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The creation of diverse cell types from an invariant set
of genes is governed by biochemical processes that regu-
late gene activity. As the initial step of gene expression,
transcription — one of the most widely studied processes
in cell and molecular biology — is central to regulatory
mechanisms. Transcription is shaped by the interac-
tions between transcription factors (TFs) that bind cis-
regulatory elements in DNA, additional co-factors and
the influence of chromatin structure (FIG. 1). Trans-acting
proteins that control the rate of transcription at the level
of the individual gene bind crucial cis-regulatory
sequences1. A full understanding of the interplay
between trans-factors and cis-sequences would transform
biological research, providing the means to interpret
and model the responses of cells to diverse stimuli.
Computational methods for the identification of cis-
regulatory sequences that are associated with genes
have long been sought owing to the arduous laboratory
procedures required to identify them.

Deciphering the regulatory control mechanisms that
govern gene expression might enable simplified interpre-
tation of the complex data that now flood our comput-
ers. Ultimate success would produce a comprehensive

map of the regulatory networks of each organism2. The
reality, in all likelihood, is that the complex mixture of
regulatory mechanisms that control the cellular concen-
trations of RNA will lead such efforts not to a single
map, but rather to the creation of additional layers of
large and complex data sets, the deciphering of which
will require computational methods. The mastery of the
entire network of gene regulation therefore remains a
distant hope and aspiration. For the focused researcher,
however, there are powerful and improving methods to
identify regulatory sequences that control the rate of
transcription initiation of specific genes of interest. For
these researchers who strive to understand gene regula-
tion in a targeted manner, bioinformatics methods can
greatly accelerate their studies.

Although nearly all mature bioinformatics methods
for the analysis of regulatory sequences address the initia-
tion of transcription, other mechanisms that control gene
expression should not be neglected. Regulation of any
specific gene might occur at any point in the progression
of transcripts into functional proteins (for example,
splicing or protein modification)1. Characterizing the
mechanisms that govern the initiation of transcription
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ORTHOLOGY

Two sequences are orthologous
if they share a common ancestor
and are separated by speciation.

PHYLOGENETIC FOOTPRINTING 

An approach that seeks to
identify conserved regulatory
elements by comparing genomic
sequences between related
species.

MACHINE LEARNING

The ability of a program to learn
from experience — that is, to
modify its execution on the basis
of newly acquired information.
In bioinformatics, neural
networks and Monte Carlo
Markov Chains are well-known
examples.

Identification of regions that control transcription
An initial step in the analysis of any gene is the identifi-
cation of larger regions that might harbour regulatory
control elements. Several advances have facilitated the
prediction of such regions in the absence of knowl-
edge about the specific characteristics of individual cis-
regulatory elements. These tools broadly fall into two
categories: promoter (transcription start site; TSS)
and enhancer detection. The methods are influenced
by sequence conservation between ORTHOLOGOUS genes
(PHYLOGENETIC FOOTPRINTING), nucleotide composition and
the assessment of available transcript data.

Functional regulatory regions that control transcrip-
tion rates tend to be proximal to the initiation site(s) of
transcription. Although there is some circularity in the
data-collection process (regulatory sequences are sought
near TSSs and are therefore found most often in these
regions), the current set of laboratory-annotated regula-
tory sequences indicates that sequences near a TSS are
more likely to contain functionally important regulatory
controls than those that are more distal. However, specifi-
cation of the position of a TSS can be difficult. This is fur-
ther complicated by the growing number of genes that
selectively use alternative start sites in certain contexts.
Underlying most algorithms for promoter prediction is a
reference collection known as the ‘Eukaryotic Promoter
Database’ (EPD)4. Early bioinformatics algorithms that
were used to pinpoint exact locations for TSSs were
plagued by false predictions5. These TSS-detection tools
were frequently based on the identification of TATA-box
sequences, which are often located ~30 bp upstream of a
TSS. The leading TATA-box prediction method6, reflect-
ing the promiscuous binding characteristics of the TATA-
binding protein, predicts TATA-like sequences nearly
every 250 bp in long genome sequences.

A new generation of algorithms has shifted the
emphasis to the prediction of promoters — that is,
regions that contain one or more TSS(s). Given that
many genes have multiple start sites, this change in
focus is biochemically justified.

The dominant characteristic of promoter sequences
in the human genome is the abundance of CpG dinu-
cleotides. Methylation plays a key role in the regulation
of gene activity. Within regulatory sequences, CpGs
remain unmethylated, whereas up to 80% of CpGs in
other regions are methylated on a cytosine. Methylated
cytosines are mutated to adenosines at a high rate,
resulting in a 20% reduction of CpG frequency in
sequences without a regulatory function as compared
with the statistically predicted CpG concentration7.
Computationally, the CG dinucleotide imbalance can be
a powerful tool for finding regions in genes that are
likely to contain promoters8.

Numerous methods have been developed that
directly or indirectly detect promoters on the basis of
the CG dinucleotide imbalance. Although complex
computational MACHINE-LEARNING algorithms have been
directed towards the identification of promoters, simple
methods that are strictly based on the frequency of CpG
dinucleotides perform remarkably well at correctly pre-
dicting regions that are proximal to or that contain the

does not reveal the entire picture. There is only partial
correlation between transcript and protein concentra-
tions3. Nevertheless, the selective transcription of genes
by RNA polymerase-II under specific conditions is cru-
cially important in the regulation of many, if not most,
genes, and the bioinformatics methods that address the
initiation of transcription are sufficiently mature to
influence the design of laboratory investigations.

