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Abstract

Multiple input multiple output (MIMO) systems provide increased spectral effi-
ciency: in an i.i.d. Rayleigh flat-fading channel, MIMO capacity increases linearly
with the smaller of the number of transmit and receive antennas. This dramatic
increase of capacity, however, requires perfect channel knowledge at the transmit-
ter and the receiver, which rarely happens in real systems. We thus study lower
and upper bounds of mutual information under channel estimation error, and show
that the two bounds are tight for Gaussian inputs. We also derive a tight capacity
lower bound and the optimal transmitter strategy to achieve this bound. Numerical
results show that some capacity gain is obtained by shaping transmit power over
the subchannels. However, temporal power adaptation appears to give negligible
gain in terms of ergodic capacity.

1 Introduction

Multiple input multiple output (MIMO) systems have been shown to provide dramatic
capacity gain. Specifically, in an i.i.d. Rayleigh fading channel, the capacity of a system
with t transmit and r receive antennas grows min{r, t} times faster than that of a single
input single output (SISO) system. This large capacity gain, however, requires perfect
knowledge of the instantaneous channel fading at both the transmitter and receiver,
which rarely happens in real systems. Thus, the impact of imperfect channel knowledge
and channel estimation error on capacity is an important area to investigate.

Various assumptions about channel state information (CSI) and channel fading lead
to different capacity results. In [1], bounds on mutual information with imperfect CSIR
and no CSIT have been derived. This result has been extended in [2] to flat fading
channels and a capacity lower bound has been derived assuming the feedback link is
perfect. Caire and Shamai [3] have studied some channels with imperfect CSIT and
perfect CSIR. These studies all use genie-provided (partial) CSI’s and independent fading
processes. In the absence of CSI, Lapidoth [4] has shown that at high SNR capacity grows
double-logarithmically in the SNR.

Fading correlation over time can increase capacity; in [5], capacity of noncoherent
multiple antenna fading channels has been studied for a Rayleigh block-fading environ-
ment. This capacity increases logarithmically with SNR, and approaches the perfect
channel knowledge capacity as the coherence interval increases. Achievable rates of prac-
tical channel estimation schemes are upper-bounded by the noncoherent capacity since



they use suboptimal ways to probe the channel. In [6], bounds of achievable rates have
been derived for typical MIMO flat-fading channels using pilot symbols and an inter-
leaver. These studies assume no CSI but exploit fading correlation in order to directly
or indirectly obtain it.

This paper, which extends the results of [1, 2] from SISO to MIMO channels, uses
the same assumptions as [1]-[4] about the channel fading and CSI. Specifically, we study
lower and upper bounds of mutual information for an i.i.d. Rayleigh flat fading channel
with a genie-provided MMSE channel estimate at the receiver and perfect feedback.
Then, we derive optimal transmitter strategies that maximize the lower bound of mutual
information to obtain the corresponding capacity lower bound.

The rest of this paper is organized as follows. In Section 2, our system model is
introduced. In Section 3, lower and upper bounds of mutual information under channel
estimation error are derived. The capacity bounds are also derived subject to an average
power constraint. In Section 4, the optimal power allocation for different values of mutual
information is determined. Finally, numerical results are presented in Section 5.

2 System Model

Consider a MIMO system with t transmit and r receive antennas. The discrete-time
channel is modeled as Yn = HnXn + Zn, where Yn is an r × 1 channel output, Hn

is an r × t channel transfer matrix, Xn is a t × 1 channel input, and Zn is an r ×
1 vector of additive white Gaussian noise (AWGN). We assume both Hn and Zn are
ergodic and stationary, and their entries are i.i.d. and zero-mean circularly symmetric
complex Gaussian (ZMCSCG). We normalize the channel and noise variance such that
the entries of Hn and Zn have unit variance. By properly scaling the transmit power, this
normalization does not change the mutual information of the channel. We also assume
that both the channel fading process and the noise process have no correlation between
time instances. This would be the case if we use a perfect interleaver and do not exploit
information contained in the fading correlation. In such a system, and for more general
classes, if the fading process is perfectly known to the receiver, the mutual information
between the channel input and output is given by [7]

