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Abstract Hyperspectral remote sensing has shown
promise for detailed discrimination of coral reef sub-
stratum types, but, by necessity, it samples at pixel scales
larger than reef substratum patch sizes. Spectral
unmixing techniques have been successful in resolving
subpixel areal cover in terrestrial environments. How-
ever, the application of spectral unmixing on coral reefs
is fundamentally challenging, due not only to the water
column, but also to the potentially large number of
spectrally similar and ecologically significant end-
member (substratum) classes involved. A controlled
ex-situ experiment was conducted using field-spectrom-
eter data to assess the accuracy of spectral unmixing
techniques to estimate the areal cover of small-scale
(<0.25 m2) assemblages of reef substrata (e.g., changes
in cover between massive corals, branching corals,
bleached corals, macroalgae, and coralline red algae).
Mixture compositions were obtained precisely by anal-
ysis of digital images collected by a camera calibrated to
the field of view of the spectrometer. Linear unmixing
techniques were applied to derive estimates of substra-
tum proportions using the full spectral resolution data
and various transformations of it, including derivatives
and down sampling (merging adjacent wavelengths into
broader spectral bands). Comparison of actual and
estimated substratum proportions indicate that spectral

unmixing may be a practical approach for estimating
subpixel-scale cover of coral reef substrata. In the most
accurate treatment, coefficients of determination across
all mixture sets were high for most end-member classes
(37 of 52 cases with r2 >0.64, i.e. r >0.8). The most
successful analyses were based on derivatives of down-
sampled data, implying that spectral unmixing benefits
more from spectral smoothing and judicious choice of
band locations than from high spectral resolution per se.
Although these results show that changes in coral and
algal cover can be determined by unmixing their spectra,
the method is not yet an operational remote sensing tool.
Primary empirical research is needed before taking the
next step, which is to incorporate a water column, of
variable depth, above the sea bed.

Keywords Hyperspectral Æ Remote sensing Æ Spectral
unmixing

Introduction

Coral reefs are threatened by many large-scale processes
including rising sea temperature (Hoegh-Guldburg
1999), changes to the biogeochemical properties of sea
water (Kleypas et al. 1999), and widespread over-har-
vesting of resources (Jackson et al. 2001). Monitoring
the health of reefs at scales appropriate to these threats
is prohibitively expensive by field survey. Satellite or
high-altitude airborne sensors provide a more cost-
effective platform for observing reefs (Mumby et al.
1999), but routine monitoring of reef health is not yet
possible. Measures of reef health that are theoretically
amenable to remote sensing include the cover of living,
dead, and bleached corals, and functional forms of
algae.

Current satellite sensors are incapable of resolving
the aforementioned reef substrata principally because of
the limited number (<4) and lack of specificity of
spectral bands (Andréfouët et al. 2002; Mumby and
Edwards 2002; Hochberg and Atkinson 2003). In
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practice, hyperspectral airborne sensors such as the
Compact Airborne Spectrographic Imager (CASI;
which can record reflectance in 20 or more spectral
bands) can resolve several measures of reef ‘‘health’’
(e.g., live coral cover), providing that the water column
is shallow (<10 m) and clear (horizontal Secchi distance
>20 m) and that pixel sizes are around 1 m2 or less
(Mumby et al. 2001). Many (or at least several appro-
priately placed) spectral bands are needed to discrimi-
nate subtleties in spectra between substrata, and small
pixels are required to minimize the occurrence of having
more than one substratum in a pixel. Conventional
‘‘hard’’ spectral classification schemes are problematic
when applied to mixed substratum pixels because each
pixel must be assigned to a single substratum category.
However, attempting to match the scale of pixels to the
patches of reef substrata limits remote sensing in two
important ways. First, patches of many substrata are
beyond the resolution of existing hyperspectral remote
sensing instruments. For example, Andréfouët et al.
(2002) concluded that bleached and non-bleached coral
colonies would only be distinguishable in pixels of a
mere 0.01 m2. Second, data acquisition would be more
cost-effective if substrata could be resolved from larger
pixels (and, therefore, larger image extents). Current and
planned satellite instruments with hyperspectral capa-
bility (e.g., Hyperion, MERIS, MODIS) will retain
pixels sizes from 30·30 m to 1·1 km (Townshend and
Justice 2002). Thus, the pixel sizes of future satellite
sensors will be at least an order of magnitude larger than
patches of reef substrata and the problem of mixed
pixels is perpetual.

In terrestrial environments, the composition of mixed
pixels has been resolved by spectrally unmixing the
contribution of each substratum type based on known,
pure ‘‘end-member’’ spectra of each substratum (Adams
et al. 1986; Foody and Cox 1994). Linear spectral
unmixing assumes that the reflectance of a pixel is the
sum of the end-member spectra scaled in linear pro-
portion to the cover of each end member within the pixel
(Mather 1999; Settle and Drake 1993). However, spec-
tral mixing may not follow this simple linear model due
to the morphology of the targets and, in aquatic envi-
ronments, the presence of the water column and water
surface may introduce further complications. Specific
approaches to aquatic spectral unmixing are required
(e.g., Hedley and Mumby 2003), but thus far very few
have been developed.

A fundamental question for reef remote sensing is the
extent to which reef substratum cover can be estimated
by spectral unmixing in commercially available image
data sets. Many living reef components share similar
pigments and the spectral separability of non-living
components is often confounded by the presence of
epilithic algal film or turf (Hedley and Mumby 2002). In
this paper, we take the first step in evaluating the efficacy
of linear spectral unmixing for coral reefs. The aim was
to perform a controlled ex-situ unmixing experiment
that avoided complicating factors such as a water col-

umn and uncertainty in pixel content. Specifically, we
tested the degree to which linear spectral unmixing
accurately estimates areal cover of living corals, dead
corals, bleached corals, and functional forms of algae
(coralline red algae, fleshy phaeophytes, etc.). Two types
of spectral data were compared: full, hyperspectral
information and discrete spectral bands analogous to
those acquired from remote sensing instruments. The
experiment was conducted ex situ using field spectrom-
eters, allowing direct control on the cover of each reef
substratum, and removing complicating effects of water
column, air–water interface, and sensor optics.

