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Abstract
Ultrasonography has great potential in differentiating malignant thyroid nodules from the benign ones. However, visual
interpretation is limited by interobserver variability, and further, the speckle distribution poses a challenge during the
classification process. This article thus presents an automated system for tumor classification in three-dimensional con-
trast-enhanced ultrasonography data sets. The system first processes the contrast-enhanced ultrasonography images
using complex wavelet transform–based filter to mitigate the effect of speckle noise. The higher order spectra features
are then extracted and used as input for training and testing a fuzzy classifier. In the off-line training system, higher order
spectra features are extracted from a set of images known as the training images. These higher order spectra features
along with the clinically assigned ground truth are used to train the classifier and obtain an estimate of the classifier or
training parameters. The ground truth tells the class label of the image (i.e. whether the image belongs to a benign or
malignant nodule). During the online testing phase, the estimated classifier parameters are applied on the higher order
spectra features that are extracted from the testing images to predict their class labels. The predicted class labels are
compared with their corresponding original ground truth to evaluate the performance of the classifier. Without utilizing
the complex wavelet transform filter, the fuzzy classifier demonstrated an accuracy of 91.6%, while utilizing the complex
wavelet transform filter, the accuracy significantly boosted to 99.1%.
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Introduction

More than 50% of the adults have thyroid nodules, of
which 7% are likely to be malignant,1 and the malig-
nancy incidence is increasing at the rate of 3% every
year.2 According to the National Cancer Institute, in
the United States, in 2012, the estimated number of
new thyroid cases and thyroid-related cancer deaths is
56,460 and 1780, respectively.3 Therefore, it is impor-
tant to develop affordable and reliable diagnostic mod-
alities or protocols for better thyroid malignancy
management. Medical image analysis can be an effec-
tive noninvasive method to detect thyroid malignancies.
Among the available thyroid nodule imaging methods,
ultrasonography is cost-effective compared to other
methods such as computed tomography (CT) and mag-
netic resonance imaging (MRI).4 Ultrasonographic
imaging does not cause any health hazards unlike CT,
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which uses harmful radiations. Benign and malignant
thyroid nodules have distinguishable sonographic char-
acteristics. Benign nodules have very little internal flow
compared to that of malignant nodules.5 Ultrasound
(US) images of the malignant nodule show the presence
of a peripheral ring, while it can be present or absent in
benign nodule.5 However, a manual interpretation of
these changes is subjective and may result in low diag-
nostic accuracy. Moreover, speckle noise, which is a
granular interference pattern, can also degrade the qual-
ity of US images, thus making the diagnostic interpreta-
tion difficult. To address these limitations, in this work,
we propose a computer-aided diagnostic (CAD) thyroid
nodule characterization framework (named after our
previous conceptual system—ThyroScan�) that incor-
porates (1) a complex wavelet transform (CWT) step to
reduce the speckle noise, (2) a feature extraction step
that uses nonlinear higher order spectra (HOS) informa-
tion to quantify the sonographic changes that manifest
as textural changes in the image, and (3) a classification
module that uses the texture features in classifiers to
detect the presence or absence of malignancy.

High-resolution ultrasonography (HRUS) is a
widely used method for diagnosing thyroid abnormal-
ities,6 which has resolution high enough to reveal for-
mations with size in the order of 1mm. In our earlier
work, we achieved 100% classification accuracy to
detect thyroid malignancy using three-dimensional
(3D) HRUS images.7 HRUS was chosen instead of
contrast-enhanced ultrasonography (CEUS) due to the
fact that overlapping findings in the case of CEUS lim-
ited its potential in distinguishing malignant and benign
thyroid lesions. In this article, however, we overcome
the limitation of CEUS images by processing it with an
intermediate CWT stage. Moreover, the US contrast
agent is not potentially nephrotoxic and so CEUS may
be a first choice method for thyroid nodule diagnosis
especially in patients of high risk of kidney failure.8 In
addition, the contrast agent enhances the vasculature
representation of the thyroid in CEUS images, which is
useful for distinguishing benign and thyroid nodules.
Therefore, we were motivated to develop a reliable
CAD system that works on CEUS images.

