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Splitting and Merging Components of a

Nonconjugate Dirichlet Process Mixture Model

Sonia Jain∗ and Radford M. Neal†

Abstract. The inferential problem of associating data to mixture components is dif-

ficult when components are nearby or overlapping. We introduce a new split-merge

Markov chain Monte Carlo technique that efficiently classifies observations by splitting

and merging mixture components of a nonconjugate Dirichlet process mixture model.

Our method, which is a Metropolis-Hastings procedure with split-merge proposals, sam-

ples clusters of observations simultaneously rather than incrementally assigning observa-

tions to mixture components. Split-merge moves are produced by exploiting properties

of a restricted Gibbs sampling scan. A simulation study compares the new split-merge

technique to a nonconjugate version of Gibbs sampling and an incremental Metropolis-

Hastings technique. The results demonstrate the improved performance of the new

sampler.

Keywords: Bayesian model, Markov chain Monte Carlo, split-merge moves, nonconjugate prior

1 Introduction

Bayesian mixture models have gained in popularity as an alternative to traditional

density estimation and clustering techniques. In particular, Bayesian mixture models in

which a Dirichlet process prior defines the mixing distribution are of interest due to their

flexibility in fitting a countably infinite number of components (Ferguson (1983)). Much

of the recent research related to the Dirichlet process mixture model has been devoted

to developing computational techniques, usually Markov chain Monte Carlo methods,

to sample from its posterior distribution (Neal (2000), MacEachern and Müller (1998)).

Other techniques to estimate the Dirichlet process model include sequential importance

sampling (MacEachern et al. (1999)) and variational methods (Blei and Jordan (2004)).

The practical utility of these methods is illustrated by their recent use for complex bi-

ological and genetics problems, such as haplotype reconstruction (Xing et al. (2004)),

estimation of rates of non-synonymous and synonymous nucleotide substitutions as evi-

dence for natural selection in evolutionary biology problems (Huelsenbeck et al. (2006)),

and determination of differential gene expression (Do et al. (2005)).

The focus of this article is on Markov chain sampling for nonconjugate Dirichlet pro-

cess mixture models, building on our previous work for conjugate models (Jain and Neal

(2004)). Conjugate models are appropriate for some problems, which is convenient due

∗Division of Biostatistics and Bioinformatics, Department of Family and Preventive Medicine, Uni-
versity of California at San Diego, La Jolla, CA, mailto:sojain@ucsd.edu

†Department of Statistics and Department of Computer Science, University of Toronto, Toronto,
Ontario, Canada, http://www.cs.toronto.edu/~radford/

c© 2007 International Society for Bayesian Analysis ba0007

mailto:sojain@ucsd.edu
http://www.cs.toronto.edu/~radford/


446 Splitting and Merging Components of a Nonconjugate DPMM

to the analytical tractability of these priors. However, in many situations, conjugate

priors can be too restrictive. Forcing conjugacy on the model can lead to undesirable

or even nonsensical priors. A classic example is a simple model for normally distributed

data, where conjugacy requires an assumption that the mean and variance are a priori
dependent, which is often unrealistic in actual problems.

Computationally, Markov chain sampling procedures can operate differently depend-

ing on whether conjugacy is assumed. In the conjugate case, we can analytically in-

tegrate away the mixing proportions for the components and the parameters for each

component. This leads to Markov chain Monte Carlo procedures that update only

the latent indicator variable associating mixture components with data observations

(MacEachern (1994), Neal (1992)). However, in the nonconjugate case, the parameters

of the model cannot be integrated away and must be included in the Markov chain

update. Further, since we lose the advantage of analytic tractability, computational

difficulties arise, which makes it more difficult, but not impossible, to construct valid

Markov chain Monte Carlo procedures.

Nonconjugate Markov chain sampling methods based on the Gibbs sampler have

been proposed previously; see, for instance, MacEachern and Müller (1998) and Neal

(2000). When the mixture components are nearby or overlapping, these incremental

samplers (as well as those for conjugate models) suffer from computational difficulties,

such as remaining stuck in isolated modes and poor mixing between components.

Alternative nonincremental Markov chain samplers for the Dirichlet process mixture

model based on split-merge moves have been proposed by Green and Richardson (2001)

and by ourselves (Jain and Neal (2004)). In a single iteration, these methods can split a

mixture component moving all observations to an appropriate new component, or merge

two distinct components together. The Green and Richardson (2001) method is based

on the reversible-jump procedure, in which numerous ways to propose a split move are

possible. Since specific moment conditions must be preserved, the split-merge proposals

are model-dependent. Jain and Neal (2004) introduce a Metropolis-Hastings technique

with split-merge proposals for conjugate Dirichlet process mixture models. The inno-

vation in this work is exploiting properties of a Gibbs sampling scan to construct split-

merge moves, such that their Metropolis-Hastings proposals are model-independent. In

this article, we extend the conjugate split-merge technique to a class of nonconjugate

Dirichlet process mixture models by developing a novel scheme to incorporate the model

parameters into the sampling procedure.

This article is organized as follows. Section 2 defines the nonconjugate Dirichlet

process mixture model. Section 3 briefly describes the Metropolis-Hastings split-merge

technique based on Gibbs sampling proposals. The new split-merge technique for a class

of nonconjugate models is proposed in Section 4. Next, in Section 5, we illustrate the

utility of our method in by comparing it to an auxiliary Gibbs sampling method (Neal

(2000), Algorithm 8). Section 6 is a general discussion and concluding remarks. Details

of a simulation study are provided in the Appendix in Section 7.
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2 The model

The Dirichlet process mixture model takes the following hierarchical model form for

observed data y = (y1, . . . , yn) that is considered exchangeable:

yi | θi ∼ F (θi)

θi | G ∼ G

G ∼ DP (G0, α)

(1)

Here, F (θi) is a component parameterized by θi from a parametric distribution whose

density will be written as f(y; θ). G is the mixing distribution. G0 defines a base

distribution for the Dirichlet process (DP ) prior, while α is a concentration parameter

that takes values greater than zero. The usual conditional independence assumptions

for a hierarchical model apply, so that the only dependencies are those that are explicitly

shown.