Field methods

Data were acquired in two experiments. The larger study was
conducted at Palau, Micronesia, in September 2002, and involved
investigating the spectral mixing of several groups of end members
(later referred to as the ‘‘main experiment,’’ ME). A smaller study
conducted in March 2002 at Heron Island, Great Barrier Reef
(GBR), was specifically concerned with the possibility of unmixing
bleached coral cover in conjunction with various other substratum
types (‘‘bleaching experiment,’’ BE). The general methodology was
the same in both experiments, but the design of the larger study
incorporated many more replicates and additional techniques to
minimize errors. In addition to the absence of a water column, the
main experiment was ‘‘idealized’’ in the sense that the number of
end members in each mixture group was restricted to three or four,
and only the included end members were applied in the unmixing
analysis (in a reef context this would constitute a priori knowledge
of the substratum types present). In the bleaching experiment, eight
end members were used in total, many of which were only present
at all in a few specific mixtures. This latter analysis therefore, more
closely represents the application of unmixing without detailed
knowledge of which end members are involved.

Substratum samples

In both experiments, small samples of reef substrata (<15 cm ra-
dius) were collected from shallow reef areas and stored in holding
tanks for the duration of the experiment (6 days for the ME, 2 h
for the BE). Eleven distinct substratum types were used as end
members in the main experiment and eight were used in the
bleaching experiment (Table 1). In the ME, each substratum type
was represented by several actual ‘‘pieces’’ of the material. As a
group, these pieces represented a ‘‘pool’’ of material for that end
member, from which any specific representation of that end
member was drawn at random. Although each ‘‘end-member pool’’
is unlikely to encompass the full natural variation of that sub-
stratum type, ecological end members can exhibit quite a high
variance in spectral properties even at species level (Hedley and
Mumby 2002). This situation should be contrasted with geological
remote sensing and unmixing, where mineral end members are
relatively spectrally invariant. Therefore, our sampling strategy
represents a reasonable first step in applying unmixing to coral reef
substrata, given the practical limitations of conducting a controlled
experiment.

Fourteen distinct combinations of end members (or ‘‘mixture
groups’’) were combined for the mixture measurements. For each
mixture group the proportions of the end members were varied
over 20–30 replicates and a spectra taken of each (by the method
outlined below), giving a total of 296 mixture spectra (Table 2). For
each specific mixture set-up, the end-member material consisted of
a random selection from the pool of material for that end member.
The 14 mixture groups were chosen to represent various realistic
scenarios of change in reef communities (see Table 3). These
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‘‘change scenarios’’ were used to provide a meaningful framework
for the experiment. However, because this experiment is a first stage
in building remote sensing tools for measuring coral cover, we do
not imply that detection of such ‘‘change scenarios’’ validates
practical application to reef remote sensing.

Note that sand is included as an end member for all mixtures
because it comprised the background to the other mixture com-
ponents. Although in a real reef context sand may not occur so
ubiquitously in all circumstances, the experimental method re-
quired some kind of background. Sand was considered preferable
to the unnatural plastic surface of the tray.

Spectra of substratum mixtures

In each experiment, a selection of samples were placed in a tray
with a sand-covered bottom. The tray was filled with just enough
water so that the algal samples could assume their natural form and
no samples protruded above the water surface. The equipment was
sited outdoors close to the collection site. Atmospheric conditions
were generally clear with high cirrus for the bleaching experiment,
and intermittently clear for the main experiment. Spectral radiance
readings of each arrangement of samples were taken using a
spectroradiometer with the sensor pointing vertically downwards

directed at the center of the scene (Fig. 1). To calculate spectral
reflectance, a reference measurement of downwelling irradiance
was taken simultaneously with the target spectra (reflectance in
both experiments meaning the ratio of radiance to irradiance, in
units sr–1). In the main experiment, two GER 1500 spectroradi-
ometers were used to collect the target and reference spectra: the
target via a fiber-optic probe from a 3º lens on a horizontal
Spectralon panel. The two sensors were electronically synchronized
by a data logger. Spectra in the bleaching experiment were collected
using an ASD FieldSpec UV/VNIR/CCD and fiber-optic probe for
upwelling radiance and a RAMSES ACC with a cosine collector
for downwelling irradiance, these sensors were synchronized man-
ually.

In both experiments, a fiber-optic target sensor was deployed
with a relatively wide field of view (FOV; �25� in both cases). In
the bleaching experiment, the sensor was mounted 25 cm above the
scene giving a sample area of diameter �11 cm (assuming a circular
FOV). In the main experiment, the sensor was mounted at a height
of 40 cm, giving a sample area of around 16 cm diameter. By
locating the FOV in the scene and ascertaining the coverage of the
samples present within it, the exact composition of the sampled
mixture could be determined. This scheme assumes that the sensor
FOV is circular and of uniform sensitivity across the area of the
FOV, and also that the FOV is not in any way wavelength
dependent. Imprecise knowledge of the FOV characteristics would
seriously compromise the accuracy of the entire experiment by
introducing errors or skewing the linearity of the spectral mixing.
In practice, spectroradiometer sensors may deviate significantly
from a uniform circular model (Rollin and Anderson 2000, cite a
15º lens that was found to have a rectangular FOV of 8·2.5º). A
circular uniform FOV was assumed for the BE, but an additional
set of data were collected in the ME to characterize the FOV of the
sensor and to ensure that none of the above-mentioned factors were
a significant source of error. The spectral dependence (in the range
400–700 nm) across the area of the FOV was ascertained by taking
readings from different combinations of black and white masks.
Results (not shown) confirmed that spectral sensitivity was spa-
tially invariant and that the FOV was circular and constant at all
wavelengths. This data also served to locate the position of the
FOV in the digital images, and thus it was possible to precisely
extract from the digital images the area captured by the FOV.
Although these methods and results are not included here for sake
of brevity, it should be stressed that a perfect knowledge of the
FOV characteristics is required if the experiment is to be dupli-
cated.

