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Abstract

This study is a synthesis of substrate specific kinetics and a mass and energy model to predict the process dynamics of the
aerobic degradation of synthetic food waste (SFW). The model is validated against pilot scale experimental data obtained from
two previous studies. In all the observations the model tended to over predict values of the state variables. The maximum rates
of oxygen uptake, cumulative oxygen uptake, and the maximum process temperature were all over predicted. The sensitivity of
the model to two key parameters, the specific O2 uptake, gO2

, and the respiration quotient, br, was also investigated. It was noted
that the smaller values of respiration quotient produced better estimates later in the process. The maximum rate of O2 uptake was
insensitive to changes in specific oxygen uptake rate at low aeration rates and more sensitive at high aeration rates. Discrepancies
between the model predictions and actual data are explained by the violations of basic assumptions of homogeneous bed
conditions. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Composting is a microbial process that decomposes
organic wastes into a stable humic product. It is a
complex process that involves a highly variable, hetero-
geneous substrate, and the metabolic activity of a di-
verse microbial population. In aerobic composting, air
is forced through a high-solids organic matrix to sup-
port aerobic metabolic activities. The products of the
metabolic activities are water, carbon dioxide, ammo-
nia, and heat. Thus, composting is a complex biopro-
cess that involves many coupled physical and biological
mechanisms. These coupled, and often nonlinear, mech-
anisms yield a broad spectrum of process behaviours
that are challenging to analyze both empirically and
theoretically. Mathematical modeling provides one ap-
proach for understanding the dynamic interactions be-
tween these coupled mechanisms, and provides a
framework for rational process design.

The basic approach used to model composting pro-
cesses is to couple empirically derived substrate degra-
dation kinetics with mass and energy balances for the
salient physical state variable such as temperature (T),
moisture content (M), oxygen mass fraction (XO2

), and
humidity (H) [1–10]. Rates of substrate degradation,
oxygen (O2) uptake, or carbon dioxide (CO2) evolution
have been correlated with T, M and XO2

to obtain
empirical substrate degradation kinetics [1,6,11–13].
Richard et al. [13] evaluated the four most common
models used to simulate the effect of temperature on
microbial growth and found that the parameters ob-
tained from the CTMI model were more consistent
over the duration of the degradation process [1,6,14,15].

Mass and energy balances have been developed for
the compost process and translated into a number of
mathematical models [1–10]. All of these models as-
sume that substrate degradation kinetics is a first order
process where the rate constants are a function of the
physical state variables. The major differences in these
models are the assumptions regarding heat and mass
transport mechanisms, and whether the process is mod-
eled as a lumped parameter system (system of ordinary
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Table 1
Model parameters

ReferencesModel parameter and units Value

Tmax (°C) [20]71.6
Tmin (°C) [20]5

[20]58.6Topt (°C)
(RCO2opt)max (CO2/kg VS per day) 178 [20]

[20]22RCO2slow (CO2/kg VS per day)
[20]br (gO2/gCO2) 1
[6]16 000DHrxn (kJ/kg)

1.5gO2
(kg O2/kg BVS oxidized) [20]

[6]2250hfg (kJ/kg)
1.8673cv (kJ/kg per K) [6]

cw (kJ/kg per K) 4.1868 [6]
[6]1.0132ca (kJ/kg per K)
[6]cb (kJ/kg per K) 1.8
[6]0.301rb (kg/l)

o 0.5 [21]

transport mechanisms coupled with a heat generation
term [2,7–9], while others have modeled the process
using a lumped parameter energy balance with evapora-
tive cooling as the major heat transport mechanism
[1,4,6,10].

The objective of this study is to combine the new
process kinetics developed by Richard et al. [13] with
the mass and energy equations developed by Oppen-
heimer [10] to create a model of food waste decomposi-
tion. This model was validated using the pilot scale
data of VanderGheynst et al. [16] and Walker et al. [17]
to determine its effectiveness in predicting process
dynamics.

