjes transform.
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Fig. 1. Asymptotic eigenvalue distribution for system load� = 0:5 and
various channel loads.

and , are the two largest nonnegative solutions of the
equation

(37)

The influence of the two loads on the asymptotic eigenvalue
distribution is illustrated in Fig. 1. It can be observed that the
spectral radius increases with the channel load. While the max-
imum eigenvalue increases monotonically with the two loads,
cf. Fig. 2, the smallest positive eigenvalue, becomes minimal if

or

In the latter cases, the smallest positive eigenvalue approaches
zero arbitrary closely.

B. Multiple Delays

Section III-A has shown that the asymptotic eigenmodes of
the channel conditioned on a fixed path delay are determined
by only two parameters: the richnessand the system load.
The latter is a system parameter rather than a property of the
channel. Therefore, thephysicalchannel conditions are canon-
ically determined by the richness.

The richness may certainly depend on the path delay. Instead
of the scatterer–count delay profile, we can use the richness
delay profile to characterize the channel. The latter charac-
terization offers the advantage that it does not depend on the
absolute, but on therelativenumber of scattering objects, and
thus scales automatically with the size of the array.

The benefit of rich scattering from a fundamental perspec-
tive is in providing enough linearly independent dimensions in

Fig. 2. Largest and smallest (nonzero) eigenvalue ofCCC as a function of the
two loads� and� in the asymptotic limit.

the signal space to span at least one dimension per transmit
antenna. In the case of different delays, it is not immediately
clear whether the delayed replicas of the signal indeed span new
dimensions.

Mathematically, the problem can be formulated as follows.
Stack the symbol vectors transmitted at subsequent time
instances one below each other in a single vector of trans-
mitted data. Without loss of conceptual scope, the transmis-
sion in space and time can be written as a single matrix equa-
tion (38), as shown at the top of the following page. Note that

while . Nevertheless,
we prove the following theorem in Appendix B-D.

Theorem 3: Define as in (38), let the entries of
be rotationally invariant random variables, and define

(39)

Then the eigenvalue distributions of and averaged
over the ensemble , , are identical.

Moreover, if the eigenvalue distributions of ,
, converge in a certain sense to a nonrandom limit as
and remains fixed, the eigenvalue distributions of

and converge in the same sense to identical asymptotic
limits.
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(38)

Note that Theorem 3 does not require any of Assumptions 1–6
to hold. The importance of Theorem 3 is that it shows that for
any matrix-valued channel with memory , , there
is a virtual memoryless channel with the same eigenvalue
distribution.

The summation over the matrix-valued impulse response in
(39) can be written with (9) as an inner product of composite
matrices

(40)
Note that (40) describing the channel with multiple delays takes
the same form as (9) which is conditioned on a particular path
delay. The sum in (40) just adds up all propagation paths regard-
less of their delays and stacks them in the composite matrices
and . The dimensions of the composite matrices are
and , respectively, with

(41)

This is a very nice property. It shows that the equivalent mem-
oryless channel can be also modeled as an antenna-array
channel. To be more precise, it shows the following result.

Theorem 4: If the conditions required for Theorem 3 are sat-
isfied and the antenna-array channel satisfies Assumptions 1–3,
the equivalent memoryless channelalso satisfies Assump-
tions 1–3.

Note that the validity of Theorem 4 crucially depends on As-
sumption 1 which prohibits multifold scattering.

A channel with varying delays is found equivalent to a
channel with identical delays if the richness per delay is
replaced by thetotal richness

(42)

while the system load remains unaffected. This means that for
asymptotically large antenna arraysthe eigenvalue distribution
of the space–time channel matrix does not change if delay times
of particular paths vary. Moreover, there is no need to dis-
tinguish between the distributions of path attenuations condi-
tioned on different delays. Therefore, no joint richness- and
power-delay profile is necessary to define the asymptotic eigen-
value distribution of the space–time channel matrix. It is suf-
ficiently characterized by

• the system load ,
• the total richness,
• and the distribution of the attenuations

as .

If all attenuations are identical, the results found in Section III-A
by conditioning on a particular delay apply to the general space–
time channel with multipath propagation in both space and time.

Remark 1: The considerations in this subsection should not
be misinterpreted as concluding that, as increased bandwidth
refines time resolution, it also increases total richness via adding
more terms to the sum in (42). Note that a path which differs
only in delay time, but neither in angle of arrival nor in angle
of departure, cannot increase the richness: It does add a new
row to each of the space–time matricesand , but these two
rows are collinear to those two rows representing the path which
differs in delay time only. Such collinear rows are a violation
of Assumption 4. They cannot be neglected via considerations
such as those outlined in Appendix A-B.