End-member spectra

Spectra of the pure end members in the BE were obtained by
covering the FOV with one substratum type. However, this was
problematic because, in some cases, the samples were too small to

Table 2 Mixture groups from the main experiment. The number of
recorded spectra in each group is shown. The spectra within each
group represent different arrangements and proportions of the
listed end members

Codes Spectra Mixture

Am/Cr/S/T 25 Acropora, coral rubble, sand,
and turf algae

At/D/S 31 Acropora, Dictyota, and sand
At/H/S 23 Acropora, Halimeda, and sand
At/Po/S 23 Acropora, massive Porites, and sand
Cr/H/R/S 24 Coral rubble, Halimeda, red coralline

algae, and sand
Cr/M/S 20 Coral rubble, columnar Montipora, and sand
Cr/Pc/S 20 Coral rubble, calcified Padina, and sand
Cr/Po/R/S 20 Coral rubble, massive Porites, red coralline

algae, and sand
Cr/R/S 20 Coral rubble, red coralline algae, and sand
H/Pc/S 20 Halimeda, calcified Padina, and sand
H/Po/R/S 10 Halimeda, massive Porites, red coralline

algae, and sand
H/Po/S 20 Halimeda, massive Porites, and sand
M/Pc/S 20 Columnar Montipora, calcified Padina,

and sand
Pc/Po/S 20 Calcified Padina, massive Porites, and sand

Table 1 Substratum types used
in the bleaching study and main
experiment. In later figures and
tables substratum types from
the main experiment are
denoted by the codes indicated

General type Bleaching experiment Groupings experiment

Specific sample Code Specific sample

Live coral Montastrea sp. M Columnar Montipora sp.
Pocillopora sp. Po Massive Porites sp.

At Acropora sp. (thin branches, <5 mm)
Am Acropora sp. (medium branches, 8–15 mm)

Bleached coral Bleached Acropora sp.
Dead coral Dead Pocillopora sp. Cr Coral rubble
Mixed algae T Turf algae
Brown algae Padina sp. Pc Padina sp. (calcified)

Caulerpa sp. D Dictyota sp.
Green algae Halimeda sp. H Halimeda sp.
Red algae R Red coralline algae (on rubble)
Sand Sand S Sand
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cover the FOV. In the ME, end-member spectra were obtained
using a 3� lens on the target sensor. Note that using a smaller FOV
for the end-member measurements does not compromise the design
of the experiment because taking the mean of several such readings
is the equivalent of sampling with a larger FOV (see below).

In the BE, the reflectance of each end member or combination
of end members was recorded once. Thirty mixes of spectra were
taken of which 17 included bleached coral. Replication was ex-
tended in the ME with around 20 spectra being taken of each end
member, for each reading the target was moved or exchanged for
another piece from the pool of material for that end member. The
mean of 20 spectra was used in the analysis. These mean spectra,
therefore, represent an unbiased estimate of the reflectance of each
‘‘end-member pool’’ as a whole.

Determining actual mixture compositions

A digital image of each arrangement of samples was recorded from
directly above the scene, immediately after the spectral signal was
recorded by the spectroradiometer. In the BE, images were re-
corded with a handheld video camera, but this was refined in the
ME by using a computer-controlled digital camera mounted on the
tripod boom arm next to the spectroradiometer sensor (Fig. 1).

The image of each mixture set-up was loaded into an image-
manipulation program, and each end-member type was delineated
in a separate color, generating a ‘‘template’’ (Fig. 1). Then, the
number of pixels of each type (identified by color) within the FOV
was counted by customized program. This program superimposes
the FOV on the template image and sums the pixels of each type

Table 3 Live coral estimation
accuracy in the context of
various reef ‘‘scenarios’’
(coefficients of determination
between actual and estimated
substratum proportions for the
most successful treatment,
derivatives of the resampled
spectra). The environment,
substrata, and possible change
event typified by each mixture
group is related to the accuracy
of live coral estimation in that
situation, under the idealized
conditions of this experiment.
Values of r2 ‡0.49 (r ‡0.7) are
emboldened

Mixture Potential change scenario Live coral r2

Am/Cr/S/T Mortality event under conditions
of high herbivory, e.g., post-bleaching events
in Acropora spp.-dominated areas

0.66

D/At/S Acropora spp. mortality event under conditions
of low herbivory leading to dominance of
brown macroalgae

0.81

H/At/S Acropora spp. mortality event under conditions
of low herbivory with green calcareous
algal dominance

0.03

M/Cr/S Further mortality of live corals in areas
where mortality has occurred
previously in recent years

0.64

M/Pc/S Mortality or recovery of live corals in
upper reef slope or lagoonal
areas with prolific brown macroalgae

0.39

Pc/Po/S Changes in cover of long-lived massive
Porites spp. in areas favored by
brown macroalgae (i.e., low herbivory
or sheltered environments)

0.53

H/Po/S Changes in cover of long-lived massive
Porites spp. in areas favored by
green calcareous macroalgae

0.83

Cr/Po/R/S Changes in cover of long-lived massive
Porites spp. in a highly grazed system

0.77

H/Po/R/S Highly grazed system dominated by massive
corals (Porites spp.), increasing
in macroalgae and reducing in red coralline
algae (due to herbivory and/or
nutrient levels)

0.87

At/Po/S Successional development of reef structure from
branching to large massive colonies

Acropora 0.91
Porites 0.43

Fig. 1 Apparatus used to
simultaneously record
reflectance spectra and digital
images of mixture set-ups
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weighted by the sensitivity of the FOV at that point. In this way, an
estimate of the expected proportions of each end member in the
spectral signal is attained independently of the characteristics of the
sensor hardware. This technique requires that the FOV be fully
characterized for spatial sensitivity and also that the FOV be lo-
cated on the image accurately, as previously discussed.

Analysis techniques

Data processing

Spectra in the BE were collected using the ASD (upwelling radi-
ance) and RAMSES (downwelling irradiance) instruments and
were re-sampled to 5-nm intervals to match the RAMSES native
resolution. In the ME, data from both GER 1500s were re-sampled
to 1-nm intervals. In each measurement scheme, the calculated
reflectance is approximately equivalent to ‘‘remote sensing reflec-
tance,’’ which is equivalent to the water-leaving signal measured
over coral reefs by airborne or satellite imaging systems (the ratio
of upwelling radiance to downwelling irradiance, Mobley 1994).
The reflectance spectra used in the analysis were restricted to the
region 360–740 nm, since longer wavelengths do not penetrate
water sufficiently to be of utility in aquatic remote sensing.