Below, we introduce the mature algorithms and
online resources that are used to identify regions that
regulate transcription. To this end, underlying meth-
ods are introduced to provide the foundation for
understanding the correct use and limitations of each
approach. We focus on the analysis of cis-regulatory
sequences in metazoan genes, with an emphasis on
methods that use models that describe transcription-
factor binding specificity. Methods for the analysis of
regulatory sequences in sets of co-regulated genes will
be addressed elsewhere.We use a case study of the human
skeletal muscle troponin gene TNNC1 to demonstrate
the specific execution of the described methods. A set of
accompanying online exercises provides the means for
researchers to independently explore some of the meth-
ods highlighted in this review (see online links box).
Because the field is rapidly changing, emerging classes of
software will be described in anticipation of the creation
of accessible online analysis tools.

Distal TFBS

Proximal TFBS

Transcription
initiation complex Transcription

initiation

CRM

Co-activator complex
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Figure 1 | Components of transcriptional regulation. Transcription factors (TFs) bind 
to specific sites (transcription-factor binding sites; TFBS) that are either proximal or 
distal to a transcription start site. Sets of TFs can operate in functional cis-regulatory 
modules (CRMs) to achieve specific regulatory properties. Interactions between bound TFs
and cofactors stabilize the transcription-initiation machinery to enable gene expression. 
The regulation that is conferred by sequence-specific binding TFs is highly dependent on the
three-dimensional structure of chromatin.
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sequences from orthologous genes can indicate segments
that might direct transcription. The completion of sev-
eral eukaryotic genome sequences20–24 has motivated the
creation of a new set of alignment, analysis and visualiza-
tion methods to discern conserved segments. The initial
studies emphasized pairwise comparisons of sequences
that are separated by 50–70 million years of evolution
(for example, human–rodent)25,26. In its current form,
phylogenetic footprinting can reveal genomic regions
that are likely to regulate gene expression with a limited
chance of bypassing functionally important sequences.
In the most successful cases, phylogenetic footprinting
can pinpoint important regulatory regions with suffi-
cient clarity to motivate targeted validation experiments.

A key assumption in the application of phylogenetic
footprinting is the implicit hypothesis that the regula-
tion of orthologous genes will be subject to the same
regulatory mechanisms in different species. Although
generally correct over moderate evolutionary distances,
an investigator should consider whether there is evidence
that supports or contradicts this implicit assumption.
Alignment-based phylogenetic footprinting methods are
relevant for orthologous genes from species with appro-
priate evolutionary divergence. Pairwise alignment com-
parison of promoters from closely related species, such
as human–chimpanzee, generally provide little benefit,
as the sequences closely resemble each other, whereas
promoters from widely divergent species (primate–fish)
can show no detectable similarity26. The rate of evolu-
tionary events in promoters is different for genes
within the same organism; so, in some cases, it is most
productive to compare sequence pairs from more
diverged species. For instance, genes that are impor-
tant in early embryonic development can require com-
parisons as extreme as 450–500 million years apart
(that is, primate–fish) to reveal regulatory regions27,28.
The selective pressure that results in the high retention of
sequences in well-studied cases — exemplified by Hox
clusters — has been linked to chromatin structure or
unknown mechanisms that allow coordinated regulation
of clusters of genes29.

There are three components to the existing phyloge-
netic footprinting algorithms: defining suitable orthol-
ogous gene sequences for comparison, aligning the
promoter sequences of orthologous genes and visualiz-
ing or identifying segments of significant conservation.

Although retained function is not inherent to the
definition of orthology, for the purpose of phyloge-
netic footprinting, the assumption is made that
orthologous genes are under common evolutionary
pressures. Defining orthologues is complicated by the
duplication and/or deletion of genes during evolution
— it is sometimes difficult to reliably select suitable sets
of sequences for study. Bioinformatics resources that
provide broadly related orthologues between species
include COGs/KOGs30, HOPs31 and HomoloGene32.

Once suitable sequences are obtained, they must be
aligned to identify segments of similarity. There are two
broadly used algorithms for such alignments: one that
targets short segments of similarity and the other an
optimal description of similarity across an entire pair of

sites of transcription initiation8. Two leading methods
— Eponine9 and FirstEF10 — use divergent approaches.
FirstEF finds regions in genes with higher concentra-
tions of CG dinucleotides than the local C and G
concentrations would suggest. It subtly improves per-
formance by restricting predictions to those regions that
contain or are followed by a predicted 3′-splice site,
thereby indicating the presence of a first exon. Eponine
uses a NEURAL NETWORK model that analyses the over-
and under-representation of longer oligonucleotide
sequences. As Eponine’s strand prediction is based
on the identification of a TSS, which is an unreliable
step, predictions of promoter orientation are not reli-
able. There is increasing evidence to indicate that pro-
moters are bidirectional11, signifying that the inability of
bioinformatics methods to accurately predict promoter
orientation is a by-product of biochemistry.

It is important to bear in mind that not all transcrip-
tion-initiation sites are proximal to CpG islands and that
the association between CpG dinucleotides and promot-
ers is not present in all organisms. As only ~60% of
human promoters are situated proximally to CpG
islands12, alternative approaches are required to identify a
substantial portion of promoters. In our experience, the
identification of promoter regions that lack CpG islands
requires the use of transcript data. Recurrent alignment
of the 5′ edges of ESTs and/or full-length cDNAs can be
indicative of promoter locations. New mRNA cap-
cloning techniques have overcome some of the technical
limitations in generating full-length cDNAs13. The most
direct means for users to access transcript data is through
genome browsers14. Although human intuition can be
remarkably adept at identifying sets of cDNAs that termi-
nate at approximately the same position, there are emerg-
ing bioinformatics methods to quantitatively assess the
significance of the observed transcript ends (REF. 15, and
H. Sui and W.W.W., unpublished observations). The
DBTSS database provides access to transcript-based TSS
assignments for human and mouse genes16.