IV. PERFORMANCEMEASURES

The results of the previous section can be used to calculate
performance measures such as SINRs and channel capacity for
transmission over the antenna-array channel

(43)

in the presence of AWGN provided that Assumptions
1–5 hold. For convenience, the equivalent memoryless channel
model

(44)

established in Section III-B is used for further considerations.
In order to allow for analytic expressions in closed form, the
attenuations of all paths are assumed identical, i.e.,

Knowledge about the channel is assumed to be available at the
receiver site, but unavailable to the transmitters. This prohibits
the transmitter to use the eigenmodes of the channel for orthog-
onal signaling. Therefore, the receiver suffers from crosstalk be-
tween the signals represented by the components of.

Methods for mitigation of crosstalk on a channel described
by (44) are comprehensively discussed in [23] in the context of
multiuser detection for CDMA. Many of those do not rely on the
particular structure of CDMA signals and can also be applied
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Fig. 3. SINR as function of system load� and richness � for
10 log (P=� ) = 9 dB.

to antenna arrays. Two of them, the linear MMSE detector and
the decorrelator, are examined in greater detail in the following
subsections.

A. Optimum Linear Detection

The Stieltjes transform found in (31) and (32), can be easily
used to express the SINR with optimum linear detection, also
known as Wiener filtering, optimum linear beamforming, and
linear MMSE detection. For this purpose, it is sufficient to make
use of standard results in mean-square estimation, i.e.,

SINR
MMSE

(45)

and [23, eq. (6.49)]

MMSE (46)

with denoting the variance of the AWGN. Plugging (46) into
(45) obviously gives (2). Plugging (2) into (32) gives the SINR

SINR SINR

SINR (47)

in terms of the two loads.
The SINR is illustrated in Fig. 3. It can be observed that rich

scattering is crucial for high SINR. The importance of rich scat-
tering has been stressed in the literature [25], [26] using intuitive
arguments. In this work, we demonstrate its importance analyt-
ically using an abstract channel model. We also find that rich
scattering is more crucial the higher the system load, see Fig. 3.

The special case of independent entries in the matrixis
included in (31) and appears when the relative number of scat-
tering objects goes to infinity. As expected, in that case
in (31) becomes equivalent to in (14) when is re-
placed by .

Fig. 4. SINRs of nulling (shaded) and optimum beam forming for
10 log (P=� ) = 9 dB.

B. Nulling

Let the receiver process the received signal in such a way
that the crosstalk is completely nulled out. The drawback of this
method is the inevitable enhancement of the AWGN. In matrix
notation, this type of processing is identified as channel inver-
sion. In the CDMA literature [23] it is known as decorrelation.
It is illustrative to calculate the SINR at the output of such a
receiver front-end and compare it to the optimum linear beam-
former (Wiener filter) analyzed previously.

In the asymptotic limit, the SINR is given as

SINR (48)

(49)

since is the power of the signal of interest and is the
covariance of the filtered noise. Setting in (32) immedi-
ately gives the asymptotic SINR as

SINR (50)

In order to ensure full rank of , both system and channel load
are required to be smaller than one. This means that the richness
has to be larger than the system load.

Fig. 4 compares the SINRs of the nulling strategy to the op-
timum beam former. The degradation of the nulling strategy re-
mains small for .

C. Channel Capacity

In general, calculating the information-theoretic capacity of a
channel requires an optimization over the statistics of the trans-
mitted signals, unless forming those statistics is considered as
part of the channel. In the present case, we assume that the trans-
mitter array is not aware of the channel at all and cannot adapt
the statistics of its signals to the channel.
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Fig. 5. Channel capacity of the antenna-array channel per unit number of
receive antennas with10 log (P=� ) = 9 dB.

Under this assumption, the channel capacity per receive an-
tenna of in presence of complex AWGN is given by [27]

(51)

For asymptotically large arrays, this means

(52)

with the formal noise variance. Differentiation with respect to
yields

(53)

This can be plugged into (31) giving the following differential
equation for channel capacity:

(54)

with the boundary condition .
Numerical solutions to this differential equation are easily ob-

tained by solving (54) via Cardano’s formula and integrating nu-
merically. An example is depicted in Fig. 5. For rich scattering,
capacity grows almost linearly with the system load until unit
system load is reached. For higher system loads, no free dimen-
sions are left in the signal space and capacity grows only loga-
rithmically with increasing transmitted signal power. For poor
scattering, the channel capacity of the antenna array degrades
severely.

