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Thermodynamic integration along a path that coincides with the saturation line is proposed 
as an efficient means for evaluation of phase equilibria by molecular simulation. The 
technique allows coexistence to be determined by just one simulation, without ever attempting 
or performing particle insertions. Prior knowledge of one coexistence point is required to 
start the procedure. Integration then advances from this state according to the Clapeyron 
formula-a first-order ordinary differential equation that prescribes how the pressure 
must change with temperature to maintain coexistence. The method is unusual in the context 
of thermodynamic integration in that the path is not known at the outset of the process; 
results from each simulation determine the course that the integration subsequently takes. 
Predictor-corrector methods among standard numerical techniques are shown to be 
particularly well suited for this type of integration. A typical integration step along the 
saturation line proceeds as follows: An increment in the temperature is chosen, and the 
saturation pressure at the new temperature is “predicted” from previous data (the 
initial coexistence datum and/or previous simulations). Simultaneous but independent NPT 
simulations of the coexisting phases are initiated at the said conditions. Averages taken 
throughout the simulations are repeatedly used to “correct” the estimate of the pressure to 
convergence. Thus strictly the pressure is not fixed during the simulation. Vapor-liquid 
coexistence of the van der Waals model is first used to study the numerical integration method 
without the complications of molecular simulation. In a second application the phase 
envelope of the Lennard-Jones model fluid is computed, and many variations of the technique 
are examined. Overall, the results are remarkably consistent and in agreement with 
previous simulation studies. Difficulty is encountered upon approach of the critical point, but, 
by artificially coupling the simulation volumes, the method remains effective in this 
regime so long as a suitably small integration step is employed. Many extensions and 
improvements of the technique are discussed. 

I. INTRODUCTION 
In many circles simulation has come to be regarded as 

the third leg-along with theory and experiment-upon 
which we build our understanding of nature. Molecular 
simulation, comprising molecular dynamics and the Monte 
Carlo method, is the tool of thermal physics.’ While noth- 
ing approaching macroscopic systems can be simulated 
with present-day hardware and techniques, molecular sim- 
ulation methods have proven amazingly successful at en- 
hancing our understanding of matter. The spectrum of 
properties amenable to analysis by simulation is wide, al- 
though the degree of success is not uniform. Not surpris- 
ingly, direct molecular simulation functions best when ap- 
plied to short-wavelength, high-frequency phenomena, and 
its efficacy diminishes as the relevant length and time scales 
increase (or, more to the point, as they broaden), culmi- 
nating in complete failure at the critical point (notwith- 
standing indirect techniques such as finite-size scaling, 
which Bruce and Wilding* used recently and with great 
success to study the liquid-gas critical point of the 
Lennard-Jones fluid in two dimensions). Direct simulation 
of truly macroscopic systems will not become possible in 
the foreseeable future, so improvement in technique must 
be used to overcome the limits of computation. 

For decades the direct simulation of phase coexistence 
was deemed impossible because of the large length scale 
needed for relaxation of the properties from one phase to 
the other-attempts to simulate coexisting phases become 
overwhelmed by the behavior of the interface. The ap- 
proach that evolved was to evaluate the thermodynamic 
properties of each phase individually, determine if they 
satisfied the requirements of mutual thermodynamic equi- 
librium, and iterate until the point of coexistence was 
found. The difficulty of this procedure is compounded by 
the renowned problems inherent in the calculation of the 
chemical potential. ’ Thermodynamic integration was often 
used for this determination because the technique is robust, 
and the path chosen to perform the integration could often 
be made to coincide with the search for coexistence. Nev- 
ertheless, in even the best circumstances, evaluation of the 
coexistence envelope was a challenging task, and it was not 
unusual to devote a Ph.D. thesis largely to the computation 
of the phase diagram of a model substance. 

A great advance in simulation technique has reduced 
this task to a fraction of its original difficulty. The intro- 
duction and refinement4*5 by Panagiotopoulos and co- 
workers of the Gibbs ensemble simulation technique has 
made possible the direct evaluation of phase coexistence by 
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Monte Carlo simulation. The remarkably simple solution 
developed by these workers was to remove the interface: 
The coexisting phases are simulated in separate but ther- 
modynamically coupled volumes, thereby retaining the rel- 
evant physics while eliminating the confounding but irrel- 
evant features. The method-now widely accepted-has 
been applied to many systems and a good, very recent 
review surveys these developments.6 

A significant complicating feature of the Gibbs ensem- 
ble technique is its reliance on particle exchange to enforce 
equality of chemical potentials between the coexisting 
phases. The limitations introduced by this step are substan- 
tial, yet remarkable progress is being made in surmounting 
them.‘18 Unfortunately there remain many interesting co- 
existence phenomena that have not and likely will not 
prove amenable to study with the Gibbs ensemble tech- 
nique (at least not in its present, appealingly simple imple- 
mentation). Motivated by these shortcomings, and in- 
spired by the Gibbs ensemble method itself, we recently 
proposed “Gibbs-Duhem integration” as a complement to 
the Gibbs ensemble.’ This method too relies on simulta- 
neous simulation of weakly coupled phases to permit direct 
evaluation of coexistence, but it does so without reliance on 
particle exchange. Instead, thermodynamic integration is 
introduced in a manner that insures chemical potential 
equality between the phases; a similar idea was exploited 
by Bruce and Wilding in their study of coexistence and 
criticality in the two-dimensional Lennard-Jones fluid.* In 
short, the method offers the efficiency of the Gibbs ensem- 
ble and the versatility of thermodynamic integration. The 
purpose of this report is to review and elaborate on the 
details omitted from our brief communication that intro- 
duced the Gibbs-Duhem technique. 

The Gibbs-Duhem equation for a pure substance may 
be written” 

d(Pp) =h dO+Bv dP, (1.1) 

where p is the chemical potential, h and v are the molar 
enthalpy and volume, respectively, P is the pressure, and 
p= l/kT, with k the Boltzmann’s constant and T the ab- 
solute temperature. For two coexisting phases CY and y to 
remain in equilibrium when the temperature is changed, 
the pressure must vary in a manner that maintains chem- 
ical potential equality between them. The required change 
is easily derived from Eq. ( 1. 1 ),” and is given by the Cla- 
peyron equation 
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right-hand side of the formula-for model substances it 
can be accurately evaluated only by molecular simulation. 
This procedure is very expensive by the standards of typi- 
cal numerical analysis, so many of the usual techniques are 
entirely inappropriate here. Nevertheless, it is not difficult 
to take some integration techniques “off the shelf” and to 
modify them slightly to take advantage of the unique na- 
ture of “function evaluations” by molecular simulation. 
The result is a method that allows direct determination of 
the coexistence envelope through a series of simulations. 
Each simulation yields one point of the coexistence line, 
and most importantly it does so without the need to per- 
form particle insertions. 

The method outlined above is straightforward, but 
there are several ways in which it may be implemented. We 
discuss these issues and present our approach in the next 
section. We then demonstrate the technique by computing 
the vapor-liquid coexistence envelope for the van der 
Waals and the Lennard-Jones model fluids. In the final 
section we discuss in some detail how the method may be 
extended to more interesting systems-including 
mixtures-and we review some of the limitations of the 
technique that may be encountered when applied in these 
and other situations. 