I(X;Y) = E {log2 |I + H∗
nHnQ|} (1)

where Q is the input covariance matrix Q = E(XnX
∗
n) , and E{•} is an expectation

operator. In the remainder of this paper, we will not write the time index n explicitly
for notational convenience. This is possible because the random processes we are dealing
with are i.i.d. over time. Besides the aforementioned assumptions about the channel,
we further assume the following throughout this paper: (1) At each time instance, the
receiver has genie-provided channel state information H̃, and performs MMSE estimation
of the channel fading process, Ĥ = E(H|H̃). Let H = Ĥ + E, then, Ĥ and E are
uncorrelated, and the entries of E are ZMCSCG with variance σ2

E
= MMSE = E(H2

ij)−
E(Ĥ2

ij). σ2
E

dictates the quality of the channel estimation, and is assumed to be known
to both the transmitter and the receiver. (2) There exists a perfect and instantaneous
feedback from the receiver to the transmitter so that whatever CSI the receiver has is
also available at the transmitter. (3) The transmitter is constrained in its total power
P , and it can adapt its power to the channel fading to maximize capacity. That is,
E(P ) = E (Tr(Q)) ≤ P̄ . Tr(•) stands for trace.



3 Bounds of Mutual Information with Imperfect CSI

3.1 Lower bound of mutual information

The ergodic capacity of the fading channel model in Section 2 with an estimated channel
Ĥ at the transmitter and the receiver is given by [3]

C = max
p(X|Ĥ)

E
[

I(X;Y|Ĥ)
]

(2)

where p(X|Ĥ) is the probability distribution of X given Ĥ. In this section, we focus on
evaluating the mutual information I(X;Y|Ĥ): its maximization with respect to power
allocation will be the main topic of Section 4.

We begin by expanding the mutual information into differential entropies.

I(X;Y|Ĥ) = h(X|Ĥ) − h(X|Y, Ĥ) (3)

Denoting as Q the covariance matrix of X given Ĥ, and choosing X|Ĥ to be Gaussian
(which is not necessarily the capacity achieving distribution when the CSIR is not per-
fect [1, 4]), the first term on the RHS becomes E [log2(πeQ)]. Evaluation of the second
term, on the other hand, is not trivial because the conditional distribution p(X|Y, Ĥ) is
in general not Gaussian. However, we can derive an upper bound to it as [1]

h(X|Y, Ĥ) ≤ E
[

log2

(∣

∣

∣πeΣ
X−AY|Ĥ

∣

∣

∣

)]

(4)

for any t × r matrix A, where Σ
X−AY|Ĥ represents the covariance matrix of X − AY

given Ĥ. Since (4) holds for any A, we pick A so that the RHS is minimized to yield the
tightest bound. This corresponds to the case when AY is the linear MMSE estimate of
X, in which case the lower bound is given by

Ilower(X;Y|Ĥ) = E
[

log2

∣

∣

∣I + Ĥ∗(I + ΣEX)−1ĤQ
∣

∣

∣

]

(5)

Note that (5) is equivalent to the mutual information of the MIMO channel with an
effective gain (I + ΣEX)−1/2Ĥ and perfect CSIR. When the entries of H are independent
and identically distributed, we have that the channel estimation errors {Eij} are also
independent and identically distributed, i.e., E(EijEmn) = σ2

E
δi−m,j−n, and ΣEX = σ2

E
P I.

Then, (5) becomes

Ilower(X;Y|Ĥ) = E

[

log2

∣

∣

∣

∣

∣

I +
1

1 + σ2
E
P

Ĥ∗ĤQ

∣

∣

∣

∣

∣

]

(6)

As is observed in [6], comparing (6) to (1), we can see that the channel estimation
error affects the mutual information by two separate mechanisms. First, the estimation
error increases the effective noise power from unity to 1 + σ2

E
P . Secondly, it reduces the

average channel power gain from E(H∗H) = rI to E(Ĥ∗Ĥ) = r(1 − σ2
E
)I. These two

effects result in an SNR loss factor of δ = (1 − σ2
E
)/(1 + σ2

E
P ).

