
IEEE TRANSAnIONS ON RELIABILITY, VOL. 43, NO. 3, 1994 SEPTEMBER 493 

Power-Hierarchy of Dependability -Model Types 

Manish Malhotra 
AT&T Bell Laboratories, Holmdel 

Kishor S. Trivedi, Fellow IEEE 
Duke University, Durham 

Key Wonis - Combinatorial-model type, dependability, fault- 
tree, generalized stodmhc ' Petri net, Markov-model type, reliabii 
block diagram, reliability graph, stochastic reward net. 

Reader Aids - 
General purpose: Widen the state-of-the-art 
Special math needed for explanations: Discrete mathematics 
Special math needed to use results: Same 
Results useful to: Reliability modelers 

Summary & Conclusions - This paper formally establishes 
a hierarchy, among the most commonly used types of dependability 
models, according to their modeling power. Among the com- 
binatorial (non-state-space) model types, we show that fault trees 
with repeated events are the most powerful in terms of kinds of 
dependencies among various system components that can be model- 
ed (which is one metric of modeling power). Reliability graphs are 
less powerful than fault trees with repeated events but more power- 
ful than reliabrrity block diagrams and fault trees without repeated 
events. By virtue of the constructive nature of our proofs, we pro- 
vide algorithms for converting from one model type to another. 
Among the Markov (state-space) model types, we consider 
continuous-time Markov chains, generalized stochastic Petri nets, 
Markov reward models, and &ochasW ' reward wts. These are more 
powerful than combinatorial-model types in that they can capture 
dependencies such as a shared repair facility between system com- 
ponents. However, they are analytically tractable only under cer- 
tain distributional assumptions such as exponential failure- & 
repair-time distributions. They are also subject to an exponential- 
ly large state space. The equivalence among various Markov-model 
types is well known and thus only briefly discussed. 

1. INTRODUCTION' 

Fault-tolerant computer systems are used in a variety of 
applications that require high reliability or availability. For in- 
stance, computer systems in flight-control in aircraft & 
spacecraft require that the system provide service, without fail- 
ing, until the end of mission. Such systems have a high reliability 
requirement. On the other hand, computer systems in database 
applications and communication networks are required to be 
operational for as high a fraction of time as possible (there is 
no critical mission time in this case). Such systems are required 
to possess high availability. Laprie [ 11 coined the term depen- 
dability as a measure of the quality, correctness, and continui- 
ty of service delivered by a system. Dependability encompasses 
measures such as reliability, availability, and safety. 

Over the years, several model types such as reliability block 
diagrams, fault trees, and Markov chains, have been used to 
model fault-tolerant systems and to evaluate various dependabili- 
ty measures. These model types differ from one another not 
only in the ease of use in a particular application but in terms 
of modeling power. For instance, a series-parallel2 system is 
reasonably modeled by a series-parallel reliability block 
diagram. Similarly, fault trees are more intuitive in capturing 
how a component failure propagates into a higher level sub- 
system or system failure. Thus some model types lend 
themselves easily to model certain kind of behavior of systems. 
Modeling power of a model type is determined by the kinds 
of dependencies within subsystems that can be modeled and the 
kind of dependability measures that can be computed. For in- 
stance, if various components of a system share a repair per- 
son (repair dependency among components), then FT or RBD 
cannot easily be used to model the availability of this system. 
Markov chains and stochastic Petri nets can easily model such 
a repair dependency. 

From a variety of model types, a particular model type 
is chosen to specify a model. The choice of a suitable model 
type is determined by factors such as: 

Constraints 

Familiarity of the user with the model type 
The model type supported by the available modeling tool-kit 

Choices 

Ease of use in a particular application 
The kind of system and system behavior to be modeled 
The measure of system behavior to be computed 
Conciseness and ease of model specification 

This paper analyzes the choices category and ignores the 
constraints category (although it is obviously important in some 
situations). The modeler's decision process can be greatly 
simplified by comparing model types according to: 

modeling power 
conciseness of model specification. 

Little has been done to compare formally the dependability- 
model types. Ref [2,3] summarize the dependability-model types. 
These studies informally discuss model types, the kinds of 
dependencies that can be modeled by them, and dependability 
measures that can be evaluated using these model types. However, 

'Acronyms, nomenclature, and notation are given at the end of the 
Introduction. 
'The terms, series / parallel are used in their logicdiagram sense, ir- 
respective of the schematicdiagram or physical-layout. 
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to the best of our knowledge, there has been no formal com- 
parative evaluation of model types except for the following 
studies. 