2. Modeling and simulation methods

In the composting process several factors influence
the rate of biological volatile solids (BVS) oxidation.
Through mass and energy balance, process chemistry,
transport processes, and thermodynamics, a set of
equations describing a well-mixed composting process
were derived. BVS oxidation was modeled as a function

differential equations) or distributed parameter system
(system of partial differential equations). Several re-
searchers modeled composting as a distributed parame-
ter problem assuming either bulk or conductive

Table 2
Comparison of measured and predicted Tb,maxs for a range of brs, aeration rates, and initial moisture contents

Aeration rate (l/min per kg)Initial moisture (%) Tb,max (°C) Difference (%)

Measured [16] Predicted

br=1 br=0.84 br=1.36 br=1

71.371.2640.0645 11.371.1
12.571.170.770.9630.15

69.970.361 70.70.31 15.2
68.9 67.9 69.8 18.80.63 58

55 71.10.06 70.9 71.2 −3.974
690.15 70.8 70.5 71.0 2.6

0.31 7.770.569.470.065
68.2 66.7 69.4 15.60.63 59

Table 3
Comparison of measured and predicted RO2,maxs measured over 0–30 cm above plenum for a range of brs, aeration rates, and initial moisture
contents

Difference (%)RO2,max (g/h per kg VS)Aeration rate (l/min per kg)Initial moisture (%)

PredictedMeasured [16]

br=0.84 br=1.36 br=1br=1

45 1.030.06 1.02 1.03 −42.81.8
2.51 2.46 2.54 32.10.15 1.9

1324.974.234.6420.31
8.444.996.51 97.33.30.63

1.60.06 1.00 0.99 1.02 −37.555
0.15 2.2 2.39 2.29 2.47 8.6

53.74.703.684.150.31 2.7
0.63 3.6 5.49 4.30 6.84 52.5
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Table 4
Comparison of measured and predicted COCs at 100 h for a range of brs, aeration rates, and initial moisture contents

Initial moisture (%) COC after 50 h (g/kg VS)Aeration rate (l/min per kg) Difference (%)

Measured [16] Predicted

br=1 br=0.84 br=1.36 br=1

20 12.545 11.90.06 13.0 −37.5
0.15 26 27.6 23.9 30.9 6.2
0.31 21 41.9 34.5 45.5 99.5

27 49.4 37.70.63 59.7 83.0
0.0655 17 11.5 10.5 12.4 −32.4

25 22.4 17.70.15 27.3 −10.4
0.31 25 32.3 21.5 46.1 29.2

320.63 37.1 22.0 58.7 15.9

Table 5
Comparison of measured and predicted COCs at 100 h for a range of brs, aeration rates, and initial moisture contents

Aeration rate (l/min per kg)Initial moisture (%) COC (g/kg VS) Difference (%)

Measured [16] Predicted

br=1 br=0.84 br=1.36 br=1

48 48.145 47.90.06 48.3 0.2
54 79.3 77.5 81.9 46.90.15
58 128 121.30.31 135 120

0.63 77 201 181 225 161
0.0655 33 55.7 55.0 56.2 68.8

56 85.1 81.90.15 88.0 52.0
60 129 119 138 1150.31
73 192 166 2190.63 163

Table 6
Comparison of measured and predicted RO2,maxs for a range of brs, aeration rates, and initial moisture contents

Initial moisture (%) RO2,max (g/h per kg VS)Aeration rate (l/min) Difference (%)

Measured [17] Predicted

br=1 br=0.84 br=1.36 br=1

1.5 1.8245 1.8125 1.84 19.7
50 1.9 3.51 3.40 3.60 83.8

100 1.5 5.78 5.17 6.59 285.3
1.7 1.76 1.7325 1.8055 3.5
3.0 3.2650 3.08 3.45 8.3
3.1 4.95 4.19100 5.90 60.7

of temperature, moisture content, and oxygen mass
fraction. These state variables are the most important
for representing the compost process dynamics.

