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Abstract—Between the wired and the wireless world a syn-
chronization gap in terms of accuracy obviously exists due to the
different possibilities of the technologies. This paper investigates
means to access WLAN functionality in order to gain system-
wide synchronization between access points and clients in order
to establish a common notion of time in IEEE 802.11 systems.
For this, a novel approach is presented, which uses beacons to
transparently transport timing information even in high-loaded
wireless LAN networks. Using the presented approach jitter
accuracies in the microsecond range can be reached using the
open Unix WLAN driver interfaces like madwifi or ath5k.

I. INTRODUCTION

A common notion of time is of utmost importance for
various applications. As pretty obvious due to the success
of the IEEE 1588 standard in the wired world also a need
for synchronized clocks in wireless domains can be seen.
Applications for synchronized clocks of mobile nodes are as
manifold as the wired ones such as test and measurement and
audio-visual data transfer in real-time.

The motivation for this paper, however comes from another
application domain, namely the factory automation. For this
use-case it is mandatory to synchronize clocks in order to ease
channel access schemes like TDMA and to use synchroniza-
tion services for applications (such as timestamping of sensor
data). Typical implementation structures foresee a hierarchical
synchronization, where a usually wired and GPS-equipped
master node distributes timing information via a wired network
to wireless access-points, which themselves have to synchro-
nize the wireless nodes. It is needless to mention that the
backhaul network infrastructure has to provide certain support
for synchronization. A practical implementation for such a
system can be observed in [1] where network controllers inside
a factory oversee a large wireless network beneath them. The
wired controllers transit a reliable clock source to the under-
lying wireless networks which should be able to synchronize
to the same clock source. However, IEEE 802.11 [2] WLAN
standard currently implements its own synchronization scheme
in a wireless network using an internal clock, which makes it
incompatible for use in aforementioned hybrid networks for
factory automation.

Consequently, in this study1, application layer clock syn-
chronization over wireless channel is investigated when the
underlying communication protocol is IEEE 802.11. The goal
of the study is to achieve precise clock synchronization in
a WLAN using only commercial-off-the-shelf (COTS) hard-
ware. These components pave the way for synchronization
investigations using open source Linux drivers. WLAN device
drivers have normally been proprietary material of the com-
panies who develop the WLAN hardware and their extensive
use in Linux has not been possible without employing tools
such Network Driver Interface Specification (NDIS) wrapper
[3]. Such tools are only designed to make Windows device
drivers usable for Linux without paying attention to timing
constraints for synchronization. Therefore, carrying out clock
synchronization with such devices/drivers is hardly possible
because of the presence of large jitter in timestamps. Some
chipset manufactures provided open source drivers but this
software development stalled as soon as the chipsets were
not available in the market anymore. However, open source
WLAN driver development has again picked up the pace in the
last few years and some companies now support completely
open source driver with which one can communicate directly
with the hardware with dedicated application programming
interfaces (APIs). Therefore, this paper targets the case where
these open source drivers are employed to achieve synchro-
nization over WLAN with software timestamping.

The remainder of this paper is structured as follows: The
next section provides a brief introduction into currently avail-
able open source WLAN drivers and also deals with different
modi operandi, which will be used to provide synchronization
in this study. Section III provides the state-of-the art for
clock synchronization over WLAN and points out what to
expect from upcoming amendment to WLAN standard as far
as synchronization is concerned. Section IV highlights the
issue of software timestamping and its accuracy along with
the challenges associated with it. Implementation setup for
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experiments and measurements are discussed in Section V.
Section VII discusses the measurement and results while the
last section is about conclusions and possible future activities
and extensions to this study.