3.2 Upper bound of mutual information

Expanding the mutual information (3) in an alternate way, we have

I(X;Y|Ĥ) = h(Y|Ĥ) − h(Y|X, Ĥ) (7)



Using the fact that the Gaussian distribution maximizes the entropy over all distributions
with the same covariance, we obtain an upper bound of the first term on the RHS as

h(Y|Ĥ) ≤ E
[

log2

∣

∣

∣πe
(

ĤQĤ∗ +
(

1 + σ2
E
P
)

I
)∣

∣

∣

]

(8)

Since E is complex Gaussian by assumption, (Y|X, Ĥ) is also complex Gaussian with
NC(ĤX,ΣEX|X + I). Thus, the second term on the RHS in (7) becomes

h(Y|X, Ĥ) = EX

[

log2

∣

∣

∣πe
(

1 + σ2
E
‖X‖2

)

I
∣

∣

∣

]

(9)

Combining (7)-(9), we have

Iupper(X;Y|Ĥ) = Ilower(X;Y|Ĥ) + rEX

[

log2

σ2
E
P + 1

σ2
E
‖X‖2 + 1

]

(10)

The upper bound is related to the lower bound by Jenson’s inequality, i.e., noting that
E(‖X‖2) = P , the second term on the RHS in (10) is nonnegative [6]. The following
lemma shows that the gap between the two bounds is usually small for a Gaussian input
unless r � t. In other words, the two bounds are approximately equal to the exact
Gaussian mutual information.

Lemma 1 In the limit of high SNR and a large number of antennas, the second term in
(10) approaches (r/t) log2

√
e ≈ 0.72(r/t) for Gaussian inputs. (Refer to [9] for proof.)

3.3 Capacity bounds for Gaussian input

In this subsection, we study ergodic capacity bounds by finding optimal input covariance
matrices Q that maximize the bounds of the previous subsections. We first consider
the maximization of the lower bound in (6). Let the singular value decomposition of the
estimated channel matrix be Ĥ = UDV∗, where U and V are unitary and D is diagonal,
and let us define two quantities, Q̃ = V∗QV and Λ = D∗D. Then

Ilower(X;Y|Ĥ) = E

(

log2

∣

∣

∣

∣

∣

I +
1

1 + σ2
E
P

ΛQ̃

∣

∣

∣

∣

∣

)

(11)

Under an average power constraint E(P ) = E (Tr(Q)) ≤ P̄ , observing that Tr(Q) =
Tr(Q̃), (11) is maximized with Q̃ a diagonal matrix, Q̃ = diag(P1, · · · , Pt), with an
optimal power distribution {Pi} such that

∑t
i=1 Pi = P . Thus, the lower bound of

ergodic capacity is given by

Clower = max{Pi} E
(

∑t
i=1 log2

(

1 + Piλi

1+σ2

E
P

))

subject to E(P ) = E
(

∑t
i=1 Pi

)

≤ P̄
(12)

where λi is the (i, i)th element of Λ and thus the ith eigenvalue of Ĥ∗Ĥ. The above expec-
tations are performed over the joint distribution of (λ1, · · · , λt). The input to the channel
that achieves the capacity has covariance matrix of the form Q = Vdiag(P1, · · · , Pt)V

∗

whose optimal subchannel powers {Pi} are determined as functions of (λ1, · · · , λt).
Let us now consider the upper bound. In maximizing the upper bound (10), unlike

the lower bound, the distribution of X should be taken into account. The resultant
capacity bound, however, exceeds the trivial perfect-CSI upper bound if we allow X to



have an arbitrary distribution. To obtain a practical bound, therefore, we restrict X to
be jointly complex Gaussian, acquiring the upper bound of Gaussian ergodic capacity.
From (10) and (12), we have

Cupper = max{Pi} E
(

∑t
i=1 log2

(

1 + Piλi

1+σ2

E
P

)

+ r log2

(

σ2

E
P+1

σ2

E
‖X‖2+1

))

subject to E(P ) = E
(

∑t
i=1 Pi

)

≤ P̄
(13)

The expectation is performed both over the joint distribution of (λ1, · · · , λt) and over the
joint Gaussian distribution of X ∼ NC (0, diag(P1, · · · , Pt)).

