OPINION

Emotion processing and the amygdala: from a 'low road' to 'many roads' of evaluating biological significance

Luiz Pessoa and Ralph Adolphs

Abstract | A subcortical pathway through the superior colliculus and pulvinar to the amygdala is commonly assumed to mediate the non-conscious processing of affective visual stimuli. We review anatomical and physiological data that argue against the notion that such a pathway plays a prominent part in processing affective visual stimuli in humans. Instead, we propose that the primary role of the amygdala in visual processing, like that of the pulvinar, is to coordinate the function of cortical networks during evaluation of the biological significance of affective visual stimuli. Under this revised framework, the cortex has a more important role in emotion processing than is traditionally assumed.

There is tremendous interest in the question of how salient, emotional and sociallycharged visual stimuli are processed by the brain. This topic is important because it addresses a fundamental question regarding how biological 'value' is assigned by an animal to stimuli in its environment: which stimuli are good and which are bad; which should be approached and which should be avoided. The topic is also intriguing because it fuels questions about modularity in the brain (that is, whether there is a specialized way of, or even dedicated neural substrates for, the processing of affective stimuli). The overarching 'standard hypothesis' runs roughly as follows: ecologically important (emotional and social) stimuli are processed initially by a dedicated, modular system that operates rapidly, automatically (without the need to pay attention) and largely independently of conscious awareness¹. Defects in this system are suggested to underlie phobias, mood disorders and post-traumatic stress syndrome, and variability in its functioning reflects individual differences at the genotypic and personality level^{2,3}.

The hypothesis has two central and related components. The first component

is the purported role of the amygdala in the rapid, automatic and non-conscious processing of emotional and social stimuli. The second central component is the proposal of a specific subcortical route of information processing — the so-called 'low road' (REF. 4) — that bypasses the presumably slower, resource-dependent cortex and that culminates in the amygdala by way of the superior colliculus and the pulvinar nucleus of the thalamus (FIG. 1a). The fact that this pathway bypasses the cortex is thought to imbue the processing of emotion-laden visual stimuli with the above list of properties.

Given that the standard hypothesis is shaping both basic and clinical research, this Perspective article provides a critical reexamination of this hypothesis that we hope will re-orient thinking about the processing of emotion stimuli and the roles of the amygdala and pulvinar therein. The main points that we make are as follows: first, there is no evidence for a functional subcortical route for visual processing in primates; second, the cortex plays a larger part in the processing of affective visual information than is typically acknowledged; third, the visual processing of emotion stimuli occurs no faster than visual processing in the cortex in general; fourth,

the amygdala's contribution to processing of affective visual information arises from its broad connectivity with the cortex and other subcortical structures; and finally, the pulvinar plays a part in the processing of emotion stimuli through its extensive connectivity with cortical sites.

The standard hypothesis

The data and theory that underpin the standard hypothesis are not typically articulated in detail, and its central concepts are often vague. The main argument is that insofar as affectively-laden information has survival value, it has driven adaptations in information processing that are reflected in a functionally and structurally modular system². The purported modularity of the system entails automaticity⁵: owing to the potency of affective information, this information is processed independently of attention and awareness. For example, threat-expressing faces have been reported to be processed pre-attentively in visual search paradigms⁶, and fearful faces break into consciousness more quickly than happy expressions during continuous flash suppression (a technique used to render visual stimuli non-conscious)7. Moreover, haemodynamic responses in the amygdala have been reported to occur in response to presentation of fearful faces that have (putatively) been rendered invisible by backward masking8,9 and even during unmasked presentation of fearful faces in patients with blindsight^{10,11}.

It is also assumed that the anatomical components of the system enable emotion processing to occur to a substantial extent subcortically¹². This suggestion has its roots in rodent studies that demonstrate the existence of a subcortical pathway, through the auditory thalamus to the amygdala, that is sufficient for some forms of auditory Pavlovian fear conditioning4. It is assumed that a similar subcortical route exists for visual information processing in primates, including humans (see below). The notion of such a subcortical pathway is appealing because subcortical visual processing is assumed to be faster than cortical visual processing, and processing of affective stimuli is thought to be adaptive in part, because it is fast. For example, judgments

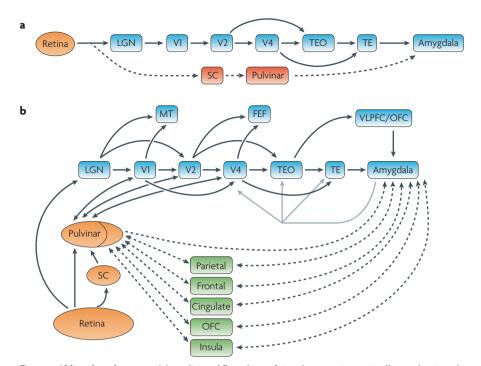
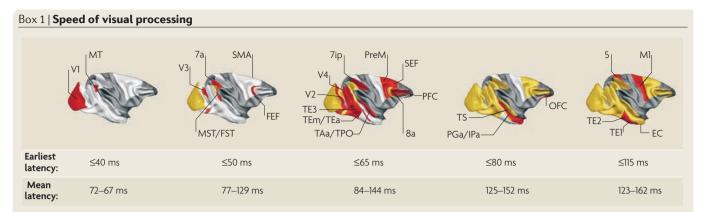


Figure 1 | Visual pathways. a | A traditional flowchart of visual processing typically emphasizes the LGN-V1-V2-V4-TEO-TE pathway, although the scheme is not strictly hierarchical. The amygdala, in particular, is a recipient of visual signals from the anterior visual cortex. According to the 'standard hypothesis', a subcortical pathway involving the superior colliculus and the pulvinar nucleus of the thalamus provides fast and automatic access to the amygdala. b | An alternative view of the flow of visual signals includes multiple pathways, including both alternative routes (for example, LGN to MT) and shortcuts (for example, V2 to TEO). Only some of these are shown. The flow of visual information may be more appropriately viewed in terms of 'multiple waves' of activation that initiate and refine cell responses at a given processing 'stage'. For simplicity, feedback pathways, which are known to be quite extensive, have been omitted. The existence of such feedback pathways dictates, however, that a complex ebb-and-flow of activation sculpts the neuronal profile of activation throughout the visual cortex, and likewise the amygdala responses. Some of the connections between the pulvinar and visual cortex, and between the pulvinar and 'associational' areas, are also indicated. The line in the pulvinar is intended to schematically separate the medial pulvinar (to the right of the line) from the rest of the structure. FEF, frontal eye field; LGN, lateral geniculate nucleus; MT, medial temporal area (also known as V5); OFC, orbitofrontal cortex; SC, superior colliculus; TE, inferior temporal area TE; TEO, inferior temporal area TEO; V, visual cortex; VLPFC, ventrolateral prefrontal cortex.

of threat can be made from facial stimuli that are presented for as briefly as 39 ms (backward masked)¹³. Because the pathway is assumed to be subcortical, processing of visual information along this pathway is assumed to be coarse. Thus, coarse (that is, low-spatial-frequency) information from affective stimuli is thought to engage subcortical visual processing, consistent with findings that the amygdala (a collection of subcortical nuclei) is activated more strongly by emotional faces presented with low than high spatial frequency¹⁴.

In this Perspective we aim to discuss several shortcomings of the standard hypothesis and to propose an alternative view that we think is better justified by the data, and that we hope will stimulate new research directions. This Perspective does not focus specifically on the amygdala, as several

comprehensive reviews about the role of this structure in processing affective information already exist^{15,16}. Instead, we emphasize physiological and anatomical data concerning the pulvinar, the key 'link structure' of the subcortical pathway. Although most of the data described in this Perspective are well known to parts of the neuroscience community, the lack of appreciation for these data by 'affective science' researchers could partly explain the widespread acceptance of the standard hypothesis.


We begin by discussing the functional properties of the processing of affective visual information that are central to the standard hypothesis and focus on the issues of speed and coarseness. These issues are relevant to the subsequent discussion of the pulvinar and to the alternative scheme we propose for explaining the properties of visual processing

of affective information. Other important notions that are linked to the standard hypothesis, including the modularity of the brain and the roles of attention and awareness in visual processing, are discussed only briefly because they have been reviewed elsewhere^{17–21}. Finally, we propose an alternative view that assigns a larger role to cortical processing of affective visual information. We suggest that this scheme, which we call the 'multiple-waves model', can explain the types of findings that have been used to support the standard hypothesis.

General functional issues

Affective visual information is not processed faster than other visual information. Electrophysiological responses evoked by visual stimuli can be modulated by the emotional content of the stimuli, and this modulation has been reported to occur at short latencies — in some studies in humans. within ~100 ms of stimulus onset^{22,23}. In addition, the N170 component of the electroencephalography (EEG) signal (or the M170 component in magnetoencephalography (MEG) studies), which is associated with face identification, is in some studies modulated by the emotional expression of the presented face^{24,25}. However, numerous studies only showed effects with longer latencies, ranging from 200-400 ms (for example, REF. 26). Even in the studies reporting short latency responses to emotional visual stimuli, localizing the neural sources of those responses using EEG or MEG is problematic and, therefore, the origin of the signals in these studies might not be in the subcortical pathway.

In addition, single-unit recordings in monkeys indicate that responses in the cortex (even in the frontal cortex) occur with latencies that are within the range of the latencies observed in subcortical areas (BOX 1). This is consistent with the idea of a rapid, feedforward 'cortical sweep' of visual information processing. Moreover, behavioural and electrophysiological studies of object processing and perception in humans suggest that visual processing in general (that is, including non-affective processing) can be remarkably fast and that a substantial amount of information can be gathered from even a single glance at a natural scene (see Supplementary information S1 (box)). For example, a recent study showed that only 19-67 ms were required to attain 75% correct performance on several tasks, including determining a scene's global property (for example, 'natural scene') and basic level categorization (for example, 'forest')27. Thus,

One way to assess the speed of visual processing is to measure and contrast response latencies across brain areas. For example, do responses in the purported subcortical pathway occur earlier than those in cortical sites? The figure shows that in the macaque cerebral cortex, the earliest latencies are remarkably short, and even mean response latencies indicate remarkably fast cortical processing⁷². Areas that became active at the given latency after visual stimulation are shown in red, those that were activated earlier in yellow and those that were not yet activated in white. Areas for which no information was available are shown in dark grey (see the figure). Visual response latencies in the pulvinar are between 60-80 ms and overlap with latencies observed in early visual cortical areas V1 and V2 (REF. 104). In the inferotemporal cortex (that is, 'late' visual cortex) latencies can be as short as 60-85 ms⁷² and, strikingly, in some frontal sites such as the frontal eye fields (FEF) as short as 40-70 ms. These latencies again overlap with those in area V1 (REFS 84, 105). Thus, although mean response latencies increase gradually from posterior to anterior visual cortices, there is considerable overlap (see the figure). In the context of the standard hypothesis, it therefore seems that pulvinar responses are not particularly fast. However, it is of interest that visual response latencies in the superior colliculus are somewhat faster than those observed in the pulvinar, showing an early, transient response around 40-70 ms that may support rapid eye movements during orienting 106 (note that these response times overlap with FEF responses).