The objectives of this work are as follows: (1) to
show the importance of processing CEUS US images
to remove unwanted noise by introducing a CWT stage
before features are extracted from the images; (2) to
develop an automated system to accurately classify
thyroid nodules to benign and malignant; and (3) to
use our technique as a reliable adjunct protocol and
thereby alleviate the need for the labor-intensive and
invasive fine-needle aspiration (FNA) biopsy, which is
currently the gold standard,9 in the early stages of dis-
ease management.

Our CAD system is represented in Figure 1. In the
off-line training system, after the CWT stage, signifi-
cant HOS features and ground truth of whether the
image is benign or malignant are used to train a fuzzy
classifier. In the online system, the trained classifier is

used to perform real-time classification of thyroid
nodules into benign and malignant. We have thus com-
bined CAD techniques with US image analysis10 for
objective analysis. We compared the performance of
the classifier with and without the CWT stage. If CWT
stage is not included, HOS features are directly
extracted from the raw (i.e. unprocessed (UNPR))
CEUS images. We found that the inclusion of CWT
stage resulted in tremendous improvement in the per-
formance of the classifier in distinguishing malignant
and benign thyroid nodules.

Patient selection

Thirty patients with the presence of goiter nodule (mul-
tinodule goiter cases excluded) were selected for the ini-
tial screening tests. A signed informed consent was
obtained prior to image acquisition from patients, and
approval was also obtained from the ethical committee
of the Endocrinology Section of the ‘‘Umberto I’’
Hospital of Torino in Italy. Accurate diagnosis of
nodules was done using FNA biopsy and CEUS image
examinations. We confirmed that the malignant images
obtained had characteristics of malignancy such as
intranodular microcalcifications, hypoechoic appear-
ance, and irregular margins.11 The FNA examination
produced the following diagnosis results for the 30
patients: 5 patients had benign goiter nodules that can
be classified as THY2 (Group 1: nonneoplastic) and 25
patients had the characteristics of follicular neoplasm.
They were classified under the group THY3 (Group 2:
follicular lesion/suspected follicular neoplasm) and were
subjected to thyroidectomy. Among these 25 patients, 5
had nodule diameter exceeding 6 cm. Manual scanning
is inadequate to capture such big lesions, and hence,
these patients were excluded from the study. Three
patients were excluded since they swallowed and
coughed in between the CEUS test, producing motion
artifacts in the recorded images. Two cases of concomi-
tant thyroiditis were also eliminated. The short-listed 15
Group 2 patients can be further grouped as follows: 5
benign (follicular neoplasm) cases and 10 malignant
cases (7 papillary, 1 follicular neoplasm, and 2 Hurthle
cells carcinoma). Thus, including the above-mentioned
10 benign goiter nodule patients (Group 1), we had 10
benign patients and 10 malignant patients. Clinical
examination and hormonal profiling were conducted
for all the 20 patients. Among these 20 patients, 10 were
males (age: 53.56 13.3 years; range: 22–71 years) and
10 females (age: 50.16 10.8 years; range: 25–68 years).
The average size of benign/malignant nodules was
31.76 17.9mm with range of 10–52mm.

CEUS image acquisition and
preprocessing

For acquiring the CEUS images, 2.5 mL of Sonovue
(an US contrast agent) was intravenously injected. It
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was so arranged that 50 s after the contrast agent was
injected, a freehand scanning was performed for all the
20 patients by a trained expert who had more than 30
years of experience in neck ultrasonography. MyLab70
ultrasound scanner (Biosound-Esaote, Genova, Italy)
equipped with an LA-522 linear probe that works in the
range 4–10 MHz was used. In our work, images were
acquired at 5 MHz with an average frame acquisition
rate of 16 frames/s. The background average intensity
was calibrated to be less than 5 in a 0–255 linear scale.
The acquired 3D volumes were transferred to an exter-
nal workstation in digital imaging and communications
in medicine (DICOM) format for further processing
and reconstruction. The following are the different
stages employed for the processing of the acquired
CEUS images:

� Preprocessing stage: All the 3D volume images
were initially converted to double precision format.
Subsequently, attenuation of the intensity artifacts

present in the images was done by applying a linear
ramp with decreasing intensity from 1 to 0. This
was followed by a normalization stage, a low-pass
filtering stage and then an initial speckle noise
reduction (using a first-order statistic filter) stage.