V. MULTIPLE USERS

Previously, we considered only single-user communication
links. With respect to applications in cellular communications,
it is also important to consider the more general setting where
several terminals are signaling via their respective antenna ar-
rays to a common transceiver station that also employs an array
antenna.

There are two possible directions of signal flow: one common
transmitter with several receivers, and several transmitters with
one common receiver. These two cases correspond to different
types of multiuser channels, i.e., the broadcast and the multiple-
access channel. For both types, multiple delays are treated with
an equivalent memoryless channel.

Let there be users. Let denote the equiv-
alent memoryless channel of user. There are several important
cases.

1) The users see the same set of scattering objects. For
these users, the individual channel matrices are
strongly dependent, since the matrix factors that describe
propagation between scattering objects and the common
transceiver station— and for forward and reverse
links, respectively—are identical. The properties of such
a setting depend on the statistical dependencies of the
other matrix factors—those that describe propagation
from scattering objects to the users; these areand
for the forward and reverse links, respectively. If they
are independent, the users can simply be considered as a
single virtual user with the number of antenna elements
among the real users added up.

2) The users do not share any scattering objects. Then, the
channels of all users are statistically independent. This
case will be discussed in detail within this section.

3) The users share some, but not all of the scattering objects.
This general case is difficult and exceeds the scope of this
paper.

Assumption 7:The channels of all users are statistically
independent.

A. Common Receiver

Let user number transmit via antennas to a common
receiver with antenna elements. Denoting each user’s signal
as , the communication link is described as

...
(55)

For a complete description of the channel’s capacity region,
all possible subsets of users have to be considered separately
[27]. This is a straightforward exercise once capacity is found
for the set of all users. We do not pay attention to this detail
here and look only at the eigenvalue distribution of the channel’s
covariance matrix

(56)

comprising all users’ subchannels.
Under Assumptions 4–7, the terms summed in (56) form a

family of free random variables due to [8, Theorem 4.3.5] (see
Appendix B-A for details). A mathematical tool to calculate the
eigenvalue statistics of a sum from the eigenvalue statistics of
free components is theadditive free convolution. Additive free
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convolution is easily calculated via the-transformwhich is
defined in terms of the Stieltjes transform as

(57)

where denotes the inverse function of with re-
spect to composition [8], [22]. It can be calculated from (33)
by straightforward algebra and reads

(58)

with

and (59)

The -transform is the counterpart in free probability theory to
the log-moment generating function in conventional probability
theory. This means the-transform of a sum of free terms is the
sum of the individual -transforms [8], [22].

Thus, the -transform in the multiuser case is given in terms
of the -transforms in the single-user case as

(60)

Note from (58) that the two loads and are not additive, in
general.

B. Common Transmitter

Let there be a common transmitter with a-element antenna
array signaling to the users, each of whom employs an an-
tenna array with elements. Again, the channel is character-
ized in terms of the eigenvalue distribution of its covariance ma-
trix. Note, however, that the considered channel is a broadcast
channel [27] and it is not clear whether the eigenvalue distribu-
tion yields a canonical description of the channel’s capability to
support reliable transmission of information.

Denoting each user’s signal as, the communication link is
described as

...
...

(61)

The channel’s covariance matrix

(62)

differs from its counterpart in (56) by an exchange of the ma-
trices and only. This is as if here the receivers and trans-
mitters were switched in comparison to Section V-A.

In the equal power case, the-transform is given with (57)
and (32) by

(63)

where

and (64)

As in Section V-A, the -transform in the multiuser case is
given in terms of the -transforms in the single-user case as

(65)

Similar to the common receiver case in Section V-A, there is no
additivity for general parameters and .

VI. SUMMARY AND OUTLOOK

We have introduced a random matrix model for communica-
tion via antenna arrays. The relative number of scattering ob-
jects (richness) in the channel was found to be a key param-
eter to understand the behavior of the channel’s eigenvalues and,
therefore, its capacity. The problem has been found analytically
tractable, and the asymptotic eigenvalue distribution was calcu-
lated. This distribution can be used for the design of receivers
that rely on iterative analysis tools, e.g., [28]–[30]. Addition-
ally, spatio–temporal multipath propagation could be described
by an equivalent memoryless channel model.

Within the assumptions of the model and with respect to the
performance measures addressed in the paper, only spatial mul-
tipath propagation was found to improve the channel conditions
for reliable communication. Propagation paths which can be
separated by time delay only were not found helpful.

