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Abstract. We introduce the notions of Riesz transforms, g-functions and

multipliers associated with the Laguerre differential operator in d dimensions

Lα =
d

X

i=1

yi
∂2

∂y2
i

+ (αi + 1− yi)
∂

∂yi
,

where α = (α1, · · · , αd), yi > 0, and prove that they are bounded in Lp-

spaces for 1 < p < ∞ and weak type 1-1 when 2(αi + 1) ∈ N, i = 1, · · · , d.

1. Introduction and Preliminaries

The purpose of this paper is to study the boundedness properties of some
classical operators in Harmonic Analysis in the context of the multidimensional
Laguerre semigroup. The one-dimensional case was studied by Muckenhoupt,
see [M1] and [M2] and recently, Dinger [D] proved in higher dimensions that the
maximal operator for the Laguerre semigroup is weak-type 1-1. The operators
we introduce and study in this paper are: the Riesz transforms, Littlewood-Paley
g-functions, and multipliers; see definitions in section (3). We prove that these
operators are strong type p − p for p > 1 and weak-type 1-1. We also obtain
bounds independent of the dimension, see Theorem (3.4). To this end, we use
quadratic transformations that relate the Hermite and Laguerre polynomials, see
lemma (1.1), proposition (3.1), and lemma (2.1).

The paper is organized as follows. The rest of this section contains some
definitions and background for Laguerre and Hermite polynomials that will be

1991 Mathematics Subject Classification. 42B20; 42B25; 42C05.
Key words and phrases. Singular integrals, Littlewood-Paley theory, Hermite polynomials,

Gaussian measure, Ornstein-Uhlenbeck semigroup, weight functions.

579
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used later. Section (2) contains some technical lemmas. The main results are
proved in section (3). Finally in (4), we study the behavior of the operators
introduced when the measure is changed, see Theorem (4.3).

Given α > −1, the one-dimensional Laguerre polynomials of type α are

Lα
k (y) =

1
k!

eyy−α dk

dyk
(e−yyk+α).

Each Lα
k is a polynomial of degree k and appropriately normalized they form a

complete orthonormal system in L2 ((0, +∞), µα(y) dy) where µα(y) = yαe−y.

The Laguerre differential operator of type α is

Lα = y
d2

dy2
+ (α + 1− y)

d

dy
,

and we have

(1.1) LαLα
k (y) = −kLα

k (y).

Given a multi-index α = (α1, . . . , αd) with αi > −1, the multidimensional La-
guerre polynomials of type α are tensor product of one-dimensional Laguerre
polynomials. Indeed, if y ∈ (0, +∞)d and k = (k1, . . . , kd), where ki is a non-
negative integer, then the multidimensional Laguerre polynomials of type α and
degree k are given by

Lα
k (y) = Lα1

k1
(y1)Lα2

k2
(y2) · · ·Lαd

kd
(yd),

where Lαi

ki
(·) is a one-dimensional Laguerre polynomial of type αi.

The Laguerre differential operator of type α in d dimensions is

(1.2) Lα =
d

∑

i=1

yi
∂2

∂y2
i

+ (αi + 1− yi)
∂

∂yi
,

and the differential equation (1.1) generalizes to

LαLα
k (y) = −|k|Lα

k (y),

where |k| = k1 + · · · + kd. The measure µα(y)dy, where µα(y) =
yα1
1 · · · yαd

d e−(y1+···+yd), makes the differential operator Lα self-adjoint in
L2

(

(0, +∞)d, µα(y) dy
)

.
Since we shall use results for the Hermite semigroup, we recall the definition

of one-dimensional Hermite polynomials. They are defined by

H0(x) = 1, Hk(x) = ex2 dk

dxk
e−x2

, k ≥ 1.
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Given a multi-index k = (k1, · · · , kd) with ki a non-negative integer, and x =
(x1, · · · , xd) ∈ Rd, the multi-dimensional Hermite polynomial of degree k is de-
fined by

Hk(x) = Hk1(x1) · · ·Hkd
(xd),

where Hki(·) is the one-dimensional Hermite polynomial of degree ki. The Her-
mite polynomials are orthogonal on L2(Rd, γd(x) dx) where γd(x) = 1

πd/2 e−|x|
2
.