� Microbubble detection: All the slices of the 3D
CEUS volumes were processed (PR) by morpholo-
gical opening with a disk-shaped structuring ele-
ment in order to enhance the microbubble signal.
The image points perfused by the contrast agent
were then segmented by using the global threshold-
ing method, with the threshold level automatically
set by the Otsu’s criterion.

� 3D reconstruction: After thresholding, the segmen-
ted masks of each slice were grouped together in
order to generate the 3D reconstruction of the con-
trast agent diffusion in space and inside the thyroid
nodule. For visualization purposes, the 3D rendered
images were also thinned in order to improve the
visual perception of the intranodular vascularization.

Figure 1. Block diagram of the proposed CAD technique for thyroid nodule characterization; the blocks outside the dotted shaded
rectangular box represent the flow in the off-line training system, and the blocks within the dotted box indicate the online system.
CWT: complex wavelet transform.
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Full details about the preprocessing, microbubble
detection, and 3D reconstruction methods are reported
in our previous article.12

Forty images were selected from each of the 10
patients with benign nodules and 10 patients with
malignant nodules. Thus, 400 benign images and 400
malignant images were used to test the efficiency of the
proposed system. Henceforth, we refer to these raw
CEUS images of benign and malignant nodules as
UNPR images.

Image denoising and grayscale feature
extraction

The relevant characteristics of the CEUS images are
captured by features. The mapping from images to fea-
tures is a way of extracting objective information
instead of using subjective information. We used CWT
for speckle noise reduction and HOS-based analysis
methods to extract features.

Image denoising: use of CWT domain filter

Several adaptive filters such as Lee filter, Kaun filter,
Frost filter, sigma filter, and gamma maximum a pos-
teriori (MAP) filter have been used to reduce the
speckle noise in US images.13 But it has been observed
that these filters lead to suppression of image features
and useful information along with speckle noise, caus-
ing ambiguity in interpretation. Recently, CWT has
established an impressive reputation as a tool for image
denoising as it gives much better directional selectivity
while maintaining the low redundancy.14,15 The UNPR
CEUS images (Figure 2(a) and (b)) are passed through
CWT filter for speckle noise reduction. The PR images
are obtained from the output of the CWT filter (Figure
3(a) and (b)).

In this work, the employed CWT filter uses the gen-
eralized Nakagami density (GND) function to approxi-
mate the speckle statistics under different scattering
conditions commonly encountered in medical US
images.16,17 Subsequently, a Bayesian threshold is
derived to threshold the high-pass wavelet coefficients
of the noisy image. This filter is scale and spatially

adaptive as it adapts itself to the local image statistics
and speckle statistics that vary from finer to coarser
scales.18 The CWT stage consists of mainly three steps.
First, the image is decomposed into several scales
through a multiorientation analysis using two-
dimensional (2D) CWT. CWT uses filter banks to
decompose signals into low- and high-pass components
(represented by wavelet coefficients) called subbands.
Low-pass subbands give information about slow-
varying signal characteristics, while high-pass subbands
are indicative of fast changes in the signal as well as
noise. Next, the Bayesian thresholding is applied to
process the noisy wavelet coefficients (Y) of detail sub-
bands,19 and finally, the denoised image (X) is synthe-
sized from the PR (thresholded) wavelet coefficients
through the inverse CWT.20,21 CWT decomposes an
image f(t), t=(t1, t2) 2 R2, using a complex scaling
function and six complex wavelet functions as

f(t)=
X
b2B

XJ
j5j0
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Df(j, k)cj, k(t)+
X‘

k=�‘

Cf(J, k)fJ, k(t)
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where fJ, k(t) and cj, k(t) are complex; fJ, k =
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ffiffiffiffiffiffiffi
�1
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fi
J, k and cj, k =cr