A new source of data has the potential to place even
greater emphasis on the interpretation of transcript
data. Cap analysis of gene expression (CAGE) is a cap-
cloning technique that has been extended with a SAGE-
like procedure to cleave the initial 5′ 20 nucleotides of
full-length cDNAs17. These oligomers are subsequently
ligated into long polymers and sequenced. Generation
of these CAGE tags from transcripts that are derived
from diverse tissues promises not only to facilitate
improved promoter prediction, but also to provide
insights into tissue-specificity.

Phylogenetic footprinting
Sequence similarity that results from selective pressure
during evolution is the foundation for many bioinfor-
matics methods18,19. For the prediction of transcription-
factor binding sites (TFBSs), sequence similarity is 
primarily manifested in the process known as phyloge-
netic footprinting (reviewed in REF.18).Under the assump-
tion that mutations within functional regions of genes will
accumulate more slowly than mutations in regions
without sequence-specific function, the comparison of

NEURAL NETWORK

A machine-learning technique
that simulates a network of
communicating nerve cells.

CAGE

(Cap analysis of gene
expression). The high-
throughput sequencing of
concatamers of DNA tags that
are derived from the initial
nucleotides of 5′ mRNA.

SAGE

(Serial analysis of gene
expression). A method for
quantitative and simultaneous
analysis of a large number of
transcripts; short sequence tags
are isolated, concentrated and
cloned; their sequencing reveals
a gene-expression pattern that is
characteristic of the tissue or cell
type from which the tags were
isolated.
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that are likely to have undergone inversions (shuffle-
LAGAN36). Several similar algorithms that, in our opin-
ion, perform comparably well are listed in TABLE 1.

The global alignment tools generally have difficulty
with duplicated segments, producing results that indi-
cate that one of the copies of a duplicated sequence is
not conserved. The BLASTZ local alignment method
circumvents such problems, but the failure to consider
collinearity in functional elements might result in a
decreased ability to identify subtle similarities in weakly
conserved segments between well-conserved blocks
(although this has not been conclusively demonstrated).

Once an alignment or set of alignments is defined,
various tools are available to assist in the interpretation
of the data. The VISTA browser37 presents a graph of
nucleotide identity within a sliding window along a pair-
wise alignment. Similarly, PipMaker38 displays BLASTZ
results in an intuitive presentation. Although graphical
display is useful, computational analysis of observed con-
servation patterns is essential for the analysis of long
sequences.

sequences. For the former, the BLASTZ33 algorithm
identifies short segments of exact identity and con-
structs LOCAL ALIGNMENTS by extending the analysis from
the edges of each seed. A large set of these local align-
ments can be displayed in a format known as PIPs (per-
cent identity plots), which more accurately delineate
the edges of similar subsegments than window-based
conservation plots.

The alternative method generates a single, near-
optimal alignment across the entire length of the orthol-
ogous gene sequences. In the case of LAGAN34, a widely
used algorithm of this type, short local alignments are
generated (similar to the seeds produced by BLASTZ)
to establish related sub-segments. Subsequently, a GLOBAL

ALIGNMENT is produced using the NEEDLEMAN–WUNSCH

ALGORITHM35. The choice to use global alignments
introduces the assumption that important functional
sequences will remain collinear over evolution (in the
same order and orientation along the gene). A recent
extension of the LAGAN algorithm circumvents this
particular problem by identifying blocks of sequence

LOCAL ALIGNMENT

The detection of local
similarities between two
sequences.

GLOBAL ALIGNMENT

The alignment of two sequences
over their full length.

NEEDLEMAN–WUNSCH

ALGORITHM

A commonly used algorithm in
bioinformatics that produces a
global alignment of two
sequences. The term ‘global’
refers to alignments across the
entirety of the sequences. The
algorithm returns an optimal
alignment, in which ‘optimal’
refers to the highest possible
score under a specific scoring
system. The algorithm is
computationally demanding,
restricting its direct application
to sequences of modest length.

Table 1 | Selected web-based resources for gene regulation bioinformatics*

Resource name URL Reference

Promoter predictions

Eponine http://www.sanger.ac.uk/Software/analysis/eponine 9

FirstEF http://rulai.cshl.edu/tools/FirstEF 10

DBTSS http://dbtss.hgc.jp/index.html 16

Transcription-factor binding profile databases

TRANSFAC® http://www.gene-regulation.com/pub/databases.html#transfac 61

JASPAR http://jaspar.cgb.ki.se 59

Transcription-factor binding site predictions

Match™ http://www.gene-regulation.com/pub/programs.html#match 95

ConSite http://phylofoot.org/consite 26

rVista http://rvista.dcode.org 37

Transcription-factor module predictors

MSCAN http://tfscan.cgb.ki.se/cgi-bin/MSCAN 72

Cluster Buster http://zlab.bu.edu/cluster-buster/cbust.html 68

CRÈME http://creme.dcode.org/ 85

Alignment of non-coding genome sequences

PipMaker http://bio.cse.psu.edu 38

LAGAN http://lagan.stanford.edu 34

AVID http://baboon.math.berkeley.edu/mavid 60

Data visualization

Sockeye http://www.bcgsc.ca/gc/bomge/sockeye 41

rVista http://rvista.dcode.org 37

Genome browsers

UCSC Genome Browser http://genome.ucsc.edu 14

Ensembl http://www.ensembl.org 96

Orthology resources

COGs/KOGs http://www.ncbi.nlm.nih.gov/COG 30

EGO (formerly TOGA) http://www.tigr.org/tdb/tgi/ego 97

Orthostrapper http://orthostrapper.cgb.ki.se 98

HomoloGene http://www.ncbi.nlm.nih.gov/HomoloGene 32

*The list is not exhaustive.
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of the rate of predictions. This rate varies for each TF
binding model and is influenced by model parameters,
but the application of most models with standard set-
tings will report TFBSs in the range of 1/500–1/5000 bp.
Take, for instance, a model for the binding of myoD, a
muscle-specific TF, that predicts one binding site in
approximately every 500 bp45. Applying this model to
the human genome produces ~106 predictions of bind-
ing sites, of which ~103 are likely to be functional. The
high number of false predictions is not however, as
Tronche46 demonstrated, simply a result of inadequate
model frameworks — predicted sites are bound readily
by TFs in vitro. In fact the methods do detect potential
binding sites, albeit not necessarily those of functional
importance. By most accounts, the three orders of
magnitude difference between true and false predic-
tions is intolerable, resulting in what we choose to term
the FUTILITY THEOREM — that essentially all predicted
TFBSs will have no functional role. Fortunately, there
are biologically motivated approaches to overcome this
1000-fold excess of false predictions.