Using probabilistic arguments, Shooman [4] showed the 
equivalence of RBD & FT (without repeated events); ie, any 
system that can be modeled by RBD can also be modeled by 
FT and vice-versa. 
Hura & Atwood [5] showed how Petri net models can repre- 
sent s-coherent fault trees. They showed that an equivalent 
Petri net representation allows study of dynamic behavior of 
the model and offers more insightful treatment of fault detec- 
tion & propagation. However, they do not show that Petri 
nets can model certain systems which can not be modeled by 
FT. 4 

This paper is mainly concerned with the modeling power 
of the following dependability-model types: 

reliability block diagrams 
fault trees without repeated events 
fault trees with repeated events 
reliability graphs 
continuous-time Markov chains 
generalized stochastic Petri nets 
Markov reward models 
stochastic reward nets. 

We compare the model types and establish a hierarchy of model 
types on the basis of their modeling power. For example, to 
compare model types A & B, we - 

either provide an algorithm that converts any instance of 
model type A to an equivalent instance of model type B (and 
vice-versa) , 
or prove that not every instance of model type A can be con- 
verted to an equivalent instance of model type B. 

Some of the relationships our study reveal are obvious and some 
are not so obvious. Our aim is to provide a modeler with a power- 
hierarchy of dependability-model types which enable the modeler 
to select from a variety of model types for a given problem. 

Section 2 describes the fault-tolerant multiprocessor system 
that is the illustrative example in this paper. Section 3 describes 
combinatorial-model types. Section 4 establishes power- 
hierarchy among combinatorial-model types. Section 5 briefly 
discusses Markov-model types and compares them to 
combinatorial-model types. Section 6 shows the overall power 
hierarchy. 

Acronyms-’ 

CTMC 
FT 
FTRE 
GSPN 
MRM 
RBD 
RG 
SRN 

continuous time Markov chain 
fault tree (without repeated events) 
fault tree with repeated events 
generalized stochastic Petri net 
Markov reward model 
reliability block diagram 
reliability graph 

Notation 

Mi,  Pi 
N interconnection network 
U,  I/ 
G reliability graph 
e;, wi 
Gi 
Di j  
e 
px ,y ,  pi,.x,y [path, subpath i] from node n to node y in a 

si 

oi 
Pi 
f i j  
ri rate associated with ti 

Ci component i 
hi, pi 
ri 

Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 

[memory, processor] module i 

set of [nodes, edges] in a digraph 

[edge, node] i in a reliability graph 
gate i in a fault tree 
disk j of processing subsystem i 
number of edges in a reliability graph 

reliability graph 
state i of a CTMC 
initial probability of being in si 
place i in a Petri net 
transition from p i  ( i  # 0) to pj  in a Petri net 

immediate transition between place po and place pi  

[failure, repair] rate of Ci 
reward rate associated with state si of CTMC. 

2. FAULT-TOLERANT MULTIPROCESSOR SYSTEM 
AN EXAMPLE 

A fault-tolerant multiprocessor system is a running exam- 
ple in this paper. Figure 1 shows the basic multiprocessor ar- 
chitecture; it consists of two processors P I  & P2, each with a 
private memory MI & M2 respectively. A processor and its 
memory form a processing unit. Each processing unit is con- 
nected to a mirrored-disk system. This forms a processing sub- 
system. Both processing units are connected via an intercon- 
nection network N .  The system is functional while N is func- 
tional and at least one of the processing subsystems is functional. 
For a processing subsystem to be functional, the processor, 
memory module, and at least one of the two disks must be func- 
tional. For simplicity & illustration, we restrict ourselves to this 
2-processor system. This architecture and the corresponding 
models are easily scaled to many processors. 

3. COMBINATORIAL MODEL TYPES 

3.1 Reliability Block Diagrams 

RBD fall into the category of combinaforiul (also known 
as non-sfufe-space) model types [2, 31. They map the opera- 
tional dependency of a system on its components and not the 
actual physical structure. In Shooman’s [4] words, RBD repre- 
sent the probability-of-success approach to system modeling. 

stochastic reward net. %e singular / plural of an acronym are always spelled the same. 
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U 
Figure 1. Fault-Tolerant Multiprocessor System 

The subsystem representing series components implies that 
failure of any component results in failure of that subsystem. 
The subsystem representing parallel components implies that 
only the failure of all the components results in failure of that 
subsystem. Figure 2 shows the RBD model for the fault-tolerant 
multiprocessor. 