The capacity lower bound (12) can be achieved by the following. First, singular value
decomposition (SVD) is performed on the estimated channel, Ĥ = UDV∗, which would
diagonalize the MIMO channel if the channel estimation were correct. However, with Ĥ

different from H, the channel is not fully decomposed into independent SISO links. To see
this, let Ẽ = U∗EV. Then we have H = Ĥ+E = U(D+Ẽ)V∗. Thus, transmit precoding
and receiver shaping by V and U∗ will produce an equivalent channel matrix D+Ẽ. It can
be easily verified that Ẽ is zero mean with uncorrelated entries with variance σ2

E
. Hence,

the decomposed channel, D + Ẽ, is not diagonal unless Ĥ = H. After all, as a result
of using imperfect channel information Ĥ to construct a precoding and receiver shaping
matrices, we have obtained subchannels that are not independent, but instead behave like
an interference channel with Ẽ representing channel gains from interferers. Specifically,
the ith SISO link is described by yi = Diixi + Ẽiixi +

(

∑t
j=1,j 6=i Ẽijxj

)

+ ni where Dii can

be interpreted as an estimated subchannel gain, Ẽii as its channel estimation error, and
the third and the last term together are viewed as a non-Gaussian noise process with
an average power of σ2

E
(P − Pi) + 1. The mutual information I(xi; yi|Dii) is in general

difficult to compute because of the non-Gaussian nature of the noise plus interference,
but the generalized mutual information (GMI), which is the achievable rate under an
i.i.d. Gaussian input distribution and nearest neighbor decoding rule, is known in this
case and given by [4]

Ii = log2

(

1 +
PiD

2
ii

(σ2
E
(P − Pi) + 1) + (σ2

E
Pi)

)

= log2

(

1 +
Piλi

1 + σ2
E
P

)

(14)

Summing over m = min{r, t} subchannels and using the optimal power allocation, we
obtain the capacity lower bound in (12). Thus, the lower bound can be interpreted
as the maximum achievable data rates of communication systems that are designed to
perform optimally with perfect channel knowledge but ignore the channel estimation
error. Those systems will typically use SVD, a Gaussian input, and a nearest neighbor
decoder to achieve capacity, but fail to give optimal performance in the presence of
channel estimation error, and only achieve the lower bound (12).

4 Optimal Power Allocation

As we have seen, Clower is the supremum of achievable data rates in practical transmission
systems that employ Gaussian codebooks and nearest neighbor decoders. Moreover, we
have seen that the difference between Clower and the exact capacity is small for Gaussian
inputs. Hence, in this section, we treat Clower as a performance measure and concentrate
on deriving the optimal power allocation strategy to achieve it.



4.1 Capacity in Rayleigh fading without CSIT

In this subsection, we derive the lower bound of capacity when the transmitter does not
know the instantaneous value of the channel estimation. Since Ĥ is a complex Gaussian
matrix with i.i.d. entries, the optimal Q that maximizes Ilower is (P/t) I with a certain
power adaptation P [7]. Using Jenson’s inequality it can be verified that the temporal
power adaptation does not increase the capacity, i.e., P = P̄ . Therefore, the maximum
mutual information is given by

Clower =
t
∑

i=1

E

(

log2

(

1 +
P̄ /t

1 + σ2
E
P̄

λi

))

(15)

4.2 Optimal spatial power allocation with CSIT

In this and the next subsection, we derive the optimal power allocation for the capacity
lower bound (12). Towards this end, we will derive the lower bound of capacity for
transmitters using a full spatio-temporal power allocation. In this subsection, however,
as an intermediate step, we do not allow adapting power over the channel variation: we
fix the total transmit power to be constant over time and distribute the power optimally
over the subchannel domain. The objective function is then, from (12),

Clower = max{Pi} E
(

∑t
i=1 log2

(

1 + Piλi

1+σ2

E
P

))

subject to P =
∑t

i=1 Pi ≤ P̄
(16)

It can be easily verified that it is always better to use full power P = P̄ . Thus, the
optimal power allocation and the corresponding capacity bound will be given by a water-
filling over subchannels with the total power scaled by the variance of the estimation
error

Pi =

(

µ − 1 + σ2
E
P̄

λi

)+

, Clower = E





m
∑

i=1

[

log2

(

µλi

1 + σ2
E
P̄

)]+


 (17)

with µ chosen to satisfy P =
∑t

i=1 Pi = P̄ .