II. METHOD 

A. Integrator 

where Ah = ha- h, is the difference in molar enthalpies of 
the coexisting phases, and Au is defined similarly as v,- vr; 
the subscript (T indicates that the derivative is taken along 
the saturation line. Viewed mathematically, Eq. (1.2) is 
simply a first-order nonlinear differential equation which- 
given an “initial condition”-yields upon integration the 
vapor-pressure curve. Many techniques are available for 
the numerical treatment of these equations,“-14 and, in 
principle, there is no reason that they cannot be applied 
here. The complication of course is in the nature of the 

The difficulty found in the numerical integration of 
differential equations-as opposed to numerical 
quadrature-is that the integrand [the right-hand side of 
Eq. ( 1.2), call it fl depends on both the independent and 
dependent variables [let us denote them x and y, respec- 
tively, so that y=y(x) and f=f(x,y>]. At the outset of 
each integration step (in which x, is incremented to x,+ 1) 
the value of ~~+~=y(x~+~) is unknown; moreover, accu- 
rate evaluation of it requires knowledge of f,+, 
=f(x,+ I,y,+ l). Consequently, the integration procedure 
is inherently an iterative process. The most accurate and 
stable integration algorithms’ l-l4 typically require several 
integrand evaluations to advance one step in the indepen- 
dent variable. The first of these gives a feel for the behavior 
off (x,y) in the uncharted region, and this information is 
used-sometimes in combination with knowledge of the 
prior behavior of y(x) and f(x,y)-to provide a best esti- 
mate for Y,,+~; the process then repeats for the next incre- 
ment in x. Those algorithms that are generally acknowl- 
edged as the best require evaluation of f(x,y) for several 
values of x between x, and x,+~. Clearly this is to be 
avoided in the current application, where each integrand 
evaluation entails a complete simulation. 

Each simulation must yield a coexistence datum if the 
proposed technique is to be considered a means for direct 
evaluation of coexistence. Fortunately, the right-hand side 
of Eq. ( 1.2) is a smooth function of pressure and temper- 
ature, and simple integration schemes can be applied with 
accurate results. This happy situation likely holds for most 
other types of coexistence, although it may require the 
proper formulation of the governing differential equation. 
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As a simple example, it is well known that when Eq. ( 1.2) 
is written 

d In P 

( 1 

Ah - =-- 
dp r7 DPAv (2.1) 

and applied to vapor-liquid equilibrium, the right-hand 
side is virtually constant. Such an assumption leads to the 
Clausius-Clapeyron equation, which prescribes a linear re- 
lation between In P and l/T. Although this assumption is 
not introduced into the numerical technique, any integra- 
tion scheme that is applied here would benefit from the 
slowly varying nature of the integrand of Eq. (2.1) as 
compared to Eq. ( 1.2). 

The nature of integrand evaluations by molecular sim- 
ulation is quite different from the way one normally thinks 
about the evaluation of functions, and standard numerical 
methods for the treatment of differential equations have of 
course not been designed with simulations in mind. Nor- 
mally a function is computed by a well-defined sequence of 
calculations, and the answer is not available until the cal- 
culation is complete. Simulation on the other hand is a 
long process in which the estimate of the quantity of inter- 
est is gradually refined until a (somewhat arbitrary) point 
is reached and the “answer” is given. For an integrator to 
exploit this feature of simulation, it cannot rely on inte- 
grand evaluations at intermediate values of the tempera- 
ture (which is represented by the independent variable x 
above). However, once a step in the temperature is taken 
and simulation is initiated, one need not wait for comple- 
tion of the run before refining the estimate of the pressure 
(i.e., the dependent variable y) . Instead it may be updated 
in accordance with the best current estimate of - Ah/fiAv 
(the integrand f ) as the simulation progresses. Because f 
depends on averages from both of the coexisting phases, 
they must be simulated simultaneously to implement this 
procedure. 

All of the considerations discussed above suggest 
predictor-corrector techniques as the most appropriate 
choice of integrator.’ l-l4 In the predictor step, values of 
y(x) and f (x,y> for a set of (usually equally spaced) val- 
ues of x (x,, x,- 1, etc.) are used to construct a polynomial 
approximation to the functions. These data are obtained 
from the initial condition and/or from prior simulations. 
Predictor-corrector techniques differ in how much of and 
in what manner this information is used; one important 
parameter is the order of the polynomial, which defines the 
order of the predictor-corrector method. The polynomial 
is extrapolated to predict y(x) at x,,+~; this value we label 
y$ 1, where the 0 superscript indicates that it is a predicted 
value. In the corrector step f (xn+l,y~~p:) is evaluated and 
the result is used to improve the polynomial fit of y(x), and 
a corrected value y$ 1 is generated. The procedure may be 
repeated to generate yATl, Y:!,!~, etc., until convergence, 
although the accepted wisdom14 is to halt the process at 
this point, and to continue with the next step of the inte- 
gration. However, in the present context this is not the best 
strategy because the corrector may be easily iterated to 
convergence during the course of simulation averaging. It 
should be remembered that the accuracy of the calculation 

will nevertheless be limited by the polynomial approxima- 
tion to y(x), and that “iteration to convergence” does not 
necessarily imply that the error introduced by the integra- 
tion procedure is negligible. l4 

Startup of a predictor-corrector series is sometimes 
problematic. Most algorithms require data for several val- 
ues of x, but at the outset only one datum is available (the 
initial condition). Often other methods are called in to 
start the procedure. We have avoided this approach, and 
instead have relied on lower-order predictor-corrector for- 
mulas to initiate the procedure. This simple solution may 
not work in all instances, but it proved successful in our 
studies. The formulas that we have employed are listed in 
Table I.‘2p’3 As seen in the table, the trapezoid method 
requires only one prior y(x) and f (x,y> value (usually 
given by the initial condition) for both the predictor and 
the corrector; the midpoint formula requires two for each, 
while the Adams predictor and corrector require four and 
three prior values, respectively. These formulas require 
that the x values of the series of simulations be equally 
spaced, with step size h. Given the values of y and f for a 
sequence of states x,, x,- 1, etc., the formulas indicate how 
y,, 1 is to be estimated (predictor) and subsequently up- 
dated (corrector) during the simulation once an approxi- 
mation for f n+ 1 becomes available. Further details are pro- 
vided below. 

B. Stability 

The question of stability of the technique is an impor- 
tant one, and it has several facets. One may first consider 
propagation of errors as the integration proceeds. If nu- 
merical errors from initial integration steps result in even 
larger errors at subsequent steps, the method is unstable 
and will not produce reliable results. The stability analysis 
of numerical techniques is well developed and docu- 
mented’*,13 and for the most part it will not be repeated 
here. When choosing an integration scheme often a trade- 
off is required between accuracy and stability. The trape- 
zoid corrector for example is not especially accurate but it 
is locally stable for all step sizes h of the independent vari- 
able x. Higher-order predictor-corrector methods lose sta- 
bility as h increases beyond a certain value. It suffices here 
to say that a principal indicator of stability is the derivative 
af/dy; the step size h should be chosen so that the product 
of it with this derivative is a small quantity.‘* 

A second issue of stability has to do with the conver- 
gence properties of the corrector iterations. l3 This is essen- 
.tially a method of successive substitution, and it will con- 
verge if 

af ch - <l, I I ay (2.2) 

where c is a constant that is easily determined for a given 
corrector formula (e.g., c= l/2 for the trapezoid formula). 
The product is the same as that discussed just above. Pro- 
vided the derivative is finite, this relation can always be 
satisfied by choosing a sufficiently small step h. In practice, 
the convergence criterion will be less restrictive than this. 
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Since running averages (as opposed to instantaneous val- 
ues or recent block averages, see below) of f(x,y) are used 
to update y, the iterations will be considerably damped and 
thereby enhance the stability of the procedure. Regardless, 
this consideration highlights the importance of the product 
h 1 af/ay 1 to the stability of the numerical calculation. 

The final issue of stability is thermodynamic in nature. 
NPT simulations of coexisting, single-component phases 
are possible-in apparent violation of the phase rule-only 
because the pressure is not truly an independent variable. 
At the outset of each simulation, the first guess for the 
correct equilibrium pressure contains some error that 
should diminish as the run progresses. The unavoidable 
result is that for part of the simulation one of the phases is 
unstable with respect to the other;15 there then is the pos- 
sibility that it may condense or vaporize before the pres- 
sure converges to the correct value, and thereby invalidate 
the results. This event is least likely at low temperatures, 
where there exist significant regions of metastability for 
each phase and the free energy barrier between them is 
large. But upon approach of a critical point the barrier 
decreases and a catastrophic phase change becomes 
possible-indeed it is likely-even when the pressure is the 
correct value for coexistence. 

Borrowing again from the Gibbs ensemble6 method, 
this potentially serious problem can be alleviated by artifi- 
cially coupling the volume changes of the two phases. For 
example, it is simple to perform simultaneous volume 
changes in a manner that mimics the exchange of particles 
and volume between the phases. Coupling of the volumes 
this way prevents either phase from unilaterally vaporizing 
or condensing. Details are provided in the following sec- 
tion. 