1 

. 

Figure 2. RED Model of the Multiprocessor System 

Some researchers have used RBD with repeated blocks [6, 
71. However, we use RBD without repeated blocks. 

3.2 Fault Trees Without Repeated Events 

Like RBD, a FT is also a combinatorial-model type and 
maps the operational dependency of a system on its components. 
However, unlike RBD, FT represent a probability-of-failure ap- 
proach to system modeling [4]. The phrase ‘without repeated 
events’ means that inputs to all the gates are distinct. Figure 
3 shows the FT model for the fault-tolerant multiprocessor. 
Failure of a component implies that the corresponding input to 
the gate becomes True. The output of an OR gate is False iff 
all inputs are False. The output of an AND gate is True iff all 
inputs are True. The output of the top gate in the FT tells whether 
the system is operational or not. We allow only AND & OR 
gates in the fault trees (FT & FTRE) we consider in this paper. 

Many authors have proposed extensions to FT, eg, allow- 
ing repeated events. Some of them have included gates such 
as NOT, EXOR, PAND (priority AND), kOfn, and some 
special gates such as cold spare, functional dependency, and 
sequence enforcing [8]. Some of these extensions enhance the 
modeling power of fault trees and some simply increase the ease 
of use. We consider fault trees with repeated events next. 

3.3 Fault Trees with Repeated Events 

Fault trees in which ‘gates are allowed to share inputs’ are 
FTRE, and are more general than an FT. Consider a simple 
variation on the base multiprocessor system shown in figure 1 : 
there is a shared memory M3 between P1 & Pz. Figure 4 shows 
the new system. If memory module Mi fails, then processor Pi 
uses memory module M3 and continues to work; M3 can also 
be shared by both P1 & P2 if both M I  & M2 fail. Neither RBD 
nor FT, as we have described, can model the dependability of 
this system. FTRE can model the dependability of this system 
as shown in figure 5 .  This example shows that FTRE possess 
higher modeling power than FT or RBD because any RBD or 
FT model can also be modeled by FTRE. As mentioned in sec- 
tion 3.1, RBD with repeated blocks [6, 71 (analogous to the 
repeated events in a fault tree) have been used. RBD with 
repeated blocks have the same modeling power as FTRE. 

Dzi DZZ Dl1 D12 

Figure 3. FT Model of the Multiprocessor System 

U 
Figure 4. Multiprocessor System with Shared Memory 
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Figure 5. FTRE Model of the Multiprocessor System 
Shared Memory 

provide an algorithm for converting an instance of a model type 
into an instance of another model type. Proofs in case b are 
given by providing a counterexample, viz, showing an instance 
of a model type for which no equivalent instance of another 
model type exists. 

4.1 FT to RBD 

Shooman [4] has shown that a RBD is equivalent to a FT 
without repeated events, but did not provide a conversion 
algorithm. It is simple to do so. Comparison of the RBD in 
figure 2 and the FT in figure 3 reveals the similarities among 
the two model types. These similarities provide the algorithm 
for converting a FT model to an equivalent RBD model. The 
algorithm is given in PASCAL-like pseudo-code in figure 7. 
The FT is converted to the equivalent RBD by starting the 
algorithm as FT-to-RBD (roof) where roof is the root node of 
the FT. 

with 

3.4 Reliability Graphs 

Graphs have been extensively used as model types to model 
network reliability [9]. We consider a special class of digraphs 
as a model type in the software tool SHARPE [lo]. A reliabili- 
ty graph G = ( U, V) is an acyclic digraph. There are two special 
nodes labeled source & sink in U. The source node has no in- 
coming edges and the sink node has no outgoing edges. V has 
2 kinds of edges: component-edges and oo-edges. For each com- 
ponent, there is at most 1 edge in the RG, ie, repeated edges 

Algorithm FT-to_RBD(x) 
begin 

if (x # NIL) 
then if (x = = AND gate) 

then x - PARALLEL construct 
else if (x = = OR gate) 
then x - SERIES construct 
foreach y E child[x] do 

