
Appears in RSA Laboratories' CryptoBytes, Vol. 2, No. 1, Spring 1996.
Message Authentication using Hash Functions| TheHMAC ConstructionMihir Bellare� Ran Canettiy Hugo Krawczykz

There has recently been a lot of interest in thesubject of authenticating information using cryp-tographic hash functions like MD5 and SHA, par-ticularly for Internet security protocols. We reporton our HMAC construction [1] which seems to begaining acceptance as a solution.IntroductionTwo parties communicating across an insecurechannel need a method by which any attempt tomodify the information sent by one to the other, orfake its origin, is detected. Most commonly sucha mechanism is based on a shared key betweenthe parties, and in this setting is usually called aMAC, or Message Authentication Code. (Otherterms include Integrity Check Value or Crypto-graphic Checksum). The sender appends to thedata D an authentication tag computed as a func-tion of the data and the shared key. At reception,the receiver recomputes the authentication tag onthe received message using the shared key, and ac-cepts the data as valid only if this value matchesthe tag attached to the received message.The most common approach is to construct MACsfrom block ciphers like DES. Of such constructions�Department of Computer Science & Engineering, MailCode 0114, University of California at San Diego, 9500Gilman Drive, La Jolla, CA 92093. Email: mihir@cs.ucsd.edu. http://www-cse.ucsd.edu/users/mihir.y Laboratory for Computer Science, 545 TechnologySquare, Cambridge, MA 02139. Email: canetti@theory.lcs.mit.edu. Supported by a post-doctoral grant from theRothschild Foundation.zIBM T.J. Watson Research Center, PO Box 704, York-town Heights, New York 10598. Email: hugo@watson.ibm.com.

the most popular is the CBC MAC. (Its security isanalyzed in [4, 12]). More recently, however, peoplehave suggested that MACs might be constructedfrom cryptographic hash functions like MD5 andSHA. There are several good reasons to attemptthis: In software these hash functions are signi�-cantly faster than DES; library code is widely andfreely available; and there are no export restrictionson hash functions.Thus people seem agreed that hash function basedconstructions of MACs are worth having. The moredi�cult question is how best to do it. Hash func-tions were not originally designed for message au-thentication. (One of many di�culties is that theyare not even keyed primitives, i.e., do not accommo-date naturally the notion of a secret key). Severalconstructions were proposed prior to HMAC, butthey lacked a convincing security analysis.The HMAC construction is intended to �ll this gap.It has a performance which is essentially that of theunderlying hash function. It uses the hash func-tion in a black box way so that it can be imple-mented with available code, and also replacementof the hash function is easy should need of such areplacement arise due to security or performancereasons. Its main advantage, however, is that it canbe proven secure provided the underlying hash func-tion has some reasonable cryptographic strengths.The security features can be summarized like this: ifHMAC fails to be a secure MAC, it means there aresu�cient weaknesses in the underlying hash func-tion that it needs to be dropped not only from thisparticular usage but also from a wide range of otherpopular usages to which it is now subject.1