2.1. Moisture content

It was assumed that the only inflow of moisture to
the reactor volume was water vapour in the saturated
air used for aeration. This saturation assumption for

the influent air need not be strictly satisfied because
humidity ratio at the higher temperature of the com-
post process is much greater than the humidity ratio at
ambient temperature. However, experiments conducted
by VanderGheynst et al. [16] and Walker et al. [17]
were done for a fixed aeration rate at a constant
temperature with saturated air. Because of the low
aeration, and the relatively high moisture content of the
organic matrix, it was assumed that there was no
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resistance to the transport of moisture from the or-
ganic matrix to the air. Thus, the air is assumed satu-
rated across the reactor bed. The saturated air
assumption is often made when formulating compost
models [19], and has been shown to be a good as-
sumption for moisture rates above 45% wet basis
(w.b.) [6,18]. It was also assumed that water is gener-

ated only in the process of BVS oxidation, and is
related to this oxidation with process stoichiometry by
a constant yield coefficient yH2O/BVS. If the dry bulk
density, rdb, of the matrix is assumed constant, and
changes in the working volume of the reactor are
negligible, the storage of water in the organic matrix
is modeled as follows:

Table 7
Comparison of measured and predicted COCs at 100 h in mixed reactors for a range of brs, aeration rates, and initial moisture contents

Aeration rate (l/min)Initial moisture (%) COC (g/kg VS) Difference (%)

PredictedMeasured [17]

br=1br=1.36br=0.84br=1

25 65.7 65.4 64.4 66.0 -0.545
50 82.5 101 97.5 104 22.4

93.417015015982.2100
55 40.073.470.471.851.325

104 100 10947.3 119.950
100 80.5 156 145 172 93.8

Table 8
Comparison of measured and predicted COCs between 100 and 200 h in mixed reactors for a range of brs, aeration rates, and initial moisture
contents

Aeration rate (l/min)Initial moisture (%) Difference (%)COC (g/kg VS)

Measured [17] Predicted

br=1 br=0.84 br=1.36 br=1

2545 79.7 60.2 58.9 62.1 −24.5
50 162 108 103 115 −33.3

30.0193151168129.2100
2555 107.5 59.2 57.7 61.2 −44.9
50 101.8 105 11299.4 3.1

157 140 184 −6.4100 167.8

Table 9
Comparison of measured and predicted RO2,maxs with and without fm for br=1 and a range of aeration rates and initial moisture contents

Aeration rate (l/min per kg) RO2,max (g/h per kg VS)Initial moisture (%w.b.)

Measured [16] Predicted without fm Prediction with fm

1.0 1.00.0645 1.8
2.5 2.40.15 1.9

4.04.62.00.31
6.5 4.30.63 3.3

0.06 1.655 1.0 1.0
2.42.42.20.15

0.31 2.7 4.2 4.1
0.63 5.13.6 5.5

Predicted with fmAeration rate (l/min) Measured [17] Predicted without fm

1.81.52545 1.8
3.51.9 3.250

1.5 5.8100 4.3
25 1.7 1.8 1.855

3.250 3.0 3.3
100 4.73.1 5.0
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Table 10
Comparison of RO2,maxs for various deviation in gO2

, a range of
aeration rates, and an initial moisture content of 55% w.b.

Deviation in gO2
RO2,max (g/h per kg VS)

(%)

50 (l/min) 100 (l/min)25 (l/min)

3.3728−25 5.89781.799
3.33851.7787 5.2609−10
3.3025 5.1973−5 1.7721
3.25641.7629 4.95370

1.75485 3.1955 4.6849
1.746710 3.1679 4.6275

3.00121.718 4.09525

Fig. 2. Sensitivity of temperature profile to changes in gO2
at an

aeration rate of 100 l/min and initial moisture content of 55%.

Table 11
Comparison of COCs at 100 h for various deviation in gO2

, a range
of aeration rates, and an initial moisture content of 55% w.b.