II. OPEN SOURCE WLAN DRIVERS AND
SYNCHRONIZATION MEANS

To understand the role of current open source drivers in
WLAN, it is important to look at the advancements in design
of WLAN chipsets. Figure 1 provides a block diagram of a
typical WLAN transceiver where the incoming signal comes
to the antenna, is converted from 2.4 GHz to 11 MHz. This
analog signal is sampled, digitized and passed through a
signal detector and demodulator to retrieve the original bit
stream, which has been transmitted in the first place. Once
the MAC layer has received the entire packet, it strips the
WLAN header off and then sends the packet payload to
the host computer through a dedicated interface for further
processing. Previously, the RF mixer block and the baseband
transceiver block have been implemented in the WLAN cards
as two separate chips. In recent years, with the help of
technological advancements, the IC manufacturers have been
able two combine these two blocks into a single chip. As a
consequence, they have encountered another problem, which is
the large footprint of WLAN MAC layer lying in the baseband
transceiver as firmware.

To reduce the size of this firmware, chip manufacturers
have collaborated with Linux open source community and
as a result of that, mac80211 [4] software-infrastructure is
provided. With the help of mac80211, the WLAN Mac Layer
Management Entity (MLME) has been removed from the
baseband transceiver and is moved to the host PC as shown in
figure 1. The MLME inside WLAN is responsible for carrying
out major management tasks such as device authentication,
sending probe requests and responses, power saving etc. The
mac80211 extension has shifted the control of management
tasks from the actual hardware to Linux user space. In ad-
dition to that, Atheros has released the source code of their
WLAN driver, which has finally resulted in the development of
completely open source Multiband Atheros Driver for Wireless
Fidelity (MadWiFi) driver [5] and ath5k driver [6]. It is
intended that madwifi driver will be completely replaced in
the future by ath5k who will support more features and will
have better community support. Hence, the more future-proof
ath5k driver has been selected to be used in this study.

Consequently, with the help of open source drivers, now
only major tasks such as handling of final queues inside
WLAN for transmission and reception, channel sensing and
random backoff implementation, and communicating with
the physical layer for packet transmission and reception is
done by the MAC firmware. Tasks such as client association,
authentication, beacon handling, assembling for transmission
packets etc. is now done inside the driver, which sits on top
of the base provided by mac80211.

Another task of MLME, now featured by mac80211, is
the higher-layer synchronization supported by IEEE 802.11.

With its help, it is possible to send synchronization (SYNC)
packets containing timestamps from an Access Point (AP) to
the client-stations (STAs). The SYNC packets are followed by
FollowUp packets, which contain the lower layer timestamp
of the previously sent SYNC packet. In this way, WLAN can
be used to provide higher layer clock synchronization for
the application using WLAN for communication. An obvious
shortcoming of this scheme is that the scheme only calculates
the offset between the timestamps and delay calculation and
compensation is not done. Thus, in this study, on top of
WLAN, a synchronization application will be implemented,
which will use both offset and delay compensation for syn-
chronization. Another scheme, which the current study inves-
tigates for synchronization in WLAN, is to exploit the beacons
for carrying timestamps from AP to STAs for synchronization.
Such a scheme can be useful in situations such as in [1]
where the network is considered saturated by normal traffic
and additional traffic for synchronization can not be supported.
As beacons are a part of a WLAN and can be modified with
device drivers, their usage as SYNC packets carrying accurate
timestamps will serve the purpose easily.

III. STATE OF THE ART

In [7], the clock synchronization over WLAN has been
implemented by using a proprietary WLAN card driver for
windows. The timer used for synchronization is the internal
Timing Synchronization Function (TSF) timer present inside
the WLAN beacon packets. The value of this timer is sent
from master to the slave. The slave uses this time to adjust a
virtual clock on the application layer to achieve synchroniza-
tion with an end-to-end accuracy of about 200 µs. In [8], it
is investigated whether high-precision clock synchronization
over WLAN is possible or not in the presence of a suitable
hardware without any actual implementation for synchroniza-
tion. Different timestamping delays have been investigated
but the focus has been set on timestamping with hardware
means and not software. The madwifi driver has been used to
implement a software based TDMA scheme in [9]. The TSF
timer has been used to implement clock synchronization in this
study. However, the achievable accuracy for synchronization is
not mentioned but it has been mentioned that the microsecond
range accuracy has been achieved using TSF timer for the
multimedia applications targeted in the study.