To understand both the strengths and weaknesses of
the current methods to model TF binding, it is necessary
to understand not only the theory behind the models,
but also the scoring methodology and the limitations
that are imposed by the available experimental data.
The construction of models for predicting binding sites
for TFs is limited by the limited abundance of valid cis-
regulatory elements. Such target sites are generally
defined by arduous laboratory analysis of promoters that
involves deletion mapping and, eventually, mutagenesis
of regulatory sequences. Owing to the tolerance of TFs
for significant variation between target sequences, multi-
ple sites are required to construct a model. As an exam-
ple, we can consider the myocyte enhancer factor 2
(MEF2) for which two of the known binding sites are
conserved at only 7 out of 14 positions (BOX 1).

There are two distinct approaches for generating
binding-site collections for a specific TF, each with its
own caveats. Functional regulatory elements that are
defined from genes are sparse, but, for a subset of TFs, a
sufficient number have accumulated to indicate the
diversity of possible binding sites. Alternatively, high-
throughput selection procedures can be performed, in
which pools of random DNA sequences are mixed with
a TF and those that are preferentially bound are recov-
ered and sequenced47, or fluorescently labelled proteins
are directly bound to arrays of potential binding sites48.
Based on a comparison with binding sites that were
defined in functional in vivo assays, sites for a prokary-
otic TF detected with in vitro SELEX assays were not fully
representative49. Despite the potential for a partial bind-
ing profile, a new generation of high-throughput meth-
ods is generating collections of thousands of sites that
will facilitate the creation of useful binding models50.

Consensus sequences can be used to represent the
properties of known binding sites. The binding sites for
a factor are aligned together and a consensus nucleotide
letter is assigned to represent the nucleotide composi-
tion in each column. Although the use of consensus
sequences provides better representation than a single

A new method analyses the patterns of nucleotide
identity in subregions of the alignment and classifies
conserved regions as coding or regulatory39. This ‘regu-
latory potential’ algorithm is based on the pattern of
observed identical nucleotides. For instance, coding
regions tend to vary at the third codon position and
have insertion/deletion (indels) lengths that are multi-
ples of three. Alternatively, regulatory sequences tend to
have more frequent indels and variations occur in dis-
tinct blocks that are separated by segments of high simi-
larity. The method, implemented as a HIDDEN MARKOV

MODEL, is not broadly available, but represents a class of
analysis that is likely to become increasingly important
as more genome sequences become available.

With the emergence of diverse genome sequences40,
some of the limitations of pairwise analysis methods
have become apparent. Multiple sequence alignment
methods, enhanced visualization tools and a new class
of statistical analysis methods will be required to iden-
tify and interpret patterns that are restricted to a branch
of a species tree. The mLAGAN34 alignment algorithm
seems to be well suited to the alignment challenge. Once
an alignment is created, however, the analysis of multi-
ple sequences is problematic. The basis for determining
the significance of local similarity within a branch of a
species tree remains to be established for large-scale
analyses. For visualization, the new Sockeye package41

creates dynamic, three-dimensional graphics that allows
users to create a virtual phylogenetic footprinting land-
scape. For the impatient scientist awaiting appropriate
tools for multiple-sequence phylogenetic footprinting, it
seems that mLAGAN alignments visualized in Sockeye
represent the near-term solution.

Modelling sequence-specific binding
TFs generally have distinct preferences towards specific
target sequences. Given a set of known binding sites, it is
possible to construct a model to describe the target
sequence properties that can be used to predict potential
binding sites in genomic sequences. The problem is
twofold: it is necessary to select an appropriate way to
model binding preferences on the basis of experimental
data and to develop methods to apply the models to
find functional TFBSs in promoter sequences.

Several assumptions underlie the most prevalent
methods for TFBS prediction. The one that is most
likely to be violated is that each TF binds independently
to its target. In specific terms, we assume that binding is
not influenced by the content of adjoining sequences
and the proximity of other proteins. This is fundamen-
tally incorrect, as combinatorial interactions of multiple
factors that bind to multiple sites are essential for the
specific regulation of gene transcription2. Such combi-
natorial requirements have been demonstrated for genes
ranging from the endo16 regulatory network in sea
urchin42 to the β-globin cluster in human43. The above
assumption results in a severe limitation — the inability
to specifically distinguish between sites that have a func-
tional role in vivo and sites that exert no function.
Owing to an extremely high rate of false-positive predic-
tions of TFBSs44, specificity is usually measured in terms

HIDDEN MARKOV MODEL

(HMM). A probabilistic model
for the recognition of patterns in
DNA or protein sequences.
HMMs represent a system as a
set of discrete states and as
transitions between those states.
Each transition has an associated
probability, which can be readily
derived from training sets, such
as alignments of known examples
of a pattern. HMMs are valuable
because they enable a search or
alignment algorithm to be built
on firm probabilistic bases.

FUTILITY THEOREM

The authors’ assertion that
essentially all predicted
transcription-factor (TF)
binding sites that are generated
with models for the binding of
individual TFs will have no
functional role.