COC (g/kg VS)Deviation in gO2

(%)

25 (l/min) 50 (l/min) 100 (l/min)

73.3899 107.7464 170.7837−25
162.2218106.2846−10 72.4542

105.2866−5 159.278372.1637
104.31170 156.289771.842

153.2112103.21515 71.493
10 102.097771.1199 150.1423

69.9885 140.909825 98.7227

Fig. 3. Sensitivity of oxygen mass fraction in reactor effluent to
changes in gO2

at an aeration rate of 25 l/min and initial moisture
content of 55%.

Fig. 1. Sensitivity of temperature profile to changes in gO2
at an

aeration rate of 25 l/min and initial moisture content of 55%.

Fig. 4. Sensitivity of oxygen mass fraction in reactor effluent to
changes in gO2

at an aeration rate of 100 l/min and initial moisture
content of 55%.

dMb

dt
=

Ga(Hs(Ta)−Hs(T))−yH2O/BVS(d(BVS)/dt)
rdbVr

(1)

where Ga is the mass flow rate of dry air (kg dry
air/day); Hs(Ta), the saturated humidity of the ambient
air (kg H2O/kg dry air); Hs(T), the saturated humidity
of the air at reactor temperature (kg H2O/kg dry air);
yH2O/BVS, the yield coefficient for water (kg H2O/kg
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BVS oxidized); rdb, the dry bulk density of the solids
(kg dry solids/l); Vr, reactor working volume (l), Ta, the
ambient air temperature (°C) and T is the reactor air
temperature (°C).

Eq. (1) has units of dry basis moisture content per
day or kgH2O/kg dry solids per day.

2.2. Oxygen mass fraction

Oxygen inflow was modeled by assuming that oxygen
only enters the compost matrix through the forced
aeration with ambient air; that air exits the reactor at
the same concentration as the homogeneous reactor
concentration, and that O2 can only be consumed by
the oxidation of BVS. The oxygen stored within the
organic matrix is measured by the oxygen mass fraction
within the pore space of the organic matrix. Changes in
porosity, and reactor working volume were assumed to
be negligible. The change in the oxygen mass fraction in
the matrix, XO2

, was model by:

dXO2

dt
=

Ga(XO2, a−XO2, exit)+yO2/BVS(d(BVS)/dt)
Vrora(T)

(2)

whereXO2, a is the concentration of oxygen in ambient
air (kg O2/kg dry air); XO2, exit, the concentration of
oxygen in the exit flow (kg O2/kg dry air) o, the
porosity; yO2/BVS, the yield coefficient of O2 (kg O2/kg
BVS oxidized); Vr, the working volume of the reactor
(l); Ga, the mass flow rate of dry air (kg dry air/day);
ra(T), the dry air density (kg/l).

Eq. (2) has units of kg O2/kg dry air per day.

2.3. Temperature

Energy is generated during the process of BVS oxida-
tion in the form of heat. It was assumed that BVS
oxidation is the sole source of energy, and that this
production of energy is related to BVS oxidation kinet-
ics through the heat of reaction Hrx which is assumed to
be constant over the course of the simulation. Latent
heat transfer due to the vaporization of water domi-
nates heat loss, and sensible heat loss to the air is
neglected [9,10].

Since there is little or no resistance to heat transfer
from the compost matrix to the air in the compost
vessel, it was assumed that the temperature of the air in
the reactor was in equilibrium with the organic matrix.
The reactor temperature is a good measure of the total
stored energy, where the total heat energy is the sum of
the energy contained in the organic matrix, the dry air,
and in the water vapor. Specific heat and density of
these constituents were held constant. The time rate of
the change of temperature within the reactor is given
by:

dT
dt

=
−Hrx(d(BVS)/dt)−hfgGa(Hs(T)−Hs(Ta))