C. Coupling 

Let us first write the partition function A for the com- 
posite system, assuming that the pressure has converged to 
the correct coexistence value 

= ~omdVl~om dV2 exp[ -WC VI + Vd 1 

xq(T,V,,Nl)q(T,V,,N,), (2.3) 

where q( T,V,N) and 6( T,p,N) are the canonical and 
isothermal-isobaric ensemble partition functions,16 respec- 
tively, for each subsystem. As written in Eq. (2.3), the 
partition function prescribes a simulation procedure in 
which the two volumes are sampled independently. Nev- 
ertheless, two new variables, each depending on both VI 
and V2, may instead be sampled because the Gibbs-Duhem 
integration procedure requires that simulations of each 
phase be conducted simultaneously. For vapor-liquid co- 
existence appropriate choices are suggested by the Gibbs 
ensemble as formulated by Smit et al. : X and Y are defined 
such that the densities of each phase are5,” 

X 1-x -. 
Pl=yP, P2=l-yPY (2.4) 

where p is a density that lies between the expected coex- 
istence densities, but is otherwise arbitrary. AS pi= Nj/ Vi, 
with N1 and N2 constant throughout the simulation, sam- 
pling of X and Y varies the volumes of the two phases. 
With the stipulation that X and Y be bounded by zero and 
unity, the densities given by Eq. (2.4) must lie on opposite 
sides of p. Thus the desired restriction on the system den- 
sities is achieved. To ensure that X and Y do not sample 
values outside their bounds, it is convenient to define un- 
bounded variables tx and ty such that 

1 1 
x= 

l+exp(--tx) ’ 
Y= 

1 +exp( -ty) ’ (2.5) 

These are the variables that are sampled during the simu- 
lation. With them, the partition function takes the form 

A ( T,P,Nl,N2;p) 

= J:, dtxJ:m dtyJ(tx,tY)expC-b’J’[ Vl(tx,ty) 

+ ~2(tx,t,)l~q[T,V1(tx,tr),N11 

xq[T,Vz(tx,tr),N21, (2.6) 

where the Jacobian of the transformation J(tX,ty) is 

J=N1N2 (P-P11 (P2--PI 

PP1P2h-P2) . 
(2.7) 

D. Procedure 

A Gibbs-Duhem simulation may be performed using 
Monte Carlo (MC) or molecular dynamics simulation 
(MD). In the simplest caseemploying no artificial cou- 
pling of the type just described-two NPT simulations are 
performed simultaneously. The procedure for conducting 
NPT MC and MD may be found in many places,’ and will 
not be repeated here; it suffices to say that each algorithm 
requires the input of the pressure as an independent pa- 
rameter. At the outset the pressure is specified by the pre- 
dictor formula, and its value governs the conduct of the 
MC or MD simulations in each box during the initial 
stages of the run. For example, application of the 
trapezoid-rule predictor given in Table I to Eq. (2.1) yields 

P=P0 expE f&l, (2.8) 

where fc is by the right-hand side of Eq. (2.1), PO is the 
pressure, and both are evaluated from the “initial 
condition”-data that must be obtained by some other 
means, possibly a Gibbs ensemble simulation, an accurate 
theory, or from a thermodynamic integration series per- 
formed separately; h is the difference in reciprocal temper- 
ature fi between the current simulation and the initial con- 
dition. 

Averages of the energy and volume of each phase are 
collected for a short period, and are then used to update 
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TABLE I. Predictor-corrector formulas. ‘2*‘3 Names are for reference by 
text. P,C indicate predictor and corrector, respectively. Each formula 
describes how the pressure (designated here as JJ) in a given simulation 
(subscripted i+ 1) is determined from y and f (the integrand) of previ- 
ous simulations (subscripted i,i- 1, etc.), corresponding to reciprocal 
temperatures p that differ by h. For example, if h=0.05 and the current 
simulation (i+ 1) is conducted at p= 1.20, then yi and fj are In(P) and 
f(&P) for p= 1.15; yi-t and fi-t are for p= 1.10, etc. n indicates the 
number of previous simulation state points needed to use each formula. 

Name Type n Formula 

Trapezoid P l Yi+l’Yi+hfi 
C l Yi+ 1 =Yi+$ Vi+ 1 +fi) 

Midpoint P 2 yi+ , =yi- I + 2hf i 
C 2 Yi+*‘Yi-I+$ (fi+l+4fi+fi-1) 

Adams P 
C 

4 Yi+l=Yt+G (55fi-59fi-,+37fi-2-sfi-,) 
3 Yi+l’Yi+z;i (9fi+*+19fi-5fi-l+fi-2) 

the pressure according to the corrector formula. Again us- 
ing the trapezoid rule for an example, the pressure is given 
by 

P=P0 ew[W0+fd/21, (2.9) 

where f 1 is the estimate off obtained from the simulation 
in progress. The simulation continues with the new pres- 
sure, and the process repeats after another interval of sam- 
pling. Of course f. never changes during a single simula- 
tion, while subsequent values of f 1 are best determined 
from the running averages of the enthalpy and the volume. 
An alternative would compute f i from block averages over 
a limited number of configurations immediately preceding 
the pressure adjustment step. This choice and others like it 
have certain drawbacks. Use of the running average causes 
fluctuations in the pressure to become increasingly damped 
as the simulation proceeds; absent this effect, block aver- 
aging methods would likely be more slowly converging at 
best, and unstable at worst. More important, use of the 
running average leads to a final pressure that is consistent 
with the simulation averages of the energies and volumes of 
the phases. Any other approach could well result in the 
uncomfortable circumstance in which the collective simu- 
lation data do not obey the Gibbs-Duhem equation-the 
formula that governs the whole procedure! 

With this discussion it should be emphasized that the 
pressure is in principle not a quantity to be stochastically 
sampled during a simulation. The Gibbs-Duhem simula- 
tion method is a marriage of several numerical techniques, 
and nominally it is the nature of the pressure evaluation to 
converge in an analytical sense, and not in a statistical one. 
Of course the splicing of the techniques makes this sepa- 
ration difficult in practice, but nonetheless it is worthwhile 
to appreciate the distinction. In a similar vein, we have 
carefully avoided the term “Gibbs-Duhem ensemble” be- 
cause there is no well-defined ensemble that is sampled by 
the simulations. The pressure is not fixed, and an analysis 
of its “fluctuations” should not proceed as if this were a 
standard statistical mechanical ensemble.i6 

Introduction of the coupling described above is quite 
simple when MC sampling is used. Instead of sampling the 

volumes of each box, random and uniformly distributed 
steps are taken in tx and/or ty. Given the proposed tx and 
t, the new volumes are easily computed and used as al- 
ways in deciding acceptance. The Hamiltonian must be 
modified by the addition of the term -kT In J( tx,ty), 
where J is the Jacobian of Eq. (2.7), and the acceptance 
criteria adjusted accordingly. Application of the coupling 
with MD is less clear, although it can likely be achieved by 
treating tx and ty (or maybe X and Y themselves) as aux- 
iliary dynamical variables, much as is done with the vol- 
ume in NPT MD.’ At present we have not pursued this 
idea further. 

III. APPLICATION 

There are many variables to consider in planning a 
Gibbs-Duhem series. Of particular significance are the fol- 
lowing. 

Integration step size. There is a trade-off between the 
range of coexistence states that may be investigated by a 
fixed number of simulations and the stability and accuracy 
of the predictor-corrector integration. 

The integrand. Clearly it is best to formulate the gov- 
erning differential equation with a slowly varying integrand 
[e.g., Eq. (2.1) vs Eq. (1.2)], but often this is not possible. 
How sensitive is the technique to this choice? 

The predictor-corrector formula. A higher-order form 
is more accurate but requires more input data and may be 
less stable. 

Coupled us independent volume changes. Do the results 
depend on this choice, and can coupling attenuate the 
problems expected upon approach of the critical point? 

System size. An important consideration in any molec- 
ular simulation study. 