What are the response latencies of neurons in the amygdala? In the monkey amygdala, responses to visual stimuli range from 100–200 ms^{30,107–109}, although shorter response latencies to unspecific stimuli (for example, fixation spots) have been reported³⁰. Differences in evoked responses between threatening and neutral or appeasing facial expressions in the monkey amygdala have been found in the range of 120–250 ms³⁰. Intracranial studies in humans generally find the earliest single-unit responses to visual stimuli around 200 ms^{33,110}. Moreover, in

one study, modulation of amygdala responses by the affective content of stimuli was observed to start at 200 ms 26 (see also REF. 110).

In summary, subcortical visual processing is not discernably faster than cortical processing. Furthermore, the crucial variable is not the timing of the initial stimulus responses but the time at which reliable differences between affective and non-affective stimuli can be detected. It has been suggested¹¹¹ that most of the information encoded by visual neurons may be available in 100-ms-long segments of activity (that is, spiking data within a 100 ms epoch) and that a fair amount of information is available in segments of 50 ms, and even some of 20-30 ms (note that these segments consider post-latency neuronal spikes only). Although these data demonstrate the remarkable speed of neuronal computation (at least under some conditions), they add milliseconds to the time that is required to, for example, discriminate between stimuli. A final consideration is that responses in humans are possibly slower than in monkeys. For example, in one study in humans, the fastest recording sites had response latencies of just under 60 ms and were probably located in V1 (or possibly V2)¹¹². In the monkey, the fastest responses in V1 can be observed under 40 ms⁷². 5, Brodmann area 5; 7a, Brodmann area 7; 7ip, Brodmann area 7ip (intraparietal); 8a, Brodmann area 8a; EC, entorhinal cortex; FEF, frontal eye field; FST, fundus of superior temporal cortex; IPa, superior temporal area IPa; M1, primary motor cortex; MST, medial superior temporal cortex; MT, medial temporal area (also known as V5); OFC, orbitofrontal cortex; PFC, prefrontal cortex; PGa, superior temporal area PGa; PreM, premotor cortex; SEF, supplementary eye field; SMA, supplementary motor area; TAa, anterior subregion of superior temporal area TA; TE1, inferior temporal area TE1; TE2, inferior temporal area TE2; TE3, inferior temporal area TE3; TEm/TEa, medial and anterior subregions of inferior temporal area TE; TPO, superior temporal area TPO; TS, superior temporal sulcus. Figure is reproduced, with permission, from REF. 72 © (2000) Cell Press.

there is nothing particularly special about the processing speed of affective information. Finally, the speed of cortical — as opposed to subcortical — visual processing could also account for the reported rapid modulation of evoked brain responses by stimulus valence. Valence, like other affectively relevant stimulus dimensions, is probably computed in several brain regions, one of which is likely to be the orbitofrontal cortex (OFC). Short-latency (100-150 ms) electrophysiological responses in the OFC have been associated with discrimination of the valence of a visual stimulus²⁸. We develop this final point in greater depth below, in the context of our new proposal.

Taken together, the findings above indicate that processing of affective visual stimuli is no faster than cortical processing of visual stimuli in general. Indeed, cortical visual processing is both efficient and fast. Thus, the argument that a separate subcortical system is required for fast perception of affective stimuli is problematic (Supplementary information S1 (box)).

Processing of affective visual stimuli involves both coarse- and high-spatial-frequency information. According to the standard hypothesis, the subcortical pathway is particularly effective at carrying low-spatial-frequency information, mainly because the

superior colliculus and pulvinar are assumed not to convey much high-spatial-frequency information. This notion was initially based on findings in rodents that simple ('coarse') auditory conditioning does not require the cortex, whereas conditioning that requires more complex stimulus discriminations does⁴.

Neuroimaging studies in humans seem to be consistent with this idea. For example, in one study amygdala responses were stronger when participants viewed low- compared with high-spatial frequency fearful faces ¹⁴, and when they viewed fearful faces versus neutral faces both at low spatial frequency ¹⁴. Similarly, activation in brain areas consistent with the location of the superior colliculus

and pulvinar was greater in response to fearful faces than to neutral faces at low spatial frequencies¹⁴. Findings of this kind have been interpreted as suggesting that the amygdala is relatively 'blind' to high-spatialfrequency information. However, the amygdala receives major projections from the anterior inferotemporal cortex²⁹ that convey highly processed object information — in fact, the amygdala receives highly processed cortical input from all sensory modalities except olfaction²⁹. Indeed, electrophysiological studies have shown that the monkey amygdala contains neurons that are tuned to the identity of specific faces^{30,31} and that the human amygdala shows category-specific responses (for example, for animals or natural scenes)32,33. These are properties that require high-spatial-frequency information.

Moreover, it has been shown that the discrimination of facial expressions relies on both low- and high-spatial-frequency information³⁴. The perception of fear is particularly reliant on high-spatial-frequency information³⁵. Indeed, a study in a patient with bilateral amygdala lesions showed that this patient's impaired recognition of facial expressions of fear was due to impaired processing of the eye region of faces, especially of high-spatial-frequency information about the eyes³⁶. These results demonstrate the importance of high-spatial-frequency information in fear recognition and indicate that the amygdala is required for this type of visual processing.

In summary, although some findings are consistent with the notion that subcortical areas process coarse visual information, the perception of emotional expressions actually involves both coarse and fine information. Furthermore, the amygdala not only receives inputs that convey fine spatial information but seems to be crucially involved in using this information to decode facial expressions (Supplementary information S1 (box)).

The amygdala is not essential for rapid, non-conscious detection of affective information. The standard hypothesis often draws on additional themes, such as the roles of attention and awareness in visual processing, and the more general issue of the extent to which emotion and cognition are processed by separate circuits in the brain. Both of these issues are complex and have been discussed at greater length elsewhere^{19,20}, but we briefly comment on attention and awareness.

Processing affective information is known to occur under some conditions of inattention and unawareness. However, as discussed elsewhere, the interpretation of the published literature in terms of 'strong automaticity' is unwarranted20. Briefly, behavioural, functional MRI (fMRI) and EEG studies indicate that when processing resources are sufficiently consumed (for example, by engaging attention on challenging tasks), visual processing of emotional stimuli is greatly reduced or eliminated. This challenges the notion that emotional stimuli are processed automatically (see REFS 37–39 for further discussion of the role of attention). A recent study of a patient with complete amygdala lesions⁴⁰ perhaps provides the most decisive data on this issue. In this patient, reaction times for detecting fearful faces among distractor stimuli were within the normal range, and fearful facial expressions broke into consciousness faster than happy faces during binocular suppression to the same degree as in control subjects (FIG. 2). These findings demonstrate that the amygdala is not essential for non-conscious, rapid fear detection, at least in the tasks used in this study ⁴⁰ (see also REF. 41).

Thus, independent lines of evidence challenge the notion that processing of affective visual information occurs independently of attention and awareness. Moreover, some of the properties typically connected in the literature with automaticity (for example, detecting fearful faces among distractors) may not entirely depend on the amygdala.

Physiological and anatomical issues

The pulvinar is a key link element in the purported colliculus—pulvinar—amygdala pathway. Here, we briefly review physiological and anatomical data regarding the pulvinar—and the subcortical pathway of which it is thought to be a component—that are relevant in the context of the standard hypothesis. In particular, we discuss data that are relevant to the question of whether this structure is better conceptualized as a relatively passive way station or as a dynamic element of brain circuitry.

Pulvinar input. The pulvinar complex is the largest nuclear mass in the primate thalamus and is thought to have expanded in size during evolution in parallel with other visual structures⁴². The pulvinar does not seem to

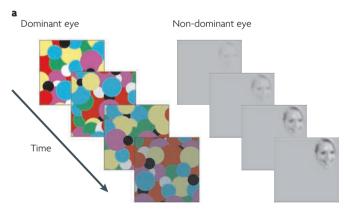
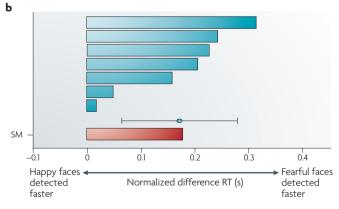



Figure 2 | Intact non-conscious processing of fearful faces in the absence of the amygdala. In a subject with complete amygdala lesions (subject S.M.), fearful faces broke into consciousness during continuous flash suppression with latencies similar to those of control subjects. a | Experimental stimulus: fearful or happy faces were shown to the non-dominant eye while a flashing Mondrian pattern was shown to the dominant eye. This technique is called continuous flash suppression as it suppresses the visibility of the stimulus presented to the non-dominant eye. The

contrast of the Mondrian pattern was gradually decreased while that of the face was increased until subjects could detect the face and indicate it with a button press to establish reaction time. \mathbf{b} | Plots of reaction times (RT) in the task. In the case of S.M., fearful faces broke interocular suppression faster than happy faces (shown by the red bar) and to the same degree as 7 demographically matched healthy controls (shown by blue bars; the mean and standard deviation are also shown). Figure is reproduced, with permission, from REF. 40 © (2009) Macmillan Publishers Ltd. All rights reserved.

exist in brains of rodents and other small mammals⁴³. In terms of connectivity that is relevant for visual processing, it receives direct visual input from the retina, indirect visual input via the superficial layers of the superior colliculus and massive input from striate and extrastriate visual cortices (FIG. 3). All of these projections terminate in the inferior pulvinar. Intriguingly, however, the visual response properties of pulvinar cells do not reflect those of neurons in the superior colliculus, and the precise contribution that input from the superior colliculus makes to pulvinar responses remains uncertain⁴³. For example, superior colliculus lesions have little effect on electrophysiological responses of pulvinar neurons, in contrast to striate cortex lesions, which abolish responses in the inferior pulvinar⁴⁴. In a related fashion, collicular and pulvinar lesions result in different behavioural impairments⁴⁵ (see also REF. 46). These observations argue that the pulvinar may be better thought of as participating in cortical networks, rather than as relaying visual information from the superior colliculus. This is borne out by the finding that, unlike the lateral geniculate nucleus (LGN), the pulvinar's driving inputs in fact originate in the cortex, whereas subcortical inputs to the pulvinar are typically modulatory^{47,48}; for this reason, the pulvinar is described as a higher-order thalamic nucleus, as opposed to a firstorder nucleus such as the LGN49.