By L we denote the Ornstein-Uhlenbeck differential operator in Rd defined by

(1.3) L =
1
2
∆− x · grad.

The eigenvalues of L are of the form λ = −|k|, where k = (k1, ..., kd), ki are non-
negative integers and the corresponding eigenfunctions are the multi-dimensional
Hermite polynomials Hk(x). The operator L is self-adjoint in L2(Rd, γd(x) dx).

In order to define the operators considered in this paper, see section (3), we in-
troduce the following notion of gradient associated with Lα. Let y = (y1, · · · , yd) ∈
(0,∞)d, and F (y) = (F1(y), · · · , Fd(y)). Given f = f(y) we let

(1.4) gradαf(y) =
(

√
y1

∂f

∂y1
(y), · · · ,

√
yd

∂f

∂yd
(y)

)

,

and

divαF (y) =
d

∑

i=1

√
yi

(

∂Fi

∂yi
(y) +

(

αi + 1/2
yi

− 1
)

Fi(y)
)

.

It is easy to check that
divαgradα = Lα,

and
∫

(0,∞)d

divαF (y) f(y) dµα(y) = −
∫

(0,∞)d

F (y) · gradαf(y) dµα(y),

for sufficiently smooth functions f and F on (0,∞)d.

If f ≥ 0 and Lαf = 0 then

Lα(fp) = p(p− 1)fp−2|gradαf |2,

for 1 ≤ p < ∞; see [St, page 49]. This leads us to define the following notion of
derivative:

δif(y) =
√

yi
∂f

∂yi
(y), i = 1, · · · , d.

In case that u = u(y, t) we define

(1.5) gradαu = (ut, δ1u, · · · , δdu),
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and notice that if u ≥ 0 satisfies the equation

L̃αu = utt + Lαu = 0,

then

L̃α(up) = p(p− 1)up−2|gradαu|2.

We also observe that for the Ornstein-Uhlenbeck operator we have

L = divγgradγ ,

with

gradγf(x) =
(

1√
2

∂f

∂x1
(x), · · · ,

1√
2

∂f

∂xd
(x)

)

,

and

divγF =
d

∑

i=1

(

1√
2

∂Fi

∂xi
−
√

2xiFi

)

,

where F (x) = (F1(x), · · · , Fd(x)).
We finish this section showing the connection between Laguerre and Hermite

polynomials. Indeed, the following lemma shows that if α has a special form
then the Laguerre polynomials of type α can be expressed by means of Hermite
polynomials.

Lemma 1.1. Let Lα
k be a one-dimensional Laguerre polynomial of type α with

α =
n

2
− 1 and x ∈ Rn. Then we have the expansion:

Lα
k (|x|2) =

∑

|r|=k

ar H2r(x), r = (r1, . . . , rn).

Remark 1.2. In one dimension,

L
−1/2
k (x2) =

(−1)k

22k k!
H2k(x),

see [S], formula (5.6.1).

Proof. Note that the expression on the left is a polynomial of degree 2k in n

variables. The significance of this formula is that the summand on the right does
not involve lower order terms of the Hermite polynomials. The proof uses the
orthogonality of the Hermite and Laguerre polynomials and integration in polar
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coordinates. Let p(x) be a monomial of degree less than 2k. We will show that
Lα

k (|x|2) is orthogonal to p(x) in “Hermite” space, i.e.,
∫

Rn

Lα
k (|x|2)p(x)e−|x|

2
dx = 0.

First, note that the integral equals zero if p(x) has any odd power factors because
of the evenness of the rest of the integrand and Fubini’s theorem which would
allow us to isolate the variable with the odd exponent. Hence, we can assume p(x)
is of degree 2d with d < k. Now we evaluate the integral in polar coordinates.