Some of these questions can be addressed before turn- 
ing to simulation. Indeed, it is worthwhile to study how 
well predictor-corrector methods can integrate along the 
saturation line absent the complications introduced by sta- 
tistical errors. Any thermodynamic model may be used to 
examine this issue; that of van der Waals is a convenient 
and well-studied choice. 

A. van der Waals fluid 

The van der Waals equation of state may be written 

8 3 
p’=&.(3v,- 1) -3 (3.1) 

where 0, v, and P, respectively, refer to the reciprocal 
temperature, the molar volume and the pressure divided by 
their values at the critical point. We performed in various 
ways Gibbs-Duhem integration from fir= 2 to very close to 
the critical (fi,= 1 ), and examined the error in the satura- 
tion pressure at each temperature (the correct pressure 
may of course be calculated directly by equating tempera- 
ture, pressure, and chemical potential of the coexisting 
phases). The predictor-corrector formulas listed in Table I 
were used, and the corrector was iterated to convergence at 
each step (specifically, until the ratio of consecutive cor- 
rector pressures was within low5 of unity). Startup of each 
integrator was achieved by computing the required quan- 
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FIG. 1. Fractional error in saturation pressure as a function of reduced 
reciprocal temperature &during Gibbs-Duhem integration using the van 
der Waals equation of state. Integration begins at the left of the figure 
(low temperature) and proceeds to the right. Filled and open markers 
describe integration according to Eqs. (1.2) and (2.1), respectively. The 
shape of the marker indicates the predictor-corrector method: Squares 
represent the trapezoid formulas; diamonds are the midpoint formulas; 
circles indicate the Adams formulas. 

FIG. 2. Effect of integration step size on accuracy of integration accord- 
ing to the van der Waals equation of state. The ordinate is the fractional 
error in the saturation pressure observed after Gibbs-Duhem integration 
to a reciprocal temperature & 1.1 from p,=2.0. Designation of markers 
is as in Fig. 1. 

tities for fir>2 exactly. Special attention was paid to the 
effect of the governing differential equation [Eq. ( 1.2) and 
(2.1)] on the outcome of the integration. In nearly all 
instances the pressure was determined very accurately, and 
differences can be uncovered only by looking at the errors 
on a logarithmic scale. 

The’ influence of the integrator is displayed in Fig. 1. 
The observed error is consistent with the order of each 
method: The trapezoid-rule predictor-corrector yields the 
poorest results and the Adams formulas the best, with the 
midpoint predictor-corrector in between. With all integra- 
tors the error accrues gradually throughout the integra- 
tion. All methods underestimate the correct pressure [this 
trend cannot be determined from the figure because abso- 
lute values are taken to make the logarithmic plot; also the 
initial erratic behavior of the Adams integration of Eq. 
(2.1) is an artifact of the plot-the error is actually chang- 
ing sign at this point]. The governing differential equation 
has a significant influence. There is a one-to-two orders of 
magnitude deterioration in the results when Eq. (1.2) 
rather than Eq. (2.1) is integrated. The trapezoid rule in 
the former yields an unacceptable result, with an error of 
more than 20% seen by the end of the integration. In all 
other applications the results may be deemed acceptable, 
with an error of a few percent arising in the worst cases. 
Interestingly, no pathological behavior seems to be surfac- 
ing as the critical point is approached, but then again with 
this step size the approach is not even to within 5% of the 
critical temperature. 

is not to be expected as this was used to define convergence 
of the corrector). The improvement is greater for the 
higher-order integration methods, and this is consistent 
with the definition of the “order” of a method. The maxi- 
mum step size that insures convergence of the corrector 
iterations can be determined directly from Eq. (2.2). In 
Fig. 3 this general stability indicator is presented as a func- 
tion of temperature for each formulation of the governing 
differential equation; a larger value indicates a more stable 
integration. Two features are apparent. First, a larger step 
size may be used to integrate Eq. (2.1), indicating that 
integration of the slowly varying integrand enjoys greater 

1.8 1.6 1.4 1.2 

Reciprocal temperature, p, 

The effect of integration step size is seen in Fig. 2. In 
this plot the error in the pressure at &.= 1. l-a tempera- 
ture near the end of the integration series-is given as a 
function of the integration step size. As expected, the in- 
tegration becomes more accurate as the stepsize is de- 
creased (note that a relative error of much less than 10m5 

FIG. 3. Theoretical maximum step size h that insures convergence of 
trapezoid corrector, plotted as a function of reciprocal temperature. Val- 
ues are computed according to the van der Waals equation of state. The 
lower line applies for integration according to Eq. (1.2), and the upper 
line is for Eq. (2.1). The quantity plotted is 2/l 6’f/$~l [cf. Eq. (2.2)], 
where f and y are the integrand and the dependent variable [P or In P for 
Eq. (1.2) and (2.1), respectively], as described in the text. Ordinate and 
abscissa are made dimensionless with & the reciprocal temperature at the 
critical point. 
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TABLE II. Parameters for Gibbs-Duhem series of the Lennard-Jones fluid. “Series” column labels each series for reference in text and figures; the initial 
condition for each series is also indicated in this column (GE denotes Gibbs-ensemble data of Ref. 4; a letter designates a simulation from the 
corresponding series). “Initial, final/T’ indicates the starting and ending reciprocal temperatures of each series, for which integration steps of “step size” 
(column 3) were used to integrate “govg Eq.” (column 5). “iV’ lists the number of particles used to simulate the liquid and vapor, respectively. “P/C 
technique” indicates the predictor-corrector scheme used to perform the integration: T-trapezoid rule; M-midpoint rule; A-Adams; TMA indicates 
that the methods were used in succession to achieve startup as described in the text. “Cplng” denotes whether the artificial coupling of Sec. II C was 
employed. The incidence of “unilateral phase change” is noted, with reference to the phase that underwent the change and at what reciprocal temperature 
it occurred during the series. Boldface entries highlight variations from the appropriate “base series.” 

Series 
(init’l 
cond) 

a(GE) 
WGW 
c(GE) 
d(c) 
4GE) 
f(GE) 
g(f) 

h(e) 
i (GE) 
j(e) 
k(j) 
l(e) 
m(e) 
n(e) 
o(e) 
P(O) 
q(e) 
r(h) 
s(r) 
t(r) 

Initial, Step N 
final p size, h liq/vap 

1.00; 0.80 0.05 108/108 
1.00; 1.35 0.05 108/108 
1.00; 0.80 0.05 500/256 
0.79; 0.76 0.01 5CiY256 
1.00, 1.35 0.05 108/108 
1.00; 0.80 0.05 108/108 
0.83; 0.77 0.02 108/108 

1.30; 0.80 0.05 108/108 
1.28; 0.78 0.05 108/108 
1.30; 0.80 0.05 108/108 
0.79; 0.76 0.01 108/108 
1.30; 0.80 0.05 108/108 
1.30; 0.80 0.05 108/108 
1.25; 0.85 0.10 108/108 
1.30; 0.80 0.05 256/256 
0.79; 0.76 0.01 256/256 
1.25; 0.85 0.10 108/108 
0.84; 0.76 0.01 108/108 
0.80; 0.76 0.01 108/108 
0.80; 0.76 0.01 256/256 

Govg 
Eq. 

(2.1) 
(2.1) 
(2.1) 
(2.1) 
(2.1) 
(2.1) 
(2.1) 

(2.1) 
(2.1) 
(2.1) 
(2.1) 
(1.2) 
(2.1) 
(2.1) 
(2.1) 
(2.1) 
(1.2) 
(2.1) 
(2.1) 
(2.1) 

P/C 
Tech- 
nique 

TMA 
TMA 
TMA 
TMA 
TMA 
TMA 
TMA 

TMA 
TMA 
TMA 
TMA 
TMA 

T 
TMA 
TMA 
TMA 

T 
TMA 
TMA 
TMA 

Cplng? 

Yes 
Yes 
Yes 
Yes 
No 
No 
No 

No 
No 
Yes 
Yes 
No 
No 
No 
No 
No 
No 
Yes 
Yes 
Yes 

Unilateral 
phase 

change? 