j, k +
ffiffiffiffiffiffiffi
�1
p
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j, k. The cr

j, k

and ci
j, k are themselves real wavelets, where Df(j, k) and

Cf(J, k) are the wavelet and scaling function coefficients,
respectively. J0 is an arbitrary starting scale for coarsest
resolution, and J is an arbitrary finite upper limit for
highest resolution with J . J0. The real and imaginary
parts of the CWT are computed using separate filter bank
structures with wavelet h0a, h1a for the real part and h0b,
h1b for the imaginary part. The six subbands of the 2D
CWT are labeled as B= f+158, +458, 758, � 158,
�458, � 758g for the six oriented directions of the wavelet
function. In CWT, complex coefficients of CWT are cal-
culated using a dual tree of wavelet filters, each obtaining
the real and imaginary magnitude parts.21 The implemen-
tation of a filtering algorithm in CWT domain is very
similar to the discrete wavelet transform (DWT) domain.
The principle difference is that the thresholding is applied
to the magnitudes of the complex coefficients in order to
achieve nearly shift invariance as the small signal shifts

Figure 3. Thyroid CEUS processed images of (a) benign and
(b) malignant cases.

Figure 2. Thyroid CEUS unprocessed images of (a) benign and
(b) malignant cases.
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may affect the real and imaginary parts keeping the over-
all magnitude same.

The implementation of the CWT domain-filtering
algorithm is summarized as follows:22

1. Compute the CWT of the noisy image (f);
2. Specify the value of tuning parameter (K), which

controls the degree of noise suppression;
3. Estimate the noise variance (s2) using equation (2);
4. For each resolution scale, j, 1 4 j 4 J, and

For each direction (negative and positive), D, 1 4
D 4 2;
For each orientation, i 2 HHD

j ,LH
D
j ,HLD

j

n o
;

For all the spatial locations, l=1, 2, ., M;
Compute the standard deviation, sX, using equa-
tions (3), (4) and (6);
If sX . 0, estimate the coefficient, x̂l, using equa-
tion (5), otherwise set x̂l =0.

5. Apply the inverse CWT to get the denoised image
(g)

ŝ2 = K
median(jYlj)

0:6745

� �2
, Yl 2 fHH1,HH2g ð2Þ

s2
y =s2

x +O ð3Þ

ŝ2
x = max ŝ2

y � O, 0
� �

ð4Þ

O= K1s
2

� �s
and K1 =

m1=s � G(m)

G(m+1=s)
ð6Þ

where A=mssxy
2s�2, B=2s(2s� 1), C=(2ms� 1)

Osx, and m and s are the shape adjustment parameters
of generalized Nakagami distribution. The shrinkage
function given in equation (5) named as GNDThresh
can be easily deployed to derive the thresholding esti-
mators for the density functions belonging to the gener-
alized Nakagami family.22

Grayscale feature extraction: HOS

Before the HOS parameters are evaluated, the prepro-
cessed and complex wavelet transformed US images
were subjected to Radon transform.23 The Radon
transform rotates the image around its center through
different angles u and then computes line integrals
along many parallel paths in the image, transforming
the intensity along these lines into points of the resul-
tant signal. Thus, the input for the Radon transform is
an image and the output is a one-dimensional signal at
various angles. From the one-dimensional signal, HOS
parameters are extracted at a constant angle interval of
45� (at 0�, 45�, 90�, 135�, 180�). HOS (polyspectra) is

the spectral representation of higher order statistics,
that is, moments and cumulants of third and higher
order, which can be used for deterministic signals and
random processes. Since the HOS of Gaussian signals
are statistically zero, it can measure non-Gaussianity
and offers good noise immunity. HOS can preserve the
true phase information of signals and can detect nonli-
nearity. HOS features used in this study are derived
from the bispectrum. Bispectrum B(f1,f2) is the third-
order statistics of the signal given by

B(f1, f2)=E X(f1)X(f2)X(f1 + f2)½ � ð7Þ

where X(f) is the Fourier transform of the signal x(nT),
n is an integer index, T is the sampling interval, and
E(�) is the expectation operator. The frequency f may
be normalized by the Nyquist frequency (half of the
sampling frequency) for values to lie between 0 and 1.
The region O of computation of bispectrum and bispec-
tral features of a real signal is uniquely given by a trian-
gle 0 4 f2 4 f1 4 f1 + f2 4 1 as given in Figure 4.