From the IEEE 802.11 standard’s point of view, the intended
purpose of TSF timer is to provide internal synchronization
between APs and STAs. Based on this timer, the STAs can,
for example, estimate the next expected beacon arrival and can
wake up in advance from their low power state to receive the
beacon. However, the standard, till now, does not provide any
means to provide application layer synchronization except for
the MLME contribution mentioned in the previous section.
This issue is supposed to be solved in the IEEE 802.11v
amendment [10]. In addition to several other changes a UTC
time offset field will be introduced in the beacons. This
offset will indicate the difference between the UTC time
and TSF timer. Based on this information, the STAs can
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achieve synchronization on the system level and not only for
typical WLAN operations. In addition to that, support for
synchronization protocols such as IEEE 1588 [11] will also
be made available. IEEE 802.11 action frames will replace the
SYNC messages from AP to STAs and the acknowledgment
packets from the STAs can then be used as Delay-Req for
delay calculations. However, 802.11v suggests to use unicast
messages for carrying these timestamps which can cause
an increase in the network load depending upon how often
these packets are sent for synchronization and to how many
STAs in the network. The details of the 802.11v amendments
are currently not yet available and hence the details about
synchronization procedure and accuracy can not be provided.

IV. TIMESTAMPING

The achievable synchronization accuracy is directly affected
by the precision of timestamps. With software timestamping, it

is understood that compared to low-level hardware timestamps
the accuracy is compromised because of the additional jitter
introduced by the communication stack. To understand the var-
ious factors causing the degradation of timestamping accuracy,
it is important to understand the data flow from the transmitter
(Tx) to the receiver (Rx) side. Figure 2 indicates this flow
and also highlights various considerable jitter sources. Once
the packet is assembled by the MAC on the Tx side, it
is sent out on the air after discovering that the channel is
free. As IEEE 802.11 WLAN has a contention based channel
access scheme, the packet must stay in the queue inside
the WLAN chipset until the channel becomes inactive and
becomes available for use by the device.

Once the channel is obtained, the packet is sent out and,
in the case of successful transmission, the hardware notifies
the device driver with a hardware interrupt. In the interrupt
handling routine, the device driver draws the timestamp using
getnstimeofday() function call and the rest of the packet
handling operations are then carried out in the transmission
tasklet. This entire time between hardware notifying the driver
and the driver drawing the timestamp is shown as t1 in
figure 2. On the receiver side, the same process takes place
when the reception process is finished and the time between
hardware notification to the driver at the receiver and drawing
of timestamp is highlighted as t3. It should be noted that
channel sensing and back-off time does not affect the software
timestamps because hardware only notifies the device driver
once the packet has been completely sent.

Another major source of timestamping jitter highlighted in
figure 2 is t2. This jitter is the time between the packet leaving
the transmitter and beginning of being received at the receiver.
This start of process of reception mainly includes the data
travelling time from Tx to Rx side, frequency and symbol
synchronization at the receiver, settling time of the adaptive
gain control, training of the equalizers and symbol detection
[12]. Out of all these, the travelling time from transmitter and
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receiver in a line-of-sight (LoS) can be considered constant
while the rest are random and act as sources of jitter.

The two random delays t1 and t3 depend on the system load
and process scheduling and are not easy to quantify. However,
according to [7], for a 166 MHz processor, the time needed
to draw a timestamp is 100 ns. For interrupt handling delays,
the exact values for ath5k driver in Linux on testbed under
consideration in this study are not yet available. However,
studies dealing with measurement of interrupt handling delays
for Linux version such as [13], indicate that interrupt handling
delay does not exceed 18.4 µs in no-load condition and 67.7 µs
in very high loaded condition. This indicate that achieving
synchronization in low microsecond range can be possible.