No 
No 
No 
No 
No 

liq; fl=O.80 
both; p=O.77 

liq; p=O.80 
liq; fi=O.78 

No 
No 
No 

liq; fi=O.SO 
No 
No 

liq; /?=0.78 
vap; /?‘=0.85 

No 
No 
No 

Notes 

Base series 
Base series 

Continues (c) 

Continues (f) 

Base series 

Continues (j) 

Continues (0) 
“Worst case” 

30 000 runs cycle 

stability as well as improved accuracy. Second, the maxi- 
mum allowable step size decreases dramatically upon ap- 
proach of the critical point. This phenomenon does not 
seem to have caused trouble in any of the numerical studies 
of this section; nevertheless, it points to the need to take 
special care when applying Gibbs-Duhem integration near 
a critical point. 

B. Lennard-Jones fluid 

Vapor-liquid coexistence of the Lennard-Jones fluid 
can be used to study the strengths and limitations of the 
proposed technique in a more realistic situation. The 
Lennard-Jones potential is the prototypical model for sim- 
ple fluids, and its properties are well documented; indeed, 
the very first test of Gibbs ensemble simulation was per- 
formed using the Lennard-Jones potential.3 In the follow- 
ing, all quantities are made dimensionless with the 
Lennard-Jones size and energy parameters o and E. 

We performed many Gibbs-Duhem integration series 
investigating the effect of the parameters listed above. Con- 
ditions for each series are summarized in Table II, where a 
letter label is assigned to each. The series may be grouped 
into two categories: in series (a)-(g) the /3=1.0 Gibbs- 
ensemble data of Panagiotopoulos et al4 served as the ini- 
tial condition and integration was performed in each direc- 
tion, approaching the triple and critical points, 
respectively; series (h)-(t) used the fi= 1.35 data from the 
termination of series (e) as the initial condition, and inte- 
gration was performed toward the critical point. This start- 

ing condition was preferred because it would allow errors 
more chance to accumulate and thus better test the limits 
of the technique. One additional run-series (i&-was per- 
formed using fi= 1.33 Gibbs-ensemble data4 as the initial 
condition, but this gave unacceptable results. For each 
grouping one “base series” was chosen. The effect of each 
operating parameter was explored by conducting series 
that varied from this base case by only one parameter. 
These parameters are highlighted in Table II. The last 
three series-( r ) , (s) , and (t )-focus on the approach to 
the critical point. The coupling method of Sec. II C was 
introduced to eliminate unilateral phase transitions in some 
series as noted in the table. For each simulation the arbi- 
trary “overall density” p needed to implement the method 
was chosen by averaging the liquid and vapor densities of 
the preceding run of the series. 

Each simulation was conducted in the manner de- 
scribed in Sec. III D. The simulations were organized in 
cycles, where each cycle comprised on average one at- 
tempted displacement per particle and two attempted vol- 
ume changes (the type of move was selected randomly); 
the sizes of all attempted changes were adjusted to achieve 
a 50% acceptance rate. All simulations sampled 10 000 
cycles beyond an equilibration period that usually lasted 
1000 cycles (the exceptions being the few simulations that 
started from an fee lattice configuration, in which equili- 
bration lasted 10 000 cycles, and series (s), in which each 
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FIG. 4. The pressure as estimated by the corrector during the course of 
several series (0) simulations. The glitch at 1000 cycles results from 
discarding of the equilibration measurements and accompanying renewal 
of the running average-s of volume and enthalpy. The box at the right is 
centered. on the pressure given by the predictor formula at the outset of 
the simulation. From bottom to top the reciprocal temperatures p are: 
1.25, 1.20, 1.10, 1.00, 0.90, 0.80, 0.76 [the last a series (t) simulation]. 

run sampled 30 000 cycles beyond equilibration). The ini- 
tial particle placements for each simulation were given by 
the final configuration of the preceding run. The pressure 
was adjusted every 10 cycles as described in Sec. II D and 
further detailed below. All running averages (in particular 
those used to adjust the pressure) were re-zeroed after the 
equilibration period. In most simulations 108 particles 
modeled each phase, and exceptions are noted in the table. 
Standard periodic boundary conditions were used, the po- 
tential was truncated at half the edge length of the (cubic) 
simulation volume, and the minimum image convention 
was employed. Appropriate steps were taken to account for 
changes in the long-range correction to the potential when 
deciding acceptance of volume changes.’ Instantaneous 
values of the internal energy, pressure, and density of each 
phase were written to disk after every 100 cycles and were 
subsequently analyzed to estimate the statistical error of 
the averages.” 

In almost all the series, integration proceeded with the 
Adams predictor-corrector.1zP13 As noted above and in Ta- 
ble I, this algorithm requires four prior simulations. Start- 
up was performed as follows: The first simulation relied on 
the trapezoid rule predictor-corrector (with the initial- 
condition data) to determine the pressure; the midpoint 
formulas were used for the second simulation of a series; in 
the third the midpoint predictor was used with the Adams 
corrector; all subsequent simulations of a given series used 
the Adams formulas. To gauge the sensitivity of the tech- 
nique on the predictor-corrector algorithm, two series 
[(m) and (q)] were performed using only the trapezoid- 
rule formulas. Convergence of the pressure is demon- 
strated in Figs. 4 and 5. Figure 4 displays the pressure 
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FIG. 5. The pressure as estimated by the corrector (PC) during the course 
of several simulations from series (0) and (t), given as the fractional 
deviation from the predictor value (PJ. The large fluctuation at 1000 
cycles results from discarding of the equilibration measurements. The 
discrete nature of some of the low-temperature fluctuations is an artifact 
of the way the plot was generated (the simulation log files recorded the 
pressure to five decimal places, which is only three significant figures at 
the lower temperatures). 

computed by the corrector throughout the course of sev- 
eral series (0) and one series (t) simulation; the predictor 
pressure is presented for easy comparison with the final 
pressure of each run. The predictor does a good job of 
providing an initial estimate, and little fluctuation is seen in 
the pressure throughout the course of each simulation, 
even at near-critical temperatures. An expansion of scale is 
achieved in Fig. 5 by plotting the relative deviation of the 
corrector pressure from the predictor value through the 
course of each simulation. The deviation is rarely above 
l%, and fluctuations are on the order of just 0.2%, even 
near the critical point (/3=0.76, approximately) 

Figure 6 examines the behavior of the density of each 
phase as the simulations progress. Given the stability of the 
pressure displayed in the previous figures, no unusual be- 
havior is expected here nor is it observed. The artificial 
coupling introduced to preclude unilateral phase transi- 
tions substantially influences the sampling. A cursory look 
at the figure reveals a strong correlation between the liquid 
and vapor densities at the highest temperature; indeed, the 
coefficient of correlation is very large, -0.54. This, how- 
ever, is not a representative value-the coupled simulations 
typically had coefficients of about -0.3. Further, the 
midrange profile in the figure is also from a coupled sim- 
ulation, and the coefficient there is an unusually small 
0.008, while the low-temperature simulation employed un- 
coupled volume sampling and shows a coefficient of 0.04 (a 
typical value for this type of volume sampling). It is inter- 
esting to note that in no simulations did the volumes ex- 
change their roles as liquid and vapor, even when very near 
the critical point. Such exchanges are not unusual during a 
Gibbs ensemble simulation, and they are not precluded by 
the coupling algorithm of a Gibbs-Duhem simulation. 
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0.6 

Simulation cycles 

FIG. 6. Densities of the coexisting phases through the course of several 
simulations. The dashed-line, outermost profiles (note that one is very 
close to zero) represent the series (0) 0=1.25 run; the solid lines are 
from the series (r) 8=0.84 simulation, and the dotted-line, innermost 
pair describe the series (t) p=O.76 run. 

Their absence suggests that the coupled sampling does not 
completely mimic the Gibbs ensemble as designed. A look 
at the Jacobian introduced with the coupling, Eq. (2.7), 
indicates that the densities are discouraged from sampling 
values close to the arbitrarily imposed “overall density” p. 
Thus a ‘histogram of the system densities would likely not 
display the anomalous “third peak” at p described by Smit 
et aL5 and discounted by Mon and Binder.lg While this 
difference seems to have had no adverse effect on the sim- 
ulation averages, a more extensive investigation of the in- 
fluence of the artificial coupling on the Gibbs-Duhem pro- 
cedure would certainly be worthwhile. 