Pulvinar activity. Studies in monkeys and humans with pulvinar lesions have suggested that this structure is involved in determining what is salient in a visual scene^{50,51}. Consistent with this notion, the response of pulvinar neurons to visual stimuli is increased if attention is paid to the stimulus or if the stimulus has behavioural relevance. For example, pulvinar neurons respond more vigorously to behaviourally relevant targets than to unattended stimuli45. In one study, as many as 92% of pulvinar cells exhibited attenuated responses to stimuli that were task-irrelevant (that is, passively viewed)⁵² compared to stimuli that were task-relevant. Furthermore, the impact of attention on evoked responses in the pulvinar is spatially specific, such that a pulvinar neuron only increases activity when a monkey attends to a stimulus that falls within the receptive field of the cell⁵³. Finally, the pulvinar seems to be crucial (as was shown in a study in which the pulvinar was pharmacologically inactivated) when a distractor stimulus has to be 'filtered out'54. Thus, it has been proposed that the pulvinar is involved in attention and/or distractor

filtering, and this is consistent with data from neuroimaging and lesion studies in humans (Supplementary information S1 (box)).

The pulvinar is also important for visual awareness. For example, lesion studies in humans have revealed that pulvinar damage is associated with visual neglect and with feature-binding deficits51,55,56. A recent study in monkeys is particularly noteworthy: here, neural activity was recorded in the pulvinar during a visual illusion that induced the intermittent perceptual suppression of a bright luminance patch⁵⁷. Neurons in the pulvinar showed changes in spiking rate according to trial-by-trial stimulus visibility, suggesting that they reflected the visual awareness of the stimulus. Similarly, a recent fMRI study in humans found that the pulvinar responded not to the affective significance of visual stimuli but to whether or not they were consciously perceived⁵⁸, again in a trial-by-trial manner. The fMRI results are consistent with a study in which pulvinar responses were associated with a subject's percept of a change⁵⁹. Notably, responses were observed during 'false alarm' trials (those in which a stimulus change was reported but did not actually occur) but not during 'miss' trials (those in which a stimulus change occurred but went unnoticed by the participant). These results do not support the suggestion that the pulvinar is involved during non-conscious processing, and are inconsistent with a major role for this structure in the subcortical pathway proposed by the 'standard hypothesis', according to which the pulvinar behaves as a relatively passive relay.

Pulvinar anatomy. It is also important to consider the anatomical features of the pulvinar that highlight its extensive bidirectional connectivity with the cortex. For example, all 20-30 known visual areas connect with the pulvinar, sometimes in a relatively topographic fashion^{43,60}. Temporal, parietal, cingulate, frontal and insular cortices are all connected with the pulvinar as well. At a gross level, it is as if the entire convoluted cortex were 'shrink-wrapped' around the pulvinar60. Based on the connectivity data, one can discern a ventrolateral to dorsomedial axis, and this has led to the suggestion that the pulvinar may contain two connectional 'domains' (REFS 42,60) (FIG. 3). The ventral domain (containing the inferior pulvinar) is densely connected with the visual cortex (including areas V1-V4 and MT)60. It therefore has a strong visual component (that is, it could be called the 'visual pulvinar'), and its projections to the dorsal

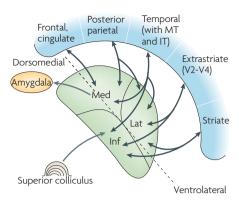


Figure 3 | Schematic layout of the pulvinar. Some traditional characterizations of the pulvinar emphasize the inferior (Inf), lateral (Lat) and medial (Med) nuclei. Most pulvinar nuclei (including other nuclei and sub-nuclei that are not shown here) are involved in thalamo-cortical loops that target different cortical territories (shown in blue)^{42,60}. The inferior nucleus is reciprocally connected to striate and extrastriate cortices, the lateral nucleus is connected to association cortices in temporal and parietal lobes (although it is also interconnected with the extrastriate cortex) and the medial nucleus is connected to the higher-order association cortex in parietal, frontal, orbital (not shown), cingulate and insular regions (the insula is not shown), in addition to the amygdala. Thus, the medial nucleus, which is of great interest in the present context, is not only connected with the amygdala but is also part of multiple thalamo-cortical loops (note, however, that the connection to the amygdala does not seem to be bidirectional). The superior colliculus is a layered structure whose superficial layers are visual in nature and project to the inferior nucleus. Its intermediate and deeper layers are multimodal and involved in motor preparation, including for eye movements, and project to the medial nucleus. A ventrolateral to dorsomedial axis that is helpful in understanding the organization of pulvinar nuclei and potential 'ventral' and 'dorsal' domains is shown by a dotted line (see also REF. 42 for a related scheme). Figure is modified, with permission, from REF. 43 © (2004) CRC Press. IT, inferior temporal cortex; MT, medial temporal area (also known as V5).

visual stream may mediate some of the visual abilities in people with blindsight^{61,62} (Supplementary information S1 (box)). The dorsal domain (including the traditional medial subdivision; see below) has connections with the cross-modal association cortex, including temporal and parietal areas (including area 7A and the lateral intraparietal (LIP) cortex — areas that are also involved in attention)⁶⁰. The dorsal domain receives highly processed visual input from the inferior temporal gyrus area TE (and some from area TEO) in the inferotemporal cortex⁶⁰. It is also connected with the

cingulate cortex, frontal cortex (including the OFC), insula and amygdala⁶⁰ (see below). The dorsal domain is therefore much more 'associational' and, in fact, has remarkable potential to integrate information from very diverse brain regions (FIG. 3).

In summary, the pulvinar is a complex structure with important visual and integrative properties. Functional studies have characterized several ways in which the pulvinar is modulated by attention and awareness. Indeed, the pulvinar is likely to be an important 'control site' for attentional mechanisms more broadly⁶³. Taken together, these data are antithetical to the standard hypothesis, which assumes that automatic processing is mediated by a subcortical pathway involving the pulvinar.

Does the subcortical pathway exist in primates? Work on fear conditioning has shown that there are direct, subcortical projections to the amygdala from the auditory thalamus (that is, from the medial geniculate nucleus (MGN)) in rats. An analogous projection carrying visual information from the visual thalamic nucleus (that is, the LGN) to the amygdala has not been documented in rodents or primates. However, it is frequently assumed that a colliculus—pulvinar—amygdala pathway exists in the case of vision. Here, we review relevant data from primates that question this assumption.

Anatomical studies in monkeys have reported connections between the superior colliculus and the pulvinar 42,43, and between the pulvinar and the amygdala 64,65. As described above, the superficial superior colliculus projects to the inferior pulvinar — both of these structures can be considered to

be 'visual'. Yet, the inferior pulvinar is extensively interconnected with the visual cortex (consistent with visual functions) but not with the amygdala. Instead, the projection to the amygdala originates in the medial pulvinar (although the strength of this connection may be relatively weak (a nucleus that is extensively interconnected with much of the cortex, as described above. Furthermore, like other thalamic nuclei, the primate pulvinar is thought to have neither excitatory nor inhibitory long-range intrinsic connections Considered together, these results do not support the idea of a colliculus—pulvinar—amygdala visual pathway.

To summarize, there is no evidence for a direct or an indirect subcortical pathway conveying visual information to the amygdala in monkeys. It is therefore unclear how findings from auditory fear conditioning studies in rodents can be applied to visual processing of affective stimuli in primates (see also BOX 2). For further discussion of the pathway from intermediate and deep layers of the superior colliculus (which are multimodal in nature and linked to eye movements) to the pulvinar see Supplementary information S1 (box).

The multiple-waves model

The standard hypothesis has influenced both basic and applied research and at first glance has intuitive appeal. However, we have shown that, in its current form, the hypothesis is problematic in multiple respects. We therefore suggest that a revision of the standard hypothesis is in order.

Multiple visual pathways and coarse information processing. One of the primary motivations for the standard hypothesis is

the perceived need for rapid processing: fast but coarse visual processing is just what an organism needs in a dangerous environment. We argue that visual pathways other than a colliculus–pulvinar–amygdala pathway carry out this role (see also REFS 68,69).

Visual processing along the ventral processing stream, which is crucial for object recognition, has historically been described to occur in a relatively hierarchical fashion. However, important 'short-cut' connections link areas V1 to V4 (REF. 70), V2 to TEO⁷⁰ and V4 to TE⁷¹ (FIG. 1b), providing the means for faster information transmission to the inferotemporal cortex⁷². Direct connections between the LGN and extrastriate regions, including V2 (REFS 73,74) and V4 (REF. 73), have also been reported. Indeed, combined electrophysiology and fMRI studies in monkeys have shown robust visual activation in areas V2 and V3 in animals with lesions of V1, demonstrating that routes bypassing V1 can be sufficiently potent to drive extrastriate visual responses⁷⁵ (see REF. 76 for evidence in humans). A combined lesion and fMRI study in monkeys⁷⁷ revealed widespread extrastriate activation in the absence of V1 and demonstrated a role of LGN-dependent projections for visual detection. V1-independent responses were observed in areas V2, V3, V4, MT (also known as V5), the fundus of the superior temporal cortex (FST) and the LIP area. These findings establish the importance of the LGN for at least some types of blindsight. Longer range 'short-cuts' also exist, such as those that link regions in the ventral visual cortex with the ventrolateral prefrontal cortex (including the OFC)⁷⁸. It has been proposed79 that low-spatial-frequency information may rapidly reach parietal and frontal cortices from the early visual cortex80, thereby providing coarse information about the gist of a visual scene and supporting object recognition⁸¹. It is thus possible that these initial 'volleys of activation' are less susceptible to manipulations of attention and awareness, especially given that they may primarily convey information from the magnocellular system^{80,82}. Furthermore, computational models that assume a purely hierarchical structure of the visual system have failed to provide a good fit to the existing latency data⁸³, which is consistent with the existence of bypass connections.