FT-to_RBD ( y ) 
end 

are not allowed. Failure of a component is indicated by failure 
of an edge; =-edges and nodes do not fail. The system model- Figure 7. Conversion Algorithm for FT to RBD 

ed by an RG is operational as long as there is at least 1 path 

This algorithm is simply a preorder traversal of the FT. If 
the node encountered is a gate (AND or OR), then it is converted 
to appropriate construct (PARALLEL and SERIES, respective- 

with-no failed edge from the source node to the sink node. Figure 
6 shows the RG of the multiprocessor system with shared 
memory. 

ly).-If the node is a component (a leaf), then do nothing. This 
yields the RBD. There are n leaves in the FT; thus there are at 
most n- 1 gates. Every step of the algorithm uses 0(1) time. 
Hence, the time complexity of this algorithm is O ( n ) .  

4.2 RBD to FT 

An RBD can be similarly converted to a FT in a reciprocal 
fashion. The algorithm is in figure 8. The time-complexity of 
this algorithm is O ( n )  as well. 

Figure 6. RG Model of the Multiprocessor System with Shared 
Memory Algorithm RBD-to_FT(x) 

begin 

then if (X = = PARALLEL construct) 
then x - AND gate 
else if (X = = SERIES construct) 

4. HIERARCHY AMONG COMBINATORIAL 
MODEL TYPES 

then x - OR gate 
foreach y E child[x] do 
RBD-to_FT(y) 

This section establishes power-hierarchy among the 4 
combinatorial-model types considered so far (RBD, FT, FTRE, 
RG) by proving either a) that every instance of a model type 
can be converted into an instance of another model type, or b) 
the counter-assertion. Proofs in case a are constructive, ie, we 

end 

Figure 8. Conversion Algorithm for RBD to FT 
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4.3 FT to RG 

We now show that any FT can be converted to a RG. We 
prove this claim by an algorithm to convert a FT to an equivalent 
RG . 

Assumption 

1. In a FT, a node is either a gate or a component. 4 

The algorithm is in pseudocode in figure 9. We briefly describe 
it below. 

Algor it h m FT-to_RG(x) 
begin 

if ( x  # NIL) 
then if ( x  = = root) 

then insert edge (source, sink) labeled root in Vr,g 
else if ( x  = = AND gate) 
then delete directed edge (u ,v )  labeled x from Vr,g 

foreach y E child[x] do 
insert directed edge ( u , v )  labeled y in Vr,g 

else if ( x  = = OR gate) 
then delete directed edge (u ,v )  labeled x from Vr,g 

foreach y E child[x] do 
if (y is the last remaining child of x )  then w - v 

insert directed edge (u ,w)  labeled y in Vr,g 
U - w  

foreach y E child[x] do 
FT-to_RG(y) 

end 

Figure 9. Conversion Algorithm for FT to RG 

Initialize the RG consisting of only source & sink nodes 
connected by an edge labeled with the name of the root node 
(a gate) of the FT. Now perform a preorder traversal of the 
FT starting from the root node. The node at any step of the 
tree traversal is the current node. Let the current node be a gate 
labeled G with k inputs. If it is an AND gate, then replace the 
directed edge (u ,v )  (directed from u to v )  labeled G in the par- 
tially constructed RG by k edges el ,e2,. . . . ,ek between u & v 
with the same direction as the original edge. Assign the labels 
of the nodes (gates or components) from which the inputs to 
gate G are coming from to each of these edges. If it is an OR 
gate with k inputs, then replace the edge (u ,v )  labeled G in 
the partially constructed RG by a pathp = (e l ,e2,  ...., ek) of 

(wk-1.v). Assign the labels of the nodes (gates or components) 
from which the inputs to gate G are coming, to each of these 
edges. If it is a component, then do nothing. Continue with 
preorder tree traversal until all the nodes have been traversed. 

This algorithm yields an equivalent RG. For n components 
in the FT, there are at most n- 1 gates (internal nodes). For 
each internal node, an edge in RG is inserted once and deleted 
once. For each external (leaf) node, an edge is inserted in the 
RG once. An edge in the partially constructed RG can be iden- 
tified by its label in O (  1) time, by maintaining an array of 
pointers indexed by the label of the gatekomponent. Hence dele- 

k edges where el = (u ,wl) ,  e2 = ( w 1 , w 2 ) ,  ....., ek = 

tion & insertion of each edge in the partially constructed RG 
can be done in 0(1) time. This implies that for each node en- 
countered in the preorder traversal of the FT, 0(1) work is done. 
The time complexity of this algorithm is therefore 0 (n) since 
the FT consists of at most 2n- 1 nodes. 