Several articles in the literature survey existing con-structions, their properties, and some of their weak-nesses, so we will not try to do this again here. Inparticular the reader is referred to Tsudik [17], whoprovides one of the earliest works on the subject;Kaliski and Robshaw who, in the �rst CryptoBytes[8], compare various possible constructions; updatesappearing in succeeding issues of CryptoBytes; andPreneel and van Oorschot [12, 13], who present a de-tailed description of the e�ect of birthday attacks on\iterated constructions" and also a new construc-tion called MDx-MAC.We now move on to discuss the HMAC construc-tion, status, and rationale. For a complete descrip-tion, implementation guidelines, and detailed anal-ysis we refer the reader to [1, 9].HMACLet H be the hash function. For simplicity of de-scription we may assume H to be MD5 or SHA-1;however the construction and analysis can be ap-plied to other functions as well (see below). Htakes inputs of any length and produces l-bit out-put (l = 128 for MD5 and l = 160 for SHA-1). LetText denote the data to which the MAC function isto be applied and let K be the message authentica-tion secret key shared by the two parties. (It shouldnot be larger than 64 bytes, the size of a hashingblock, and, if shorter, zeros are appended to bringits length to exactly 64 bytes.) We further de�netwo �xed and di�erent 64 byte strings ipad and opadas follows (the \i" and \o" are mnemonics for innerand outer):ipad = the byte 0x36 repeated 64 timesopad = the byte 0x5C repeated 64 times.The function HMAC takes the key K and Text, andproduces HMACK(Text) =H(K � opad; H(K � ipad;Text)) :Namely,(1) Append zeros to the end of K to create a 64byte string(2) XOR (bitwise exclusive-OR) the 64 byte stringcomputed in step (1) with ipad(3) Append the data stream Text to the 64 bytestring resulting from step (2)(4) Apply H to the stream generated in step (3)(5) XOR (bitwise exclusive-OR) the 64 byte stringcomputed in step (1) with opad(6) Append the H result from step (4) to the 64

byte string resulting from step (5)(7) Apply H to the stream generated in step (6)and output the resultThe recommended length of the key is at least l bits.A longer key does not add signi�cantly to the secu-rity of the function, although it may be advisable ifthe randomness of the key is considered weak.HMAC optionally allows truncation of the �nal out-put say to 80 bits.As a result we get a simple and e�cient construc-tion. The overall cost for authenticating a streamText is close to that of hashing that stream, espe-cially as Text gets large. Furthermore, the hashingof the padded keys can be precomputed for evenimproved e�ciency.Note HMAC uses the hash function H as a blackbox. No modi�cations to the code for H are re-quired to implement HMAC. This makes it easyto use library code for H , and also makes it easyto replace a particular hash function, such as MD5,with another, such as SHA, should the need to dothis arise.HMAC was recently chosen as the mandatory-to-implement authentication transform for the Inter-net security protocols being designed by the IPSECworking group of the IETF (it replaces as a manda-tory transform the one described in [10]). For thispurpose HMAC is described in the Internet Draft[9], and in an upcoming RFC. Other Internet pro-tocols are adopting HMAC as well (e.g., s-http [14],SSL [7]).The rationaleWe now briey explain some of the rationale usedin [1] to justify the HMAC construction.As we indicated above, hash functions were not orig-inally designed to be used for message authentica-tion. In particular they are not keyed primitives,and it is not clear how best to \key" them. Thus,one ought to be quite careful in using hash functionsto build MACs.The standard approach to security evaluation is tolook for attacks on a candidate MAC construction.When practical attacks can be found, their e�ectis certainly conclusive: the construction must bedropped. The di�culty is when attacks are not yetfound. Should one adopt the construction? Notclear, because attacks might be found in the future.The maxim that guided the HMAC constructionwas that an absence of attacks today does not im-2