Thus, there are multiple parallel routes for visual information processing that lead to substantial temporal dispersion of evoked responses and that enable 'highlevel' regions to respond with surprisingly short latencies⁸⁴. Each processing stage adds

Box 2 | Subcortical processing: audition in rats versus vision in primates

Historically, the standard hypothesis has derived a considerable portion of its motivation from the organization of the auditory system in rodents. However, the auditory and visual systems differ in important ways. The temporal precision of the auditory system is substantially greater than that of the visual system. In contrast to vision, audition is omnidirectional, such that information from all directions can be sampled (though at relatively low spatial resolution). Furthermore, the functional anatomy of the auditory system is very different from that of the visual system. Properties such as sensitivity to sound frequency, duration, amplitude, pitch and binaural disparity are already observed at subcortical levels. In fact, the primary auditory cortex (A1) seems to be involved in high-level functions and is therefore not equivalent to 'visual cortex transplanted into the auditory modality'. Indeed, there are several subcortical stages below the level of the auditory cortex, and it has been suggested¹¹³ that the role of the inferior colliculus in auditory processing might be equivalent to that of primary visual cortex (V1) in vision and that the A1 is more analogous to visual areas in the inferioremporal cortex than to V1.

These considerations suggest that a subcortical pathway for auditory input to the amygdala (in rodents) would not actually be analogous to the purported subcortical visual pathway (in monkeys). Accordingly, auditory connections from the medial geniculate nucleus in the thalamus to the amygdala, although bypassing cortex, already convey highly processed information, in contrast to the suggested monkey (visual) counterpart.

approximately 10 ms to the latency⁸⁴. The 'cost' of using such bypassing stages may be that, at first, only relatively coarse information is available about a visual item. This is consistent with a coarse-to-fine processing strategy in which the more-global contents of a stimulus are processed earlier than finer details^{85,86}.

Based on the considerations above, we suggest that the initial processing of visual information proceeds simultaneously along parallel channels, creating 'multiple waves' of activation across the visual cortex and beyond87. In this manner, visual stimuli that have affective and motivational significance can engage multiple brain sites — including the amygdala, OFC, anterior insula and anterior cingulate cortex — that can direct processing towards these behaviourally relevant items. Hence, rapid processing of affective information is possible even in the absence of a specialized subcortical pathway (FIG. 1b) or a single specific structure such as the amygdala⁴⁰.

In light of our proposal, we suggest that affective blindsight involves some of the alternate pathways described here. A recent EEG study of a patient with complete cortical blindness used advanced source modelling to investigate the time course of information processing88. Although all facial expressions, including neutral ones, evoked relatively short-latency responses (70–120 ms) localized to the superior temporal sulcus, emotion-specific responses that were localized to the anterior temporal cortex, and possibly the amygdala, occurred considerably later (120 and 200 ms later, respectively). Although this study suffers from the localization problems alluded to above, the findings are consistent with the notion that affective significance is computed in parallel along several circuits (see also REF.89 for a related proposal).

In light of the change of focus from a single, specialized subcortical pathway to a multiple-pathway model, it is important to reconsider the roles of both the pulvinar and the amygdala during processing of emotional visual stimuli.

The role of the pulvinar in processing of emotional visual stimuli. Connections between the pulvinar and amygdala have been reported^{64,65}, suggesting that the pulvinar may have a role in emotion processing. As mentioned above, it has been proposed that the pulvinar is involved in determining the behavioural relevance of a stimulus, directing attention to a stimulus and determining awareness of a stimulus. Based on the data

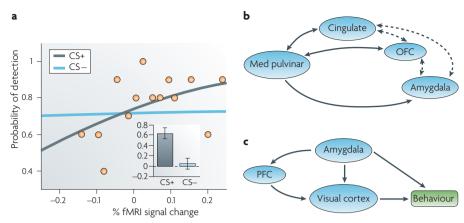


Figure 4 | Pulvinar and amygdala during processing of affective stimuli. a | Logistic regression analysis of evoked responses in the left pulvinar as a function of affective significance for a sample individual during an attentional blink task⁵⁸. The slope of the logistic fit indicates the strength of the predictive effect. For clarity, only binned data for the conditioned stimulus (CS+) condition are included (shown by orange dots). The grey line shows the fit for these data, and the blue line shows the fit for data from the neutral stimulus (CS-) condition. The inset shows mean logistic slopes across individuals, revealing that a relationship was detected for the affective (CS+) but not the neutral (CS-) condition. b | The medial pulvinar is proposed to amplify evoked responses of behaviourally-relevant stimuli via circuits involving the cingulate cortex, orbitofrontal cortex (OFC) and amygdala, all regions important for the valuation of an incoming stimulus. c | Valuation signals in the amygdala affect behaviour by impacting responses across the brain. During an attentional blink task using affective stimuli, a response in the amygdala to a stimulus predicted that the stimulus would be detected⁹⁶. Statistical path analysis revealed that this effect is mediated through projections from the amygdala to the visual cortex, as well as through projections involving the prefrontal cortex (PFC). fMRI, functional MRI. Data in part a from REF. 58.

described above, we propose that the pulvinar helps to coordinate and/or regulate the flow of multimodal information via a series of thalamocortical loops (FIG. 3). This proposal takes into account that most of the input to the pulvinar comes from the cortex.

In the context of emotion processing, the most relevant nucleus of the pulvinar is probably the medial nucleus, given that it connects not only with the amygdala but also with a larger array of other brain regions. We therefore suggest that it may be involved in more general functions that impact emotion processing, such as determining the behavioural relevance and/or value of a stimulus. For example, the medial nucleus is connected with parietal regions that are involved in attention. It is also connected with the OFC and cingulate cortex, which are important for computing an object's biological value. Furthermore, it is connected with the insula, a region that has a role in emotional feelings. These connections are all bidirectional (except the connection with the amygdala), providing opportunities for modulating and regulating information flow. According to our proposal, the importance of the pulvinar in emotion is not due to its status as a subcortical 'labelled line' conveying emotional information to the amygdala, but due instead to its pattern of

connectivity with subcortical and cortical sites that have a role in determining the biological significance of a stimulus.

Studies by Ward and colleagues have investigated the impact of pulvinar lesions on processing of affective visual information in humans. A complete unilateral loss of the pulvinar led to a severe deficit in a patient's ability to recognize fearful expressions shown in the contralesional visual field90. Within the framework suggested here, when weak and/or brief visual stimuli have biological significance, cortico-pulvinocortical circuits coordinate and amplify signals in a manner that enhances their behavioural impact. This framework is consistent with the impairment in recognizing fear in patients with pulvinar lesions and also with their impairment in recognizing anger (and possibly happiness)90. Notably, the essential pulvinar damage was found in the medial pulvinar, the region that projects to the amygdala in monkeys. The proposed framework is also consistent with a study that reported that viewing complex unpleasant images impaired performance in a subsequent simple (neutral) visual task in control subjects, but not in a patient with pulvinar damage91 — according to our framework, the unpleasant stimulus did not garner additional resources in the patient (which

would have interfered with performance, as it did in the controls).

Pulvinar involvement in the processing of affective information does not seem to reflect emotion per se, however. In an fMRI study in humans⁵⁸, a simple contrast between affective and neutral conditions did not reveal different responses in the pulvinar. Instead, there was a significant relationship between the magnitude of evoked responses in the pulvinar and the probability of correctly detecting a target on a trial-by-trial basis during the affective condition but not during the neutral condition (FIG. 4a). These results reveal an emotion-by-visibility interaction that may characterize the role of the pulvinar more generally. In other words, we suggest that the pulvinar amplifies responses to stimuli of potential value to the animal (such as one that signals the possibility of shock in the experiment) (FIG. 4b).

The role of the amygdala in processing affective visual stimuli. What part is left for the amygdala to play in the processing of affective visual stimuli? Its connectivity pattern provides some clues. The predominant source of visual input to the amygdala, specifically the basolateral nucleus, comes from higher-order visual association cortices in the anterior temporal lobe²⁹. This suggests that the amygdala is a convergence zone for highly-processed sensory information that is relevant to object processing. In addition, there are loops between the visual cortex and the lateral and basal nuclei of the amygdala, and this feedback is thought to modulate visual processing⁹². Further integrative functions of the amygdala stem from its extensive connections with much of the cortex. In addition to its well-recognized connections with medial and orbital territories of the prefrontal cortex, the amygdala is also connected to the lateral prefrontal cortex, albeit in a weaker manner⁹³. Importantly, the architecture of the prefrontal cortex (PFC) is such that, on average, inputs from the amygdala reach approximately 90% of the PFC after a single connection within the frontal cortex⁹⁴. Furthermore, the amygdala seems to be part of a 'core brain circuit' (REF. 95) that is topologically central in terms of global brain connectivity and whose functions could include aggregation and distribution of information.

In light of these considerations, we propose that the amygdala's contribution to the processing of affective visual information arises not from a subcortical source of visual input, but from its broad connectivity with the cortex and other subcortical structures.

Given this connectivity, the impact of the amygdala on behaviour can be mediated through many routes, for example, via both the visual cortex and prefrontal cortex. This suggestion is consistent with findings of a study that combined the attentional blink task with fear conditioning%. For emotionladen stimuli, trial-by-trial fluctuations in evoked responses in the amygdala predicted whether or not a target was detected. Furthermore, this impact of the amygdala on behaviour was mediated by both the visual cortex and prefrontal cortex (as suggested by statistical path analysis), consistent with the idea that during the processing of affectively significant items, the amygdala enhances sensory processing through both direct (amygdala-visual cortex) and indirect (amygdala-prefrontal cortex-visual cortex) paths (FIG. 4c).