sink src 

sink 
SW 

Figure 10. Conversion of the FT Model of Multiprocessor 
System to RG Model 

For the FT model of the multiprocessor system in figure 
3, figure 10 shows the steps taken by this algorithm. Due to 
preorder traversal of this FT, the nodes are looked at in the 
following order: 

Omitting the nodes, 

corresponding to the components (since we do nothing at these 
nodes), we are left with gates, 

The first (top) element of figure 10 shows the initialization of 
the RG. Each subsequent element shows the partially constructed 
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RG at the end of each step when the gates are encountered in 
the order ( G I ,  G2, G,, G ~ , G ~ , G s ) .  

4.4 RG to FT 

We have shown that any FT can be converted to an 
equivalent RG. Since RBD & FT can be converted to one 
another, it implies that any RBD can also be converted to an 
equivalent RG. We now show that the converse is not true: not 
every RG can be converted to an equivalent FT. We prove this 
by showing that an example RG (shown in figure 11) cannot 
be converted to an equivalent FT. 

n 

Figure 11. An Example RG Model Which Cannot be Converted 
to a FT 

For every RG, there exists an equivalent Boolean expres- 
sion that captures the operational dependence of the modeled- 
system on the system-components. The literals of this Boolean 
expression represent the system-components. In the RG in figure 
11 the components are labeled A,B,C,D,E. Assign to each com- 
ponent a logical value of ‘0 when it is operational’ and ‘1 when 
it is failed’; then the Boolean expression for this RG is: 

S = ( A + D ) ( A + C ) ( B + C ) ( B + E ) .  (1) 

When the value of (1) is 0, the system is operational; otherwise 
the system is failed. Following the principles of minimal OR- 
AND (or AND-OR) realization (where the total number of in- 
puts to a gate is minimized) of a Boolean expression [ 1 13, one 
can show that (1) cannot be reduced to an equivalent form in 
which all literals occur only once. Therefore (1) cannot be 
represented by a FT (which is similar to a combinational cir- 
cuit) in which no input is repeated. 

We have shown, by an example, that not every RG can 
be converted to an equivalent FT. Since FT are equivalent to 
RBD, this also proves that not every RG can converted to an 
equivalent RBD. 

4.4 RG to FTRE 

The basic idea behind this algorithm is to enumerate all 
the simple paths from the source node to the sink node. This 
is easily done using a breadth-first search [12]. For every path, 
construct an OR gate with inputs from all the components which 
appear on this path (oo-edges are ignored). Then construct an 
AND gate (root gate) such that the output of each OR con- 

structed in the previous step is input to this gate. This is the 
equivalent FTRE for the RG. Events are repeated if different 
paths are not edge-disjoint, ie, different paths have edges in com- 
mon. All the paths can be enumerated using a naive algorithm 
which takes exponential (0( 2e) ) time ( e  is the number of 
edges in the RG) since there could be as many as O(2e) 
distinct paths. More sophisticated algorithms which yield more 
compact FTRE can be derived based on min-paths of the RG 
which can be computed using the Tarjan [13] algorithm. The 
pseudo-code of a generic algorithm to convert a reliability graph 
into an FTRE which uses some path enumeration algorithm is 
in figure 12. Our aim is simply to establish that a RG can be 
converted to a FTRE, not to provide optimal algorithms for 
conversion. 

Algorithm RG-toJ;TRE( RG) 
begin 

enumerate all the paths from source to sink in RG 
let the paths be PI,P2,. . . ,PK 
let Pi = (ei,.l,ei,.2,. . .. ,eiNi} 
foreach path Pi do 

construct gate Gi - OR eitl,eit2 ,.... ,eiNi 
construct gate Gsys - AND G I ,  G2, ...., GK 

end 

Figure 12. Conversion Algorithm for RG to FTRE 

The correctness of this algorithm can be argued as follows. 
A system modeled by a RG is operational as long as there is 
a path from source node to the sink node. A failed edge in a 
RG blocks all the paths it appears on. This can be stated as: 
a system is operational iff there is at least one path which has 
no failed edge. This is precisely what the above constructed 
FTRE captures. For the RG of the base architecture with shared 
memory (figure 6), the paths possible from the src to the sink 
are : 