Vr(ora(T)ca+rdb(cb+Mbcw)+ra(T)Hs(T)cv)
(3)

where Hrx is the heat of reaction (kJ/kg BVS oxidized);
hfg, the heat of vaporization of water (kJ/kg water); Ga,
the mass flow rate of dry air through reactor (kg dry air
per day); Hs(T), the saturated humidity at reactor tem-
perature (kg H2O/kg dry air); Hs(Ta), the saturated
humidity at ambient temperature (kg H2O/kg dry air);
Vr, the working volume of the reactor [l]; o, the poros-
ity; ra(T), the density of dry air at reactor temperature
(kg dry air per l); ca, the specific heat of dry air (kJ/kg
per K); rdb, the dry bulk density of the solids (kg dry
solids per l); cb, the specific heat of the dry solids (kJ/kg
per K); Mb, the moisture content dry basis (kg water/kg
dry solids); cw, the specific heat of water (kJ/kg per K);
cv, the specific heat of water vapor (kJ/kg per K);

The units of the above equation are K per day.

2.4. First-order-reaction kinetics

It has been shown that the Cardinal Temperature
Model with Inflection (CTMI) of Rosso et al. [15]
provided parameters that were more consistent over the
composting temperature range, and, more importantly,
variability in parameters could be attributed to the
microbial processes. Richard et al. [19] used the CTM
model to develop the following model for the rate of
carbon dioxide evolution RCO2

from a synthetic food
waste reactor:

RCO2
=RCO2opt( fT)( fO2

)
� CO2

kg Vs per day
n

(4)

where

fT=

(T−Tmax)(T−Tmin)2

(Topt−Tmin){(Topt−Tmin)(T−Topt)− (Topt−Tmax)(Topt+Tmin−2T)}

(5)

fO2
=

O2

kO2
(T, XH2O)+O2

(6)

kO2
(T, XH2O)=0.79−0.041(T)+0.040(XH2O) (7)

RCO2opt is the optimal CO2 evolution rate (g CO2/kg VS
per day); Tmin, the minimum temperature for system
bioactivity (°C); Tmax, the maximum temperature for
system bioactivity (°C); Topt, the optimum temperature
(°C); T, temperature (°C); XH2O, moisture content
(%w.b.); O2, the oxygen concentration (%)

The optimal rate of CO2 evolution, RCO2opt, was
calculated as follows:

RCO2opt= [(RCO2opt)max−RCO2slow]e[−k(t−t)]+RCO2slow

(8)
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where RCO2slow, is the steady long term degradation (g
CO2/kg VS per day); t, the lag time (day); (RCO2opt)max,
the magnitude of peak degradation rate (g CO2/kg VS
per day); k, first order decay constant (per day). Eq. (4)
was used to define the kinetic framework for BVS
oxidation in a similar way that Haug [6] used a model
for oxygen uptake to define reaction kinetics. First it
was assumed that CO2 evolution and O2 uptake are
related through the process stoichiometry by a respira-
tion quotient br (gO2/gCO2). Then, a specific oxygen
uptake rate, gO2

(kg O2 consumed/kg BVS oxidized),
was assumed. Lastly, a fraction of total BVS included
in the total VS measurement was assumed. This mea-
sure has units of (total BVS/total VS). From this con-
version, the final kinetic parameter, kBVS, emerged.

kBVS=
brRCO2opt

103gO2
(BVS)

( fT)( fO2
) (9)

Eq. (9) is then used to define the first order reaction
kinetics of the system by the following relationship:

d(BVS)
dt

= −kBVS(BVS) (10)

Several parameters in the model were held constant
during the model simulations. A table of these parame-
ters and their values are presented in Table 1. The
kinetic parameters obtained by Richard [20] were used
to simulate the experiments performed by Vander-
Gheynst et al., [16] and Walker et al. [17]. The heat of
reaction, DHrxn, and the specific oxygen uptake gO2

were
taken from Haug [6]. Specific heat of water and water
vapor, and the heat of vaporization of water were taken
from steam tables. Oppenheimer et al. [21] calculated
the dry bulk density, the dry specific heat, and the
porosity of the organic matrix; while VanderGheynst et
al. [16] reported the ash content of the organic matrix.