Spectral space diagrams

Spectral reflectance data are presented in later sections using a form
of diagram that requires some explanation. These ‘‘spectral space
diagrams’’ are a useful way to visualize the relationships between
end-member spectra and the spectra of their mixtures. A spectral
signal recorded in n bands can be thought of as a point in n-
dimensional space or ‘‘spectral space.’’ The location of the point in
each dimension (or axis) is determined by the magnitude of the
reflectance in each band. In this view, three end members with
dissimilar spectra consist of three points in n-dimensional space.
These three points form the corners of a flat triangle that lies in a
two-dimensional plane at some orientation in the n-dimensional
space (Fig. 2). Any spectral signal that is a ‘‘correct’’ linear mix of
the three end-member spectra will lie in the plane of the triangle
and within its bounds (‘‘correct’’ implying that the endmember
proportions sum to unity). The end-member triangle can be drawn
in two dimensions by rotating the spectral space such that the end-
member triangle is brought ‘‘flat’’ into the diagram (Fig. 2) After
this, the end-member spectra are described by only two parameters
(the x and y positions in the plot). The length of the sides of the
end-member triangle in the plot gives an indication of the spectral
similarity of the end members; short sides indicate similar spectra.

The mixture spectra can also be plotted onto the end-member
triangle by applying the same rotational transform as derived
from the end members. This gives an indication where the mixture
spectra lie in spectral space in relation to the end-member spectra
(an equal mix of all three end members should lie in the center of
the triangle, for example). However, in this case, because the
mixture spectra may deviate from a perfect linear mix of the end-
member spectra, they may lie outside the plane of the end-
member triangle (i.e., outside the plane of the paper on which the
diagram is drawn). Their location on the two-dimensional plot
represents the point in the plane of the triangle that is closest to
their actual location. To represent the distance of each mixture
spectra from the end-member plane, a line is extended from the
location in the two-dimensional plot, the length of which is equal
to their distance from the plane. The length of this line gives a
visual indication of how close the mixture is to a ‘‘correct’’ linear
mix of the end members. This is analogous to ‘‘flattening’’ the
perpendicular vector between the end-member plane and the
mixture spectrum into the plane of diagram (Fig. 2). Note that, in
these diagrams, the line segment is directed toward the center of
the triangle for clarity, and the direction itself has no informa-
tional meaning.

Therefore, these diagrams become a very useful tool to appre-
ciate the magnitude of deviations from linear mixing in three end-
member situations. If mixture spectra are represented by lines that
are longer than the distance between two end members, this means
the mixture spectra are more different from a ‘‘correct’’ linear mix
than the end members are different from each other. If the mixture
spectra closely represent linear mixes of the end members, the
spectral space plots should consist of very short lines contained
within the bounds of the end-member triangle.

Unmixing analysis

Classic least-squares method

Unmixing of the reflectance spectra of the mixtures was achieved
using the ‘‘classic estimator’’ least-squares and unconstrained
unmixing approach, calculated as follows (Settle and Drake 1993),

f ¼ ðMTMÞ�1MTx ð1Þ

where M is the ‘‘end-member matrix,’’ an n · m matrix in which
each of m columns is the end member reflectance spectra (measured
in n bands), x is the measured spectral signal, and f is the vector of
least-squares estimated end-member proportions. Note that if the
end-member spectra are not linearly independent, then the term
(MT

M)-1 is not calculable and the system is not solvable (this would
occur if one end-member spectra could be represented by summing
multiples of one or more of the others).

For the ME, the mixtures in each group (Table 2) were unmixed
using only the end members of that group as the columns of M.
The BE was subjected to two treatments: first, all 30 mixtures were
unmixed as a single group using all eight end members as the
columns ofM; second, a subset of 24 of the 30 mixture spectra were
unmixed with M comprised of the six end-member spectra repre-
sented in those mixtures.

Unmixing using derivatives of spectral reflectance curves

In both remote sensing and spectroscopy, derivatives have shown
utility in enhancing the usable information in spectral data for
various applications (Butler and Hopkins 1970a, 1970b). Deriva-
tives highlight differences in the shape of spectral reflectance sig-
natures of different targets, rather than differences that may be due
to variations in illumination conditions (i.e., resulting in a vertical
shift on the y-axis). Additionally, many methods for calculating
derivatives from spectral data involve an element of data smooth-
ing, which can reduce noise at small wavelength scales (i.e.,

Fig. 2 Generation of ‘‘spectral space diagrams.’’ Left side: three
end members measured in n bands (in this case n =3) form a
triangle in n-dimensional spectral space. Right side: the space is
rotated to bring the end-member triangle into the plane of the
diagram. The perpendicular distance of the mixtures from the end-
member plane is represented by line segments flattened into the
diagram (the line segments are directed to the triangle center; thus,
the directions convey no particular meaning)
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meaningless variation between spectral bands in close proximity).
Derivatives have been utilized in other coral-reef, remote-sensing
studies (Holden and LeDrew 1998; Mumby et al. 2001; Hochberg
et al. 2003).

Derivatives are as applicable to the linear mixing model as are
the original reflectance spectra because derivatives adhere to the
relation:

d aþ bð Þ
dk

¼ da
dk
þ db

dk
ð2Þ

which means that, in this context, the derivative of the sum of two
or more spectra is equal to the derivatives of the individual spectra
summed. In other words, by replacing M with the matrix of end-
member derivatives and x with the derivative of the mixture spectra
[in Eq. (2), above], the least-squares analysis is applicable.

First-derivative spectra of mixtures and end members were
calculated from the reflectance spectra by the Savitzky–Golay
method (Savitzky and Golay 1964; Steinier et al. 1972). The first
derivative at each point was estimated as the least squares fit to a
window of 11 points in the reflectance data, centered on the point
of interest (spectra were treated as cubic or quartic). To accom-
modate the width of the ‘‘convolution window,’’ the resulting
derivative spectra have ten fewer bands than the original reflectance
spectra. One consequence of taking derivatives is that the overall
vertical position of the spectra on the y-axis becomes irrelevant
(i.e., the constant in y=f(x) + c is removed). Although this may
not be strictly analogous to ‘‘albedo,’’ it is clear that the overall
brightness of an end member will play a significantly lesser role
in unmixing when derivatives are applied, as opposed to reflec-
tances. The shape of the spectra will be rather more important.
Assessing the results of derivative unmixing, therefore, will give
an indication of whether the end-member spectra are being differ-
entiated primarily by their relative brightness or by their spectral
shape.

Additionally, the Savitzky–Golay method for calculating
derivatives performs an element of smoothing and so reduces noise
at the small wavelength scale (i.e., at a scale smaller than the width
of the ‘‘window,’’ which is 11 bands in this case).