The coexistence results of all studies are presented in 
Figs. 7 and 8. The data are on the whole consistent and 
reproducible, and the procedure seems largely insensitive 
to the details of its implementation. Agreement with the 
established coexistence data4”’ is very good. Nevertheless 
several discrepancies are apparent. Approach to the critical 
is a topic in itself, and it receives extensive discussion be- 
low. In addition, two entire series differ conspicuously 
from the others: ( 1) that which uses low-temperature 
Gibbs ensemble data4 for the initial condition, series (i); 
and (2) the “worst-case” implementation in which Eq. 
(1.2) is integrated using the trapezoid rule with a large 
step size, series (q). In the former, error introduced at an 
early stage propagates through the entire series, and it 
highlights the need for reliable initial-condition data. A 
temperature intermediate between the triple and critical 
points seems a good choice for the initial condition (if 
using the results of a Gibbs ensemble run as the source of 
the data). Starting from this condition, the Gibbs-Duhem 
method retraces its path with essentially no deviation when 
series are conducted to low temperatures and back again. 

0:s 0:9 l:o 1:1 1:2 

Reciprocal temperature 

FIG. 7. Saturation pressure as a function of reciprocal temperature for 
the LennardJones fluid. Letters in the legend indicate the Gibbs-Duhem 
series as defined in Table II; series with duplicate symbols do not overlap 
temperatures and thus can be distinguished by their location on the dia- 
gram. Filled markers represent Gibbs-ensemble data of Panagiotopoulos 
et al4 (squares) and of Smit et al.” (circles). The inset highlights the 
critical region. 

The “worst-case” example shows that the method cannot 
be used carelessly even if good initial-condition data are 
available, and that the technique indeed has limits. 

The anticipated failure of the Gibbs-Duhem method 
was observed in most series upon approach of the critical 
temperature. In the majority of instances, the series was 
terminated because the liquid phase took on vaporlike val- 
ues. The inset of Fig. 7 reveals that in the critical region the 
Gibbs-Duhem pressures are lower than those given by the 
Gibbs ensemble simulations-the difference is slight but 

1.3 r- --‘---T 

0.0 0.2 0.4 
Density 

0.6 0.8 

FIG. 8. Coexistence envelope of the Lennard-Jones fluid. Symbols are as 
in Fig. 7. 
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consistent. The discrepancy explains the poor reproducibil- 
ity of the liquid-phase densities seen in Fig. 8, and the 
tendency of the liquid to vaporize. Introduction of the cou- 
pling method did indeed preclude this unilateral phase 
change, but the results still suffered greatly from the poor 
estimate of the pressure. Most of the high-temperature sim- 
ulations that incorporated this technique are substantially 
in error, with liquid- and vapor-phase densities that are 
clearly too low near the critical. This behavior is consistent 
with that found in the study of the van der Waals model 
described in the previous section, in which any error in the 
pressure tended toward its underestimation. 

The single most effective means for improving the re- 
sults near the critical point was to decrease the step size of 
the Gibbs-Duhem integration. This measure greatly im- 
proved the pressure estimate and thereby eliminated the 
main cause of the scatter in the data of Fig. 8. Series (r), 
(s), and (t) each integrated with a step of 0.01 at high 
temperatures [series (d) and (j) also used this small step, 
but they were initiated with a poorly estimated pressure]. 
In each series the pressure was brought more in line with 
the Gibbs ensemble results. Moreover, the coupling tech- 
nique of Sec. II C proved very successful in eliminating 
unilateral phase transitions while maintaining the integrity 
of the results. As with any simulation near a critical point, 
system size and sampling duration greatly influenced the 
outcome. Bad luck in the middle of series (r) resulted in a 
vapor density that is clearly too high, and this skewed the 
rest of the series (interestingly enough, to higher pres- 
sures) . Series (s) began from the last “good” run of series 
(r). Using the same initial configuration and a different 
random number seed, it sampled 30 000 cycles with satis- 
factory results; even the first 10 000 cycles [the duration of 
the series (r) runs] of the first run of this series averaged to 
a reasonable density. Still, at temperatures very near the 
critical the results deteriorated, particularly the vapor den- 
sity. The trouble was alleviated in series (t), where 256 
particles simulated each phase and much better results 
were obtained at even the highest temperatures. 

Figure 9 and Table III summarize the results from 
what should be the best series: those having 256 particles in 
each phase, the highest-order integration scheme, the best 
choice of governing equation, and the smallest step size for 
the region integrated. These are series (0) for the low tem- 
peratures and series (t) near the critical point; the 108 
particle-per-phase simulations of series (r) are also in- 
cluded where they do not overlap these larger system sim- 
ulations. The table shows that the pressure of each phase is 
consistent with the imposed pressure, and that the data 
satisfy the Gibbs-Duhem consistency test for the chemical 
potentials. A fit of the vapor pressure to the Antoine equa- 
tion 

B ln pEatEA-- 
T+C (3.2) 

yields the constants: A=3.31885; B=7.31828; 
C=O.O39433. The figure highlights the ability of Gibbs- 
Duhem integration-when properly implemented-to pro- 
vide accurate results over the entire range of temperature. 
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FIG. 9. Coexistence envelope of the Lennard-Jones fluid. Open circles 
represent the Gibbs-Duhem data of series (o), (r), and (t), and the filled 
markers represent Gibbs ensemble data of Panagiotopoulos et aL4 
(squares) and of Smit et a[.” (circles). Error bars are included only if 
larger than the plot marker. The diamonds describe the law of rectilinear 
diameter, and the critical point estimated from the data is indicated by the 
square. 

These data are all within the experimental error of the 
Gibbs ensemble results, although very near the critical 
point they still differ consistently and may yet benefit from 
a smaller integration step. Nevertheless, these data consti- 
tute the most extensive simulation results to date for the 
vapor-liquid coexistence properties of the Lennard-Jones 
fluid. 

Following Smit,” the critical parameters may be esti- 
mated by an analysis of the approach to the critical. The 
critical temperature T, and density pc are obtained from a 
least-squares fit of the law of rectilinear diameter 

PI+ P” 
-=pc+G(T-TJ 2 

and the critical scaling relation 

pr- p,=C,( Tc- T,% (3.4) 
where pI and’p, are the liquid and vapor densities, respec- 
tively, and C, and C, are fitting parameters. The critical 
exponent /3c (written with the subscript to distinguish it 
from the reciprocal temperature) is taken as 0.32. Details 
of the analysis follow the thorough description given by 
Smit.” The fit of Eq. (3.3) was performed over the entire 
range of temperature, and the result is included in Fig. 9. 
Equation (3.4) was fit using only data for which T > 1.15, 
and Fig. 10 shows how it describes the approach to the 
critical. The data indicate 

T,= 1.321 hO.004, 

p,=O.306~0.001. 

These results are in complete agreement with the conclu- 
sions of Smit: T,= 1.316*0.006, p,=O.304*0.006. Fur- 
ther, the analysis is not particularly sensitive to the loca- 
tion of the temperature cutoff for the fit of Eq. (3.4). Use 
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TABLE III. Simulation results from series (o), (r), and (t). All quantities are given in Lennard-Jones units. fl is the reciprocal temperature, T is the 
temperature (provided for convenience), P(p/c) is the final value of the pressure as estimated by the corrector formula. The next three column pairs 
report simulation averages for the pressure, molar density, and molar energy in each phase. The small subscripts indicate the accuracy of the last digit, 
so 5.85, means 5.85*0.01; this reflects only the statistical error of the simulations, and does not attempt to incorporate any systematic errors that might 
result from the predictor-corrector integration method. The quantity A(&) is the change in chemical potential from its value at the initial condition 
p= 1.35 [given by a series (e) simulation], and it is determined from the simulation data of each phase by applying simple trapezoid rule integration to 
the Gibbs-Duhem equation as written d(&) =h dP+PP/p d In P, where the molar enthalpy h=u+P/p. Entries with no A.(&) values reported are not 
considered “best” results for the temperature and are provided only for comparison; these data are not presented in Fig. 9 and were not used to determine 
the critical properties. 