SELEX 

(Systematic evolution of ligands
by exponential amplification). A
set of laboratory procedures for
the identification of
representative sets of ligands for
a protein. In the case of DNA-
binding proteins, the protein is
mixed with a pool of double-
stranded oligonucleotides that
contain a random core of
nucleotides flanked by specific
sequences. The protein in
complex with bound DNA is
recovered and the ligands are
subsequently amplified by PCR.
The recovered oligonucleotides
are sequenced and analysed to
reveal the binding specificity of
the protein.
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it is simply the product of the relevant nucleotide prob-
abilities in each position in the profile.

For efficient computational analysis, the PFM must
be converted to a log-scale. To eliminate null values
before log-conversion, and in part to correct for small
samples of binding sites, a sampling correction, known
as PSEUDOCOUNTS, is added to each cell of the PFM (BOX 2).
The specific formula for the pseudocount correction
varies widely between software applications52. In our for-
mulation, pseudocount values are defined as the square
root of the number of sites that contribute to the model.
Additionally, the genome nucleotide distribution is taken
into account in the conversion (BOX 2). The final log-scale
matrix is referred to as a PWM.A quantitative score for a
potential site is produced by summing the relevant
nucleotide PWM values, analogous to the calculation of
the probability of observing the site, as discussed above
(BOX 1 and 2). For longer sequences, the PWM is slid
over the sequence in 1-bp increments, evaluating each
possible binding site (on both strands).

sequence and lends itself to fast visual comparisons,
it fails to reflect the quantitative characteristics of TF
binding. Consensus sequences confer an information loss
from the original data, as binding bias towards one of the
possible nucleotides is not reflected in the model (BOX 1).

Position weight matrix (PWM) profiles provide
quantitative descriptions of the known binding sites
for a TF51. Based on an alignment of all known sites,
the total number of observations of each nucleotide is
recorded for each position, producing a position fre-
quency matrix (PFM; see BOX 1). A normalized PFM,
in which each column adds up to a total of one, is a
table of probabilities for observing each nucleotide at
each position.

The matrix framework enables us to assign a quanti-
tative score to any sequence to identify potential binding
sites. It is helpful to visualize a profile model as a
‘machine’ that analyses a string of nucleotides (of the
same length as the profile). The calculation of the proba-
bility of observing a certain sequence is straightforward:

INFORMATION CONTENT

A measure of nucleotide
conservation in a position, based
on information theory.

PSEUDOCOUNT

The sample correction that is
added when assessing the
probability to correct for small
sample sizes (that is, few
binding sites).

Box 1 | Building models for predicting transcription-factor binding sites

The first step towards building models for predicting transcription-
factor (TF) binding sites involves data collection. To illustrate the
process, we use MEF2 as an example.

Data collection
A set of experimentally validated MEF2-binding sites was collected
from the literature and aligned (a). The sequence variability of the
collection of binding sites strongly affects the downstream models
for predicting additional sites. Note the diversity between the sites;
for instance, only 50% of the nucleotides are identical between sites
one and eight.

Model building
Consensus sequence model: a consensus sequence is defined by
selecting a degeneracy nucleotide symbol for each position
(column) in the alignment (b). Unusual binding sites can have an
extreme effect on the consensus (see, for example, site eight).

Position frequency matrix 
To more accurately reflect the characteristics at each position, a
matrix that contains the number of observed nucleotides at each
position is created (c). For instance, the first column in the alignment
(a) consists of no As, three Cs, two Gs and three Ts, therefore resulting
in the corresponding first matrix column {0,3,2,3}.

Position weight matrix 
The frequency matrix is usually converted to a position weight
matrix (PWM) using a formula (BOX 2, equation 2) that converts
normalized frequency values to a log-scale (d). PWMs are also
known as position-specific scoring matrices (PSSMs, pronounced
‘possums’). Using a matrix model, a quantitative score for any DNA
sequence can be generated by summing the values that correspond
to the observed nucleotide at each position (e). For large and
representative collections of binding sites, the scores are
proportional to binding energies51.

Sequence logo 
The specificity in each column of the alignment can be measured in
terms of INFORMATION CONTENT92.A sequence logo scales each nucleotide
by the total bits of information multiplied by the relative occurrence of
the nucleotide at the position (f; BOX 2, equation 4).Sequence logos
enable fast and intuitive visual assessment of pattern characteristics.

Site 8
Site 7
Site 6
Site 5
Site 4
Site 3
Site 2
Site 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Source binding sites

C T C C T T A C A T G G G C
C A A C T A T C T T G G G C
C A A C T A T C T T G G G C
T G C C A A A A G T G G T C
T G A C T A T A A A A G G A
T G A C T A T A A A A G G A
G A C C A A A T A A G G C A
G A C C A A A T A A G G C A

a

B
its

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

2

Position

f

b
B R M C W A W H R W G G B M

Consensus sequence

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A 0 4 4 0 3 7 4 3 5 4 2 0 0 4

C 3 0 4 8 0 0 0 3 0 0 0 0 2 4

G 2 3 0 0 0 0 0 0 1 0 6 8 5 0

T 3 1 0 0 5 1 4 2 2 4 0 0 1 0

T T A C A T A A G T A G T C

A –1.93 0.79 0.79 –1.93 0.45 1.50 0.79 0.45 1.07 0.79 0.00 –1.93 –1.93 0.79

C 0.45 –1.93 0.79 1.68 –1.93 –1.93 –1.93 0.45 –1.93 –1.93 –1.93 –1.93 0.00 0.79

G 0.00 0.45 –1.93 –1.93 –1.93 –1.93 –1.93 –1.93 0.66 –1.93 1.30 1.68 1.07 –1.93

T 0.15 0.66 –1.93 –1.93 1.07 0.66 0.79 0.00 0.00 0.79 –1.93 –1.93 –0.66 –1.93

0.45 –0.66 0.79 1.68 0.45 –0.66 0.79 0.45 –0.66 0.79 0.00 1.68 –0.66 0.79

Σ = 5.23, 78% of maximum

c  Position frequency matrix (PFM)

d  Position weight matrix (PWM)

e  Site scoring
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in vivo despite a strong likelihood that the TF would
bind to the sequence in vitro. This discrepancy between
the in vivo and in vitro predictive accuracy indicates
that additional properties must specify the function of
regulatory sequences.