Resampled spectral data

The previous three analyses were applied to the high-spectral-res-
olution data obtained directly from the spectroradiometers (after
calibration and the steps described in the Data processing section
above). This yielded 381 bands from the ME data, which is a far
higher spectral resolution than is achievable with most of the air-
and space-borne sensors commonly used in reef studies (although
the new Hyperion satellite approaches this with 220 bands). To
relate the unmixing analysis to an achievable CASI spectral reso-
lution (as deployed in other reef remote sensing studies), the end-
member and mixture spectra from the ME were down-sampled to
ten bands of 10-nm width (Table 4). The original data from the ME
is spaced at 1 nm, whereas configurable CASI bands consist of
consecutive groups of narrower bands spaced at 1.9 nm, each with
FWHM �2.5 nm. Consequently, the down-sampled bands were
simply modeled as the mean over the given wavelength range.
Attempting to more precisely model the CASI response from the
spectroradiometer data is unlikely to yield a significant benefit in
accuracy: the detailed information required would be sensor spe-
cific (of both the CASI and the spectroradiometer). The chosen
locations of the bands were based both on spectral features of the
pigmentation of coral reef organisms (Hedley and Mumby 2002)
and on results from previous studies, which have indicated useful
spectral regions for discrimination (see Table 4). The classic least-
squares unmixing approach was applied to the re-sampled data.
Because the Savitzky–Golay method is not appropriate for spectra
with a small number of irregularly spaced bands, first derivatives of
the re-sampled data were calculated by the finite difference method
(i.e., as the difference between adjacent bands, divided by the
wavelength distance between them). The unmixing analysis was
also applied to these derivatives.

Assessing unmixing accuracy

Due to the multivariate but non-independent nature of estimated
endmember proportions, it is difficult to find an appropriate mea-
sure for describing the accuracy of unmixing results. Most of the
techniques used to assess accuracy in ‘‘hard’’ classification schemes
(such as the Kappa and Tau coefficients; Ma and Redmond 1995)
are based on the values from an error matrix (Foody 2002). Be-
cause there is no way to cross reference inaccurately identified
categories within a single unmixed spectral signal, it is not possible
to construct an error matrix for unmixing results, and these mea-
sures are not applicable. Additionally, discrete multivariate tech-
niques are used for assessing ‘‘hard’’ classifications, whereas
unmixing results are not discrete.

In this study, the accuracy of the estimated proportions has
been assessed by performing linear regression between the actual
proportion and the estimated proportion for each end member
within each mixture combination (i.e., typically 20 replicates). The
coefficient of determination of this regression gives the amount of
variation in each end member that is explained by the unmixing
results. A similar approach utilizing correlation coefficients has
been used in previous unmixing work (Foody and Cox 1994), but
coefficient of determination was preferred here because it has a
tangible meaning, giving a sense of the power of the unmixing
analysis. An additional advantage of assessing accuracy by
regression is that the approach is equally applicable if the unmixed
proportions are ‘‘well formed’’ or not (i.e., take values between zero
and one and sum to unity). In order to give an indication of the
overall accuracy for each mixture group, the mean coefficient of
determination for all of the end members involved was also cal-
culated.

Although specific techniques do exist for assessing non-discrete
classification accuracy (Matsakis et al. 2000; Foody 2002), linear
regression was chosen here because it is readily interpretable and
can be applied to each end member independently.

Results

Spectral data

Figure 3 shows the mean end-member reflectance spec-
tra and a single example mixture reflectance spectrum
for four of the mixture groups in the main experiment.

Table 4 Wavelength ranges used to resample the spectroradiome-
ter data to ten simulated CASI bands. Because CASI bands in
configurable ‘‘imaging mode’’ are composites of several adjacent
bands of �2.5 nm FWHM, the resampled bands were simply taken
as the mean reflectance over the 10-nm range. The reason for the
position of each band is shown together with the source for that
information

Wavelengths
(nm)

Notes Source

430–439 Chl-a absorption maxima Jeffrey et al. (1997)
440–449 Coral fluorescence

/Chl-cabsorption maxima
Dove et al. (2001);
Jeffrey et al. (1997)

450–459 Chl-b absorption maxima Jeffrey et al. (1997)
470–479 Peridinin absorption

maxima
Jeffrey et al. (1997)

530–539 Previous study Clark et al. (2000)
570–579 Phycoerythrin absorption

maxima
Govindjee and
Braun (1974)

620–630 Coral fluorescence Dove et al. (2001)
640–649 Chl-b absorption maxima Jeffrey et al. (1997)
660–669 Chl-a absorption maxima Jeffrey et al. (1997)
680–689 Previous study Rundquist et al. (1996)
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The actual percentage cover of each end member present
when the mixture spectra were recorded are also shown.
Qualitatively, the mixture spectra appear, as would be
expected, from a linear mix of the end-member spectra
in the proportions given. Figure 4 gives a more precise
indication of how closely the spectral data from the main
experiment follow a linear mixing model. The diagrams
indicate that in most cases the spectra of the three end
members are sufficiently different from each other to
form a sound basis for spectral unmixing. Two excep-
tions, which have the narrowest end-member triangles,
suggest that the brown Acropora (At) and Dictyota (D)
samples were spectrally similar relative to sand (S), and
that calcified Padina (Pc) was quite similar to a mixture
between Montipora (M) and sand (S). The locations of
the mixture spectra in these diagrams (isolated line
segments) indicate that in many cases the mixture
spectra deviated substantially from a linear mix of end-
member spectra. In all ten plots, the mixtures lie at least
some distance from the end-member plane. In seven of
the ten plots, for the majority of mixtures, the closest
point in the end-member plane to the mixtures is outside
the end-member triangle. Thus, the majority of mixture
spectra did not represent linear mixes of the end-member
spectra. In the worst cases (H/Po/S: Halimeda, Porites,
and sand; Cr/M/S: coral rubble, Montipora, and sand)
the distance of the mixture spectra from the end-member

triangle approached the distance between the end
members themselves.

The results of re-sampling the spectra to ten bands of
10 nm (Table 4) and taking first derivatives are revealed
in Fig. 5. Qualitatively, the results for end members were
similar to those from full spectra (Fig. 4) in that At/D/S
and M/Pc/S had the narrowest triangles and that the
‘‘openness’’ of end-member triangles were similar. A
collapse of any of the triangles would indicate that the
choice of bands had omitted important spectral infor-
mation for end-member discrimination. Most strikingly,
however, the derivatives of the re-sampled mixture
spectra are much improved in terms of their adherence
to the linear mixture model. Compared with Fig. 4, in
most cases, the mixture spectra lie relatively close to the
end-member plane and within the end-member triangle.
Thus, re-sampling and taking derivatives transformed
the spectra such that they were more closely represented
by the linear mixing model.