We determined the mean of magnitude as follows

mAmp=
1

L

X
O

B f1, f2ð Þj j ð8Þ

The following H parameters, which are related to
the moments of bispectrum, were also calculated in this
work. The sum of logarithmic amplitudes of bispec-

trum H1 is given by

H1 =
X
O

log B(f1, f2)j jð Þ ð9Þ

The sum of logarithmic amplitudes of diagonal ele-
ments in the bispectrum H2 is given by

x̂= sign(y) max 0,
2sjyj
B
�
O+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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Figure 4. Principal domain or nonredundant region O of
computation of the bispectrum for real signals. Frequencies are
shown normalized by the Nyquist frequency.
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H2 =
X
O

log B(f1, f2)j jð Þ ð10Þ

The first-order spectral moment of amplitudes of
diagonal elements of the bispectrum H3 is

H3 =
XN
k=1

k log B(fk, fk)j jð Þ ð11Þ

H4 =
XN
k=1

(k�H3)
2 log B(fk, fk)j jð Þ ð12Þ

All the above features are defined over a principal
domain O. L is the number of points within the region
O. More details of equations for the HOS features
mAmp, H1, H2, H3, and H4 are given in the study by
Chua et al.24

Feature selection

We used Student’s t-test to study whether the mean value
of a feature is significantly different between the benign
and malignant groups. The result of the t-test is the p-
value, which is compared with a level of significance (a-
level). Popular levels of significance are 5% (0.05), 1%
(0.01), and 0.1% (0.001). If the p-value is lower than the
a-level, it indicates that the feature is powerful enough to
be different for the two classes. In this work, we chose a-
level as 0.001 and observed that the features had p-values
even lower than 0.0001 indicating their strength as valu-
able discriminators of the two classes.

Classification

We chose the fuzzy classifier for developing the data
mining framework as fuzzy classifier is a rule-based
classifier that is more comprehensible to the end user.
We used a subtractive clustering technique using the
Sugeno25 technique to generate a fuzzy inference sys-
tem (FIS).26 FIS contains set of fuzzy rules that are
used to perform fuzzy inference calculations to obtain
the class label of the test data. We used 10-fold strati-
fied cross-validation data resampling technique to train
and test the classifiers. A total of 800 data sets belong-
ing to benign and malignant classes were split into 10
parts randomly, such that each part had the same pro-
portion of images from both classes. During the train-
ing phase, 9 parts containing 720 images (320 benign
and 320 malignant) with the corresponding class label
were used to train the classifier and to obtain the classi-
fier parameters. During the test phase, the trained clas-
sifiers were used to predict the class of the remaining
part (80 samples) of the data set and to calculate the
performance measures. This process was repeated nine
more times using different test sets. Then, the average
of the performance measures obtained for each of the
10 folds was calculated. The efficiency of the classifier
to properly classify the images into their correct classes
is given by the performance evaluation parameters,

namely, sensitivity, specificity, positive predictive value
(PPV), and accuracy. High values for the evaluation
parameters indicate high classifier performance.

Results

Significant HOS features

Tables 1 and 2 show the significant HOS features (p-
value \ 0.0001) obtained from the PR images (on
which CWT was used for speckle noise reduction) and
the UNPR (no CWT stage) CEUS images, respectively,
for the 90� Radon transform angle. HOS parameters
were obtained at an interval of 45� in the range of 0�–
180�. We observed that in both the CEUS PR and
UNPR data sets, the values of the significant features
(mAmp, H1, H2, H3, and H4) remained the same for all
the angular measurements. Thus, the significant HOS
parameters obtained are unique irrespective of the
angle of measurement. All the five HOS parameters
were observed to be low for benign compared to malig-
nant group. Therefore, for training the classifiers, we
used only the five significant features obtained using
the 90� angle in both PR and UNPR cases. The use of
this reduced significant feature set makes the design
and training of the classifier simpler and faster.