Several questions remain open: Can the model be extended
in order to include multifold scattering? How many antenna el-
ements are needed for the asymptotic limit to be a good ap-
proximation? Can the model be confirmed by measured data?
Concerning the last question, promising results were recently
reported in [31].

APPENDIX A
DISCUSSION OFASSUMPTIONS

A. On Assumptions 1–3

Assumption 1 reflects two points:

• Propagation via line of sight does not contribute to the
boost in capacity due to the use of antenna arrays at both
ends.

• Signals that are bounced off several times on their way
from the transmitter to the receiver lose much of their en-
ergy. Therefore, they are negligible unless they are the
dominant means of propagation. Multifold scattering ex-
ceeds the scope of this paper. We refer the interested reader
to [32], [19].
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Fig. 6. Ellipsoid model of propagation in time and one angular spatial
dimension.

Assumption 1 also suggests to characterize the location of
each scattering object in elliptical coordinates (see Fig. 6) with
the transmitter and receiver locations being the foci of the el-
lipsoid. There might be two or only one spatial dimension de-
pending on whether the antenna arrays are able to resolve both
azimuth and elevation or not. Though any multipath propagation
takes place in space, those paths that correspond to distinguish-
able delays are called, for convenience, multipath over time,
whereas paths with indistinguishable delays but distinguishable
locations of the scattering objects are called multipath in space.
Whether two delays are distinguishable in time is determined by
the bandwidth of the transmitted signal. Whether scattering ob-
jects are distinguishable in space is a more difficult question: For
uniform linear arrays, the separability of wave-emitting sources
depends on the number of antenna elements, the wavelength,
and the angles of arrival and departure. For general array ge-
ometries, the question is a topic of recent research, see, e.g.,
[33], [34]. Note that the number of scattering objects depends
implicitly on the number of antenna elements and the array ge-
ometry via the question of separability.

Assumptions 2 and 3 just assume quantization of the environ-
ment within the elliptical coordinates of Fig. 6.

B. On Assumption 4

Assumption 3 ensures that paths with different delayscor-
respond to different scattering objects. Assuming the locations
of the scattering objects to be independent random variables,
Assumption 4 follows for any set of matrix entries in which the
delay indexes of all elements differ. For matrix entries with iden-
tical delay index, however, Assumption 4 is the most critical
assumption of the proposed model. In order to see this, con-
dition without loss of generality on delay . Assuming
the locations of all scattering objects and of all antenna ele-
ments to be three-dimensional random vectors, there are at most

degrees of freedom available to generate the
entries of and . Obviously, it is easy to find a

set such that the number of matrix entries exceeds
the number of degrees of freedom. Therefore, the matrix entries
cannot, in general, be statistically independent.

Though statistical independence is, in general, impossible,
numerical evidence shows that the assumption of statistical
independence is a good approximation. In the following, some
intuition is given to illustrate this surprising phenomenon.
For simplicity, consider uniform linear arrays with adjacent

elements spaced by distance. Note that this is a pessimistic
assumption, since it determines the positions of all but one of
the elements within each of the antenna arrays, since it further
reduces the number of degrees of freedom that are available
compared to an array with a random geometry. In the far field,
the relative carrier phase from antennato the scattering object

at delay is given by [35, eq. (17.15)]

(66)

with denoting the angle under which scattering objectis
seen from the first element of the array anddenoting the wave-
length. Thus, the entries of the matrix satisfy the recursion

(67)

Due to (67), is a Vandermonde matrix. The only random pa-
rameters within are the angles . The mathematical form
of (67), however, is similar to thelinear congruential pseudo-
random number generator[36] defined by the recursion

(68)

This kind of random number generator is frequently used for
fast generation of random integers. Its components are the ini-
tial value , the multiplier , the increment, and the modulus

. For uniform linear arrays, the initial value is given by the ab-
solute carrier phase that is not included in (67). The multiplier
is chosen as , the increment is , and the
modulus is taken by the exponential functions with imag-
inary argument that are applied on the relative carrier phases.
In order to obtain good pseudorandom numbers, the modulus
should be relatively prime to the increment [36]. This prohibits
fast repetition of the sequence. In case of uniform linear arrays,
the sequence is guaranteed to be nonperiodic with probability
one, since both the modulus and the increment are transcen-
dent numbers without common multiple. Provided that
is large enough that the modulo reduction actually takes place
for most antenna indexes—a condition that is obviously ful-
filled for a large number of antenna elements or wide element
spacing—the choice of is not critical. In that case, the ma-
trix has as much randomness as if each of its rows were gen-
erated by independent linear congruential pseudorandom gener-
ators with different increments. The same considerations apply
to the matrix as well.