P 

P( sim) P -u A(PP) 

T W/c) vapor liquid vapor liquid vapor liquid vapor liquid 

Series (0) 
1.35 
1.30 
1.25 
1.20 
1.15 
1.10 
1.05 
1.00 
0.95 
0.90 
0.85 
0.80 

Series (r) 
0.84 
0.83 
0.82 
0.81 
0.80 

Series (t) 
0.80 
0.79 
0.78 
0.77 
0.76 

0.741 
0.769 
0.800 
0.833 
0.870 
0.909 
0.952 
1.000 
1.053 
1.111 
1.176 
1.250 

0.00229 
0.00321 

0.00633 
0.00886 
0.0124 
0.0173 
0.0242 
0.0338 
0.0471 
0.0659 
0.0911 

0.00225, 0.02, 0.00313 0.835 
0.003 16, O.O+ 0.00433, 0.815, 
0.00445s 0.01, 0.005914 0.801, 
0.00627, 0.02, 0.00807, 0.786, 
0.00877s 0.003 0.01101, 0.769, 
0.0124, -0.00, 0.0151, 0.754 
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FIG. 10. The critical scaling relation of Eq. (3.3) formulated to permit 
linear least-squares analysis. p, and pu are the liquid and vapor densities, 
respectively, and the critical exponent & is taken as 0.32. Solid line is the 
resulting best fit to the data. 

of only the data for which T > 1.28 (the last three coexist- 
ence points) yields T,=1.324*0.012, p,=O.305*0.002. 
Of course a proper determination of the critical point in the 
thermodynamic limit requires a study of system size;” the 
excellent agreement between our results and Smit’s merely 
demonstrates that the Gibbs-Duhem technique provides 
correct results for a given finite system. 

IV. DISCUSSION 

A. Assessment 

The most important feature of the Gibbs-Duhem tech- 
nique is obvious: It provides for the accurate, robust, and 
efficient evaluation of phase equilibria by molecular simu- 
lation. Each coexistence point is determined by a single 
simulation, and there is no need for particle exchanges to 
enforce chemical potential equality. It is the only simula- 
tion technique that offers this combination of features. 
Challenging phase equilibria calculations may be 
approached-and in some cases for the first time-with 
this technique. However, the method is not without its 
drawbacks, and at the same time it has other advantages of 
lesser importance; these issues warrant discussion. 
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The ability of the method to handle all types of weakly 
first-order phase transitions is not yet demonstrated. Two 
distinct concerns arise: First, the free energy barrier sepa- 
rating coexisting phases of this type is sometimes small; 
second, the difference in the thermodynamic properties of 
these phases is (by definition) also small. The first issue is 
less serious. A small free energy barrier may lead to diffi- 
culty in preventing each simulation volume from sampling 
both coexisting regions. Usually this occurs near a critical 
point, as seen in the case of the Lennard-Jones simulation 
above. However, a weakly first-order transition is not nec- 
essarily accompanied by a low free-energy barrier, and in 
such instances the simulation may be conducted without 
concern that the subsystems will freely sample both phases. 
When it does arise, the problem is one of too much rather 
than not enough sampling, and finding ways to limit sam- 
pling is not an inherently difficult problem. Appropriate 
steps-such as the coupling technique successfully used 
above-can be developed to overcome this complication. 
The second difficulty of weak first-order transitions is of 
greater concern. To propagate along the saturation line, 
the Gibbs-Duhem method requires accurate evaluation of 
differences between the two coexisting phases. If these dif- 
ferences are too small, it may prove difficult to evaluate 
them with sufficient accuracy-the statistical error for each 
phase could well be greater than the difference between the 
phases. The extent to which this happens will depend on 
the thermodynamic properties to be evaluated. In all in- 
stances the required properties are first derivatives of the 
free energy, which are typically well determined by simu- 
lations of reasonable size and duration. In the examples 
discussed in this report, the enthalpy and the volume are 
needed; these are among the most reliable and easily eval- 
uated quantities that may be determined by simulation. 
Still, in situations where the small difference is a problem 
the only apparent solution is additional sampling. The de- 
gree to which Gibbs-Duhem integration scheme is sensi- 
tive to statistical errors in these instances is an open ques- 
tion that must be addressed. 

is not required for application of the Gibbs-Duhem tech- 
nique, but when possible it should be done. 

Gibbs-Duhem may be implemented using molecular 
dynamics. While we have not attempted such a calculation, 
NPT MD is now a standard procedure’ and there is no 
indication that it could not be used as the basis of a Gibbs- 
Duhem program. Molecular dynamics is of course essen- 
tial if one wishes to examine any temporally based quanti- 
ties, such as the transport coefficients. Also, for some 
potentials MD samples configurations much more effi- 
ciently than does MC. An MD-based implementation of 
Gibbs ensemble simulation would be difficult to imple- 
ment, although it is not out of the question. 

One of the appealing features of Panagiotopoulos’ 
Gibbs ensemble technique is its simplicity. In its basic form 
it is little more difficult to program than a grand-canonical 
simulation. This important feature is not lost with Gibbs- 
Duhem method, and in fact it may be argued that Gibbs- 
Duhem simulation is in some ways simpler to conduct. The 
absence of particle exchange between the phases eliminates 
the bookkeeping needed to monitor the positions of a vari- 
able number of particles in each simulation volume. This 
consideration makes efficient implementation of the Gibbs 
ensemble algorithm troublesome, particularly if one wishes 
to exploit the features of multiple-processor computers. 
Moreover, the need for exchange steps in a Gibbs ensemble 
simulation means that the number of particles used to 
model each phase is unknown at the outset of the run. One 
must be careful that an adequate number remain in each 
phase. These “technical” challenges accompanying particle 
interchange are not a concern in a Gibbs-Duhem simula- 
tion. On the other hand, in a Gibbs-Duhem simulation 
proper implementation of the predictor-corrector formulas 
requires coordination of the results of several simulations; 
this is especially troublesome if one wishes more freedom 
in choosing the state conditions than is afforded by the 
constant-step size formulas presented in Table I. 

The Gibbs-Duhem integration method relies on accu- 
rate initial-condition data. As demonstrated in the appli- 
cations above, errors in these data will propagate, and can 
invalidate the entire series. This is not an issue with Gibbs 
ensemble simulation, where each coexistence measurement 
is independent. Furthermore, other unforeseen errors may 
accrue in a Gibbs-Duhem series, and one of the problems 
with the method is that it is difficult to determine if any 
such errors are present; with the Gibbs ensemble one may 
compute the chemical potential and pressure of each phase 
and determine if they agree. A particularly effective means 
for verifying the results of a Gibbs-Duhem series is to 
check it against a “final condition”-coexistence data ob- 
tained independently for the series endpoint. The VLE 
studies described above do not lend themselves naturally to 
such a comparison, but other studies could. Mixtures are 
an obvious example-one may conduct a series for a binary 
mixture beginning from pure component A to pure com- 
ponent B. The check is easily performed if the coexistence 
properties of the pure substances are known. Such a check 

It is quite natural to compare the Gibbs-Duhem tech- 
nique to the Gibbs ensemble method, and indeed such a 
comparison has arisen several times in the discussion 
above. Still, the two methods should be viewed as comple- 
mentary rather than competing approaches to the problem 
of coexistence evaluation in model systems. There are 
many difficult problems to which the Gibbs ensemble can- 
not be applied, and to which Gibbs-Duhem integration 
may. On the other hand, Gibbs-Duhem is not appropriate 
for evaluation of coexistence of a single or even a few ran- 
dom state points; its strength is the mapping of entire 
phase diagrams. And of course Gibbs-Duhem integration 
requires startup data, the “initial condition.” The Gibbs 
ensemble is the method of choice for supplying this infor- 
mation. In sum, the Gibbs-Duhem technique for evalua- 
tion of phase coexistence offers many features, but much of 
its value remains to be proved. Before concluding, we 
should briefly discuss some extension of the technique. 