Main experiment unmixing results

The results from all end-member groups and unmixing
methods are presented in Table 5 for the ME. Results
from the classical unconstrained unmixing method are
reasonably successful if the measure of an ‘‘accurate

Fig. 3 Mean end-member
reflectance spectra and a single-
mixture spectrum from four of
the mixture groups in the main
experiment. The end-member
spectra are labeled. The gray
line is the recorded reflectance
from a single-mixture set-up,
with end-member cover in the
quantities listed
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result’’ used by Foody and Cox (1994) is used as a
benchmark; namely, a correlation coefficient greater
than 0.7 (r2 >0.49). By this measure, 11 of the 14 mix-
ture groups were unmixed accurately using reflectance
spectra (i.e., the mean r2 over all end members involved
is >0.49). Looking at the individual end-member results
within the mixtures, 29 of the total 46 individual r2

values across all mixture groups are greater than 0.49.
First derivatives of the high spectral resolution data

improved performance of the classical estimator in 17 of
the 46 individual end-member results (Table 5), but
impaired performance in 22 cases. A paired sample t-test
for differences between the treatments (performed on the
r values transformed by the Fisher transform, Zar 1998)
was not significant (p =0.48). Despite this, it is clear
from Table 5 that taking derivatives has had a large
effect on the unmixing accuracy of individual end
members in some isolated cases.

Fig. 4 Spectral space diagrams
based on the full spectral
resolution reflectance spectra
for all three-way mixtures in the
main experiment. Black dots
indicate the relative locations of
measured spectral signals in
spectral space. The signals from
the three end members in each
case are labeled and the triangle
that delimits their �legitimate�
linear mixes is drawn. Line
segments represent mixtures:
the inner (pointed) end is the
closest point in the end-member
plane to the mixture; the line
length is the distance of the
mixture reflectance from the
end-member plane (the
direction of the line segments
have no meaning; they are
orientated to the triangle center
for clarity)
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The most accurate results overall were from the
unmixing of ten-band re-sampled data that had been
transformed to first derivatives. In this treatment, 12
of the 14 mixture groups had greater mean r2 than for
linear unmixing applied to the original high spectral
resolution reflectances, and in the two exceptions, the
mean r2 only decreased by 0.01 (Table 5). A paired
sample t-test for difference in transformed r for indi-
vidual endmembers between the treatments gave

p <0.001. Additionally, in contrast to the full spectra
(above), taking derivatives from ten-band spectra had
a significant positive impact on the results (again,
p <0.001). In fact, for all of the 14 mixture groups,
mean r2 increased under the derivative treatment.

Table 6 shows the mean r2, and corresponding
correlation coefficients, for different end-member cate-
gories averaged over all the mixture groups, for the re-
sampled derivative treatment. In all but one case, the

Fig. 5 Spectral space diagrams
of mixtures and end members
based on derivatives of ten-
band re-sampled spectra
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correlation coefficients are in excess of Foody and
Cox�s (1994) accepted accuracy level of 0.7.

Bleaching experiment unmixing results

The results from the BE (Tables 7 and 8) followed a
slightly different pattern to those from the main exper-
iment. In the full eight end-member unmixing analyses
(on 30 mixtures), re-sampling the data to ten bands did
not produce a clear improvement. Further, utilizing
derivatives had a clearer positive effect on original
reflectance data, and little effect on the re-sampled data.

Number Linear unmixing result Re-sampled

(Coeff. of determination) (Coeff. of determination)

Am/Cr/S/T Am Cr S T Mean Am Cr S T Mean
Reflectance 25 0.67 0.27 0.73 0.35 0.51 0.57 0.76 0.72 0.11 0.54
Derivatives 25 0.57 0.02 0.72 0.17 0.37 0.66 0.69 0.73 0.50 0.65
At/D/S At D S At D S
Reflectance 31 0.62 0.70 0.87 0.79 0.74 0.22 0.88 0.61
Derivatives 31 0.78 0.66 0.87 0.77 0.81 0.66 0.88 0.78
At/H/S At H S At H S
Reflectance 23 (0.07) (0.03) 0.31 0.10 0.01 0.27 0.20 0.16
Derivatives 23 0.25 (0.47) 0.96 0.40 0.03 0.23 0.28 0.18
At/Po/S At Po S At Po S
Reflectance 23 0.89 0.04 0.95 0.63 0.85 0.05 0.97 0.63
Derivatives 23 0.94 0.47 0.95 0.79 0.91 0.43 0.97 0.77
Cr/H/R/S Cr H R S Cr H R S
Reflectance 24 (0.42) 0.13 0.91 0.92 0.49 (0.55) 0.11 0.92 0.95 0.50
Derivatives 24 0.16 0.15 0.88 0.92 0.53 (0.32) 0.68 0.93 0.94 0.64
Cr/M/S Cr M S Cr M S
Reflectance 20 0.01 0.44 0.95 0.47 0.09 0.34 0.95 0.46
Derivatives 20 0.00 0.52 0.94 0.49 0.23 0.64 0.95 0.61
Cr/Pc/S Cr Pc S Cr Pc S
Reflectance 20 0.94 0.85 0.96 0.90 0.88 0.98 0.97 0.94
Derivatives 20 0.06 0.67 0.77 0.50 0.92 0.97 0.96 0.95
Cr/Po/R/S Cr Po R S Cr Po R S
Reflectance 20 0.13 0.31 0.91 0.95 0.58 0.32 0.42 0.93 0.96 0.66
Derivatives 20 (0.02) 0.63 0.95 0.96 0.64 0.12 0.77 0.94 0.96 0.70
Cr/R/S Cr R S Cr R S
Reflectance 20 0.56 0.73 0.94 0.74 0.62 0.64 0.91 0.72
Derivatives 20 0.28 0.61 0.78 0.56 0.63 0.64 0.91 0.73
H/Pc/S H Pc S H Pc S
Reflectance 20 0.31 0.86 0.94 0.60 0.14 0.91 0.91 0.65
Derivatives 20 0.41 0.93 0.94 0.76 0.39 0.91 0.91 0.74
H/Po/R/S H Po R S H Po R S
Reflectance 10 0.52 0.28 0.92 0.88 0.65 0.05 0.25 0.71 0.87 0.47
Derivatives 10 0.26 0.79 0.92 0.92 0.72 0.79 0.87 0.88 0.89 0.86
H/Po/S H Po S H Po S
Reflectance 20 0.65 0.59 0.81 0.68 0.34 0.59 0.72 0.55
Derivatives 20 (0.05) 0.42 0.83 0.41 0.81 0.83 0.72 0.79
M/Pc/S M Pc S M Pc S
Reflectance 20 0.23 0.47 0.98 0.56 0.00 0.42 0.98 0.47
Derivatives 20 0.03 0.63 0.89 0.52 0.39 0.96 0.99 0.78
Pc/Po/S Pc Po S Pc Po S
Reflectance 20 0.96 0.12 0.98 0.69 0.92 0.14 0.99 0.68
Derivatives 20 0.96 0.08 0.97 0.67 0.89 0.53 0.99 0.80