ply security for the future. A better way must befound to justify the security of a construction beforeadopting it.You can't make good wine from bad grapes: if nostrengths are assumed of the hash function, we can'thope to justify any construction based on it. Ac-cordingly it is appropriate to make some assump-tions on the strength of the hash function.A well justi�ed MAC construction, in our view, isone under which the security of the MAC can be re-lated as closely as possible to the (assumed) securityproperties of the underlying hash function.The assumptions on the security of the hash func-tion should not be too strong, since after all notenough con�dence has been gathered in current can-didates (like MD5 or SHA). In fact, the weaker theassumed security properties of the hash function,the stronger the resultant MAC construction is.We make assumptions that reect the more stan-dard existing usages of the hash function. The prop-erties we require are mainly collision-freeness andsome limited \unpredictability." What is shown isthat if the hash function function has these prop-erties the MAC is secure; the only way the MACcould fail is if the hash function fails.In fact the assumptions we make are in many waysweaker than standard ones. In particular we requireonly a weak form of collision-resistance. Thus it ispossible that H is broken as a hash function (forexample collisions are found) and yet HMAC basedon H survives.A closer lookSecurity of the MAC means security against forgery.The MAC is considered broken if an attacker, nothaving the key K, can �nd some text Text togetherwith its correct MAC value HMACK(Text). The at-tacker is assumed able to gather some number of ex-ample pair of texts and their valid MACs by observ-ing the tra�c between the sender and the receiver.Indeed the adversary is even allowed a chosen mes-sage attack under which she can inuence the choiceof messages for which the sender computes MACs.Following [4, 3] we quantify security in terms of theprobability of successful forgery under such attacks.The analysis of [1] applies to hash functions of theiterated type, a class that includes MD5 and SHA,and consists of hash functions built by iterating ap-plications of a compression function f according tothe procedure of Merkle [11] and Damg�ard [5]. (Inthis construction a l-bit initial variable IV is �xed,

and the output ofH on text x is computed by break-ing x into 512 bit blocks and hashing in stages usingf , in a simple way that the reader can �nd describedin many places, e.g. [8].)Roughly what [1] say is that an attacker who canforge the HMAC function can, with the same e�ort(time and collected information), break the under-lying hash function in one of the following ways:(1) The attacker �nds collisions in the hash func-tion even when the IV is random and secret,or(2) The attacker is able to compute an output ofthe compression function even with an IV thatis random, secret and unknown to the attacker.(That is, the attacker is successful in forgingwith respect to the application of the compres-sion function secretly keyed and viewed as aMAC on �xed length messages.)The feasibility of any of these attacks would contra-dict some of our basic assumptions about the cryp-tographic strength of these hash functions. Suc-cess in the �rst of the above attacks means successin �nding collisions, the prevention of which is themain design goal of cryptographic hash functions,and thus can be assumed hard to do. But in fact,even more is true: success in the �rst attack above iseven harder than �nding collisions in the hash func-tion, because collisions when the IV is secret (as isthe case here) is far more di�cult than �nding col-lisions in the plain (�xed IV) hash function. Thisis because the former requires interaction with thelegitimate user of the function (in order to generatepairs of input/outputs from the function), and disal-lows the parallelism of traditional birthday attacks.Thus, even if the hash function is not collision-freein the traditional sense, our schemes could be se-cure.Some \randomness" of hash functions is assumedin their usage for key generation and as pseudo-random generators. (For example the designers ofSHA suggested that SHA be used for this purpose[6].) Randomness of the function is also used asa design methodology towards achieving collision-resistance. The success of the second attack abovewould imply that these randomness properties ofthe hash functions are very poor.The analyses in [1] used to establish the above areexact (no asymptotics involved), consider genericrather than particular attacks, and establish a tightrelationship between the securities.3



Resistance to known attacksAs shown in [12, 2], birthday attacks, that arethe basis to �nding collisions in cryptographic hashfunctions, can be applied to attack also keyed MACschemes based on iterated functions (including alsoCBC-MAC, and other schemes). These attacks ap-ply to most (or all) of the proposed hash-basedconstructions of MACs. In particular, they con-stitute the best known forgery attacks against theHMAC construction. Consideration of these at-tacks is important since they strongly improve onnaive exhaustive search attacks. However, theirpractical relevance against these functions is negli-gible given the typical hash lengths like 128 or 160.Indeed, these attacks require the collection of theMAC value (for a given key) on about 2l=2 mes-sages (where l is the length of the hash output). Forvalues of l � 128 the attack becomes totally infea-sible. In contrast to the birthday attack on key-lesshash functions, the new attacks require interactionwith the key owner to produce the MAC values ona huge number of messages, and then allow for noparallelization. For example, when using MD5 suchan attack would require the authentication of 264blocks (or 273 bits) of data using the same key. Ona 1 Gbit/sec communication link, one would need250,000 years to process all the data required bysuch an attack. This is in sharp contrast to birth-day attacks on key-less hash functions which allowfor far more e�cient and close-to-realistic attacks[18].References[1] M. Bellare, R. Canetti and H. Kraw-czyk. Keying hash functions for messageauthentication. Advances in Cryptology {Crypto 96 Proceedings, Lecture Notes in Com-puter Science Vol. ??, N. Koblitz ed., Springer-Verlag, 1996.[2] M. Bellare, R. Canetti and H. Kraw-czyk. Pseudorandom functions revisited: Thecascade construction. Manuscript, April 1996.[3] M. Bellare, R. Gu�erin and P. Rogaway.XOR MACs: New methods for message au-thentication using �nite pseudorandom func-tions. Advances in Cryptology { Crypto 95Proceedings, Lecture Notes in Computer Sci-ence Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995.[4] M. Bellare, J. Kilian and P. Rogaway.The security of cipher block chaining. Ad-vances in Cryptology { Crypto 94 Proceedings,