∫

Rn

Lα
k (|x|2)p(x)e−|x|

2
dx =

∫ ∞

0

∫

Sn−1
Lα

k (r2)e−r2
r2dp(x′)rn−1 dσ(x′)dr

= Cp

∫ ∞

0

Lα
k (r2)e−r2

r2drn−1 dr

= Cp

∫ ∞

0

Lα
k (t)tdtn/2−1e−t dt

= Cp

∑

j≤d

∫ ∞

0

bjL
α
k (t)Lα

j (t)tn/2−1e−t dt,

by expanding td =
∑

j≤d bjL
α
j (t). When α =

n

2
− 1, the integrals are zero by the

orthogonality of the Laguerre polynomials. £

2. Technical lemmas

Lemma (1.1) can be used to obtain boundedness of operators associated with
Laguerre polynomials from the boundedness of the corresponding operators as-
sociated with the Hermite polynomials. This is the method used in [D] for the
maximal operator of the Laguerre semigroup. To clarify and systematize this fact,
we recall the notion of quadratic transformation.

Let (n1, · · · , nd) be a multi-index with ni positive integers. We define the
variables

xi = (xi
1, · · · , xi

ni
), i = 1, · · · , d,

and the quadratic transformation

(2.6) φ(x1, · · · , xd) = (|x1|2, · · · , |xd|2).

We have the following formula of change of variables.
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Lemma 2.1. Let α = (α1, · · · , αd) with αi =
ni

2
−1 and ni ∈ N. Let f(y1, . . . , yd)

be a function defined for y = (y1, . . . , yd) ∈ (0, +∞)d. The following formula holds

C(d, n)
∫

(0,+∞)d

f(y)µα(y) dy

=
∫

R|n|
f(φ(x1, . . . , xd))e−(|x1|2+...+|xd|2) dx1 . . . dxd, |n| =

d
∑

i=1

ni.(2.7)

Proof. By Fubini’s theorem, the right hand side of (2.7) equals
∫

R|n|−nd

e−(|x1|2+...+|xd−1|2)(

∫

Rnd

f(|x1|2, . . . , |xd−1|2, |xd|2)e−|x
d|2dxd)dx1 . . . dxd−1.

By integration in polar coordinates with respect to xd, the inner integral equals
∫ ∞

0

tnd−1

∫

|xd|=1

f(|x1|2, . . . , |xd−1|2, t2)e−t2 dσ(xd) dt

= area(Snd−1)
∫ ∞

0

tnd−1e−t2f(|x1|2, . . . , |xd−1|2, t2) dt

= area(Snd−1)
1
2

∫ ∞

0

s
nd
2 −1e−sf(|x1|2, . . . , |xd−1|2, s) ds

= area(Snd−1)
1
2

∫ ∞

0

sαde−sf(|x1|2, . . . , |xd−1|2, s) ds, since
nd

2
− 1 = αd.

Hence, by integration in polar coordinates with respect to the remaining variables,
(2.7) follows with

C(d, n) = 2−d
d

∏

i=1

area(Sni−1).

£

The following lemma connects operators defined for Laguerre polynomials with
operators defined for Hermite polynomials.

Lemma 2.2. Let α = (α1, · · · , αd) with αi =
ni

2
− 1 and ni ∈ N. Suppose that

T and T ′ are linear operators defined on polynomials and such that

(Tf)(φ(x)) = T ′(f ◦ φ)(x), x ∈ R|n|.

Let B1 and B2 be Banach spaces. Then we have

(1) If 1 < p < ∞ and

T ′ : Lp
B1

(R|n|; e−(|x1|2+...+|xd|2)) → Lp
B2

(R|n|; e−(|x1|2+...+|xd|2))
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is bounded then

T : Lp
B1

((0, +∞)d; µα) → Lp
B2

((0, +∞)d; µα).

is bounded.
(2) If

T ′ : L1
B1

(R|n|; e−(|x1|2+...+|xd|2)) → L1,∞
B2

(R|n|; e−(|x1|2+...+|xd|2))

then

T : L1
B1

((0, +∞)d; µα) → L1,∞
B2

((0, +∞)d; µα).

Proof. We begin with the proof of 1. Let | · |i denote the norm in Bi, i = 1, 2.