Two complementary observations of the characteris-
tics of regulatory sequences have motivated substantial
improvements in the prediction of functional binding
sites. First, the previously indicated observation of
sequence conservation in regulatory regions can be
extended to enhance the predictive specificity with
matrix models. Second, gene regulation that is mediated
by cooperative interactions between TFs that bind to
clusters of sites within cis-regulatory modules (CRMs)
can be captured in computational algorithms to improve
performance.

User-orientated tools have emerged that combine
matrix-based site predictions with phylogenetic foot-
printing. In general, these tools require pairs of ortholo-
gous gene sequences. As mentioned above, programs
such as LAGAN can generate global progressive align-
ments 34. Fixed-length windows that exceed a defined
sequence-identity threshold in the alignment are classi-
fied as conserved. A database of PWM binding profiles,
such as JASPAR59, is used to predict binding sites
within the conserved regions, with the most stringent
methods restricting reported predictions to TFBSs that
are present at corresponding positions in the alignment
of the orthologous sequences. The results are usually
represented graphically as conservation plots (BOX 3).

The PWM scores are directly related to the binding
energy of the DNA–protein interaction51,53. So, the PWM
representation can be viewed both as a statistical and as
an energy-based model.

There are two additional assumptions to consider.
Current matrix models for binding-site prediction are
based on the assumption that a nucleotide at one posi-
tion has no effect on the likelihood of a nucleotide being
observed at an adjoining position. For a few cases in
which large data collections have been generated to
richly define binding, advanced models that incorporate
higher-order interactions between positions have
proved more effective53–55. However, the improved speci-
ficity of the models has been modest, indicating that the
simpler, position-independent matrix models are ade-
quate in most cases56. The second assumption is that
TFs have strict spatial requirements in their binding
sites that preclude variable spacing. For some TFs, such
as a subset of the nuclear receptor family57, variable
spacing is allowed, rendering standard PWMs inappro-
priate for TFBS prediction. Specialized models, such as
one for the transcription factor CTF58, have been created
to model binding for some of these cases.

Prediction of functional binding sites
Internet-based software tools have been implemented to
screen DNA sequences with databases of matrix mod-
els. Although the TRANSFAC database and associated
search tools are broadly used, the futility theorem holds
that the resulting site predictions will not be functional

Box 2 | Formulae linked to methods for the analysis of regulatory sequences 

Corrected probabilities of observing a given nucleotide can be calculated using equation 1.

Corrected probability calculation: (1)

ƒ
b,i

= counts of base b in position i; N = number of sites; p(b,i) = corrected probability of base b in position i;
s(b) = pseudocount function

A position weight matrix (PWM) is constructed by dividing the nucleotide probabilities in (1) by expected background
probabilities and converting the values to a log-scale (see equation 2).

PWM conversion: (2)

p(b) = background probability of base b; p(b,i) = corrected probability of base b in position i; W
b,i

= PWM vaue of base 
b in position i

The quantitative PWM score for a putative site is the sum of the PWM values for each nucleotide in the site (see equation 3).

Evaluation of sequences: (3)

l
i
= the nucleotide in position i in an input sequence; S = PWM score of a sequence; w = width of the PWM

Probability values (1) can be used to determine the total information content (in bits) in each position (see equation 4).

Information content calculation: (4)

D
i
= information content in position i ; p(b,i) = corrected probability of base b in position i

p(b,i) = 
ƒb,i + s(b)

N +           ∑s(b′)
b′∈{A,C,G,T}

p(b,i)
p(b)

Wb,i = log2

S =∑Wli,i

  w

  i=1

Di = 2 + ∑pb,i log2 p b,i
b
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reduction in sensitivity. Two recent reports have indi-
cated conservation of only ~50% of human/mouse reg-
ulatory sites63,64. Certain TFs, such as Sp1 and C/EBP,
bind to target sequences that vary widely. Evolutionary
pressure to retain such binding sites is minimal owing
to the high likelihood that alternative sites will be avail-
able within a regulatory region. This indicates that
there might be two subtypes of TFBS: highly selected
sites that rarely occur by chance and auxiliary sites that
are available by convenience. This hypothesis implies
that phylogenetic footprinting methods will be well
suited for binding sites for TFs with greater binding
specificity.

The proliferation of complete genome sequences has
created opportunities for a variation on phylogenetic
footprinting in which multiple sequences from closely
related species are used. The comparison of multiple
primate sequences was used originally to identify short,
highly conserved binding sites in globin genes65. In this
variant on footprinting, subsequently called ‘phyloge-
netic shadowing’66, multiple sequence alignments are

The performances of the available algorithms that cou-
ple TFBS prediction with phylogenetic footprinting
have been similar. The rVista37 service, which uses the
AVID60 alignment program, the TRANSFAC61 data-
base and the VISTA visualization package37, was
assessed on a collection of 21 functional binding sites
for complexes of AP1 and NF-AT from genes in the
cytokine gene cluster. The ConSite26 service, which
uses the ORCA alignment program, the JASPAR data-
base of binding profiles and a web interface powered
by the TFBS perl modules59,62 for the Perl program-
ming language, was assessed on a reference collection
of more than 100 functional binding sites for a wide
range of TFs from genes distributed across the human
genome. Although performance depends on settings,
both systems eliminate ~90% of predictions while
retaining ~70–80% of experimentally validated sites.
Therefore, the combination of phylogenetic footprint-
ing and PWM searches applied to orthologous human
and mouse gene sequences reduces the rate of false
predictions by an order of magnitude with modest

Box 3 | Coupling binding-site prediction with phylogenetic footprinting

To illustrate the power of cross-species comparison to eliminate spurious predictions of binding sites, we analysed the
promoter of the human TNNC1 gene using the MEF2 position weight matrix (PWM).