Table 5 Results from the main experiment showing coefficient of
determinations (r2) of the regression of estimated proportion
against actual proportion for each end member, within each mix-
ture group. Mean coefficient of determination across all end
members is calculated for each mixture group. Figures in square
brackets indicate negative correlations and are treated as zero for

the calculation of the mean. Four treatments of the spectral data
are shown: the original high spectral resolution reflectance;
Savitzky–Golay derivatives; resampled 10-band reflectance; and
finite-difference derivatives of the 10-band data. Emboldened fig-
ures show the best result for each mixture group

Table 6 Results from the main experiment averaged over all mix-
ture sets for end-member type, for the overall best treatment (re-
sampled, derivatives). The number of mixture sets from which the
mean is calculated is also given

Type Codes No. mixture sets Mean r2 r

Sand S (14) 0.85 0.92
Live coral At/Am/Po/M (9) 0.69 0.83
Coral rubble Cr (6) 0.43 0.66
Halimeda H (5) 0.58 0.76
Red coralline R (4) 0.85 0.92
Calcified Padina Pc (4) 0.93 0.97
Turf algae T (1) 0.50 0.71
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Attempting eight end-member unmixing is ambitious
even for terrestrial applications, and so the analysis was
repeated on a subset of data from the same experiment
that excluded all mixtures involving Halimeda or Mon-
tastrea (which were the least represented substrata in the
data set). The results for this six end-member unmixing
(on 24 mixtures) were generally very much better than
when the unmixing was attempted with all eight end
members (Tables 7 and 8). Therefore, as expected,
restricting the number of end members involved in-
creases in unmixing accuracy.

In both cases (Tables 7 and 8), it is interesting to note
that while the proportion of some end members may be
predicted very poorly, the proportion of others may be
estimated very accurately in same analysis. Figure 6
shows scatter plots for the estimation of proportions of
live Pocillopora, dead Pocillopora, and bleached Acro-
pora versus actual proportion, based on derivatives of
the original data.

Discussion and conclusions

Technical aspects

Untransformed reef reflectance spectra did not adhere
to the linear mixing model. The pattern of clustering in

mixture spectra (Fig. 4) suggested that mixtures were
the result of some continuous variation between two or
more extreme endpoints (i.e., in many cases, the mix-
tures lie approximately along a line). This kind of pat-
tern would be expected if the mixtures were linear mixes
of a set of end members, in which case, the end members
should be located at the extreme points of the mixture
distributions. However, in most cases, the group of
mixture spectra were shifted relative to the actual end-
member triangle area, suggesting a systematic error or
function. It is possible that the slight differences in
methodology used to record the end-member and mix-
ture spectra could have resulted in some inconsistency in
the data. However, it is not clear how such errors would
arise: the methods are analogous, and target and refer-
ence sensors were calibrated at several points through-
out the experiment using a Spectralon panel. In

Table 7 Coefficients of determination between unmixed and actual
substratum proportions from the bleaching experiment, with the
entire dataset (30 mixture spectra) treated as a single eight-end-
member group. The highest value of r2 for each substratum type is
emboldened

End member Classical Re-sampled

Reflec. Deriv. Reflec. Deriv.

Sand 0.21 0.20 0.15 0.15
Uncalcified Padina 0.26 0.51 0.11 0.15
Caulerpa 0.19 0.55 0.25 0.20
Bleached Acropora 0.54 0.71 0.80 0.81
Halimeda 0.07 0.17 0.00 0.00
Montastrea 0.39 0.59 0.09 0.09
Live Pocillopora 0.41 0.67 0.59 0.58
Dead Pocillopora 0.31 0.72 0.10 0.15
Mean 0.30 0.51 0.26 0.27

Table 8 Coefficients of determination between unmixed and actual
substratum proportions from the bleaching experiment, utilizing a
subset of the dataset (24 mixture spectra) treated as a single six-
end-member group. The highest value of r2 for each substratum
type is emboldened

End member Classical Re-sampled

Reflec. Deriv. Reflec. Deriv.

Sand 0.29 0.29 0.20 0.20
Uncalcified Padina 0.47 0.52 0.60 0.53
Caulerpa 0.75 0.79 0.68 0.65
Bleached Acropora 0.56 0.78 0.78 0.86
Live Pocillopora 0.38 0.57 0.51 0.65
Dead Pocillopora 0.50 0.73 0.71 0.67
Mean 0.49 0.61 0.58 0.59

Fig. 6 Scatterplots between actual and estimated proportions for
three end members from the bleaching experiment. Unmixing was
performed using first derivatives. The analysis represents 24
mixture spectra with a total of six end members
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particular, the plots involving Halimeda (the only case
where end-member spectra were taken from a previous
study, but by the same methodology) exhibited some of
greatest deviations from the linear mixing model. This
may imply that the transferability of spectra across
studies is poor because of inter- or intra-specific varia-
tion or subtleties in methods. Unmixing results for
Halimeda were improved by taking derivatives, which
may have removed much of the variation in spectra due
to ‘‘brightness.’’ Indeed, use of derivatives could miti-
gate some of the problems involved in transferring
spectra across studies.