By (2.7), we can write
∫

(0,+∞)d

|Tf(y)|p2 µα(y) dy

= C(d, n)−1

∫

R|n|
|Tf(φ(x1, . . . , xd))|p2 e−(|x1|2+...+|xd|2) dx1 . . . dxd

= C(d, n)−1

∫

R|n|
|T ′(f ◦ φ)(x)|p2 e−(|x1|2+...+|xd|2) dx1 . . . dxd

≤ C C(d, n)−1

∫

R|n|
|f ◦ φ(x)|p1 e−(|x1|2+...+|xd|2) dx1 . . . dxd

= C C(d, n)−1 C(d, n)
∫

(0,+∞)d

|f(y)|p1 µα(y) dy.

To prove 2, we let

Eλ = {y ∈ (0, +∞)d : |Tf(y)|2 > λ},

and estimate the µα-measure of this set. From (2.7) it follows that
∫

(0,+∞)d

χEλ
(y)µα(y) dy

= C(d, n)−1

∫

R|n|
χEλ

(φ(x1, . . . , xd))e−(|x1|2+···+|xd|2) dx1 . . . dxd

= C(d, n)−1

∫

R|n|
χFλ

(x1, . . . , xd)e−(|x1|2+···+|xd|2) dx1 . . . dxd,

where

Fλ = {(x1, . . . , xd) ∈ R|n| : |T ′(f ◦ φ)(x1, . . . , xd)|2 > λ}.
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Since T ′ is of weak-type (1-1), it follows that

µα (Eλ) = C(d, n)−1 γ|n| (Fλ) ≤ C(d, n)−1 C

λ
‖f(φ(x1, . . . , xd))‖1,γ|n|

= C(d, n)−1 C(d, n)
C

λ
‖f(y)‖1,µα

=
C

λ
‖f(y)‖1,µα ,

and the proof is complete. £

3. Main Results

We introduce the Hermite and Laguerre semigroups. If Hβ(x) is a multidi-
mensional Hermite polynomial of degree β, and 0 < t < ∞, then the Hermite
semigroup is given by

NtHβ(x) = e−|β|tHβ(x).

Analogously, if Lα
k (x) is a Laguerre polynomial of degree k and type α, and

0 < t < ∞, then the Laguerre semigroup is given by

Mα
t Lα

k (y) = e−|k|tLα
k (y).

The connection between these semigroups is given by the following proposition,
see [D].

Proposition 3.1. Let α = (α1, · · · , αd) with αi =
ni

2
− 1 and ni ∈ N; and

f(y1, . . . , yd) be a polynomial defined for y = (y1, . . . , yd) ∈ (0, +∞)d. Then

(Mα
t f)(φ(x)) = Nt/2(f ◦ φ)(x)

for x ∈ R|n|; n = (n1, · · · , nd).

Proof. Let Lα
k be a Laguerre polynomial of type α = (α1, · · · , αd), with k =

(k1, . . . , kd). Given the one-dimensional Laguerre polynomial Lαi

ki
(z), let us con-

sider Lαi

ki
(|xi|2), and note that this is a polynomial in ni variables of degree 2ki.

Let Hβ(xi) be a multidimensional Hermite polynomial of degree β in the variables
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xi
1, . . . , x

i
ni

. By lemma (1.1), we can write

(Mα
t Lα

k )(φ(x1, . . . , xd))

= e−|k|tLα
k (φ(x1, . . . , xd)) =

d
∏

i=1

e−kitLαi

ki
(|xi|2)

=
d

∏

i=1

e−kit(
∑

|r|=ki

ai
r H2r(xi)) =

d
∏

i=1

(
∑

|r|=ki

ai
r e−kit H2r(xi))

=
d

∏

i=1

(
∑

|r|=ki

ai
r (Nt/2H2r)(xi)) =

d
∏

i=1

Nt/2(
∑

|r|=ki

ai
r H2r)(xi)

=
d

∏

i=1

Nt/2(L
αi

ki
◦ φi)(xi) = Nt/2(

d
∏

i=1

Lαi

ki
◦ φ)(x)

= Nt/2(Lα
k ◦ φ)(x).