For reasons of brevity we have discussed the amygdala as a single entity, but it should be noted that the amygdala is in fact a complex structure comprised of more than a dozen nuclei. In particular, the central nucleus has extensive descending connections to the hypothalamus and other brainstem nuclei that regulate autonomic and endocrine responses and, in this manner, contributes to several aspects of emotional expression and mobilization of bodily resources. Among others, this is an important distinction between the roles of the amygdala and pulvinar during processing of affective visual stimuli.

Conclusions

The evidence we have reviewed here suggests that the idea of a subcortical pathway that is specialized for the processing of emotional stimuli should be revised. Our reinterpretation has important implications for the conceptualization of the amygdala's function in the processing of emotional visual information. We suggest two revised roles for the amygdala. First, the amygdala has a mostly modulatory role in a wide array of networks. The precise functional importance of the amygdala in these networks remains to be investigated, but it is unlikely that it will map specifically onto emotion. Instead, we think that it corresponds to broader and more abstract dimensions of information processing, including processing of salience, significance, ambiguity, unpredictability^{21,97-99} and other aspects of 'biological value'. More broadly, we argue that the amygdala has a key role in solving the following problem¹⁰⁰: how can a limitedcapacity information processing system that receives a constant stream of diverse inputs selectively process those inputs that are the most relevant to the goals of the animal¹⁰¹?

Thus, the amygdala serves to allocate processing resources to stimuli, at least in part by modulating (through its connectivity) the anatomical components that are required to prioritize particular features of information processing in a given situation. Such a role would come into play not only for affectively significant stimuli but also for

Glossary

Attentional blink

A phenomenon that occurs in experiments in which a rapid stream of visual items is presented to an observer whose task is to detect two targets within the stream. When the two targets are separated in time by a brief interval (for example, 200–500 ms), the successful detection of the first target impairs detection of the second one (as if the participant blinked) owing to limited processing capacity.

Backward masking

A phenomenon that occurs in experimental paradigms in which a target visual stimulus is followed by another salient visual stimulus that 'masks' the perception of the target stimulus, making its detection or recognition difficult or impossible. Visual masking is commonly used to manipulate visual awareness.

Blindsight

The ability, in humans or monkeys, to respond to visual stimuli without consciously perceiving them — a situation that may ensue following a lesion to the primary visual cortex.

Continuous flash suppression

A technique in which a fixed image shown to one eye is suppressed by a stream of rapidly changing images flashed to the other eye. The technique is used to manipulate visual awareness.

Labelled line

A processing architecture in which a separate pathway conveys information that is specific to a class of sensory stimuli owing to, for example, receptor specificity (for example, pain and touch conveyed by particular somatosensory channels).

Magnocellular system

A visual pathway from the retina to the cortex that conveys relatively fast, transient and wavelength-insensitive information

Path analysis

A statistical method to investigate the relationship between multiple variables.

Source modelling

A set of techniques that attempt to estimate the neural 'sources' of the electrical or magnetic signals that are measured at external sensors (for example, at the scalp in the case of electroencephalography).

Visual search

An experimental paradigm in which subjects are asked to indicate the presence or absence of a 'target' item (for example, a fearful face) among an array of 'distractor' items (for example, neutral faces).

other stimuli. Notably, the amygdala may not be unique in this respect as there are other, largely parallel, networks with architectures that do not include the amygdala but that also enable diverse functions — notably the network subserved by the connections between the cortex and the pulvinar. We think that our proposal is consistent with the majority of findings and can accommodate several views of amygdala function^{16,102,103}, with the difference that it provides a broader and more flexible perspective.

The second aspect of our proposed revision is to stress the speed and temporal dispersion of cortical processing, which render moot the assumed need for a fast subcortical route. Many visual properties can be processed very rapidly by the initial wave of cortical response, which suggests that there is ample time for substantial feedback, even within the cortex. Consequently, understanding the flow of visual information within the cortex should help us to understand how affective stimuli are processed. Ultimately, the fate of a biologically-relevant stimulus should not be understood in terms of a 'low road' versus a 'high road', but in terms of the 'multiple roads' that lead to the expression of observed behaviours.

There is an enormous literature implicating the amygdala in affective dysfunction in nearly every psychiatric illness, most notably in mood disorders. The revised view in this Perspective suggests that rather than focusing on neurons within the amygdala, we should focus on connections within the cortex and between the cortex and subcortical structures such as the amygdala. This may not come as a big surprise to some readers as, in the main, it simply reflects the idea that the substrate of brain function is not so much to be found within neurons as within networks.

Luiz Pessoa is at the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405 USA.

Ralph Adolphs is at the Division of Humanities and Social Sciences, and Computation and Neural Systems Program, California Institute of Technology, Pasadena, California 91125, USA.

Correspondence to L.P. and R.A. e-mails: lpessoa@indiana.edu; radolphs@hss.caltech.edu

doi:10.1038/nrn2920

- Tamietto, M. & de Gelder, B. Neural bases of the nonconscious perception of emotional signals. *Nature Rev. Neurosci.* 11, 697−709 (2010).
- Ohman, A. & Mineka, S. Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. *Psychol. Rev.* 108, 483–522 (2001).
- Lonsdorf, T. B. et al. Genetic gating of human fear learning and extinction: possible implications for gene–environment interaction in anxiety disorder. Psychol. Sci. 20, 198–206 (2009).
- LeDoux, J. E. *The Emotional Brain* (Simon & Schuster, New York, 1996).

- Dolan, R. J. & Vuilleumier, P. Amygdala automaticity in emotional processing. *Ann. NY Acad. Sci.* 985, 348–355 (2003).
- Ohman, A., Lundqvist, D. & Esteves, F. The face in the crowd revisited: a threat advantage with schematic stimuli. J. Pers. Soc. Psychol. 80, 381–396 (2001).
- Yang, E., Zald, D. H. & Blake, R. Fearful expressions gain preferential access to awareness during continuous flash suppression. *Emotion* 7, 882–886 (2007).
- Morris, J. S., Ohman, A. & Dolan, R. J. Conscious and unconscious emotional learning in the human amygdala. *Nature* 393, 467–470 (1998).
- Whalen, P. J. et al. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci. 18, 411–418 (1998).
- Morris, J. S., DeGelder, B., Weiskrantz, L. & Dolan, R. J. Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. *Brain* 124, 1241–1252 (2001)
- Pegna, A. J., Khateb, A., Lazeyras, F. & Seghier, M. L. Discriminating emotional faces without primary visual cortices involves the right amygdala. *Nature Neurosci* 8, 24–25 (2005).
- Morris, J. S., Ohman, A. & Dolan, R. J. A subcortical pathway to the right amygdala mediating "unseen" fear. *Proc. Natl Acad. Sci. USA* 96, 1680–1685 (1999).
- Bar, M. & Neta, M. Humans prefer curved visual objects. *Psychol. Sci.* 17, 645–648 (2006).
- Vuilleumier, P., Armony, J. L., Driver, J. & Dolan, R. J. Distinct spatial frequency sensitivities for processing faces and emotional expressions. *Nature Neurosci.* 6, 624–631 (2003).
- Davis, M. & Whalen, P. J. The amygdala: vigilance and emotion. Mol. Psychiatry 6, 13–34 (2001).
- Whalen, P. J. & Phelps, E. A. (eds) *The Human Amuadala* (Guilford Press, New York, 2009).
- Lewis, M. D. Bridging emotion theory and neurobiology through dynamic systems modeling. *Behav. Brain Sci.* 28, 169–245 (2005).
- Duncan, S. & Barrett, L. F. Affect is a form of cognition: a neurobiological analysis. *Cogn. Emot.* 21, 1184–1211 (2007).
- Pessoa, L. On the relationship between emotion and cognition. *Nature Rev. Neurosci.* 9, 148–158 (2008)
- Pessoa, L. To what extent are emotional visual stimuli processed without attention and awareness? *Curr. Opin. Neurobiol.* 15, 188–196 (2005).
- Adolphs, R. Fear, faces, and the human amygdala. Curr. Opin. Neurobiol. 18, 166–172 (2008).
- Pizzagalli, D., Regard, M. & Lehmann, D. Rapid emotional face processing in the human right and left brain hemispheres: an ERP study. *Neuroreport* 10, 2691–2698 (1999).
- Halgren, E., Raij, T., Marinkovic, K., Jousmaki, V. & Hari, R. Cognitive response profile of the human fusiform face area as determined by MEG. Cereb. Cortex 10, 69–81 (2000).
- Eger, E., Jedynak, A., Iwaki, T. & Skrandies, W. Rapid extraction of emotional expression: evidence from evoked potential fields during brief presentation of face stimuli. Neuropsychologia 41, 808–817 (2003).
- Japee, S., Crocker, L., Carver, F., Pessoa, L. & Ungerleider, L. G. Individual differences in valence modulation of face-selective M170 response. *Emotion* 9, 59–69 (2009).
- Krolak-Salmon, P., Henaff, M. A., Vighetto, A., Bertrand, O. & Mauguiere, F. Early amygdala reaction to fear spreading in occipital, temporal, and frontal cortex: a depth electrode ERP study in human. *Neuron* 42, 665–676 (2004).
- Greene, M. R. & Oliva, A. The briefest of glances: the time course of natural scene understanding. *Psychol. Sci.* 20, 464–472 (2009).
- Kawasaki, H. et al. Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nature Neurosci. 4, 15–16 (2001).
- Amaral, D. G., Price, J. L., Pitkanen, A. & Carmichael, S. T. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J.) 1–66 (Wiley-Liss, New York, 1992).
- Gothard, K. M., Battaglia, F. P., Erickson, C. A., Spitler, K. M. & Amaral, D. G. Neural responses to facial expression and face identity in the monkey amygdala. *J. Neurophysiol.* 97, 1671–1683 (2007).
- Rolls, E. T. Emotion Explained (Oxford Univ. Press, Oxford, 2005).
- Kreiman, G., Koch, C. & Fried, I. Category-specific visual responses of single neurons in the human medial temporal lobe. *Nature Neurosci.* 3, 946–953 (2000).