Method
We did the analysis with and without restricting predicted sites to segments of high sequence conservation with the
mouse orthologue. We used the ConSite system24 for the analysis, which aligns the input gene sequences and analyses
them with user-specified PWMs (settings: window size = 50 bp, conservation cutoff 70%, relative score threshold 72%).
The system returns an illustration of the gapped alignment (a) and a conservation plot (b). The exon locations that are
predicted from the user-specified cDNA sequence are marked in yellow.

Interpretation
Predicted binding sites for MEF2 are displayed in blue (no conservation constraint) and red (conserved): some sub-
regions, despite being non-coding, are conserved; the largest of them is located in the first intron. Of the two predicted
sites in this region, one is experimentally verified to be functional in vivo (marked with *)93,94. Consistent with the futility
theorem, most predicted binding sites that were generated in the analysis of the single human sequence (blue) are
spurious. Cross-species comparisons can substantially improve the specificity of predictions, eliminating up to 90% of
false predictions26. Careful consideration should be given to whether the regulation of the gene is likely to be similar in
the species analysed.
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Efforts to incorporate biochemical knowledge into
regulatory sequence-prediction algorithms have focused
on the identification of regions in genes with statistically
significant combinations of binding sites for biologically-
linked sets of TFs (BOX 4). These methods for detection
of CRMs have evolved rapidly within a few years and fall
into two classes: trained and untrained methods.
Trained approaches use machine-learning techniques to
identify characteristics of known regulatory modules
that can be used to accurately detect sequences with
similar properties. Untrained methods are based on the
statistical likelihood of detecting observed combinations
of predicted TFBSs within a specified segment of a
sequence.

For a few richly studied cell types, there is a relatively
abundant set of experimentally defined regulatory
sequences, which is sufficient to direct expression of a
reporter gene in a cell-specific pattern. One large subset
of methods for human CRM prediction is based on a
curated collection of regulatory regions that direct gene
expression selectively to skeletal muscle (most often to
C2C12 cells in culture that have differentiated into
myotubes). The original analysis of the muscle CRMs
used logistic regression analysis with a vector of five

analysed to identify short invariant blocks of sequence.
The method is useful for analysing genes, such as
apolipoprotein(a)66, which emerged or obtained new
functions during the evolution of primates. However, it is
unclear how much impact it will have on improving the
performance of binding-site predictions. Assessment of
the statistical significance of observed shadows indicates
that the method has broad utility (J. McAuliffe, personal
communication), but a comprehensive analysis remains
to be produced.

Returning to the three orders of magnitude defi-
ciency in specificity that is expressed in the futility theo-
rem, an order of magnitude reduction in false-positive
predictions, although appreciated, is insufficient to cir-
cumvent the rate of false predictions made by PWMs.
Phylogenetic footprinting methods are, ultimately, a
‘crutch’ used in bioinformatics that reflects our underly-
ing naive understanding of the biochemical mecha-
nisms of gene regulation. Within a cell, TFs do not check
an evolutionary index to determine whether a site is suit-
able for binding. So, increasingly, there is focus on the
creation of bioinformatics algorithms that more directly
reflect the biochemical mechanisms that regulate gene
transcription.

Box 4 | Analysis of cis-regulatory modules

Combinatorial interactions generate functional specificity
Biochemical specificity of transcription is generated in the cell nucleus by combinatorial interactions between
transcription factors2. Bioinformatics approaches that are based on the detection of such combinations of binding sites
(termed cis-regulatory modules; CRMs) can produce predictions of substantially better specificity than analysis of
isolated sites. A muscle-specific CRM predictor67, which uses matrix models for SRF, MEF2, TEF1 and MyoD/Myf, was
used to analyse the muscle-specific TNNC1 promoter on chromosome 3p21. Results are shown superimposed with
human genome browser annotations for exons and sequence conservation with mouse. The gene is predicted to contain
three potential muscle CRMs (three brown peaks in muscle regulator region detection graph). The experimentally
confirmed module (marked with *), containing the previously described MEF2-binding site (BOX 3), corresponds to a
weaker module prediction. The region predicted to have the highest muscle CRM potential is not situated within a
conserved region and its function has not been directly analysed.

Combining predictions from independent methods
Supplemental data can and should be considered when evaluating predictions. The conservation track between human
and mouse complements the phylogenetic footprinting results to predict the functionally confirmed CRM. The regulatory
potential track39, discussed in the main text, provides additional support in favour of the known module. Phylogenetic
footprinting, module-based detection and regulatory potential estimation all agree on the regulatory importance of the
first intron. A quantitative method for weighing the influence of these measures remains to be established.

Predicted MEF2 sites using phylogenetic footprinting

TNNC1 RefSeq gene

XO7897 mRNA

Takifugu rubripes translated blat alignments

Human/mouse conservation

Muscle regulatory module detection

Regulatory potential

*
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structural class. Applicable to such cases, a set of general
binding profiles has recently been developed for struc-
tural classes that show consistent binding specificity77.

The analysis of CRMs can generate predictions of
sufficient specificity to motivate detailed laboratory
studies. However, the limited knowledge of binding sites
for many TFs and reference collections of known CRMs
precludes the wide application of cluster analysis.

Emerging methods 
The population of computational biologists who
explore regulatory sequence analysis is growing expo-
nentially. Although much work remains to be done to
optimize proven methods such as phylogenetic foot-
printing, important new directions are being actively
explored. Some of these promising new methods are
likely to influence the field in the near future.