Here, φi(xi) = |xi|2. £

Using the principle of subordination we define the Poisson semigroups

Qtf =
1√
π

∫ ∞

0

e−u

√
u

Nt2/4ufdu

and

Pα
t f =

1√
π

∫ ∞

0

e−u

√
u

Mα
t2/4ufdu.

An immediate consequence of Proposition (3.1) is the following lemma con-
necting these subordinated semigroups.

Lemma 3.2. Let α = (α1, · · · , αd) with αi =
ni

2
−1 and ni ∈ N; and f(y1, . . . , yd)

be a polynomial defined for y = (y1, . . . , yd) ∈ (0, +∞)d. Then

(1) We have (Pα
t f)(φ(x)) = Qt/

√
2(f ◦ φ)(x) for x ∈ R|n|; n = (n1, · · · , nd).

(2) For each l ∈ N

∂l
uPα

u f(φ(x))|u=t =
1

2l/2
∂l

uQu(f ◦ φ)(x)|u=t/
√

2

for x ∈ R|n|; n = (n1, · · · , nd).
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We are now ready to give the notions of Riesz transforms, g-functions, and
multipliers for the Laguerre case. Using the formula

s−a =
1

Γ(a)

∫ ∞

0

e−ts ta
dt

t
,

where a > 0 and s > 0, we define the powers of a second order differential operator
L ≥ 0 (on an appropriate class of functions) by the formula

L−af(x) =
1

Γ(a)

∫ ∞

0

Ttf(x) ta
dt

t
,

where Tt is the infinitesimal generator of L. We shall use this formula with the
operators −L and −Lα, as in (1.2) and (1.3). In these cases the class of functions
f ’s considered are polynomials.

The remarks and the definition of gradient made in section (1) lead us to define
the Riesz-Laguerre transform by

Rα = gradα(−Lα)−1/2,

where gradα is given by (1.4). Writing the Riesz-Laguerre transform in coordi-
nates yields

Rα,i = δi(−Lα)−1/2 i = 1, · · · , d.

The Littlewood-Paley function gα is defined by

gαf(y) =
(∫ ∞

0

|t gradαPα
t f(y)|2 dt

t

)1/2

,

where gradα is given by (1.5). Also, the multipliers of Laplace transform type for
the Laguerre semigroup are given by

m(Lα)f(y) = −Lα

∫ ∞

0

Mα
s f(y) a(s) ds,

for some function a(s) uniformly bounded on (0,∞). Notice that these definitions
are consistent with the Hermite case, see [GC-M-Sj-T], [G], and [St].

We shall denote by

RH , gH , and mH(L),

the Riesz-Hermite transforms, the g-function and the multipliers in the Hermite
case, respectively. The connection between these transformations for the corre-
sponding semigroups is given by the following lemma.

Lemma 3.3. Let α = (α1, · · · , αd) with αi =
ni

2
−1 and ni ∈ N; and f(y1, . . . , yd)

be a polynomial defined for y = (y1, . . . , yd) ∈ (0, +∞)d. Then
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(1) If a > 0 then (−Lα)−af(φ(x)) = 2a (−L)−a(f ◦ φ)(x);
(2) |Rαf(φ(x))|`d

2
= 2−1/2 |RH(f ◦ φ)(x)|

`
|n|
2

;

(3) gαf(φ(x)) = 2−1/2 gH(f ◦ φ)(x);
(4) If m(Lα) is a Laplace transform type Laguerre multiplier for the function

a(·) then
m(Lα)f(φ(x)) = mH(L)(f ◦ φ)(x),

where mH(L) is a Laplace transform type Hermite multiplier for the func-
tion a(2·);

for x ∈ R|n|; n = (n1, · · · , nd).

We now state the main result in the paper.

Theorem 3.4. Let α = (α1, · · · , αd) with αi =
ni

2
− 1 and ni ∈ N. The

Riesz-Laguerre transform Rα, the Littlewood-Paley function gα and the Laplace
transform type Laguerre multipliers are all bounded in Lp

(

(0, +∞)d, µα(x) dx
)

,
1 < p < ∞, and weak-type (1-1). Moreover, if 1 < p < ∞ then the type con-
stants for the Riesz-Laguerre transform and the Littlewood-Paley function gα are
independent of the dimension d.