- Mormann, F. et al. Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J. Neurosci. 28, 8865–8872 (2008)
- Smith, M. L., Cottrell, G. W., Gosselin, F. & Schyns, P. G. Transmitting and decoding facial expressions. *Psychol. Sci.* 16, 184–189 (2005).
- Smith, F. W. & Schyns, P. G. Smile through your fear and sadness: transmitting and identifying facial expression signals over a range of viewing distances *Psychol. Sci.* 20, 1202–1208 (2009).
- Adolphs, R. et al. A mechanism for impaired fear recognition after amygdala damage. Nature 433, 68–72 (2005).
- Vuilleumier, P. How brains beware: neural mechanisms of emotional attention. *Trends Cogn. Sci.* 9, 585–594 (2005).
- Pessoa, L., Oliveira, L. & Pereira, M. G. Attention and emotion. *Scholarpedia* 5, 6314 (2010).
- Pessoa, L., Oliveira, L. & Pereira, M. G. in Handbook of Human Affective Neuroscience (eds Armony, J. L. & Vuilleumier, P.) (Cambridge Univ. Press, Cambridge, UK, 2011).
- Tsuchiya, N., Moradi, F., Felsen, C., Yamazaki, M. & Adolphs, R. Intact rapid detection of fearful faces in the absence of the amygdala. *Nature Neurosci.* 12, 1224–1225 (2009).
- Piech, R. M. et al. Fear-enhanced visual search persists after amygdala lesions. Neuropsychologia. 48, 3430–3435 (2010).
- Grieve, K. L., Acuna, C. & Cudeiro, J. The primate pulvinar nuclei: vision and action. *Trends Neurosci.* 23, 35–39 (2000).
- 43. Stepniewska, I. in *The Primate Visual System* (eds Kaas, J. & Collins, C. E.) 53–80 (CRC Press, Boca Raton, Florida, 2004).
- Bender, D. B. Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus. *Brain Res.* 279, 258–261 (1983).
- Robinson, D. L. & Cowie, R. J. in *The Thalamus* (ed. McCormick, D.) 53–92 (Elsevier, New York, 1997).
- de Gelder, B. et al. Standing up for the body. Recent progress in uncovering the networks involved in the perception of bodies and bodily expressions. Neurosci. Biobehav. Rev. 34, 513–527 (2010).
- Guillery, R. W. Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review, J. Anat. 187, 583–592 (1995).
- Sherman, S. M. & Guillery, R. W. Functional organization of thalamocortical relays. J. Neurophysiol. 76, 1367–1395 (1996).
- 49. Sherman, S. M. Thalamus. Scholarpedia 1, 1583 (2006).
- Üngerleider, L. G. & Christensen, C. A. Pulvinar lesions in monkeys produce abnormal scanning of a complex visual array. *Neuropsychologia* 17, 493–501 (1979).
- Zihl, J. & von Cramon, D. The contribution of the 'second' visual system to directed visual attention in man. *Brain* 102, 835–856 (1979).
- Benevento, L. A. & Port, J. D. Single neurons with both form/color differential responses and saccaderelated responses in the nonretinotopic pulvinar of the behaving macaque monkey. Vis. Neurosci. 12, 523–544 (1995).
- Petersen, S. E., Robinson, D. L. & Keys, W. Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. *J. Neurophysiol.* 54, 867–886 (1985).
- Desimone, R., Wessinger, M., Thomas, L. & Schneider, W. Attentional control of visual perception: cortical and subcortical mechanisms. Cold Spring Harb. Symp. Quant. Biol. 55, 963–971 (1990).
- Karnath, H. O., Himmelbach, M. & Rorden, C. The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. *Brain* 125, 350–360 (2002).
- Ward, R., Danziger, S., Owen, V. & Rafal, R. Deficits in spatial coding and feature binding following damage to spatiotopic maps in the human pulvinar. *Nature Neurosci.* 5, 99–100 (2002).
- Wilke, M., Mueller, K. M. & Leopold, D. A. Neural activity in the visual thalamus reflects perceptual suppression. *Proc. Natl Acad. Sci. USA* 106, 9465–9470 (2009).
- Padmala, S., Lim, S.-L. & Pessoa, L. Pulvinar and affective significance: responses track moment-to-moment visibility. Front. Hum. Neurosci. 4, 1–9 (2010).
- Pessoa, L. & Ungerleider, L. G. Neural correlates of change detection and change blindness in a working memory task. *Cereb. Cortex* 14, 511–520 (2004).

PFRSPFCTIVFS

- Shipp, S. The functional logic of cortico-pulvinar connections. Phil. Trans. R. Soc. Lond. B 358 1605-1624 (2003).
- Lyon, D. C., Nassi, J. J. & Callaway, E. M. A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron 65, 270-279
- Berman, R. A. & Wurtz, R. H. Functional identification of a pulvinar path from superior colliculus to cortical area MT. *J. Neurosci.* **30**, 6342–6354 (2010).
- Shipp, S. The brain circuitry of attention. Trends Cogn. Sci. 8, 223-230 (2004).
- Jones, E. G. & Burton, H. A projection from the medial pulvinar to the amygdala in primates. Brain Res. 104, 142-147 (1976).
- Romanski, L. M., Giguere, M., Bates, J. F. & Goldman-Rakic, P. S. Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 379, 313-332 (1997)
- Aggleton, J. P., Burton, M. J. & Passingham, R. E. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res. 190, 347-368 (1980)
- Sherman, S. M. $\acute{\&}$ Guillery, R. W. Exploring the Thalamus, (Academic Press, San Diego, 2001).
- Cowey, A. The 30th Sir Frederick Bartlett lecture. Fact, artefact, and myth about blindsight. Q. J. Exp. Psychol. A 57, 577-609 (2004).
- Chen, C. M. et al. Functional anatomy and interaction of fast and slow visual pathways in macague monkeys. Cereb. Cortex 17, 1561-1569 (2007).
- Nakamura, H., Gattass, R., Desimone, R. & Ungerleider, L. G. The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques. *J. Neurosci.* **13**, 3681–3691 (1993).
- Felleman, D. J. & Van Essen, D. C. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 1, 1-47
- Lamme, V. A. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. *Trends Neurosci.* **23**, 571–579 (2000).
- Yukie, M. & Iwai, E. Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys. J. Comp. Neurol. 201, 81-97 (1981).
- Bullier, J. & Kennedy, H. Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey. Exp. Brain Res. 53, 168-172
- Schmid, M. C., Panagiotaropoulos, T., Augath, M. A., Logothetis, N. K. & Smirnakis, S. M. Visually driven activation in macague areas V2 and V3 without input from the primary visual cortex. PLoS ONE 4, e5527
- 76. Boyer, J. L., Harrison, S. & Ro, T. Unconscious processing of orientation and color without primary visual cortex. *Proc. Natl Acad. Sci. USA* **102**, 16875-16879 (2005).
- Schmid, M. C. et al. Blindsight depends on the lateral geniculate nucleus. Nature 466, 373-377 (2010).
- Rempel-Clower, N. L. & Barbas, H. The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cereb Cortex 10, 851-865 (2000).
- Bar, M. A cortical mechanism for triggering top-down facilitation in visual object recognition. *J. Cogn. Neurosci.* **15**, 600–609 (2003).
- Bullier, J. Integrated model of visual processing, Brain Res. Brain Res. Rev. **36**, 96–107 (2001).

- Kveraga, K., Boshyan, J. & Bar, M. Magnocellular projections as the trigger of top–down facilitation in recognition. *J. Neurosci.* **27**, 13232–13240 (2007). Barrett, L. F. & Bar, M. See it with feeling: affective predictions during object perception. *Phil. Trans*.
- R. Soc. Lond. B 364, 1325-1334 (2009).
- Capalbo, M., Postma, E. & Goebel, R. Combining structural connectivity and response latencies to model the structure of the visual system. PLoS Comput. Biol. 4, e1000159 (2008)
- Nowak, L. G. & Bullier, J. in Cerebral Cortex: Extrastriate Cortex in Primate (eds Rockland, K., Kass, J. & Peters, A.) 205-241 (Plenum, New York, 1997).
- Sugase, Y., Yamane, S., Ueno, S. & Kawano, K. Global and fine information coded by single neurons in the temporal visual cortex. Nature 400, 142-147
- 86 Sripati, A. P. & Olson, C. R. Representing the forest before the trees: a global advantage effect in monkey inferotemporal cortex. J. Neurosci. 29, 7788–7796 (2009)
- Rudrauf, D. et al. Rapid interactions between the ventral visual stream and emotion-related structures rely on a two-pathway architecture. J. Neurosci. 28, 2793-2803 (2008)
- Andino, S. L., Menendez, R. G., Khateb, A., Landis, T. & Pegna, A. J. Electrophysiological correlates of affective blindsight. Neuroimage 44, 581-589 (2009)
- Rotshtein, P. et al. Amygdala damage affects eventrelated potentials for fearful faces at specific time windows. Hum. Brain Mapp. 31, 1089–1105
- 90 Ward, R., Calder, A. J., Parker, M. & Arend, I. Emotion recognition following human pulvinar damage. Neuropsychologia 45, 1973–1978 (2007). Ward, R., Danziger, S. & Bamford, S. Response to
- visual threat following damage to the pulvinar
- Curr. Biol. 15, 571–573 (2005). Vuilleumier, P., Richardson, M. P., Armony, J. L., Driver, J. & Dolan, R. J. Distant influences of amvedala lesion on visual cortical activation during emotional face processing. Nature Neurosci. 7, 1271-1278
- Ghashghaei, H. T., Hilgetag, C. C. & Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34, 905-923
- Averbeck, B. B. & Seo, M. The statistical neuroanatomy of frontal networks in the macaque. PLoS Comput. Biol. 4, e1000050 (2008). Modha, D. S. & Singh, R. Network architecture of
- the long-distance pathways in the macaque brain. Proc. Natl Acad. Sci. USA 107, 13485-13490 (2010).
- Lim, S. L., Padmala, S. & Pessoa, L. Segregating the significant from the mundane on a moment-to-moment basis via direct and indirect amygdala contributions Proc. Natl Acad. Sci. USA 106, 16841-16846
- Whalen, P. J. Fear, vigilance, and ambiguity: initial neuroimaging studies of the human amygdala. *Curr. Dir. Psychol.Sci.* **7**, 177–188 (1998).
- Sander, D., Grafman, J. & Zalla, T. The human amygdala: an evolved system for relevance detection. Rev. Neurosci. 14, 303-316 (2003).
- Hsu, M., Bhatt, M., Adolphs, R., Tranel, D. & Camerer, C. F. Neural systems responding to degrees of uncertainty in human decision-making. Science 310, 1680-1683 (2005).