4.3 Optimal spatio-temporal power allocation with CSIT

It follows from the previous subsection that the optimal spatial power allocation for a
given estimated channel Ĥ with a given power budget P (Ĥ) is

Pi

(

P (Ĥ), Ĥ
)

=

(

µ
(

P (Ĥ), Ĥ
)

− 1 + σ2
E
P (Ĥ)

λi

)+

(18)

Clower

(

P (Ĥ), Ĥ
)

=
m
∑

i=1



log2





µ
(

P (Ĥ), Ĥ
)

λi

1 + σ2
E
P (Ĥ)









+

(19)

where µ
(

P (Ĥ), Ĥ
)

represents the water-level associated with P (Ĥ) and Ĥ. Then, it re-

mains to find the optimal temporal power adaptation P (Ĥ) that maximizes the expected
value of (19):

Clower = maxP (Ĥ) E
Ĥ

{

Clower

(

P (Ĥ), Ĥ
)}

subject to E
Ĥ

(

P (Ĥ)
)

≤ P̄
(20)



Forming Lagrange multipliers and differentiating both sides with respect to P (Ĥ), we
get the following condition

∂Clower

(

P (Ĥ), Ĥ
)

∂P (Ĥ)
=

1

ν ln 2
(21)

where ν is a constant that represents the global water level. By the following lemma,
the above condition becomes both necessary and sufficient, and thus achieves the global
maximum of (20).

Lemma 2 The partial derivative on LHS of (21) is given by

∂Clower

(

P (Ĥ), Ĥ
)

∂P (Ĥ)
=

1

ln 2

1

µ
(

P (Ĥ), Ĥ
) (

1 + σ2
E
P (Ĥ)

) (22)

which is a decreasing function of P (Ĥ). Thus, Clower

(

P (Ĥ), Ĥ
)

is concave in P (Ĥ).

(Refer to [9] for proof.)

Equations (21)-(22) suggest that the marginal capacity gain for a specific channel
realization always decreases as we assign more power, and that the optimal temporal
power adaptation strategy is to pour power until the marginal capacity gain for each
channel realization drops to a constant value that is determined by the average available
transmit power. Solving (21)-(22) for P (Ĥ), we obtain the optimal temporal power
adaptation

P (Ĥ) =





−(λ0 + 2σ2
E
) +

√

λ2
0 + 4k(Ĥ)νλ0σ2

E
(λ0 + σ2

E
)

2σ2
E
(λ0 + σ2

E
)





+

(23)

where k(Ĥ) is the number of subchannels that have positive power Pi(Ĥ) > 0, and λ0,

which is a scalar value that represents the matrix channel, satisfies λ−1
0 =

∑k(Ĥ)
i=1 λ−1

i .
Equation (23) is a direct extension of the similar result for SISO channels in [2]. Note

that as σ2
E
→ 0, µ

(

P (Ĥ), Ĥ
)

→ ν and thus (18) and (23) become a two-dimensional

water-filling with a single water level ν. When σ2
E

> 0, however, we need two levels of
power allocation; the global water-level ν determines how much power to use through (23)
given the channel estimation, and the local water-level µ(Ĥ) dictates how to distribute
the power to the subchannels through (18). Then the capacity is given by (20), and is
achieved using input covariance Q = V∗diag(P1, · · · , Pt)V. In the following subsections,
we study some special cases to gain further intuition.

4.4 MISO and SIMO channels

In multiple input single output (MISO) and single input multiple output (SIMO) channels
where there is only one spatial dimension, the optimal power allocation in (23) simplifies
to

P (λ) =





−(λ + 2σ2
E
) +

√

λ2 + 4νλσ2
E
(λ + σ2

E
)

2σ2
E
(λ + σ2

E
)





+

(24)

where λ = ‖Ĥ‖2 is the squared norm of the channel estimation vector Ĥ. This formula
is exactly the same as the SISO result in [2]. For MISO channels, the optimal input



covariance matrix that achieves Clower is Q = P (λ)Ĥ∗Ĥ/‖Ĥ‖2, which means that the
optimal transmission scheme employs both a beamforming along the direction given by
Ĥ∗/‖Ĥ‖ and an optimal power adaptation P (λ). The power adaptation modulates the
transmit power in time; whereas the beamformer allocates the given power at any time
instance over the transmit antennas to maximize the transmission rate.

4.5 Low SNR or large estimation error regime

When Piλi � 1 + σ2
E
P , (20) is approximated as

Clower ≈ max
P (Ĥ)

E

(

P (Ĥ)λmax

1 + σ2
E
P (Ĥ)

)

(25)

This means that beamforming or using a single subchannel is the asymptotically optimal
spatial power allocation at low SNR or large estimation error. Using Lagrange multipliers,

the optimal temporal power adaptation is found to be P (Ĥ) =
(

(
√

νλmax − 1)/σ2
E

)+
.