Classification results

The parameters of accuracy, PPV, sensitivity, and spe-
cificity were determined using the CEUS-generated

Table 1. Range (mean 6 standard deviation) of the significant
features that had a p-value less than 0.0001 for CEUS processed
images.

Feature
(90�
angle)

Benign Malignant

mAmp 2.557E + 15 6 2.475E + 15 4.651E + 15 6 2.353E + 15
H1 5.450E + 04 6 1.349E + 03 5.570E + 04 6 984
H2 891 6 19.0 912 6 13.6
H3 2.809E + 04 6 657 2.874E + 04 6 461
H4 7.023E + 11 6 4.798E + 10 7.525E + 11 6 3.507E + 10

Table 2. Range (mean 6 standard deviation) of the significant
features that had a p-value less than 0.0001 for CEUS
unprocessed images.

Feature
(90�
angle)

Benign Malignant

mAmp 3.38 6 0.128 3.47 6 7.160E202
H1 5.901E + 04 6 995 6.020E + 04 6 846
H2 967 6 13.6 990 6 12.1
H3 3.068E + 04 6 461 3.135E + 04 6 376
H4 9.095E + 11 6 4.018E + 10 9.720E + 11 6 3.501E + 10
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thyroid images with and without using CWT stage for
speckle noise reduction. The results of the classification
are shown in Table 3. All the four performance mea-
sures had marked improvement in the case of the PR
images compared to the UNPR images. We observed
that on using the fuzzy classifier on the PR CEUS
images, the accuracy went up to 99.1% from 91.6%,
which was obtained using the UNPR images. The other
parameters also showed similar increase.

Discussion

Literature review

FNA biopsy has the limitation of the need for an expert
physician to conduct the test. When combined with
carefully chosen parameter extraction methods and
CAD-based techniques, US imaging, which is noninva-
sive and affordable, has emerged as a comparable con-
tender to FNA to differentiate benign and malignant
thyroid nodules. It is sensitive enough to serve as a pre-
dictor to thyroid malignancy.11 In US image process-
ing, useful features are extracted to study the image
texture differences and echographic patterns to identify
the presence of abnormalities in thyroid nodule. In
CEUS, malignancy is indicated by the presence of het-
erogeneous enhancement, while ring enhancement is
prominent in benign nodules.27 Many works have been
conducted for automated benign–malignant thyroid
nodule characterization. These studies have used tech-
niques such as molecular profiling,28 genetic markers,29

elastography,30 and fluorescent scanning31 for thyroid
nodule classification. Though the objective of all these
works is the same, they differ in input data format, fea-
tures extracted, methods and classifiers used, and classi-
fication efficiency.

In the case of US-based studies, color and power
Doppler imaging were already ruled out as they were
not suitable for 3D microvessel detection due to unde-
sirable color blooming in high-perfusion cases and poor
spatial resolution. In one study,32 the accuracy of quan-
titative analysis of tumor vascularity on power Doppler
sonograms was analyzed, and using vascular indices, an
accuracy of only 84.5% was reached. The most signifi-
cant characteristic of malignant thyroid nodule is the
extensive internal flow. CEUS, with intravenously
administered contrast agent, can represent micro- and
macrovasculature and the internal flow of thyroid
nodules much effectively compared to HRUS. Molinari
et al.12 quantified seven vascular parameters, such as

vascular density, number of branching nodes, and so
on, for 3D CEUS benign and malignant images but did
not use them for classification. Therefore, in 2011, our
team worked on developing data mining strategies that
use significant features from HRUS and CEUS images
for thyroid nodule characterization and classification.
In one study,7 we used 3D HRUS data set to obtain five
features, of which three were texture features and two
were DWT features, and used them in an AdaBoost
classifier with perceptron as weak learner to achieve
100% accuracy, sensitivity, and specificity. In another
recent study,33 we extracted 10 significant features (3
texture features and 7 DWT features) from 3D CEUS
thyroid images to obtain an accuracy of 98.9%, sensi-
tivity of 98%, and specificity of 99.8% using k-nearest
neighbor (KNN) classifier. Thus, even though HRUS
image analysis has reached its perfection in terms of
classifier performance,7 we observed that there is still
scope for improvement of detection accuracy using
CEUS images.33 These were the reasons behind choos-
ing CEUS data for this study.