Proof. For the Hermite case, the Riesz transform and the Littlewood-Paley
function are bounded in Lp(γ) with constants independent of the dimension, see
[Gn], [G] and [P]. The weak type 1-1 of the Riesz-Hermite transforms is proved
in [F-G-Sc]. For the Littlewood-Paley g-function in the Hermite case a similar
result was proved by Scotto, [Sc]. The boundedness in Lp for the multipliers in
the Hermite and Laguerre is contained in [St]. The weak-type 1-1 for the Hermite
multipliers was proved in [GC-M-Sj-T]. The proof of the theorem then follows by
combining these results with lemmas (2.2) and (3.3).

£

4. Some remarks about weighted inequalities

We study the behavior of the operators previously defined in other measure
spaces. We shall use the following theorem due to Rubio de Francia, see [GC-R,
page 554].

Theorem 4.1. Let (X, µ) be a measure space, G a Banach space, and T a sub-
linear operator from G into Ls(X), which satisfies for some s < p, the following
inequality

‖(
∑

j

|Tfj |p)1/p‖Ls(X) ≤ Cp,s(
∑

j

‖fj‖p
G)1/p



590 C. E. GUTIÉRREZ, A. INCOGNITO AND J. L. TORREA

where Cp,s is a constant depending on p and s. Then there exists a positive func-
tion u such that u−1 ∈ L

s
p−s (X) and
∫

X

|Tf(x)|pu(x)dµ(x) ≤ ‖f‖G.

A simple consequence this theorem is the following.

Corollary 4.2. Let T be a sublinear operator such that

(4.1) µα{y : (
∑

j

|Tfj(y)|p)1/p > λ} ≤ C

λ

∫

(0,∞)d

(
∑

j

|fj(y)|p)1/p dµα(y).

Then for any v such that
∫

(0,∞)d v−
1

p−1 (y)dµα(y) < ∞, and s < p, there exists a

positive function u such that u−1 ∈ L
s

p−s (X) and
∫

(0,∞)d

|Tf |pu(y)dµα(y) ≤
∫

(0,∞)d

|f |pv(y)dµα(y).

Proof. Since µα((0,∞)d) is finite and s < p, it follows from Tchebyshev’s in-
equality that

‖(
∑

j

|Tfj |p)1/p‖Ls(µα)

≤ Cs sup
λ>0

λ µα{y : (
∑

j

|Tfj(y)|p)1/p > λ}

≤
∫

(0,∞)d

(
∑

j

|fj(y)|p)1/p dµα(y)

≤ Cs





∫

(0,∞)d

∑

j

|fj(y)|pv(y) dµα(y)





1/p (

∫

(0,∞)d

v−
1

p−1 (y) dµα(y)

)1/p′

≤ Cs





∫

(0,∞)d

∑

j

|fj(y)|pv(y) dµα(y)





1/p

= Cs(
∑

j

‖fj‖p
Lp(vdµα))

1/p.

Therefore, the hypotheses of Theorem (4.1) are satisfied with G = Lp(vdµα), and
the corollary follows. £

Finally, Corollary (4.2) yields the following result.
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Theorem 4.3. Let α = (α1, · · · , αd) with αi =
ni

2
− 1 and ni ∈ N. Then the

maximal operator for the Laguerre semigroup, the Riesz-Laguerre transforms and
the Littlewood-Paley function gα have a bounded extension from L1

`p(dµα) into
weak-L1

`p(dµα), 1 < p < ∞. Moreover, if v−1/(p−1) ∈ L1(µα) then there exists
a function u such that the Riesz-Laguerre transform and the Littlewood-Paley
function gα are bounded from Lp(vµα) into Lp(uµα), 1 < p < ∞.

Proof. The inequality (4.1) holds when T is either the Riesz-Hermite transform
or the function g in the Hermite case, and µα replaced by the Gaussian, see
[H-T-V]. Therefore from (2.7) and Lemma (3.3) we have that (4.1) holds for the
Riesz-Laguerre transform and the Littlewood-Paley function gα. Therefore the
hypothesis in Corollary (4.2) holds and hence the theorem follows. £
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