The availability of genome sequences from more
diverse species will influence all aspects of regulatory
analysis. Taking the lead from research with bacterial78

and yeast79 genomes, a new class of phylogenetic foot-
printing, which we term ‘regulog’ analysis, will become
widely used in understanding the regulation of human
genes. This procedure identifies predicted binding sites
that are statistically overrepresented in sets of promoters
from orthologous genes from widely diverged species.
In such cases, although regulatory mechanisms have
been retained, regulatory sequences have diverged to the
extent that global alignments cannot be generated.
These regulatory regions are screened with collections
of PWMs to identify classes of overrepresented binding
sites. Such methods are starting to emerge for sets of
co-expressed human genes80,81, but will eventually be
applied to sets of distantly related orthologues.

Similarly, the pool of diverse genomes will increase
the challenge of aligning known regulatory modules.
Given a regulatory region in a human gene, for
instance, one would like to determine whether a simi-
lar region is present in a distant orthologue. Given the
lack of similarity at the nucleotide level, new methods
will be required to align predicted binding sites. An
early method in this direction used strict spacing rules
and site requirements to detect modules82. A new
method is more flexible83 because it aligns motif
matches instead of individual nucleotides. Substantial
effort will be required to develop a method that incor-
porates confidence weighting that emphasizes the
functionally confirmed TFBSs.

CRM models are improving rapidly. A new genera-
tion of BAYESIAN CRM models will sharply improve pre-
dictive performance by incorporating interactions
between pairs of factors (Thompson et al., in prepara-
tion). Early bioinformatics efforts indicated that certain
pairings of TFBS types could be identified, which
sharply improve predictions45. Recent efforts have
returned to this theme to demonstrate the possibility of
identifying significant correlations between site
types84,85. Full CRM models that incorporate these rela-
tionships and couple them to phylogenetic footprinting
might enable the accurate computational prediction of
human regulatory networks.

PWM-generated scores that were obtained with profiles
for the five TFs associated with skeletal muscle expres-
sion67. Compared with the rate of predictions of indi-
vidual TFBSs, the focus on CRMs eliminated ~99% of
false TFBS predictions while retaining 60% of func-
tional regions. The initial version of this method
allowed flexible spacing between sites and weighted pre-
dictions towards key classes of binding sites, but did not
allow for multiple binding sites for the same TF to con-
tribute to the predictions. A subsequent algorithm uses
hidden Markov models to circumvent this limitation,
improving specificity a further twofold68. Similar studies
with sets of genes expressed selectively in hepatocytes69

or in response to inflammation70 demonstrated the
broad applicability of the trained models in diverse bio-
logical contexts. In the analysis of hepatocyte regulation,
the CRM analysis was coupled to phylogenetic footprint-
ing, eliminating 99.9% of predictions while retaining
~50% of known CRMs. In the best cases, such integra-
tion can overcome the constraints that are expressed by
the futility theorem.

Trained methods place emphasis on predicted sites
for key TFs, whereas untrained methods allow the iden-
tification of significant combinations of sites in the
absence of extensive reference collections of functional
modules. Current data constraints limit most users to
the untrained methods that focus on the significance of
observed concentrations of sites for one or more TFs. In
these cases, biological knowledge that highlights such a
set of TFs as being potentially involved in regulating
transcription in a specific context is generally available.
For instance, in certain genes that are expressed during
pattern formation in the fly embryo, large clusters of
binding sites for homeobox and zinc-finger TFs were
qualitatively detected71. Efforts to establish methods for
statistically assessing the significance of the combina-
tion of sites have proliferated (for example, MSCAN72,
MCAST73 and ModuleScanner74). Such assessment is
challenging because the non-random properties of
chromosomal DNA can lead to the identification of
erroneous regions. Most methods attempt to model the
regional properties of sequences and assign significance
to observed combinations of sites on the basis of the
local characteristics of nucleotide composition. Such
methods are prone to identifying short local segmental
duplications72, in which identical TFBS predictions are
conjugated into statistically significant, but biologically
meaningless, chains. In the case of MSCAN, the
untrained model identifies false CRMs at a rate approxi-
mately fourfold higher than the best trained methods.
Recent advances with models for HOMOTYPIC CLUSTERS of
binding sites in fly genes have modelled positional inter-
actions between sites to achieve specificity rates of up to
50% correct predictions75,76.

To detect CRMs, sufficient data must be available to
accurately model the binding specificity of each con-
tributing TF. In fact, such data are sparse and the avail-
ability and quality of PWMs sharply restricts the
application of CRM analysis. For cases in which a PWM
for a crucial TF is not available, it is often suitable to
substitute a binding profile for a TF from the same

HOMOTYPIC CLUSTER

A cluster of similar transcription-
factor (TF) binding sites, often
binding the same TF.

BAYESIAN [METHOD]

A statistical method of
combining the likelihood with
additional information to
produce an overall estimate of the
strength of a piece of evidence.
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interactions between TFs (CRM analysis). It is likely that
the next breakthrough will depend on interpreting the
unaddressed regulatory system in the cell nucleus — the
chromatin structure86,87. Despite the fact that some early
bioinformatics pioneers have attempted to construct
algorithms related to chromatin effects88, progress has
been extremely slow. Although data remain sparse, there
is increasing hope that new methods, such as chromatin
immunoprecipitation microarrays89 and new biochemi-
cal insights (for example, into the characteristics of insu-
lator sequences90,91), can enhance our understanding of
regulation of gene expression.

There is increasing evidence that the relationship
between TF structures and binding specificity can be
resolved. In an important demonstration of the idea,
models were generated for the binding specificity of
zinc-finger TFs on the basis of the amino acids in the
protein–DNA interface. Such models reliably predict
binding specificity, indicating that the gap between linear
DNA sequence analysis and protein structural analysis
can be traversed55.

The analysis of regulatory sequences has been signif-
icantly improved through the analysis of sequence evo-
lution (phylogenetic footprinting) and combinatorial
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