Realizations of the Dirichlet process are discrete with probability one. A conse-

quence of this is that the mixture model in equation (1) can be viewed as a countably

infinite mixture model (Ferguson (1983)). This is evident when we simplify the model

in equation (1) by integrating G over its prior distribution. The θi follow a generalized

Polya urn scheme (Blackwell and MacQueen (1973)) and the prior distribution for the

θi may be represented by the following conditional distributions:

θ1 ∼ G0

θi | θ1, . . . , θi−1 ∼
1

i−1+α

i−1
∑

j=1

δ(θj) +
α

i−1+α
G0

(2)

where δ(θj) is the distribution which is a point mass at θj .

We can represent the fact that (2) results in some of the θi being identical by setting

θi = φci
, where ci represents the latent class associated with observation i, and all φc are

independently drawn from G0. The Polya urn scheme for sampling the θi is equivalent

to the following scheme for sampling the latent variables, ci, and associated φc:

P (ci = c | c1, . . . , ci−1) =
ni,c

i − 1 + α
, for c ∈ {cj}j<i

P (ci 6= cj for all j <i | c1, . . . , ci−1) =
α

i − 1 + α

(3)

where ni,c is the number of ck for k < i that are equal to c. The probabilities shown

in (3) define the Dirichlet process model. This notation will be employed in subsequent

sections.

3 Jain and Neal’s conjugate split-merge procedure

We have previously introduced a split-merge Metropolis-Hastings procedure for conju-

gate Dirichlet process mixture models (Jain and Neal (2004); Jain (2002)). In the con-

jugate version of the algorithm, we assume that F is conjugate to G0 in equation (1), so
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the model parameters, φc, in addition to the mixing distribution, G, can be integrated

away. The state of the Markov chain consists only of the mixture component indicators,

ci.

This sampler proposes nonincremental moves that can produce major changes to

the configuration of observations to mixture components in a single iteration. The

split-merge proposals are evaluated by a Metropolis-Hastings procedure, in which split

proposals are constructed by exploiting properties of a restricted Gibbs sampling scan

on the component indicators, ci. The Gibbs sampling scan is restricted in that it is

only performed on a subset of the data (the observations associated with the merged

component that is proposed to be split) and will only allocate observations between two

mixture components.

To achieve more reasonable split proposals, several intermediate restricted Gibbs

sampling scans are conducted prior to the final restricted Gibbs sampling scan, which is

used to calculate the Metropolis-Hastings acceptance probability. The result of the last

intermediate Gibbs sampling scan is denoted as the random launch state, from which the

restricted Gibbs sampling transition probability is explicitly calculated. The number of

intermediate restricted Gibbs sampling scans is considered a tuning parameter of this

algorithm.

Note that for a merge proposal, there is only one way to combine items in two

components to one component. However, deciding whether to accept or reject a merge

proposal requires hypothetical consideration of the reverse split, which requires compu-

tations similar to those done for an actual split. A description of the steps involved in

this algorithm, details to compute the Metropolis-Hastings acceptance probability, and a

discussion of the validity of the conjugate version of the split-merge Metropolis-Hastings

algorithm are provided in Jain and Neal (2004).

4 The nonconjugate split-merge procedure

We adapt Jain and Neal’s conjugate split-merge Markov chain procedure described in

Section 3 to accommodate models with nonconjugate priors. As mentioned earlier,

because conjugate priors are not appropriate for all modeling situations, much of the

recent Bayesian mixture modeling literature has been dedicated to nonconjugate al-

gorithms (for instance, MacEachern and Müller (1998), Green and Richardson (2001),

and Neal (2000)). A major impediment in designing nonconjugate procedures is the

computational difficulty that arises when the model is no longer analytically tractable.

We say the model is nonconjugate when G0 is not conjugate to F in the mixture

model (equation 1). Aside from being unable to simplify the state of the Markov chain

by integrating away the model parameters, φ, the main obstacle occurs when trying to

sample for a new mixture component. When a ci is updated, it can be set either to

one of the other components currently associated with some observation or to a new

mixture component. The probability of setting ci to a new component involves the

integral,
∫

F (yi; φ) dG0(φ), which is analytically intractable in most nonconjugate situ-
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ations. Allowances that some previous nonconjugate methods have made when dealing

with this integral include approximating the true posterior distribution by another sta-

tionary distribution (which can be extremely detrimental) or creating model-specific ad
hoc algorithms (which fail to generalize well).

Neal (2000) proposed two incremental Markov chain sampling procedures: Gibbs

sampling with auxiliary parameters (Algorithm 8), and an incremental Metropolis-

Hastings technique (Algorithm 5). These are exact Markov chain Monte Carlo methods

that sample the correct posterior distribution and are straightforward to implement.

However, in situations where the mixture components are nearby or similar in struc-

ture, these incremental methods’ performance is analogous to the incremental methods

for conjugate models (see Jain and Neal (2004)). To overcome their problems, such

as remaining stuck in isolated modes and poor mixing between mixture components,

we have developed a nonincremental split-merge alternative. In the next section, we

compare empirically the performance of the new sampler to Neal’s two incremental

algorithms.

In this article, we show how such a nonincremental split-merge procedure can be

applied when the model uses a particular type of nonconjugate prior, the conditionally

conjugate family of priors. In conditionally conjugate models, it is still impossible

to efficiently compute the integral,
∫

F (yi; φ) dG0(φ). However, the pair F and G0

are conditionally conjugate in one model parameter if the remaining parameters are

held fixed. A well-known instance of this is the following Normal model. Suppose

the observations, y1, . . . , yn, are distributed as F (yi; µ, σ2) = Normal(yi; µ, σ2), and

the prior is G0(µ, σ−2) = Normal(µ; w, B−1) · Gamma(σ−2; r, R). The distributions,

F (yi; µ, σ2) and G0(µ, σ−2), are conjugate in µ when σ2 is fixed, and conjugate in σ2

if µ is fixed. But, the joint posterior distribution is not analytically tractable. For the

sake of brevity, when this nonconjugate Normal-Gamma prior is applied to a Normal

mixture model, we will refer to it as the Normal-Gamma mixture model. Note, however,

that this model using a conjugate prior, in which the mean and variance are a priori

dependent, is sometime referred to similarly.

4.1 Restricted Gibbs sampling split-merge proposals

The conjugate split-merge algorithm of Section 3 cannot be applied directly to the con-

ditionally conjugate case, but the basic mechanism of creating restricted Gibbs sampling

split-merge proposals can still be applied. Since the model parameters, φc, cannot be

integrated away, the state of the Markov chain for the split-merge sampler consists of

both the component indicators and model parameters, denoted by γ = (c, φ), where

c = (c1, . . . , cn) and φ = (φc : c ∈ {c1, . . . , cn}).