- 100. Pessoa, L. Emotion and cognition and the amygdala: from "what is it?" to "what's to be done? Neuropsychologia **48**, 3416–3429 (2010).

 101. Grossberg, S. & Levine, D. S. Neural dynamics of
- attentionally modulated Pavlovian conditioning: blocking, interstimulus interval, and secondary reinforcement. Appl. Opt. 26, 5015-5030 (1987).
- 102. Aggleton, J. P. (ed.) The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (John Wiley & Sons, New York, 1992).
- 103. Aggleton, J. (ed.) The Amygdala: A Functional Analysis (Oxford Univ. Press, Oxford, 2000).
- 104. Ouellette, B. G. & Casanova, C. Overlapping visual response latency distributions in visual cortices and LP-pulvinar complex of the cat. Exp. Brain Res. 175. 332-341 (2006).
- 105. Schmolesky, M. T. et al. Signal timing across the macaque visual system. J. Neurophysiol. 79, 3272-3278 (1998).
- 106. Boehnke, S. E. & Munoz, D. P. On the importance of the transient visual response in the superior colliculus. Curr. Opin. Neurobiol. 18, 544-551 (2008)
- Leonard, C. M., Rolls, E. T., Wilson, F. A. & Baylis, G. C. Neurons in the amygdala of the monkey with responses selective for faces. Behav. Brain Res. 15, 159-176 (1985).
- 108. Kuraoka, K. & Nakamura, K. Responses of single neurons in monkey amygdala to facial and voca emotions. J. Neurophysiol. **97**, 1379–1387 (2007).
- 109. Nakamura, K., Mikami, A. & Kubota, K. Activity of single neurons in the monkey amygdala during performance of a visual discrimination task. J. Neurophysiol. **67**, 1447–1463 (1992).
- 110. Oya, H., Kawasaki, H., Howard, M. A. & Adolphs, R. Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli. *J. Neurosci.* **22**, 9502–9512 (2002).

 111. Tovee, M. J. & Rolls, E. T. Information encoding in
- short firing rate epochs by single neurons in the primate temporal visual cortex. Vis. Cogn. 2, 35–58 (1995)
- 112. Yoshor, D., Bosking, W. H., Ghose, G. M. & Maunsell, J. H. Receptive fields in human visual cortex mapped with surface electrodes. Cereb. Cortex 17, 2293-2302 (2007).
- 113. King, A. J. & Nelken, I. Unraveling the principles of auditory cortical processing: can we learn from the visual system? *Nature Neurosci.* **12**, 698–701 (2009).

Acknowledgements

The authors thank A. Anticevic, L. Oliveira, M. Pereira, R. Todd, and S. Wang for feedback on the manuscript. They also thank L. Barrett and two anonymous reviewers for comments. The authors' research is supported by grants from the National Institute of Mental Health (R01 MH071589 to L.P. and R01 MH080721 to R.A.), the National Institute of Neurological Disorders and Stroke (P01 NS019632 to R.A.), the Simons Foundation Autism Research Initiative and the National Science Foundation (NSF 0926,544).

Competing interests statement

The authors declare no competing financial interests.

FURTHER INFORMATION

Luiz Pessoa's homepage: http://emotioncognition.org Ralph Adolphs' homepage: http://www.emotion.caltech.edu

SUPPLEMENTARY INFORMATION

See online article: \$1 (box)

ALL LINKS ARE ACTIVE IN THE ONLINE PDF

Neural stem cell systems: physiological players or *in vitro* entities?

Luciano Conti and Elena Cattaneo

Nature Reviews Neuroscience 11, 176-187 (2010)

In Table 1 of the above article, the source of ESCs should be "Blastocyst" and the source of iPSCs should be "Fetal and adult tissues".

Supplementary information S1 (box)

More information about whether visual processing of affective information is fast

The work on object perception briefly discussed in the main text builds upon earlier studies on scene perception¹ and 'ultra-rapid' visual perception. In particular, rapid perception may be linked to electrophysiological responses with latencies ~150 ms (ref.²). Advances in our understanding of rapid visual perception also stem from computational modeling work inspired by the organization of the visual system, which has revealed that feedforward architectures can account for the performance of humans in rapid categorization tasks³, ⁴. Several properties of these computational models match neuronal responses in monkey IT cortex⁵ and responses in human temporal cortex (measured using electrocorticography) when viewpoint-invariant visual object categories are discriminated as early as 100 ms after presentation⁶. In other words, this theoretical work suggests that the feedforward machinery of the visual system is capable of complex computations in very short periods of time (such as generating viewpoint-invariant representations).

Another important aspect of the work on rapid visual perception concerns attention. There is evidence that visual perception of non-affective stimuli is not only fast, but also may require less attention than is often thought. For instance, the rapid visual categorization of novel natural scenes requires little focal attention⁷, indicating that perception outside the focus of attention may extend beyond simple and salient stimuli (see also ref ⁸). This work is relevant in the context of the standard hypothesis because it shows that many types of seemingly complex visual perceptions can take place even when processing resources are scarce – thus, not only emotional information enjoys this 'privileged status'.

More information about the processing of coarse and fine visual information

Vuilleumier et al. (ref ⁹) reported that the fusiform gyrus, in contrast to the amygdala, is sensitive to high spatial-frequency (SF) information. Other studies, however, indicate that the fusiform gyrus is sensitive to both low- and high-SF information^{10, 11}. These findings are of relevance in the context of the standard hypothesis because they raise the possibility that the origin of the enhanced amygdala responses to low-SF faces reported originally⁹ may have been (at least in part) cortical, given that the signals in the fusiform gyrus would be expected to 'feed into' the amygdala (given the connectivity between anterior temporal cortex and the amygdala¹²).

More information about the pulvinar

Next to nothing is known about the connectivity and electrophysiology of the pulvinar in humans, although a diffusion tensor imaging study has reported results consistent with connectivity to ipsilateral SC as well as temporal visual cortices¹³. A recent study in epileptic patients examined evoked responses to electrical stimulation to map the functional connectivity of the medial pulvinar and suggested functional connections with visual cortex and the amygdaloid region¹⁴. However, given the limited resolution and other characteristics of both of these techniques, it is not possible to conclude the existence of anatomical connectivity with certainty. Nevertheless, it is usually assumed that the human pulvinar has much the same connectivity as that found in monkeys.

Both neuroimaging and lesion studies in humans strengthen the notion that the pulvinar is involved in attentional functions. Whereas early Positron Emission Tomography studies are consistent with a role of the pulvinar in visual attention^{15, 16}—including attentional filtering in the presence of distractors and selective attention to stimulus features (e.g., shape, color)—the low spatial resolution of this technique precluded anatomically clear conclusions. However, more recent studies at higher resolution during fMRI at 3T are consistent with these earlier results—e.g., responses in the pulvinar were only observed during attended conditions, but not when the stimulus was unattended¹⁷. Lesion studies have shown deficits of attention in the visual field contralateral to the pulvinar lesion¹⁸. Importantly, the pulvinar on the right hemisphere has been identified as an important subcortical node associated with spatial neglect^{19, 20}. It is thought that 'driving inputs' (as opposed to 'modulatory inputs') to the pulvinar originate in cortex^{21, 22} (see also below). Thus, pulvinar responses may be closely

aligned with awareness because of the contributions from cortex, which is thought to be important for conscious perception.

There are several differences between the ventral and dorsal 'domains' of the pulvinar. Highlighting these differences are the following additional facts²³. There is a dual representation of occipital areas in the ventral domain, but nothing comparable in the dorsal domain. Furthermore, a site in the dorsal pulvinar may be connected with relatively distal regions of the brain, for instance, in parietal and frontal cortex – this is unlike the ventral pulvinar, whose connectivity is restricted to the occipito-temporal cortex. In fact, many extensive fronto-parietal cortical connections are mirrored by overlapping fields in the dorsal pulvinar^{24, 25}. In other words, if regions in frontal and parietal cortex are interconnected in the cortex, their projection sites in the pulvinar will typically coincide (and the connections are bidirectional between pulvinar and cortex) – an organization that further exemplifies the "associational" potential of the dorsal pulvinar.

An additional issue that warrants discussion concerns the connections from the superior colliculus to the pulvinar. Visual signals from the retina are conveyed to the superficial layers of the SC and then to the inferior pulvinar (which is part of the ventral domain) (Figure 3). However, connections also seem to exist from the intermediate/deep (nonretinal) layers of the SC to the medial pulvinar (which is part of the dorsal domain). Could the intermediate/deep layers be sending input to the amygdala via the medial pulvinar? This scenario is problematic for the following reasons. Although for simplicity we treated the medial pulvinar as a unit, there is strong evidence that this nucleus is comprised of central/lateral and medial sub-units with substantially different connectional patterns (see Figure 10 of ref. ²⁴). Furthermore, whereas the medial subunit projects to the amygdala, it is the central/lateral subunit that receives substantial input from the SC. Again, it seems unlikely that a simple colliculo-pulvino-amygdalar pathway exists (we thank Alan Anticevic for bringing up this point). Even more critically, signals from the intermediate and deep layers of the SC are multimodal in nature and possibly linked to saccadic eye movements. Thus, they would not easily fit the role commonly assumed in the purported subcortical pathway of the standard hypothesis.

More information about the subcortical pathway in rodents

An important question concerning subcortical pathways in rats (or other species) is whether they are functional under normal conditions, that is, in animals with intact brains. A relevant clue as to whether a pathway is functional under normal conditions relates to when the lesion took place in a particular study²⁶. If the damage takes place prior to conditioning, for instance, then it is possible that other pathways may take over (because during conditioning alternate routes may be recruited that are also able to support learning). Thus, in cases in which a lesion occurs prior to conditioning, pathways may be identified that are *capable* of mediating fear conditioning even if they are not normally used. On the other hand, if the behavioral deficit is observed in the case of a post-training lesion, this would indicate that the pathway is *normally* used to mediate the effect (because the pathway normally used was compromised by the lesion).