Figure 13 shows the equivalent FTRE, as constructed by 
algorithm RG-toJ;TRE. It must be realized however, that a 
shared edge among different paths in a RG does not always im- 
ply that an equivalent FT (without repeated events) does not 
exist. An example of this appears in figure 14, where the edge 
labeled C appears on both the paths from src to sink. 
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A 

Figure 13. Conversion of the RG Model of Multiprocessor 
System to FTRE 

A B  

Figure 14. An Equivalent FT without Repeated Nodes for an 
RG with a Shared Edge 

4.6 FTRE to RG 

Section 4.5 proved that any RG can be converted to an 
equivalent FTRE. This section shows that the converse is not 
true: there does not always exist an equivalent RG for every 
FTRE. We prove this claim by means of a counter-example. 
Consider a TMR system with 3 components A,B,C. The system 
is operational as long as at least 2 components are operational. 
Figure 15 shows a FTRE model of this system. 

I 

B C  A C  A B  

Figure 15. FTRE Model of a TMR System 

This FTRE can not be converted to a RG. To prove this, 
assume that an equivalent RG does exist. Let the component- 

edges representing components A,B,C in this RG be ea = 
(uapva), eb= (ub,vb)p ec = ( ~ o V C ) ,  btpa,bp Pb,c,  Pa,c be the 
paths from the source to the sink which includes edges ( ea,eb), 
( eb,ec),  (ea,ec) respectively. Thus, 

Pira.6, Pi:b,c, pi:a,c ( i  = 1,2,3) are paths consisting only of 
--edges. The paths Pa,b, Pb,c, pa,c are not necessarily edge- 
disjoint, ie, there could be edges common to more than one path. 
Figure 16 shows this RG. 

-bc 

sink 

Figure 16. Counter-Example for Conversion of an FTRE to an 
RG 

Given these 3 paths, there exists another path from source 
to sink: 

This Pb consists of only 1 component-edge eb; the rest are 
oo-edges. This implies that there exists a path from the source 
to the sink such that it consists of only 1 component edge. This 
in turn implies that the system is operational if B is operational 
even though both A & C can have failed. This contradicts our 
assumption about the operational dependency of the system on 
A,B,C. Therefore, the assumption that an equivalent RG ex- 
ists for this FTRE is incorrect. Q. E. D. 

It can be similarly shown that any system which has a 
kOFn gate where k > liub( %n) (at least k out of n components 
must be operational for the system to be operational) can not 
be modeled by a RG. 

As another example, consider the multiprocessor system 
with shared memory. If we impose the constraint that memory 
module M3 can be used by only one processor PI or P2, then 
failure of only one memory module MI or M2 could be 
tolerated, ie, failure of both MI & M2 leads to system failure. 
It is easy to construct the FTRE model for such a system. 
However, we claim that a RG model for this system can not 
be constructed. 

We have established the hierarchy among combinatorial- 
model types - from most powerful to least powerful: 
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FTRE 

RG 

RBD/FT (these are equivalent to each other). 

Figure 17a shows the CTMC of a system that consists of 
2 components C1 & C2 which share a repair facility with 
priority repair discipline. The failure rate of Ci is X i  and the 
repair rate is pi. Cl has repair priority over C2: if Cl fails while 
C, is being repaired, then repair of C2 is preempted, repair of 
C1 begins, and the repair of C2 resumes after C1 is repaired. 
Assume further that this system can be in one of states 1,2,3 
at time zero with probabilities wl,w2, w3, respectively; figure 
17b shows the equivalent GSPN model. 

5. MARKOV MODEL TYPES 

This section considers some Markov-model types used for 
dependability modeling: 

continuous-time Markov chains 
generalized stochastic Petri nets 
Markov reward models 
stochastic reward nets. 
J 

Markov models can handle some dependencies, in a system, A 2  s3 s5 
which combinatorial models cannot [2, 31. For example, con- P1 
sider FTRE model of the multiprocessor system. If we wished 
to model the system availability when there is a single repair 
person for all the components, then we could not do so by an 
FTRE. Such repairdependency can not be modeled by any 

easily model such dependency. Dugan et a1 [14] show that an 
FTRE model can be converted to a CTMC. This establishes 
that CTMC are more powerful than FTRE. 

into each other are known because GSPN (SRN) are solved by 
converting them into CTMC (MRM) and solving them. 

model types and the conversions between them. For a com- 
parison of CTMC & MRM and a discussion of how MRM can 
be used for reliability analysis using special reward rate 
assignments, refer to [15]. 