Key features of this study

In this study, we used Sonovue that is a microbubble-
based contrast agent that does not come out of the ves-
sel lumen. Any echo received from a microbubble is an
indication of the presence of a vessel.34 Hence, CEUS
with Sonovue will give a better depiction of vascularity.
We have included CWT to process CEUS images
before the extraction of HOS features to deal with
speckle noise. Our proposed technique has the follow-
ing features:

� Ultrasonography, in addition to being affordable
and noninvasive, is highly effective and safe. It can
detect thyroid nodules as small as 3mm.35 US
waves are not known to cause any health hazards,
they are absolutely safe.

� We used 3D imaging instead of 2D, so that the fea-
ture of nodule volume can also be utilized for
diagnosis.

� The CEUS data acquisition method is low cost and
the proposed automation system consists of algo-
rithms implemented in software that are also
affordable.

� The CWT stage suppresses the disturbances in US
images such as echo perturbations and speckle
noise and preserves features better than DWT. It is
especially useful in CEUS images, which contain

Table 3. Performance measures of the classifiers.

UNPR PR

Classifier A PPV Sn Sp A PPV Sn Sp
Fuzzy 91.6 91.2 93.8 91.6 99.1 98.6 99.8 98.5

A: accuracy; Sn: sensitivity; Sp: specificity (all values in %); UNPR: unprocessed; PR: processed; PPV: positive predictive value.
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strong diagonal features as CWT preserves features
oriented at angles 45� and 245� without combining
them. Ours is the only work that includes CWT for
processing of US images. Due to good shift invar-
iance (as the shrinkage rule is applied to the magni-
tude of each of the complex coefficients) and good
directional sensitivity of CWT, our CEUS image
filtering techniques yielded better performance than
the earlier DWT-based methods.

� Computational complexity of CWT is low, making
it suitable for online real-time applications.

� We have validated our speckle reduction results
(obtained after CWT stage) both qualitatively (from
two radiologists) and quantitatively in terms of var-
ious image quality parameters such as carrier-to-
noise ratio (CNR), signal-to-ratio (SNR), and edge
preservation index.21 Detailed results are submitted
in an article that is under review. Furthermore, the
efficiency of CWT stage is cross-validated by the
classifier that results in 99.1% accuracy.

� We avoided the common problem of classifier over-
fitting by adopting 10-fold cross-validation tech-
nique for data resampling.

� The number of significant features to be given as
input to the classifier to obtain very high accuracy
is very less (just five features) for PR as well as
UNPR CEUS images. This makes the design and
training of the classifier simpler.

� The fuzzy classifier resulted in the highest accuracy
of 99.1% for the PR images, which is higher than
previously published results.

� Instead of using the commonly used vascular and
texture features, we have, in this work, exploited the
capability of popular nonlinear dynamics theory–
based HOS features to classify thyroid lesions and
achieved the maximum possible accuracy.

Conclusions

Thyroid malignancy analysis using ultrasonography is a
noninvasive, affordable, and safe diagnostic test, which
produces images depicting the prominent structure and
features of thyroid nodule. We have investigated the
implication of introducing CWT stage for speckle noise
reduction before HOS features are extracted from
CEUS images. We have demonstrated that the initial
processing of CEUS images with CWT stage signifi-
cantly improves the efficiency of the automated real-
time system in characterizing the thyroid nodules into
benign and malignant classes. The fuzzy classifier
resulted in the highest accuracy of 99.1% for the CWT
PR images, sensitivity of 99.8%, specificity of 98.5%,
and PPV of 98.6%.
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