Conditional conjugacy in the model is required so that restricted Gibbs sampling

scans can be performed to allocate observations reasonably between two mixture com-

ponents. During these scans, we do not need to compute the integral,
∫

F (yi; φ) dG0(φ),

since we are only allocating observations between two known components that have at

least one observation already assigned to them. For a nonconjugate model, a restricted
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Gibbs sampling scan also updates the parameters for the affected mixture components,

while holding the parameters of the other components fixed. Note that use of a re-

stricted Gibbs sampling scan (and consequently, conditional conjugacy) is only crucial

for the final Gibbs sampling scan from the launch state, since it allows the Metropolis-

Hastings proposal density can be calculated. The intermediate scans could be replaced

by some other type of Markov chain update.

Due to the inclusion of the model parameters, when two separate components are

being merged to a single component, there is no longer only one possible component

to merge into. The merged component is now defined by component parameters,

which must be accounted for in the Metropolis-Hastings acceptance probability (in Sec-

tion 4.3). The algorithm addresses this problem by conducting intermediate restricted

Gibbs sampling for the merged component’s parameters to arrive at a launch state (in

a similar fashion as the “split” intermediate Gibbs sampling). From this launch state,

one final restricted Gibbs sampling scan is performed to obtain the model parameters

of the proposed merged component. The number of intermediate Gibbs sampling scans

for the merged component’s parameters is an additional tuning parameter in this al-

gorithm. In this generalized version of the split-merge algorithm, there are therefore

two launch states, γLsplit and γLmerge , that are necessary in order to calculate Gibbs

sampling transition kernels for the split and merge proposal distributions.

4.2 Restricted Gibbs sampling split-merge procedure for the noncon-
jugate case

Let the state of the Markov chain consist of γ = (c, φ) where c = (c1, . . . , cn) and φ = (φc :
c ∈ {c1, . . . , cn}).

1. Select two distinct observations, i and j, at random uniformly.

2. Let S denote the set of observations, k ∈ {1, . . . , n}, for which k 6= i and k 6= j, and
ck = ci or ck = cj .

3. Define launch states, γLsplit and γLmerge , that will be used to define Gibbs sampling
distributions required for the split and merge proposals.

• Obtain launch state γLsplit = (cLsplit , φLsplit) as follows:

– If ci = cj , then let c
Lsplit

i be set to a new component such that

c
Lsplit

i /∈ {c1, . . . , cn} and let c
Lsplit

j = cj . Otherwise, when ci 6= cj , let

c
Lsplit

i = ci and c
Lsplit

j = cj . For every k ∈ S, randomly set c
Lsplit

k , inde-

pendently with equal probability, to either of the distinct components, c
Lsplit

i

or c
Lsplit

j . Initialize model parameters, φ
Lsplit

c
Lsplit
i

and φ
Lsplit

c
Lsplit
j

, associated with

the two distinct components by drawing new values from their prior distribu-
tion.

– Modify γLsplit by performing t intermediate restricted Gibbs sampling scans

to update cLsplit , φ
Lsplit

c
Lsplit
i

, and φ
Lsplit

c
Lsplit
j

.

• Obtain launch state γLmerge = (cLmerge , φLmerge ) as follows:



S. Jain and R. M. Neal 451

– If ci = cj , then let c
Lmerge

i = c
Lmerge

j = cj (which is the same as ci). Similarly,

if ci 6= cj , then set c
Lmerge

i = c
Lmerge

j = cj . For every k ∈ S, set c
Lmerge

k = cj .

Initialize model parameter, φ
Lmerge

c
Lmerge
j

, associated with the merged component

by drawing a new value from its prior distribution.

– Modify γLmerge by performing r intermediate restricted Gibbs sampling scans
to update φ

Lmerge

c
Lmerge
j

.

4. If items i and j are in the same mixture component, i.e. ci = cj , then:

(a) Propose a new assignment of data items to mixture components, denoted as csplit,
in which component ci = cj is split into two separate components, csplit

i and csplit

j ,

and propose new values for the corresponding components’ parameters, φsplit

c
split
i

and

φsplit

c
split
j

. Define each element of the candidate state, γsplit = (csplit, φsplit), as

follows:

• Let csplit
i = c

Lsplit

i (note that c
Lsplit

i /∈ {c1, . . . , cn})

• Let csplit

j = c
Lsplit

j (which is the same as cj)

• By conducting one final Gibbs sampling scan from the launch state, γLsplit ,
for every observation k ∈ S, let csplit

k be set to either component csplit

i or csplit

j

and draw values for the model parameters, φsplit

c
split
i

and φsplit

c
split
j

.

• For observations k /∈ S ∪ {i, j}, let csplit

k = ck, and for c /∈ {csplit

i , csplit

j }, let

φsplit

csplit = φc.

(b) Compute the proposal densities, q(γsplit|γ) and q(γ|γsplit), that will be used to
calculate the Metropolis-Hastings acceptance probability.

• Calculate the split proposal density, q(γsplit|γ), by computing the Gibbs sam-
pling transition kernel from the split launch state, γLsplit , to the final proposed
state, γsplit. The Gibbs sampling transition kernel is the product of the in-
dividual probabilities of setting each element in the launch state to its final
proposed value during the final Gibbs sampling scan.

• Calculate the corresponding proposal density, q(γ|γsplit), by computing the
Gibbs sampling transition kernel from the merge launch state, γLmerge , to the
original merged configuration, γ. The Gibbs sampling transition kernel is the
product of the probability of setting each element in the original merge state
(in this case, elements of φcj

) to its original value in a (hypothetical) Gibbs
sampling scan from the merge launch state.

(c) Evaluate the proposal by the Metropolis-Hastings acceptance probability a(γsplit, γ).
If the proposal is accepted, γsplit becomes the next state in the Markov chain. If
the proposal is rejected, the original configuration and model parameter, γ, remain
as the next state.

5. Otherwise, if i and j are in different mixture components, i.e. ci 6= cj , then:

(a) Propose a new assignment of data items to mixture components, denoted as cmerge,
in which distinct components, ci and cj , are combined into a single component, and
propose a new value for the corresponding merged component’s model parameter,
φmerge

c
merge
j

. Define each element of the candidate state, γmerge = (cmerge, φmerge), as

follows:
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• Let cmerge
i = c

Lmerge

i (which is the same as cj)

• Let cmerge
j = c

Lmerge

j (which is the same as cj)

• For every observation k ∈ S, let cmerge

k = c
Lmerge

j (which is the same as cj)

• For observations k /∈ S ∪ {i, j}, let cmerge

k = ck, and for c 6= cmerge, let
φmerge

cmerge = φc.