2.5. Numerical solution of equation set

Numerical solutions to Eqs. (1)–(3) and (10) were
implemented using the integration Runge Kutta
method. A fourth and fifth order approximation was
used in the adaptive step size algorithm provided with
the software package Matlab (MathWorks Inc.) The
algorithm performs both fourth and fifth order approx-
imations simultaneously to compare the two results for
error analysis.

3. Results and discussion

3.1. Model 6alidation

To validate the model, simulations were run using
the operating conditions of VanderGheynst et al. [16]
and Walker et al. [17]. Comparisons of temperature and

oxygen concentrations between the simulations and ex-
perimental results were performed for the first 100 and
200 h for the experiments of VanderGheynst et al. [16]
and Walker et al., [17] respectively. Since the model
does not include a microbial growth mechanism, it
cannot simulate the lag in temperature and oxygen
uptake rate during the process. Thus, the simulation
results were shifted 36 h to coincide with the onset of
temperature ramping in experimental data.

Comparisons of maximum bed temperatures, Tb,max,
with those observed by VanderGheynst et al. [16] are
presented in Table 2. Tb,maxs were calculated for three
values of br. br is directly proportional to the kinetic
expressions, and Richard [20] observed that br de-
creased as decomposition continued. Therefore, simula-
tions were performed with the maximum, average, and
minimum values of br. From Table 2 it is clear that the
model over predicted Tb,max except at the lowest aera-
tion rate. Under high aeration conditions the largest
difference between the model and the experimental
Tb,max was 10.9°C. The best prediction of Tb,max was
observed for the 0.15 l/min per kg flow rate at 55% w.b.
moisture content where the difference between pre-
dicted and measured temperature was 1.8°C. Varying br

had little effect on the model’s prediction of Tb,max as
shown in Table 2. The over prediction is greatest at
high aeration rates and low initial moisture contents.
This over prediction at high aeration rates and low
moisture is likely due to the lower rates of substrate
degradation due to reduced moisture content. Haug [6]
noted that the rate of decomposition dropped rapidly
when the moisture content of the organic matrix was
below 45% w.b. VanderGheynst et al. [16] reported
axial moisture gradients as high as 21–38% w.b., and
the moisture content of the organic matrix dropped
below 45% w.b. at 80 h for the initial moisture content
of 55% w.b. and the highest aeration rate.

Table 3 shows comparisons of maximum oxygen
uptake rates, RO2,max, measured by VanderGheynst et
al. [16] and those predicted by the model. Simulation
results for br equal 0.84 yielded the best agreement with
experimental results 40% average error, while the br=1
simulations resulted in an average error of 59%. The
model under predicted RO2,max for the lowest aeration
rate, and over predicted for higher aeration rates.

Tables 4 and 5 present comparisons of the cumula-
tive oxygen consumption, COC, measurements of Van-
derGheynst et al. [16] with model predictions. For
br=1 and the lowest aeration rate, the model under
predicted COC at 50 h by 37.5%, and over predicted by
83% at the highest aeration rate. Note that the largest
differences between experimental and simulation results
occur in the 45% moisture data and that the error was
never greater than 32.4% for the 55% moisture data.
This over prediction is another indication that drying is
influencing the rate of substrate decomposition. Van-
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derGheynst et al. [16] presented moisture profiles for
the two extreme cases of aeration. VanderGheynst et al.
[16] noted that moisture did not limit decomposition for
the lowest aeration rate, but could have been limiting to
microbial activity 50 h into the process at the highest
aeration rate. During the first 50 h of the process, the
model predicts COC best with the average value of br.