Measurement errors aside, it is quite feasible that
spectral mixing among reef substrata is non-linear.
Given the controlled nature of the experiment, the
differing morphology of samples would seem to be the
only cause of non-linear mixing. The spectral reflec-
tance of corals differs significantly with viewing angle,
largely because of the geometry of coral colonies (Joyce
and Phinn 2002). Therefore, coral reflectance is not
controlled solely by the areal extent of a substratum
type. Figure 7 shows the mean deviation between the
estimated and actual proportions for each end member
from each group in the main experiment. It is quite

Fig. 7 Mean deviation between
actual and estimated
proportion for each mixture
group, based on the classical
unconstrained linear unmixing
estimator applied to derivatives
of the re-sampled data. Error
bars represent plus and minus
one standard error
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striking that, in almost all cases, end members were
consistently over-estimated or under-estimated within
each mixture group. However, there is little consistency
in estimation errors across mixture groups. Sand, for
example, is sometimes over-estimated and sometimes
under-estimated. It is possible to conjecture a hypoth-
esis that certain end members, in conjunction with
certain others, could lead to particular non-linear ef-
fects. For example, a ‘‘raised’’ end member such as a
coral might tint the appearance of the highly reflective
sand surrounding it by light reflecting from its sides.
The proportion of the raised end member would then
be overestimated and the cover of sand underestimated.
It is difficult to discern a clear pattern in the data
(Fig. 7) to support such a hypothesis, but this is an
important issue for future work because such effects
could conceivably have impacts at remote sensing
scales (i.e., >1 m2).

Re-sampling spectral data to fewer, broader spectral
bands has a positive effect on the accuracy of unmixing.
Spectral data in the BE were re-sampled to 5-nm band
widths before analysis, and no subsequent improvement
was gained by re-sampling again to 10 nm. Accuracies
resulting from the BE were comparable to those from
the ME after re-sampling. The ability to distinguish
spectra from an appropriate selection of bands has great
practical implications because it avoids the complexity
of engineering a remote sensing instrument with ex-
tremely high spectral resolution. However, there is of
course a trade-off because reducing the number of bands
reduces the dimensionality of the data and, at the limit,
will prevent the spectral separability of substrata (see
also Hochberg and Atkinson 2003). As an absolute
minimum, having at least as many bands as end mem-
bers is a mathematical requirement of the classic least-
squares unmixing estimator.

Departures from non-linear spectral mixing were re-
duced by taking first derivatives from re-sampled spec-
tra. Taking finite-difference derivatives removes any
constant y-axis shift, but does not additionally smooth
the data. The implication is that the position of the
reflectance spectra on the y-axis acted to confound the
unmixing analysis. Inconsistency between the measure-
ments taken by the target and reference sensors could
have caused noise-like deviations, which were predomi-
nately reflected the vertical position of the spectra. For
example, even though the two sensors in the ME were
electronically synchronized, their different integration
times may have allowed brief atmospheric changes to
bias reflectance spectra, resulting in either over- or
under-estimates of albedo.

The mixtures in the ME were also analyzed using
second derivatives of the full spectral resolution data to
determine if higher derivatives conferred any additional
advantage (results not shown). The second derivatives
were also calculated by the Savitzky–Golay method with
a ‘‘convolution window’’ of 11 bands (assuming a
quartic function and using values from Steinier et al.
1972). In all cases, the unmixing accuracy was substan-

tially impaired when based on these second derivatives,
and a paired sample t-test for differences between the
first derivative and second derivative treatment (per-
formed on the r values transformed by the Fisher
transform, Zar 1998) was highly significant (p <0.001).
Therefore, for this method of calculating derivatives,
utilizing derivatives higher than the first derivative was
not advantageous for unmixing analyses.

Reef context

In general, under the most successful treatment (deriv-
atives of the re-sampled data), coral cover was measur-
able under a variety of ecological scenarios (listed in
Table 3). Of the 11 examples of live coral estimation,
seven of the r2 values are greater or equal to 0.64 (i.e., r
‡0.8). In four cases, linear unmixing was able to recover
at least 81% of the variation in the live coral proportions
(i.e., r ‡0.9).

Porites sp. estimation performed generally well in
most contexts tested, but was weakest when the Porites
sample was combined with the brown macroalgae or
Acropora. Presumably, the relative spectral similarity of
the Porites (which was a light brown morph in this case)
and the calcified Padina had a negative impact on their
ability to be unmixed. Estimates of the cover of Monti-
pora sp. were weak (r2 =0.39) when in conjunction with
calcified Padina. Changes to branching coral cover
(Acropora), such as those arising from a mass bleaching
event, were also resolvable with one exception:Halimeda
and Acropora could not be distinguished effectively, al-
though this may partly be due to problems incurred in
gaining an end-member spectra for Halimeda (above).

In the BE, the estimation of bleached Acropora pro-
portions was consistently accurate under various treat-
ments. This result is promising, first because it is highly
desirable to monitor the severity of bleaching, and sec-
ond, because previous studies found that non-spectral-
unmixing approaches are inappropriate for detecting
coral bleaching (Andréfouët et al. 2002). Our results
suggest that spectral unmixing may offer a realistic
solution to monitoring coral bleaching in future.

In this controlled experiment, it has been possible to
achieve a reasonable level of accuracy in the estimation
of some end-member proportions in analysis of six-way
or even eight-way mixes. In practice, unmixing of more
than three or four end members would be ambitious,
even for a terrestrial study. For some applications,
however, it may be acceptable to achieve a poor result
for the estimation of most end members providing that
the critical substrata were resolved accurately. A good
example would be measurement of bleached versus live
coral where the cover of algae was not directly relevant
to the question of bleaching severity.

In summary, we have demonstrated that, in the ab-
sence of the overlying water column and atmospheric
attenuation effects, linear spectral unmixing can be
of use in determining the proportions of various reef
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substrata within a single mixed spectrum. There is evi-
dence for non-linear processes in spectral mixing, but
these effects can be mitigated by re-sampling hyper-
spectral data to lower spectral resolution and by utilizing
first derivatives. Our ability to determine the proportion
of individual substrata under this best-case scenario is
also affected by the number and type of reef components
involved. Pending further testing to include atmospheric
and water column attenuation parameters, we propose
that linear unmixing techniques will be invaluable for
use with high spectral resolution data from both air-
borne and satellite platforms (and possibly, from mul-
tispectral sensors optimized for coral reefs), and will
provide a more sensitive and accurate representation of
reef composition than standard per-pixel, single-sub-
stratum thematic classifications. More sophisticated
non-linear unmixing methods (as yet undeveloped) may
be required to fully exploit the potential in high spectral
resolution data from coral reefs.
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