• Conduct one final restricted Gibbs sampling scan from the launch state,
γLmerge , in order to draw a new value for the model parameter, φmerge

c
merge
j

.

(b) Compute the proposal densities, q(γmerge|γ) and q(γ|γmerge), that will be used to
calculate the Metropolis-Hastings acceptance probability.

• Calculate the merge proposal density, q(γmerge|γ), by computing the Gibbs
sampling transition kernel from the merge launch state, γLmerge , to the final
proposed state, γmerge. The Gibbs sampling transition kernel is the probability
of setting φ

Lmerge

c
Lmerge
j

to its final proposed value, φmerge

c
merge
j

, via one Gibbs sampling

scan.

• Calculate the corresponding proposal density, q(γ|γmerge), by computing the
Gibbs sampling transition kernel from the split launch state, γLsplit , to the
original split configuration, γ. The Gibbs sampling transition kernel is the
product of the probabilities of setting each element in the original split state
to its original value in a (hypothetical) Gibbs sampling scan from the split
launch state.

(c) Evaluate the proposal by the Metropolis-Hastings acceptance probability a(γmerge, γ).
If the proposal is accepted, γmerge becomes the next state. If the merge proposal
is rejected, the original configuration and model parameters, γ, remain as the next
state.

4.3 The Metropolis-Hastings acceptance probability

The Metropolis-Hastings acceptance probability (Metropolis et al. (1953), Hastings (1970))

takes the following form when updating γ = (c, φ):

a(γ∗, γ) = min

[

1,
q(γ|γ∗)

q(γ∗|γ)

P (γ∗)

P (γ)

L(γ∗|y)

L(γ|y)

]

(4)

where γ∗ is either γsplit or γmerge depending on the type of proposal.

The prior distribution, P (γ), will be a product of the individual prior distributions

for c and φ, since they are a priori independent. As before, the prior distribution

for P (c) will be a product of factors in equation (3). The φc for different mixture

components are independent. Therefore, the prior distribution for P (γ) is:

P (γ) = P (c)
∏

c∈c

P (φc) (5)

= αD

∏

c∈c(nc−1)!
∏n

k=1(α+k−1)

∏

c∈c

g(φc) (6)
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where D is the number of distinct mixture components, nc is the count of items belonging

to mixture component c ∈ c, and g(φc) is the prior probability density function for φc

for mixture component c ∈ c.

For the split proposal, the appropriate ratio of prior distributions is:

P (γsplit)

P (γ)
= α

(nsplit

c
split
i

−1)! (nsplit

c
split
j

−1)! g(φsplit

c
split
i

) g(φsplit

c
split
j

)

(nci
−1)! g(φci

)
(7)

where γ is the original state in which i and j belong to the same mixture component,

nsplit

c
split
i

and nsplit

c
split
j

are the number of observations associated with each split component.

The ratio of the prior distributions simplifies because the denominator in equation (6)

and factors not associated with components that are directly involved in the Metropolis-

Hastings update cancel.

For the merge proposal, the prior ratio simplifies to:

P (γmerge)

P (γ)
=

1

α

(nmerge

c
merge
i

−1)! g(φmerge

c
merge
i

)

(nci
−1)! (ncj

−1)! g(φci
) g(φcj

)
(8)

where nmerge

c
merge
i

denotes the number of observations associated with the single merged

component. γ represents the original state in which items i and j belong to separate

components.

The likelihood, L(γ|y), will be a product over n observations:

L(γ|y) =

n
∏

k=1

f(yk; φck
) (9)

L(γ|y) can be expressed as a double product over components, c, and items, k ∈ {1, . . . , n},
associated with each component:

L(γ|y) =

D
∏

c=1

∏

k : ck=c

f(yk; φc) (10)

where D is the number of distinct components. This expression to calculate the likeli-

hood is often easier to use in real examples.

Likelihood factors involving items associated with components not directly involved

in the split proposal cancel. The ratio of likelihoods in equation (4) reduces to the

following:

L(γsplit|y)

L(γ|y)
=

∏

k : c
split

k
=c

split
i

f(yk; φsplit

c
split
i

)
∏

k : c
split

k
=c

split
j

f(yk; φsplit

c
split
j

)

∏

k : ck=ci

f(yk; φci
)

(11)
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Likewise, for the merge proposal, the ratio of likelihoods is:

L(γmerge|y)

L(γ|y)
=

∏

k : c
merge

k
=c

merge
i

f(yk; φmerge

c
merge
i

)

∏

k : ck=ci

f(yk; φci
)
∏

k : ck=cj

f(yk; φcj
)

(12)

The Metropolis-Hastings proposal density, q(γ∗|γ), is the restricted Gibbs sampling

transition kernel from launch state γL to final state γ∗. This is a product of the

conditional probabilities of each individual update of the vector c∗ from cL and the

conditional densities of assigning successive components of φ
L to their final values, φ

∗.

Typically, for each mixture component, φ is composed of more than one model

parameter, i.e. each φc can be a vector of parameters. For example, in the normal

model, there are two parameters per component, φc = (µc, σ
2
c ). In a Gibbs sampling

scan, each element of parameter φc is updated individually, while holding the other

elements of φc fixed. A single element of φc is updated in a restricted Gibbs sampling

scan by drawing a new value from its full conditional distribution.

We will denote the product of conditional probabilities obtained from one full scan

of restricted Gibbs sampling as PGS . Since γ is comprised of both c and φ, for clarity,

we can split the Gibbs sampling transition kernel into its factors. The order of updating

the variables does not affect the validity of the method, but for presentation purposes,

we assume that Gibbs sampling updates φ first (as is done in the later examples):

q(γ∗|γ) = PGS(φ∗ |φL, cL, y) · PGS(c∗ | cL, φ∗, y) (13)

An individual update of a particular ck is as follows:

P (ck | c−k, φck
, yk) =

n−k,ck
f(yk; φck

)

n−k,ci
f(yk; φci

) + n−k,cj
f(yk; φcj

)
(14)

where c−k represents the cl for l 6=k in S ∪ {i, j}, n−k,c is the number of cl for l 6=k in

S∪{i, j} that are equal to c, and f(yk; φc) is the likelihood. Here, ck is restricted to being

either ci or cj . Each time a ck or φck
is incrementally modified during a restricted Gibbs

sampling scan, it is immediately used in the subsequent Gibbs sampling computation.