4.6 High SNR and small estimation error regime

When Piλi � 1 + σ2
E
P , it can be shown that the uniform power allocation over space

and time is asymptotically optimal. Thus, (20) is approximated as

Clower ≈ m log2

P̄

m
(

1 + σ2
E
P̄
) + E(log2 |W|) (26)

where the m × m matrix W is defined as W = ĤĤ∗ if t > r, and W = Ĥ∗Ĥ if
t ≤ r. Note that as P̄ → ∞, Clower does not go to infinity but approaches a finite rate,
−m log2(mσ2

E
) + E(log2 |W|). This is consistent with the result in [4] that the Gaus-

sian mutual information in the high SNR regime is bounded by the channel uncertainty
and becomes independent of SNR. However, some caution is required in interpreting this
result. In particular, [4] show that the true Shannon capacity without any input restric-
tion grows double-logarithmically in the SNR. Thus, the Gaussian input distribution is
suboptimal in the presence of channel estimation error. Secondly, our result is only valid
under the assumption that the quality of channel estimation does not improve as SNR
increases. The result, however, becomes entirely different when the channel estimation
improves with SNR, which is the case in [5] where it is shown that the noncoherent
capacity of block fading channels and the capacity of pilot-based schemes still have a
logarithmic dependence on the SNR but with a reduced slope compared to the coherent
capacity. Finally, our result is different from [5, 6] in that we assume i.i.d. fading and
genie-provided channel information, whereas in [5, 6] the channel knowledge is obtained
through the fading correlation. In that case, the capacity will be much smaller in an i.i.d.
fading channel because the receiver cannot estimate the channel reliably.

5 Numerical Results

In this section, numerical results are presented based on Monte Carlo simulations. In
Figures 1-(a) and 1-(b) we plot the lower (6) and upper (10) bound of mutual information.
The plots confirm our previous observations that the two bounds are tight and that the
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Figure 1: (a) Lower and upper bounds of mutual information for 4 × 4 MIMO channel
vs. SNR for several channel estimation accuracies η. (b) Lower and upper bounds of
mutual information for several MIMO channels vs. SNR for 10% estimation error.

Gaussian mutual information is bounded in the SNR but still increases linearly with the
number of transmit and receive antennas.

In Figure 2, we compare capacity lower bounds using different power allocation strate-
gies; no CSIT (15), spatial power allocation (17), and spatio-temporal power allocation
(20). First we observe that the difference between (17) and (20) is negligible, which
implies that temporal power adaptation gives little capacity gain, as has been shown in
the literature [3, 8] for a single antenna case.

Comparing (15) and (17), however, we observe that spatial power allocation does help.
Typically, without channel estimation error, the capacity gain of knowing the channel at
the transmitter reduces at higher SNR, because the optimal covariance matrix approaches
the identity matrix, which is also the optimal covariance matrix when the channel is
unknown at the transmitter. This trend, however, changes with channel estimation error.
The capacity gain of exploiting transmitter channel knowledge becomes more important
with increasing channel estimation error and doesn’t reduce much at high SNRs. This
is because the channel estimation error reduces the effective SNR and causes saturation,
thereby eliminating the high SNR capacity region where transmitter channel knowledge
becomes unimportant.

6 Conclusions

We have investigated the effect of channel estimation error in fading MIMO channels. We
have developed lower and upper bounds of mutual information for systems with MMSE
channel estimation and perfect feedback. We have shown that the lower bound is close
to the exact mutual information for Gaussian inputs, and that it is in fact the supremum
of achievable data rates for transceivers that are designed to be optimal in the absence of
estimation error. Despite the channel estimation error, the mutual information increases
linearly with the smaller of the number of transmit and receive antennas, but it is limited
by the estimation error in the high SNR regime. Based on the lower bound, we have
derived the optimal transmitter power allocation with and without estimated channel



Figure 2: Capacity for 4 × 4 MIMO chan-
nel with different power allocation strate-
gies for 0%, 10%, and 30% estimation error.
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knowledge at the transmitter. Numerical results show that spatial power allocation
becomes more important under channel estimation error and helps even at high SNR,
whereas temporal power adaptation gives negligible gain in terms of ergodic capacity.
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