combinatorial-model type, but a Markov chain or a GSPN can P4 

Po 

Most of the algorithms for converting Markov-model types 

However, for completeness, we briefly discuss various Markov- 

(b) 

P5 

Figure 17. Converting a CTMC to a GSPN 

5.1 GSPN to CTMC 

Ajmone-Marsan et a1 [16] showed that CTMC are 
equivalent to GSPN: for every GSPN model, an equivalent 
continuous-time Markov chain exists and vice-versa. They pro- 
vided an algorithm which converts a GSPN to a CTMC. Basical- 
ly, a reachability graph of the GSPN is constructed. Each tangi- 
ble marking of this reachability graph becomes a state of the 
equivalent CTMC. For more details, refer to [16]. 

5.2 CTMC to GSPN 

Converting a CTMC to a GSPN model is fairly obvious. 
For each state si of the CTMC, construct a place p i .  Replace 
each arc ( si,sj) with rate rid of the Markov model by a transi- 
tion f i j  of rate rid with an incoming arc from pi  and an outgo- 
ing arc to pi. If there is a single initial state sinit of the CTMC, 
then a single token must be put in pinit. If the CTMC has 
several initial states sk,sk+ l.. . . ,sm with probabilities 
q . , W k + l r . . . , ~ m ,  then a new place po is created with a single 
token, and po is connected to pk,pk+ l,. . . ,pm via immediate tran- 
sitions tO,k,to,k+ l,. .. ,to,,, with probabilities W k , U k +  . . ,U,,,. 

5.3 SRN to MRM 

Ciardo et al [ 171 formalize SRN and provide an algorithm 
to convert an SRN into an equivalent MRM. In an SRN, the 
rewards are specified using a reward function. A typical reward 
function is: “If therC are x tokens in place p, then reward rate 
is r,, else if there are y tokens in place p ,  then reward rate is 
r,,, else reward rate is rZ.” Based on this reward function, a 
reward rate is associated with each tangible marking of the SRN. 
Each tangible marking corresponds to a state of the underlying 
CTMC. When reward rates are associated with each state of 
the CTMC, it becomes an MRM. 

5.4 MRM to SRN 

Conversion from MRM to SRN is divided in two parts: 

1. Convert the states of the MRM to the SRN structure 
of places & transitions. This is done exactly the same way as 
a CTMC is converted to a GSPN (see section 5.2). 

2. Convert the reward rate specification of the MRM to 
4 reward rate specification of the SRN. 
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We describe this procedure using the example in figure 17. Let 
ri be the reward rate associated with state si of the CTMC in 
figure 17a. According to the procedure in section 5.2 there is 
only one token in the resulting SRN, and for each state si of 
the MRM, there is a place pi  in the SRN. The equivalent 
reward rate function for the SRN is then straight forward. It 
has the following form for all possible values of i :  “If there 
is one token in place p i ,  then reward rate is ri”. 

6. POWER HIERARCHY 

Assumption 

2. Failure & repair time distributions of system components 
are exponentially distributed. 4 

G S P N T ,  CTMC S R N Z  MRM 

\\ FTRE // 
t 

RG 

/\ 
RBD FT 

Figure 18. Power Hierarchy Among Dependability-Model 
Types 

Figure 18 shows the overall hierarchy of dependability- 
model types as established in sections 3 - 5.  However, tradeoffs 
exist between Markov & combinatorial-model types. For in- 
stance, to arrive at this power hierarchy, we added assumption 
2. Whereas analysis of combinatorial-model types does not put 
any restrictions on the nature of distributions, the Markov-model 
types can be extended but usually become intractable under non- 
exponential distributions. Semi-Markov chains have often been 
used in reliability modeling to allow for non-exponential 
distributions but only in a restrictive manner. Markov regen- 
erative processes hold more promise there [ 181. 

There also exists a tradeoff in the kinds of dependability 
measures that can be computed from different model types. 
For example, availability & reliability can be computed relative- 
ly easily using combinatorial-model types. However, com- 
puting the system mean time to failure using combinatorial- 
model types can be quite complex if distributions are non- 
exponential. Availability of repairable systems can be model- 
ed by combinatorial-model types only under the assumption 
that each system component has an s-independent repair per- 
son. However, Markov-model types can model the scenarios 
where a repair person is shared among various system 
components. 
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