The required ratios for the split and merge proposals are shown below in equa-

tions (15) and (16), respectively. For the merge proposal, there is still only one way

to combine items in two components into one component, so PGS(c|cLmerge , φ, y) = 1

in equation (15). The same is true for P (cmerge|cLmerge , φmerge, y) in equation (16).

However, since specific parameters now define the mixture components, there are nu-

merous possibilities for choosing a particular mixture component. We address this, in a

similar method as the split scenario, by conducting intermediate Gibbs sampling scans

to decide the value of the merged component’s parameters. One final Gibbs sampling

scan is conducted from the launch state to calculate the Gibbs sampling transition

kernel.
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The ratio of transition densities for the split proposal is:

q(γ|γsplit)

q(γsplit|γ)

=
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Lmerge , y)

PGS(φ
split

c
split
i

|φ
Lsplit

c
split
i
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split

c
split
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|φ
Lsplit
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split
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Lsplit , y) PGS(c

split
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Lsplit , φ
split

, y)
(15)

To calculate q(γ|γsplit), the same intermediate Gibbs sampling operations that are

performed when proposing a merge must be conducted here to arrive at a suitable

merge launch state, even though no actual merge is performed. The Gibbs sampling

transition probability is calculated from the launch state (which is the last intermediate

Gibbs sampling state) to the original merged state. These operations are necessary to

produce the correct proposal ratios.

For the merge proposal, the ratio of transition densities is:

q(γ|γmerge)

q(γmerge|γ)
=

PGS(φci
|φ

Lsplit
ci

, c
Lsplit , y) PGS(φcj

|φ
Lsplit
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(16)

To obtain q(γ|γmerge), we similarly perform the same intermediate Gibbs sampling

moves when proposing a split, even though no actual split is proposed (since it is

already known). This time the Gibbs sampling transition probability is calculated from

the launch state to the original split state. This ensures correct proposal ratios.

The number of intermediate Gibbs sampling scans used to arrive at suitable launch

states for both split and merge proposals are tuning parameters of this algorithm. There

is an additional tuning parameter for the nonconjugate split-merge procedure that is

not present in the conjugate version, which did not require a merge launch state.

4.4 Validity of the algorithm

The nonconjugate split-merge procedure described here is justified as a valid two-stage

random Metropolis-Hastings procedure. In the first stage, we randomly select of obser-

vations i and j to decide which subset of Metropolis-Hastings proposals will be consid-

ered. In the second stage, we randomly select a launch state from among all possible

launch states (given the selection of observations i and j), by means of intermediate

Gibbs sampling scans. We then perform a standard Metropolis-Hastings update with a

proposal distribution that depends on the selection of i and j and on the launch state.
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As discussed by Tierney (1994), a random selection among transitions (in this case, via

random selection of a proposal distribution) is a valid way of constructing Markov chain

Monte Carlo algorithms, as long as all the transitions that might be selected are valid

on their own.

A subtle clarification should be pointed out regarding the construction of the Metropolis-

Hastings acceptance probability for the nonconjugate procedure. When a split is pro-

posed from a merged state, only one φc is included in the equations, since the merged

component has only one set of parameters associated with it now. We happen to ini-

tially pick φcj
to be associated with the observations in the merged component, but this

is equivalent to initially selecting φci
since the labels are irrelevant. To avoid changing

dimensions when we compute the Metropolis-Hastings acceptance probability, we could

include the appropriate φci
terms in the computations. Since φci

is an extra parameter

for the merged component that is no longer associated with the data, we choose to

propose a new value for it during the restricted Gibbs sampling scan by drawing from

its prior distribution. This choice conveniently allows the prior density for this term to

implicitly cancel with the corresponding term in the proposal density of the acceptance

probability, showing that the change in dimensionality is not a problem. Consider the

following set-up for the prior and proposal ratios for a split proposal which include the

φci
terms. We intentionally omit the likelihoods and indicator terms for simplicity and

space considerations:

P (φsplit

c
split
i

) P (φsplit

c
split
j

)

P (φci
) P (φcj

)

PGS(φci
|φ

Lmerge
ci , cLmerge) PGS(φcj
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The proposal factor, PGS(φci
|φ

Lmerge
ci , cLmerge) does not depend on the data, since

the φcj
factor has been selected earlier to be the merged component’s parameter. There-

fore, a new draw from φci
’s conditional distribution will be equivalent to drawing a new

value from its prior distribution, and this will cancel with the prior term, P (φci
). As

a result, the ratios described earlier do not need to include these terms. The identical

situation occurs in the case when a merge is proposed from an original split state and

is handled similarly.

Note that it is possible to propose any configuration of observations from any ini-

tial state via a sequence of split and then merge proposals. However, to ensure φ-

irreducibility on a continuous state space, it must be possible to propose any set of

parameter values for each component. This will be true if each individual restricted

Gibbs sampling conditional distribution for parameters of components that are involved

in a particular split or merge update has a positive probability density of proposing any

value. To ensure that the split-merge algorithm is well-defined, the model should satisfy

the condition that the distributions F (yi; θi) be mutually absolutely continuous for all

θ in the support of G0.



S. Jain and R. M. Neal 457

5 Performance of the nonconjugate split-merge proce-
dure

Suppose we consider a Normal mixture model, in which the data, y = (y1, . . . , yn), are

independent and identically distributed, such that each observation, yi, given the class,

ci, has m Normally distributed attributes, (yi1, . . . , yim). An observation’s attributes

are independent given the class, ci. The Normal mixture model is commonly used in

Bayesian mixture analysis because of its simplicity in constructing conditional distribu-

tions and flexibility in modeling a number of heterogeneous populations simultaneously.

5.1 The Normal mixture model with Normal-Gamma prior

We model data from a mixture of Normal distributions using a Dirichlet process mixture

model with Normal-Gamma prior, as follows:

yi | µi, τi ∼ F (yi; µi, τi) = N(yi; µi, τ
−1
i Im)

(µi, τi) | G ∼ G

G ∼ DP (G0, α)

G0(µ, τ) = N(µ; w, B−1) · Gamma (τ ; r, R)

(17)

where τ , the precision parameter, is σ−2. Hyperpriors could be placed on w, B, r, and

R to add another stage to this hierarchy if desired. Here, we consider these parameters

to be known.