To calculate the delay t2, it is important to access the
hardware interface between the RF mixer and the baseband
transceiver. The output of the RF mixer (and input of the
baseband transceiver) is a baseband signal with known phase
and frequency and is ready to be passed through the analogue
digital converters for digital detection and demodulation. As
indicated in figure 1, the current WLAN chipsets no longer
have this interface as both RF mixer and baseband chip are
co-located inside one IC.

Therefore, an older WLAN chipset is used, which is capable
of toggling a pin on the baseband chip as soon as packet
is to be transmitted in the air. On the reception side, the
WLAN chipset toggles a pin when the 16 bit “start of the
frame delimiter” (SFD) is detected. The SFD follows a 128 bit
preamble and both preamble and SFD are sent at a basic rate
of 1 Mbps. Hence, the minimum possible delay after which a
packet is detected is 144 µs.

Figure 3 provides the mean delay and jitter between “the
start of the packet transmission at the transmitter” and “suc-
cessful detection of the SFD” for 5000 samples. The mean
delay has actually been found to be 151.05 µs while the
standard deviation is found to be 120 ns. However, the 144
bits of preamble and SFD are excluded from this delay, and
therefore the delay, as shown in the figure 3, is 7.05 µs. This

means that 7.05 µs are required for frequency and symbol
phase detection and settling of the gain controller on average.
It should be noted that Tx and Rx are places in a LoS
for these measurements and, in the case of non LoS, signal
reflections will be present. This will prolong the convergence
of the equalizer coefficients in the receiver chipset, which can
increase both delay and jitter.

V. IMPLEMENTATION SETUP

Figure 4 provides an implementation setup for carrying out
synchronization in this study. The AP acts as the master clock
in the system while an STA acts as a slave clock. Both, AP
and STA, from hardware point of view, are dedicated firmware
development boards with a 533 MHz processor each and
running Openwrt [14], which consists of Linux for embedded
systems. The mini PCI WLAN cards are supported by bleeding
edge ath5k drivers and are interlinked with mac80211. The AP
and STA have been put in direct LoS to minimise the impact
of signal reflections. To measure the synchronization accuracy,
1 pulse per second (1 PPS) is generated from the serial port
of the boards and is fed into an oscilloscope. The difference
between rising edges of the pulses from two boards gives a
measure of the difference between their respective clocks.

A. Normal Synchronization Procedure

The basic synchronization cycle is similar to what proto-
cols like IEEE 1588 employ. The AP sends a SYNC packet,
containing an application layer timestamp, to the STA. The
packet goes through the communication stack in the kernel and
is handed to the hardware by the driver. The hardware sends
the packet out and notifies the device driver by an interrupt.
The driver then draws a 64 bit timestamp from the system
clock and sends the timestamp back to the application in the
user space. This timestamp is then sent out by the AP in a
FollowUp packet for the STA. The STA draws a timestamp
when the SYNC packet is received in the kernel space and
the timestamp is then sent to the “timestamp accumulator”
in the user space. The accumulator, later on, also collects
the timestamp coming in the FollowUp packet for master-
to-slave offset. To calculate the delay from slave clock to
the master clock, the STA sends the Delay-Req packet,
which draws a Delay-Resp message from the AP. From
these messages, the slave-to-master difference is calculated.
The final offset is calculated by using the “timestamp-offset”
and path delay compensation as it is the case in IEEE 1588.
Further, it is handed on to the synchronization application,
which employs a simple control loop to steer the system clock
and is also responsible for making up for frequency drift.

B. Beacon Modifications

As discussed in section II, the beacon packets can be utilized
to carry application layer timestamps and not only timestamps
for TSF timer. The beacon assembly is carried out inside
mac80211 and the beacon payload is handed to the hardware
by the driver, which appends WLAN header to the payload
and transmits it. In ath5k, a beacon alarm is present, which
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Fig. 4. A block diagram for the system showing activities happening on AP side, acting as master, and on STA side, acting as slave.

raises a software interrupt to ensure that the next beacon is sent
out at the exact time according to the chosen beacon interval.
The ath5k driver has no dedicated hardware interrupt for
transmission of beacons and hence the raising of the software
interrupt is taken as the instant to draw the timestamps.