These considerations are of relevance in the context of the experiment by Shi and Davis²⁶, who investigated the role of visual pathways to the amygdala during fear conditioning. In their study, post-training lesions of the lateral posterior nucleus of the thalamus (LP; a structure that is related to the pulvinar) did not block fear conditioning when a visual CS was employed. Because the LP gives rise to subcortical inputs to the amygdala, the results indicate that this pathway is likely not critical in mediating visually based fear conditioning in normal animals (i.e., without a lesion). Instead, another pathway identified in their study, which connects the LP to the basolateral amygdala via anterior temporal cortex, was critical for transmitting emotion-laden visual information. For a related discussion of whether the auditory subcortical pathway to the amygdala is also the primary driver of affective information in intact animals that have undergone fear conditioning, see the study by Shi and Davis²⁶, too.

In summary, in the context of the standard hypothesis, lesion studies need to carefully differentiate between pathways that are sufficient to carry affective information from those that are indeed functional in intact animals.

More information about multiple visual pathways and coarse information processing

The magnocellular system conveys low SF and motion information²⁷. Bypass systems involving magnocellular projections are thus of interest as they may be especially fast. For instance, MT and FEF cells exhibit latencies 10-40 ms lower than V2 and V4 (ref ²⁸), consistent with non-hierarchical modes of communication. Anatomical studies have identified a direct LGN to MT pathway that may convey visual signals to MT in primates²⁹, together with a pathway to MT from the SC via the inferior pulvinar³⁰. The latter pathway is particularly intriguing as it involves the two structures of the subcortical pathway of the standard hypothesis. Functional (as opposed to structural) identification of a colliculo-pulvino-MT pathway has been recently established by a combination of microstimulation and histological analysis³¹. The electroanatomical findings of this study provide evidence for the existence of at least two relay zones that ascend from the SC to MT through the inferior pulvinar.

Bypass systems have been investigated in humans, too. Functional evidence for the role of bypass systems in the cortex was reported in a recent case study³² of a patient with developmental agnosia and prosopagnosia (with no discernible macroscopic cortical lesion). In this patient, V1 was robustly activated by visual stimuli (as measured with fMRI), but intermediate areas V2-V4 failed to be visually activated. Yet, robust 'downstream' activation was observed in the parahippocampal gyrus and other regions, with spared selectivity for houses and places. Bypass pathways have also been identified in patient GY³³ (who has been reported to exhibit affective blindsight³⁴). Based on diffusion-weighted MRI, a pathway was detected that linked the right LGN to left MT, a pathway that was absent in control participants.

More information about the role of the amygdala in processing of affective information

If the amygdala is not responsible for non-conscious processing of emotional visual stimuli, what brain structures are? Although the issue of non-conscious processing is a complex and largely unresolved one³⁵, non-conscious processing of affective information, if present, may take place in a manner that is analogous to that for non-emotional information. For instance, long-range interactions involving the parietal and frontal cortex may be important in establishing sufficiently strong representations to support awareness^{36, 37}. This, of course, does not exclude some role for the amygdala, but such role would be more modulatory than indispensable, not unlike its function during conscious processing.

References

- 1. Potter, M.C. & Levy, E.I. Recognition memory for a rapid sequence of pictures. *J Exp Psychol* **81**, 10-15 (1969).
- 2. Thorpe, S., Fize, D. & Marlot, C. Speed of processing in the human visual system. *Nature* **381**, 520-522 (1996).
- 3. Serre, T., Oliva, A. & Poggio, T. A feedforward architecture accounts for rapid categorization. *Proc Natl Acad Sci U S A* **104**, 6424-6429 (2007).
- 4. Serre, T. et al. A quantitative theory of immediate visual recognition. *Prog Brain Res* **165**, 33-56 (2007).
- 5. Hung, C.P., Kreiman, G., Poggio, T. & DiCarlo, J.J. Fast readout of object identity from macaque inferior temporal cortex. *Science* **310**, 863-866 (2005).
- 6. Liu, H., Agam, Y., Madsen, J.R. & Kreiman, G. Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex. *Neuron* **62**, 281-290 (2009).
- 7. Li, F.F., VanRullen, R., Koch, C. & Perona, P. Rapid natural scene categorization in the near absence of attention. *Proc Natl Acad Sci U S A* **99**, 9596-9601 (2002).
- 8. Peelen, M.V., Fei-Fei, L. & Kastner, S. Neural mechanisms of rapid natural scene categorization in human visual cortex. *Nature* **460**, 94-97 (2009).

- 9. Vuilleumier, P., Armony, J.L., Driver, J. & Dolan, R.J. Distinct spatial frequency sensitivities for processing faces and emotional expressions. *Nat Neurosci* **6**, 624-631 (2003).
- 10.Winston, J.S., Vuilleumier, P. & Dolan, R.J. Effects of low-spatial frequency components of fearful faces on fusiform cortex activity. *Curr Biol* **13**, 1824-1829 (2003).
- 11. Rotshtein, P., Vuilleumier, P., Winston, J., Driver, J. & Dolan, R. Distinct and convergent visual processing of high and low spatial frequency information in faces. *Cereb Cortex* **17**, 2713-2724 (2007).
- 12. Amaral, D.G., Price, J.L., Pitkanen, A. & Carmichael, S.T. in The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction (ed. Aggleton, J.) 1-66 (Wiley-Liss, New York, 1992).
- 13.Leh, S.E., Chakravarty, M.M. & Ptito, A. The connectivity of the human pulvinar: a diffusion tensor imaging tractography study. *Int J Biomed Imaging* **2008**, 789539 (2008)..
- 14.Rosenberg, D.S., Mauguiere, F., Catenoix, H., Faillenot, I. & Magnin, M. Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain. *Cereb Cortex* **19**, 1462-1473 (2009).
- 15.LaBerge, D. & Buchsbaum, M.S. Positron emission tomographic measurements of pulvinar activity during an attention task. *Journal of Neuroscience* **10**, 613-619 (1990).
- 16. Corbetta, M., Miezin, F.M., Dobmeyer, S., Shuiman, G.L. & Peterson, S.E. Selective and Divided Attention during Visual Discrimnination of shape, Color, and Speed: Functional Anatomy by Positron Emission Tomography. *The Journal of Neuroscience* **11**, 2383-2402 (1991).
- 17. Kastner, S. et al. Functional imaging of the human lateral geniculate nucleus and pulvinar. *J Neurophysiol* **91**, 438-448 (2004).
- 18. Arend, I. et al. The role of the human pulvinar in visual attention and action: evidence from temporal-order judgment, saccade decision, and antisaccade tasks. *Prog Brain Res* **171**, 475-483 (2008).
- 19. Mesulam, M.M. A cortical network for directed attention and unilateral neglect. *Annals of Neurology* **10**, 309-325 (1981).
- 20.Karnath, H.O., Himmelbach, M. & Rorden, C. The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. *Brain* **125**, 350-360 (2002).
- 21. Guillery, R.W. Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. *J Anat* **187**, 583-892 (1995).
- 22. Sherman, S.M. & Guillery, R.W. Functional organization of thalamocortical relays. *J Neurophysiol* **76**, 1367-1395 (1996).
- 23. Shipp, S. The functional logic of cortico-pulvinar connections. *Philos Trans R Soc Lond B Biol Sci* **358**, 1605-1624 (2003).
- 24. Romanski, L.M., Giguere, M., Bates, J.F. & Goldman-Rakic, P.S. Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. *J Comp Neurol* **379**, 313-332 (1997)
- 25.Barbas, H., Henion, T.H. & Dermon, C.R. Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. *J Comp Neurol* **313**, 65-94 (1991).
- 26.Shi, C. & Davis, M. Visual pathways involved in fear conditioning measured with fear-potentiated startle: behavioral and anatomic studies. *J Neurosci* **21**, 9844-9855 (2001).
- 27. Schiller, P.H. & Logothetis, N.K. The color-opponent and broad-band channels of the primate visual system. *Trends Neurosci* **13**, 392-398 (1990).
- 28. Schmolesky, M.T. et al. Signal timing across the macaque visual system. *J Neurophysiol* **79**, 3272-3278 (1998).
- 29. Sincich, L.C., Park, K.F., Wohlgemuth, M.J. & Horton, J.C. Bypassing V1: a direct geniculate input to area MT. *Nat Neurosci* **7**, 1123-1128 (2004).

- 30.Lyon, D.C., Nassi, J.J. & Callaway, E.M. A Disynaptic Relay from Superior Colliculus to Dorsal Stream Visual Cortex in Macaque Monkey. *Neuron* **65**, 270-279 (2010).
- 31.Berman, R.A. & Wurtz, R.H. Functional identification of a pulvinar path from superior colliculus to cortical area MT. *J Neurosci* **30**, 6342-654 (2010).
- 32. Gilaie-Dotan, S., Perry, A., Bonneh, Y., Malach, R. & Bentin, S. Seeing with profoundly deactivated mid-level visual areas: non-hierarchical functioning in the human visual cortex. *Cereb Cortex* **19**, 1687-1703 (2009).
- 33.Bridge, H., Thomas, O., Jbabdi, S. & Cowey, A. Changes in connectivity after visual cortical brain damage underlie altered visual function. *Brain* **131**, 1433-1444 (2008).
- 34.Morris, J.S., DeGelder, B., Weiskrantz, L. & Dolan, R.J. Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. *Brain* **124**, 1241-1252 (2001).
- 35. Seth, A.K., Dienes, Z., Cleeremans, A., Overgaard, M. & Pessoa, L. Measuring consciousness: relating behavioural and neurophysiological approaches. *Trends Cogn Sci* **12**, 314-321 (2008).
- 36. Dehaene, S., Sergent, C. & Changeux, J.P. A neuronal network model linking subjective reports and objective physiological data during conscious perception. *Proc Natl Acad Sci U S A* **100**, 8520-8525 (2003).
- 37. Corbetta, M., Patel, G. & Shulman, G.L. The reorienting system of the human brain: from environment to theory of mind. *Neuron* **58**, 306-324 (2008).