The probability density function for the prior distribution of µ given in (17) is:

g(µ |w, B) =

(

B

2π

)
1

2

exp

(

−B

2
(µ − w)

2

)

(18)

where B is a precision parameter.

The probability density function for the prior for τ is:

g(τ | r, R) =
1

Rr Γ(r)
τr−1exp

(

−τ

R

)

(19)

This parameterization of the Gamma density is adopted throughout this section.

These priors, equations (18) and (19), are necessary to compute the priors for the

parameters in the Metropolis-Hastings acceptance probability of equation (4).

It is straightforward to set up the conditional distributions required for the restricted

Gibbs sampling in the split-merge procedure used in the Metropolis-Hastings proposal

densities. For the model parameters, this amounts to sampling from the marginal

posterior distributions for a particular parameter of component c. The conditional

posterior distribution for µch (when τch is known) for a specific attribute h is:

µch | c, y, τch, w, B ∼ N

(

w B + ȳch nc τch

B + nc τch

,
1

B + nc τch

)

(20)
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where nc is the number of observations belonging to component c and ȳch is the mean

of these observations for attribute h.

Similarly, if µch is fixed, the conditional posterior distribution for τch for a particular

attribute h is:

τch | c, y, µch, r, R ∼ Gamma











r +
nc

2
,

1

R−1 +
1

2

∑

k:ck=c

(ykh − µch)2











(21)

The conditional posterior distribution for an indicator variable, ci, is obtained by

combining the probability of the data (given in equation 17) given a value for ci with

the prior for indicators, P (c). This yields for c ∈ {cj}j 6=i:

P (ci = c | c−i, µc, τc, yi) ∝ P (ci = c | c−i) · P (yi | µc, τc, c−i) (22)

∝ n−i,c

m
∏

h=1

τ
1

2

ch exp

(

−τch

2
(yih − µch)

2
)

These conditional distributions are also employed in computations required for Gibbs

sampling with auxiliary parameters and incremental Metropolis-Hastings updates that

will be used as comparisons to the nonconjugate split-merge technique later in this

article.

The likelihood used in computing acceptance probabilities for split-merge updates

is much simpler to obtain than in the conjugate case, since the parameters are not inte-

grated away. For the mixture of Normals, the likelihood (given component indicators)

is

L(γ|y) =

D
∏

c=1

∏

k : ck=c

m
∏

h=1

(τch

2π

)
1

2

exp

(

−τch

2
(ykh − µch)

2

)

(23)

Interchanging the products over k and h of equation (23) yields the following:

L(γ|y) =

D
∏

c=1

m
∏

h=1

(τch

2π

)
nc
2

exp

(

−τch

2
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2
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(24)

5.2 Illustration: Beetle Data

The Dirichlet process mixture model is a useful tool in model-based, unsupervised cluster

analysis. We illustrate the practical utility of our split-merge algorithm with a six-

dimensional data set from Lubischew (1962) that has been previously used by West et al.

(1994). The data consists of six measurements of physical characteristics of three species
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of male beetles for a total of n = 74 beetles. The three species are chactocnema
concina, chactocnema heikertinger, and chactocnema heptapotamica, in which nconc =

21, nheik = 31, and nhept = 22.

The measurements for the ith beetle are denoted as: yij = (yi1, . . . , yi6) for i =

(1, . . . , 74). The six measurements are:

y.1 = width of the first joint µ̂1 = 177.3 σ̂2
1 = 865.1

y.2 = width of the second joint µ̂2 = 124.0 σ̂2
2 = 71.9

y.3 = maximal width of the aedeagus µ̂3 = 50.4 σ̂2
3 = 7.6

y.4 = front angle of the aedeagus µ̂4 = 134.8 σ̂2
4 = 107.1

y.5 = maximal width of the head µ̂5 = 13.0 σ̂2
5 = 4.6

y.6 = aedeagus side-width µ̂6 = 95.4 σ̂2
6 = 204.6

The objective of our analysis is to recover the three latent classes corresponding to the

three different species of beetles without using the species information in the analysis.

We apply the Normal-Gamma Dirichlet process mixture model to this data, identical to

equation 17. The Dirichlet process parameter, α, is set to one. The values for the priors

of the parameters have been set for each dimension as follows: wj = (w1, . . . , w6) =

(100, 100, 50, 100, 25, 100), B−1
j = (B−1

1 , . . . , B−1
6 ) = (500, 100, 25, 100, 25, 150) where B

is a precision parameter, r = 1 across all six dimensions, and R = 5 across all six

dimensions.

We applied the nonconjugate split-merge algorithm (5,1,1,5), in which five interme-

diate Gibbs sampling scans were each used to reach the launch states for the split and

merge proposals. One split-merge update was used in a single iteration and one final

incremental Gibbs sampling scan was conducted after the final split-merge update. For

comparison purposes, we considered the Gibbs sampling technique of Neal (2000) with

v = 3 auxiliary components to this data. Computation time per iteration is similar

for both algorithms. For each algorithm, results are provided for the case in which all

observations are initially assigned to the same mixture component, and each algorithm

is run for 5000 iterations.

From the two top trace plots given in Figure 1, it is evident that Gibbs sampling is

unable to separate the data and leaves all observations in the same mixture component.

It is clear that Gibbs sampling will take longer to reach equilibrium. On the other

hand, split-merge splits the data into three major clusters (corresponding to the correct

proportion of observations to species, i.e. 42%, 30% and 28%.) within the first twenty

iterations.

To generate the two bottom trace plots in Figure 1, we set the prior values of wj

and B−1 to be more reflective of the data. The values used are: wj = (w1, . . . , w6) =

(100, 100, 50, 100, 10, 100) and B−1
j = (B−1

1 , . . . , B−1
6 ) = (800, 100, 10, 100, 10, 200). While

Gibbs sampling does recover the three different species groups almost immediately, it is

important to note that it becomes stuck in a low probability two-component configura-

tion and mixes poorly. However, split-merge continues to mix well in a three-component

configuration.

As a final check, the simulations were repeated by starting the simulation from
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a typical state of the competing method’s apparent equilibrium distribution. Gibbs

sampling stayed in the three-component state that it was started from, confirming that

the three-component state has high posterior probability, and that the difference seen

is not the result of some bug in the split-merge procedure. When the simulations were

repeated using an initial state in which each observation is in a different component,

the Gibbs sampler is able to reach equilibrium sooner and performs better.