Comparisons of the measured and predicted COCs
for the first 100 h of decomposition show that the
model consistently over predicted COC (see Table 5).
This over prediction is 162% for br=1 at high aeration
rates, and is no greater than 68.8% for the lowest
aeration rate. Here, the minimum br gives a better
estimation of the experimental data. This is consistent
with Richard’s [20] observation that br tends to de-
crease as the degradation process proceeds. In addition,
the increase in total difference for later predictions is
partially due to the accumulation of error inherent in
the summing O2 uptake. Also, at these later times,
spatial gradients in moisture content and temperature
are likely to influence the rate of substrate decomposi-
tion. VanderGheynst et al. [16] observed gradients of
25°C at 100 h for the highest aeration rate, and 4°C for
the lowest aeration rate at 100 h. Although aeration
rate had little influence on the size of the moisture
gradients, these gradients were still significant — one of
them reaching a 21% w.b. difference before 100 h. Once
these spatial gradients form, the homogeneous assump-
tion breaks down (VanderGheynst et al. [9]).

Table 6 shows comparisons of RO2,max measured by
Walker et al. [17] and those predicted by the model.
The reactors in this study were mixed three times a
week. The simulation results for br equal 0.84 best
agreed with experimental results; 52% average error.
While the br=1 simulations resulted in average errors
of 66%, the model over predicted RO2,max at all aera-
tion rates. The percent differences for the 45% w.b.
were an order of magnitude higher than those for 55%
initial moisture content and for all aeration rates.

Tables 7 and 8 compare the measured and predicted
COCs. The measure valued are from the mixing experi-
ments conducted by Walker et al. [17]. Comparisons
show that the model still over predicted COC for the
first 100 h, but this over prediction is much less when
comparing the model with the mixed reactor data. Here
again, the minimum br gives the best predictions.

Comparison of the model predictions with the data
from 100 to 200 h show that the three different values
of br give a similar error in the overall estimate (the
average error in estimates differ by no more than 3.5
percentage points.) But again, lower values of br gave
slightly better predictions at later times. Over-predic-
tion in COC could be due to the accumulation of error
inherent to the summing or RO2 values. The data
presented by Walker et al. [17] is representative of
mixed reactors. Here, the model’s error at later times is

reduced, a reflection on the basic assumptions that were
made in model development, namely that the reactor
was well-mixed, and spatial gradients were reduced.
However, Walker et al. [17] observed the formation of
gradients even in the mixed reactor. Drying could also
have an influence on oxygen uptake as the moisture
content of the compost bed with 55% w.b. initial mois-
ture content and 100 l/min aeration dropped below 45%
w.b. moisture content at 72 h [17]. One hundred hours
into the process, the pilot scale reactor with a 45% w.b.
initial moisture content and 100 l/min aeration had
reached a 35% w.b. moisture content [17].

3.2. Influence of matrix drying

The observation that the model over predicts the
value of several state variables at high aeration and low
initial moisture suggests that the model needs a
stronger component to deal with substrate drying. To
investigate the influence of drying, simulations were
performed by introducing the following discount factor
for non-optimal moisture content into the BVS degra-
dation kinetics [6].

fm=
1

exp (−17.684 Mwb+7.0622)+1
(11)

The addition of this discount factor brings the effect
of moisture on substrate degradation directly into the
kinetic expression as follows:

d(BVS)
dt

= −kBVS fm(BVS) (12)

Tabulated in Table 9 are the results obtained from
adding fm into the BVS degradation kinetics. The addi-
tion of the moisture discount factor had little effect on
RO2,max for the initial moisture content of 55%, while at
45% w.b. initial moisture content and at high aeration
rates the effect was largest. This reduction in the differ-
ences between model predictions and observations is
significant, but cannot be the sole explanation of the
discrepancies between model predictions and experi-
mental observations.

In all observations the model tended to over predict
values of the state variables. RO2,max, total COC, and
Tb,max were all over predicted. The model’s main as-
sumption is that there are no gradients in temperature
or oxygen mass fraction in the reactor. Frequent mixing
satisfies this assumption; however, it has been shown
that mixing has little effect on the elimination of oxy-
gen and temperature gradients [22]. If gradients always
exist, even in the presence of mixing, there is always a
possibility for part of the reactor to be at sub-optimal
conditions. Thus, models that assume minimal spatial
gradients will have a tendency to over predict the rate
of BVS oxidation in the reactor.
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3.3. Sensiti6ity analysis