C. On Assumption 5

A matrix is said to be unitarily invariant if its distribution does
not change when it is simultaneously multiplied by an arbitrary
unitary matrix from the left and by from the right. For
instance, if is a Gaussian random matrix with independent
and identically distributed random entries, is unitarily in-
variant. It is well known [6], [7] that under Assumption 4, the
asymptotic singular value distributions of the matricesand

are not affected by Assumption 5. Moreover, it is conjectured
in [37] that unitary invariance is a property of a much larger class
of random matrices than the Gaussian independent and identi-
cally distributed ensemble. However, to the author’s knowledge,
a proof has not yet been found.
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APPENDIX B
PROOFS ANDDERIVATIONS

A. Proof of Theorem 1

We have to show that converges almost surely for
all nonnegative integers as . With

(69)

it is easy to see from (10) and (9) that can be expressed as
a noncommutative polynomial in the matrices ,

, , and .
First, consider the case that . Under As-

sumption 4, the self-adjoint random matrices and
converge in distribution almost surely to a compactly

supported probability measure as shown in [38], [21]. More-
over, they are unitarily invariant due to Assumption 5. Thus,
the matrices , , , and fulfill the conditions
of [8, Theorem 4.3.5] which says that they form a family that
is asymptotically free almost everywhere as .

If , the limiting probability measure of ei-
ther or , or the two of them is not really compactly
supported, but is composed of a continuous density with com-
pact support and a mass point at zero that lies out of the com-
pact support. However, the mass point at zero is not critical. It
is deterministic without need for asymptotic limits and [8, The-
orem 4.3.5] can be easily extended, as its proof [8, pp. 155–156]
shows. Therefore, asymptotic freeness almost everywhere holds
for , as well.

Asymptotic freeness almost everywhere, however, implies al-
most sure convergence of all normalized moments of the respec-
tive eigenvalue distribution (see [8, pp. 146–147]). The proof is
complete.

B. Derivation of (17)

In general, the eigenvalue densities and are com-
posed of a continuous density and a point mass at zero. Since the
nonzero eigenvalues of and are identical, the continuous
parts of the respective densities are identical up to a multiplica-
tive factor that ensures .

Since for any nonnegative random variable

we have the stronger result

(70)

with to be determined.
The probability that a randomly chosen eigenvalue of the

matrix and the matrix is nonzero is obvi-
ously and , respectively. Since
both matrices have identical rank, we find

(71)

which gives (16) with (70).

C. Proof of Theorem 2

Let

(72)

(73)

For , the real and imaginary parts of (32) give the
following system of equations:

(74)

(75)

Solving (75) for gives (35). Solving (74) for and
setting its solution equal to the right-hand side of (35) gives (36).

In order to get the supporting interval of , we note that
, since is continuous. Plugging (37) into

(36) and (35) verifies, after some tedious but straightforward
algebra, that and are zeros to .

D. Proof of Theorem 3

The space–time channel matrix is
circulant in the space of matrices on . Therefore,
it can be decomposed into

(76)

where are Fourier matrices on the
set of identity matrices and is an

diagonal matrix on the set of matrices. The Fourier
matrices are unitary with respect to both the matrix entries and
the underlying complex scalar entries. Thus, the singular values
of the space–time channel matrixin are
identical to those of in .

Since the space–time channel matrix is circulant, the nonzero
matrix-valued entries of are given as the matrix-valued
Fourier transform of the first matrix-valued row of [39].
Therefore, theth matrix-valued diagonal element ofcan be
written as

(77)

with some being determined by the Fourier transform. The
complex phase factors do not change the statistics of
the random matrices , as the entries of are rotationally in-
variant. Therefore, is assumed to be zero without changing
the expected singular value distribution of .

The matrix is block-diagonal. Therefore, its expected
singular value distribution is the mean of the expected singular
value distributions of the block matrices . The expected
singular value distributions of all the block matrices are
identical, as may be assumed zero without changing the
expected singular value distribution. Therefore, the expected
singular value distributions of

and (78)

in and , respectively, are identical.
Since the nonzero eigenvalues of any matrix are the
squared nonzero singular values of, equivalence holds also
for the respective eigenvalue distributions.
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If the singular value distributions of converge asymptoti-
cally to a nonrandom limits, for all, all of the above considera-
tions for expected singular value distributions hold respectively
for asymptotic singular value distributions.
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