The results from the beetle data illustration show that Gibbs sampling experiences

a long burn-in time compared to the nonconjugate split-merge technique and is not

always suitable for high-dimensional analysis. While it is true that the values of the

priors for the parameters may not be ideal and that more realistic values may yield

better sampling, often in real data analysis, there is no a priori information to suggest

reasonable priors. A Markov chain Monte Carlo technique that can overcome poor

choices in priors is preferred, as illustrated here, since this leads to shorter burn-in

times and full exploration of the posterior distribution.

6 Discussion

The nonincremental split-merge procedure for nonconjugate models introduced in this

article avoids the problem of being trapped in local modes, allowing the posterior dis-

tribution to be fully explored. In general, the nonconjugate split-merge procedure can

become computationally expensive, but when Gibbs sampling or some other incremen-

tal procedure fails to reach equilibrium in a sensible amount of time, this procedure

becomes necessary. Another related issue is burn-in time. Even if an incremental pro-

cedure reaches stationarity within a desired time limit, one must often discard a large

number of early iterations, which can lead to poor estimates. In split-merge type sit-

uations, the computational burden of using a nonincremental procedure is offset by its

quick burn-in and dramatic improvement in performance. To further improve sampling

performance in which both large changes to the clustering configuration and small refine-

ments are required, we recommend combining split-merge and Gibbs sampling updates

as a way to reap the benefits of both samplers.

In higher dimensions, split-merge procedures continue to work well as the compo-

nents are moved closer together. Convergence to the equilibrium distribution is rela-

tively quick. It is possible that the split-merge procedure may break down for very high

dimensional problems, because appropriate splits will be rejected, since it will become

unlikely that a merge operation from the split state would produce the same merged

parameter values as the current state. However, we have not encountered an example

of this. Perhaps this issue arises only in situations where the dimensionality is in the

hundreds.

A possible extension of the split-merge technique is to employ the Dahl (2003) se-

quentially allocated split-merge sampler as a method to initialize the intermediate Gibbs

sampling step. This method could potentially provide a better starting state than our

method of performing a random split of items and selecting values for the parameters

from the prior.
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7 Appendix

The purpose of the following simulation study is to classify observations into appropriate

latent classes using the Normal-Gamma Dirichlet process mixture model. We can make

this problem computationally more difficult by increasing the dimensionality of the data

and by moving the components closer together. Various combinations of these factors

were tested on all procedures. We found that the split-merge procedures outperformed

the incremental procedures even in very low-dimensional problems, in which distinct

components were visible by eye, showing the difficulty that incremental samplers have

in reaching equilibrium even in simple problems when the components are similar.

We will consider two simulated data sets with a finite number of components. We

expect that the Dirichlet process mixture model will model the finite situation perfectly

well without problems such as overfitting, even though the model allows an infinite

number of components. For each of the two examples, the data are composed of five

equally-probable mixture components, in which each component is a distribution over

m dimensions. To maintain uniformity amongst the examples, we generated n = 100

observations, stratified so that 20 observations came from each of the five mixture

components.

Data for the two examples were randomly generated from the mixture distributions

shown in Tables 1 and 2. Scatterplots of the data are shown in Figures 2 and 3. A

standard deviation of 0.2 was selected for all Normal distributions, so that only the

means would vary. The first example holds the dimensionality at two. The second

example differs from the first in that the dimensionality is increased to three, and the

components are closer together. Intentional asymmetry is introduced so that three

components are more similar than the other two. This is intended to test whether the

nonconjugate split-merge techniques can split in three ways.

The Dirichlet process parameter, α, is set to one for all demonstrations. Recall that

a small value of α places stronger belief that the number of mixture components in

the data is likely to be small. The parameters of the priors for the parameters on the

component distributions have been set to the same values over all dimensions as follows:

w = 5, B = 1/12, r = 1, and R = 5. Here, B is a precision parameter. For consistency,

these parameters are fixed at these values for all simulations. In actual problems, these

parameters could be set either by prior knowledge or given higher-level priors.

7.1 Performance

For the two examples, two incremental procedures, Gibbs sampling with v = 3 auxil-

iary variables, and an incremental Metropolis-Hastings method, are compared to four

versions of the nonconjugate split-merge procedure. We use four parameters to describe

the various split-merge procedures:

1. Number of intermediate Gibbs sampling scans to reach the launch state for a split

proposal
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Table 1: True mixture distribution for Example 1.

c P (ci = c) P (yih|ci = c), h = 1, 2

1 0.2 N(2.0, 0.04) N(3.0, 0.04)
2 0.2 N(3.0, 0.04) N(2.0, 0.04)
3 0.2 N(3.3, 0.04) N(3.3, 0.04)
4 0.2 N(8.0, 0.04) N(9.0, 0.04)
5 0.2 N(9.0, 0.04) N(8.5, 0.04)

Table 2: True mixture distribution for Example 2.

c P (ci = c) P (yih|ci = c), h = 1, 2, 3

1 0.2 N(2.0, 0.04) N(2.0, 0.04) N(3.0, 0.04)
2 0.2 N(2.0, 0.04) N(3.0, 0.04) N(2.0, 0.04)
3 0.2 N(2.0, 0.04) N(2.5, 0.04) N(2.5, 0.04)
4 0.2 N(8.0, 0.04) N(8.0, 0.04) N(8.0, 0.04)
5 0.2 N(8.0, 0.04) N(9.0, 0.04) N(9.0, 0.04)
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2. Number of split-merge updates done in a single overall iteration

3. Number of complete incremental Gibbs sampling scans after the final split-merge

update

4. Number of intermediate Gibbs sampling scans to reach the launch state for a

merge proposal

The four split-merge procedures we tested are described using these numbers as Split-

Merge (0,1,0,0), Split-Merge (5,1,0,5), Split-Merge (0,1,1,0), and Split-Merge (5,1,1,5).

We compared the split-merge procedures with both the auxiliary variable and

Metropolis-Hastings incremental samplers because we did not know beforehand which

incremental method would perform better in situations where splits and merges might

be necessary. Performance of the auxiliary variable Gibbs sampling is expected to

improve as we increase the number of auxiliary components, except that it also takes

longer per iteration (Neal (2000)). We did vary this parameter, but will report findings

for v = 3 for all examples, since this version is comparable to the best version of split-

merge in terms of computation time per iteration. As the incremental final scan for

the split-merge procedure, Gibbs sampling with one auxiliary variable is used for all

examples.