B. Extensions 

Many interesting “extensions” of the Gibbs-Duhem 
method outlined above are really just direct application of 
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the same equations to other coexistence phenomena: freez- 
ing, liquid-crystal transitions, liquid-liquid equilibria, etc. 
Often the quantity of interest is again the saturation pres- 
sure as a function of temperature, and no modification of 
the method is needed from that outlined above. Other less 
obvious extensions are possible, and we offer a few exam- 
ples below. 

Perhaps the most important extension of the proposed 
method is to mixtures. In a typical situation one would like 
to evaluate vapor-liquid coexistence compositions of a bi- 
nary mixture as a function of temperature for a fixed pres- 
sure. The governing differential equation may be written 

X--y 
p,a=Ah &l-g, 2 

where Ah= hl - h, is the difference between the liquid and 
vapor molar enthalpies, x and y are the liquid and vapor 
mole fractions, respectively, and f is the so-called fugacity 
fraction.20 Each simulation in this series is conducted in a 
semigrand ensemble, 21 which means it is performed at con- 
stant temperature, pressure, fugacity fraction, and total 
mole number; the species identity of each moleculhmuch 
like its spatial coordinates-changes during the simulation, 
with the imposed fugacity fraction governing the accep- 
tance of each proposed change. The insertion problem be- 
gins to resurface in this approach, but to a much lesser 
extent; if the species are very unlike each other, acceptance 
of identity changes will be rare and the composition will 
not converge correctly. Startup of the Gibbs-Duhem series 
most naturally uses the pure fluid as the initial condition. 
The integrand is ill-defined in this limit, but it may be 
determined given the Henry’s constant of the dilute com- 
ponent in the other.*’ Modification to include additional 
components is simple, but in doing so the number of inter- 
esting thermodynamic pathways increases greatly and it 
becomes difficult to give here a general prescription for the 
technique. 

app A.il 0 aa =- (4.2) B,~ Av ’ 

where A indicates the difference between the coexisting 
phases (v, as above, is the molar volume). One may inte- 
grate along the direction of increasing Q( (prolate) or de- 
creasing Q! (ablate) . This calculation would provide a good 
test of the versatility of the Gibbs-Duhem technique. 
Freezing is a much weaker transition than condensation 
(examined in the test studies above), and ;1 is not likely to 
be evaluated as accurately as the internal energy. 

With the advent of the Gibbs ensemble it became pos- 
sible to evaluate phase coexistence with a single simulation. 

(4.1) The Gibbs-Duhem method suggests a way of taking this 
advance one step further: the entire coexistence envelope 
determined from a single simulation. Using vapor-liquid 
coexistence again as the example, one might achieve this 
feat with a Gibbs-Duhem series by gradually increasing 
the temperature in small amounts during the entire simu- 
lation. One might conduct a simulation lasting, say, 50 000 
cycles, where at the end of each cycle the temperature is 
incremented by 0.00 002 units. At all times the system is 
differentially removed from equilibrium, and a truly revers- 
ible path is negotiated from the triple point to the critical 
point. Compared to the discrete integration method de- 
scribed above (e.g., five 10 OOO-cycle simulations each at a 
fixed temperature), this single-simulation approach has the 
certain advantages of a very small error of integration (due 
to the very small integration step size) and the elimination 
of “wasted” equilibration steps. Evaluation of the feasibil- 
ity and efficiency of a single-simulation phase diagram cal- 
culation would require a separate study. No doubt the con- 
cept on its face is appealing. 

An appealing feature of the application of thermody- 
namic integration via molecular simulation is the ability to 
construct artificial paths of integration.22 One may evaluate 
changes in thermodynamic properties as one potential 
evolves into another. The idea is easily carried over to the 
Gibbs-Duhem technique. The governing differential equa- 
tion will likely be given in terms of atypical thermody- 
namic quantities, but they may in general be readily eval- 
uated in each phase during the simulation and the Gibbs- 
Duhem integration algorithm may be applied without 
modification. As an example one could evaluate solid-fluid 
coexistence in anisotropic substances as a function of the 
molecular aspect ratio CL. If for example freezing of hard 
ellipsoids is to be investigated, one would begin with an 
aspect ratio of unity (hard spheres) using the result of 
Hoover and Ree.23 The quantity to be averaged is the 
change in Gibbs free energy (the free enthalpy) with as- 
pect ratio, ;1= (apwa+p In a simulation ;1 can be de- 
termined from the fraction of the configurations that result 
in overlap when Q: is increased or decreased by some small 
amount. The equation to be integrated by the Gibbs- 
Duhem series is 

David A. Kofke: Direct evaluation of phase coexistence 4161 

ACKNOWLEDGMENTS 

Financial support for this work has been provided by 
the National Science Foundation, under grant CTS- 
8909365 and under the Presidential Young Investigator 
program. The author is grateful to the reviewer of the 
manuscript for bringing Ref. 2 to his attention. 

’ M. P. Allen and D. J. Tildesley, Computer Simulation ofLiquids (Clar- 
endon, Oxford, 1987). 

2A. D. Bruce and N. B. Wilding, Phys. Rev. Lett. 68, 193 (1992); N. B. 
Wilding and A. D. Bruce, J. Phys.: Condens. Matter 4, 3087 (1992). 

3A. Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987). 
4A. Z. Panagiotopoulos, N. Quirke, M. Stapleton, and D. J. Tildesley, 

Mol. Phys. 63, 527 (1988). 
*B. Smit, P. de Smedt, and D. Frenkel, Mol. Phys. 68, 931 (1989). 
6A. Z. Panagiotopoulos, Mol. Sim. 9, 1 (1992). 
‘M. Laso, J. J. de Pablo, and U. W. Suter, J. Cliem. Phys. 97, 2817 

(1992). 
‘G. C. A. M. Mooij, D. Frenkel, and B. Smit, J. Phys.: Condens. Matter 
4, L255 (1992). 

‘D. A. Kofke, Molec. Phys. (in press). 
‘OK. Denbigh, Principles of Chemical Equilibrium (Cambridge Univer- 

sity, Cambridge, 1971). 
” C W. Gear, Numerical Initial Value Problems in Ordinary Differential 

E&ations (Prentice-Hall, Englewood Cliffs, NJ, 1971) . 
“B. A. Finlayson, Nonlinear Analysis in Chemical Engineering 

(McGraw-Hill, New York, 1980). 
I3 B. Carnahan, H. A. Luther, and J. 0. Wilkes, Applied Numerical Meth- 

ods (Wiley, New York, 1969). 

J. Chem. Phys., Vol. 98, No. 5, 1 March 1993 Downloaded 03 Mar 2008 to 131.104.62.13. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



4162 David A. Kofke: Direct evaluation of phase coexistence 

14W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 
Numerical Recipes: The Art of Scientific Computing (Cambridge Uni- 
versity, Cambridge, 1988). 

‘sH B Callen, Thermodynamics and an Introduction to Thermostatistics . . 
(Wiley, New York, 1985). 

16D. A. McQuarrie, StatisticaZ Mechanics (Harper & Row, New York, 
1976). 

“B. Smit, Ph.D. thesis, University of Utrecht, The Netherlands (1990). 

‘*J. Kolafa, Molec. Phys. 59, 1035 (1986). 
19K. K. Mon and K. Binder, J. Chem. Phys. 96, 6989 (1992). 
20D. A. Kofke and E. D. Glandt, Molec. Phys. 64, 1105 (1988). 
*‘J. G. Brian0 and E. D. Glandt, J. Chem. Phys. 80, 3336 (1984). 
22D. Frenkel, in Proceedings of the NATO ASI on Computer Modeling of 

Fluids, Polymers and Solids, edited by C. R. A. Catlow (Kluwer Aca- 
demic, Dordrecht, The Netherlands, 1989). 

23W. G. Hoover and F. H. Ree, J. Chem. Phys. 49, 3609 (1968). 

J. Chem. Phys., Vol. 96, No. 5, I March 1993 

Downloaded 03 Mar 2008 to 131.104.62.13. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