Lecture Notes in Computer Science Vol. 839,Y. Desmedt ed., Springer-Verlag, 1994.[5] I. Damg�ard. A design principle for hash func-tions. Advances in Cryptology { Crypto 89Proceedings, Lecture Notes in Computer Sci-ence Vol. 435, G. Brassard ed., Springer-Verlag, 1989.[6] National Institute for Standards andTechnology. Digital Signature Standard(DSS). Federal Register, Vol. 56, No. 169, Au-gust, 1991[7] A.O. Freier, P. Karlton, and P.C. Kocher. The SSL Protocol { Version 3.0.Internet draft draft-freier-ssl-version3-01.txt,March 1996.[8] B. Kaliski and M. Robshaw. Message Au-thentication with MD5. RSA Labs' Crypto-Bytes, Vol. 1 No. 1, Spring 1995.[9] H. Krawczyk, M. Bellare and R. Can-etti. HMAC-MD5: Keyed-MD5 for MessageAuthentication. Internet draft draft-ietf-ipsec-hmac-md5-txt.00, March 1996.[10] P. Metzger and W. Simpson. IP Authen-tication using Keyed MD5", IETF NetworkWorking Group, RFC 1828, August 1995.[11] R. Merkle. One way hash functions andDES. Advances in Cryptology { Crypto 89Proceedings, Lecture Notes in Computer Sci-ence Vol. 435, G. Brassard ed., Springer-Verlag, 1989. (Based on unpublished paperfrom 1979 and his Ph. D thesis, Stanford,1979).[12] B. Preneel and P. van Oorschot. MD-xMAC and building fast MACs from hash func-tions. Advances in Cryptology { Crypto 95Proceedings, Lecture Notes in Computer Sci-ence Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995.[13] B. Preneel and P. van Oorschot. Onthe security of two MAC algorithms. Advancesin Cryptology { Eurocrypt 96 Proceedings,Lecture Notes in Computer Science Vol. ??,U. Maurer ed., Springer-Verlag, 1996.[14] E. Rescorla and A. Schiffman. TheSecure HyperText Transfer Protocol. Inter-net draft draft-ietf-wts-shttp-01.txt, Febru-ary 1996.4



[15] R. Rivest. The MD5 message-digest al-gorithm. IETF Network Working Group,RFC 1321, April 1992.[16] FIPS 180-1. Secure Hash Standard. Fed-eral Information Processing Standard (FIPS),Publication 180-1, National Institute of Stan-dards and Technology, US Department ofCommerce, Washington D.C., April 1995.[17] G. Tsudik.Message authentication with one-way hash functions. Proceedings of Info-com 92.[18] P. van Oorschot and M. Wiener. Par-allel Collision Search with Applications toHash Functions and Discrete Logarithms. Pro-ceedings of the 2nd ACM Conf. Computerand Communications Security, Fairfax, VA,November 1994.

5