The tasks performed by the driver, once the software
interrupt is raised, include stopping all transmission queues,
beacon packet assembly and handling the beacon transmission
itself. The beacon queue is the highest priority queue present
in WLAN chipsets and the contention window for channel
access in WLAN is also set to its minimum values for beacons.
Hence, with the use of beacons, the most obvious source of
jitter is, in fact, the channel accessing delay. However, as
the timestamping instant is not really close to the hardware,
there will be some additional jitter, which will degrade the
accuracy. The timestamp itself is masked as “Vendor” related
information inside the packet and hence the WLAN cards from
same vendor can communicate after minor modifications in the
stack but other cards without these modifications will not be
able to be the part of WLAN.

VI. MEASUREMENTS AND RESULTS

For the case where normal SYNC packets have been used
for synchronization, SYNC and Delay-Req packets are sent
every second to calculate the actual offset while the clock
is only adjusted after every four seconds. To minimise the
impact of the jitter, the four offset values are saved in a
non-linear filter which discards the minimum and maximum
offsets. This filtering, thus, tends to provide an average offset
while eliminating the effect of those measurements which are
outliers. Additionally, all the packets carrying timestamps have
been broadcast packets, which removes the necessity to send
acknowledgment packets. The final clock offset between the
master and the slave is measured only when the initial transient
phase of synchronization is over.

Figure 5 shows the clock offset between AP and STA
for 10000 samples. The final clock offset achieved has been
−23.6 µs with a standard deviation of 6.1 µs. One major source

for the mean offset is the assumption made in the delay
calculation for timestamps that delay from master-slave and
slave-master is symmetric. However, it has not been the case
as the delay from slave to master side is greater than the other
way around and hence a constant offset is present at the end. If
this offset is known beforehand, it can be taken care of by the
synchronization application. However, this offset can not be
determined a priori and hence the use of Delay-Req packets
is critical for determining this offset. For beacon based SYNC
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Fig. 5. Synchronization accuracy between AP and STA while using dedicated
packets for synchronization and delay calculations

packets, the delay calculation can not be done and the clock
offset is calculated as the direct difference between timestamps
drawn at the transmission and the reception time. However, the
beacon interval is adjusted to be 1 s and the clock is adjusted
every four seconds to have the same behaviour as in the case
of dedicated synchronization packets. Figure 6 provides the
histogram of the clock offset between the master clock and
slave clock when beacons are used as SYNC packets. As stated
in the earlier sections, timestamping for beacons is carried
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out higher in the protocol stack as compared to hardware-
interrupt-driven timestamping. This is evident from the mean
offset value of 37.4 ms between master and the slave clock. As
with the other case, this offset can be taken care of a posteriori
but is difficult to predict beforehand and may vary slightly with
time. Thus, a better timestamping instant has to be chosen if
the beacons are to be used for carrying timestamps from AP
to STA for clock synchronization.

VII. CONCLUSION

A software timestamping based synchronization scheme is
studied in this scheme for the COTS WLAN cards. Open
source WLAN drivers are used to provide software time-
stamping low down in the protocol stack. Additionally, the
use of beacons is advocated to act as SYNC packets and
carry timestamps from master to the slave clocks. However,
the WLAN hardware does not indicate the transmission of a
beacon with a hardware interrupt contrary to the transmission
of normal data packets. Hence, the final achievable accuracy
with beacons ends up in the millisecond range as compared to
a few microseconds with normal SYNC data packets. Hence,
further investigations have to be done to find better time-
stamping instant for software timestamping with beacons. For
software timestamping driven by interrupts in the operating
system, interrupt-handling delays assert a lot of influence on
the accuracy of the timestamps used for synchronization. This
random delay must be analysed and quantified under different
traffic and system loads before establishing any final verdict
on the accuracy of WLAN based clock synchronization.
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