Sensitivity analysis of the key parameters that were
held constant during simulation was performed to as-
sess the robustness of the model and to determine
where error propagation is likely to occur. One parame-
ter that is kept constant that can have high variability is
gO2

. Taking the derivative of Eq. (9) with respect to
gO2

shows the influence of this parameter on process
kinetics.

dkBVS= −
brRCO2opt

103gO2

2 (BVS)
( fT)( fO2

)dgO2
(13)

To test the influence of a change in gO2
on the entire

model, simulations were performed that varied gO2
for

three aeration rates presented in the studies performed
by Walker et al. [17]. Tables 10 and 11 show a general
trend in the model’s sensitivity to gO2

. The model seems
to be more sensitive to gO2

at low aeration rates, with a
tendency to become more insensitive to changes in this
parameter at high aeration rates.

The variation of RO2,max with changes in gO2
is

presented in Table 10. The sensitivity of model predic-
tions due to changes in gO2

increased with increasing
flow rate. Note that in Tables 3 and 6, the error in
RO2,max increase as flow rate increases. However, a 10%
difference in gO2

yields only a 6% difference in RO2,max

for an aeration rate of 100 l/min.
The variation of COC over the first 100 h with

respect to changes in gO2
is presented in Table 11. For

COC, the model is even less sensitive to changes in gO2
.

The decreased sensitivity may result from integration of
the oxygen mass fraction profile as integration tends to
average out error.

The sensitivity of the predicted Tb,max to changes in
gO2

is illustrated in Figs. 1 and 2 for aeration rates of 25
and 100 l/min, respectively. These results illustrate that
the model Tmax predictions are more sensitive to
changes in gO2

at the lower aeration rate of 25 l/min. At
100 l/min, a 25% change in gO2

yields only a 1.3%
change in the predicted Tmax value. Figs. 3 and 4
illustrate the sensitivity of the predicted oxygen mass
fraction to changes in gO2

. These results illustrate that
predicted oxygen mass fractions are also more sensitive
to changes in gO2

at the lower aeration rate of 25 l/min.

4. Conclusions

The model developed in this study combined the
specific substrate degradation kinetic model of Richard
[20] with the mass and energy equations of Oppen-
heimer [10]. The data from these simulations was vali-
dated against pilot scale data obtained from
experiments of VanderGheynst et al. [16] and Walker et
al. [17]. Overall, the model captured the shifts in tem-

perature and O2 consumption, and major errors in
these predictions could be explained based on the for-
mation of spatial gradients in pilot scale experiments,
the reduction of substrate moisture to a point which
limits mass transfer, and the model’s sensitivity to
constant parameters.

The sensitivity of the model to two key parameters,
gO2

, and br, was investigated. Richard [20] noted that br

tended to decrease as organic degradation progressed.
This effect was investigated by varying br for each of
the comparisons with experimental observation. It was
noted that smaller values of br produced better esti-
mates later in the process. RO2,max was insensitive to
changes in gO2

at low aeration rates, and more sensitive
to changes in gO2

at high aeration rates. The model’s
error in predictions increased as aeration rate increased.

The model predicted the behavior of a mixed system
well into the process once the lag time was taken into
account. For mixed pilot scale experiments, it predicted
COC with average errors of no greater than 27% be-
tween 100 and 200 h into the process. This implies that
the model was able to predict the general system dy-
namics eight days into the process. After this time, the
model results significantly deviate from the measured
results. This is contrasted with the comparison of the
model against non-mixed pilot scale experiments. Here
the model predicts the system dynamics well for only
the first 50 h.

The kinetic expressions used in this investigation
were substrate specific, yet there were still some large
discrepancies between model predictions and experi-
mental observations. The modeling results illustrate the
difficulty in predicting organic solids decomposition. To
make further modeling progress, the formation of spa-
tial gradients must be taken into account since mixing
has a limited effect on reducing the formation of gradi-
ents in temperature, oxygen mass fraction, and mois-
ture content [22].
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