Performance measures that were considered include trace plots over time (Figures 4

and 5) and computation time per iteration (Table 3). The trace plots show five values

which represent the fractions of observations associated with the most common, two

most common, three most common, four most common, and five most common mixture

components. Since each of the five components appear equally in the samples, if the

true situation were captured exactly, the five traces would occur at values of 0.2, 0.4,

0.6, 0.8, and 1.0.

For each algorithm, all observations were assigned to the same mixture component

for the initial state, and each algorithm was run for 5000 iterations. All simulations

were performed on Matlab, Version 6.1, on a Dell Precision 530 workstation (which has

a 1.7 GHz Pentium 4 processor). Note that the computation times reported include the

extra time spent due to Matlab’s inefficiencies when copying and incrementally updating

arrays, which are not inherent in the algorithm.

7.1.1 Example 1

The three types of procedures, incremental Metropolis-Hastings, incremental Gibbs sam-

pling with auxiliary variables, and split-merge, correctly classify the data in Figure 2

into five distinct clusters. The main difference in performance is the number of burn-in

iterations that must be discarded.

The trace plots in Figure 4 show that Gibbs sampling with three auxiliary param-

eters has fewer burn-in iterations than the incremental Metropolis-Hastings method

(compare 1000 to 3200 burn-in iterations). However, since the incremental Metropolis-

Hastings method is approximately 5.5 times faster per iteration than the auxiliary Gibbs
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Table 3: Time per iteration (in seconds) for the algorithms tested.

Algorithm Example 1 Example 2

Incremental M-H 0.08 0.09
Gibbs Sampling 0.45 0.60
Split-Merge (0,1,0,0) 0.05 0.10
Split-Merge (0,1,1,0) 0.27 0.35
Split-Merge (5,1,0,5) 0.16 0.24
Split-Merge (5,1,1,5) 0.40 0.53

sampling method, it actually converges sooner with respect to computation time. Split-

Merge (5,1,0,5) almost immediately splits the data into five components, but notice

that the proportions do not occur at exactly 0.2 intervals until after the first thousand

iterations. It takes this procedure longer to move a few singleton observations between

components, since there is no final incremental update to make these minor adjust-

ments. In five thousand iterations, it is not clear if Split-Merge (5,1,0,5) has actually

reached the equilibrium distribution. Split-Merge (0,1,0,0) does not reach the equilib-

rium distribution in the five thousand iterations shown. Because the split and merge

proposals have no intermediate Gibbs sampling scans, the proposals are not expected to

be realistic. Split-Merge (0,1,0,0) is essentially a simple random split procedure, except

that one restricted Gibbs sampling scan is conducted to reach the final state, which of

course will not lead to reasonable split and merge proposals.

However, either by adding intermediate Gibbs sampling scans (as in the case of Split-

Merge (5,1,0,5)) or adding a final full incremental scan (as in Split-Merge (0,1,1,0)),

the correct proportion of items in each cluster is established. Split-Merge (0,1,1,0)

eventually reaches the five component configuration after 500 burn-in iterations. The

final procedure of Figure 4, Split-Merge (5,1,1,5), finds the five components immediately,

and it appears that there is negligible burn-in (four iterations). The computation time

per iteration is higher for Split-Merge (5,1,1,5) versus Split-Merge (0,1,1,0) and (5,1,0,5),

but the computation time to equilibrium is much lower.

7.1.2 Example 2

Example 2 has three dimensions and the mixture components are close together. A

perspective scatterplot of the data is given in Figure 3, and it shows that the compo-

nents are difficult to distinguish. Given the priors selected, there is significant posterior

probability for both the four and five mixture component configurations. Only Split-

Merge (5,1,0,5) and Split-Merge (5,1,1,5) mix between these configurations, as observed

in Figure 5. The incremental samplers and the split-merge procedures with zero in-

termediate restricted Gibbs sampling scans do not find the five components over the

5000 iterations, but are stuck in either two or four components. If each item is initially

assigned to a different mixture component (plots not included), these samplers do split

the data into five components, but take a long time to move to four components, indi-
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cating poor mixing. Here, the problem is that the deletion of a component is rare under

both incremental updates and poor split-merge proposals.

Comparing further the two procedures that appear to converge, the autocorrelation

time for trace 1 is much lower for Split-Merge (5,1,1,5) than Split-Merge (5,1,0,5) (126 vs.

718). For the autocorrelation time of an indicator variable, I26,57, coding if observations

26 and 57 are in the same component, the time is much lower for Split-Merge (5,1,1,5)

(38 vs. 417). Even though both algorithms do mix between the two configurations and

Split-Merge (5,1,0,5) is faster per iteration, the improvement in autocorrelation time for

Split-Merge (5,1,1,5) cannot be ignored. The extra full scan of incremental sampling

for minor adjustments is worth the computational effort.

7.1.3 Summary of findings

It appears that split-merge moves are necessary in nonconjugate problems of this sort.

Incremental samplers perform adequately when the components are distinct clusters in

low dimensions, but as the components become more difficult to distinguish, these sam-

plers take much longer to reach equilibrium. It is important to note that the incremental

samplers begin to break down even in low dimensions. The split-merge procedures are

able to handle three-way splits without any problems, although this is done by two

two-way splits.

The split-merge procedure with several intermediate Gibbs sampling scans followed

by an incremental full scan is the best version of the split-merge procedure. The split-

merge method relies on proposing appropriate new clusters, which is accomplished by

conducting several intermediate scans to reach the split and merge launch states. The

split-merge methods generally have a longer computation time per iteration. However,

in the case of the Gibbs sampling procedure with v = 3 auxiliary parameters, the

best version of the split-merge procedure, Split-Merge (5,1,1,5), is slightly faster in our

implementation (see Table 3). Therefore, there does not appear to be any advantage in

using only incremental procedures for these types of problems.

References
Blackwell, D. and MacQueen, J. B. (1973). “Ferguson distributions via Pólya urn
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Figure 1: Trace plots comparing Auxiliary Gibbs Sampling to Split-Merge (5,1,1,5)

for the beetle data using vague priors (top) and realistic priors (bottom). Trace plots

show three traces which represent the fractions of observations associated with the most

common, second most common, and third most common mixture components.
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Figure 2: Scatterplot of the data in Example 1
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Figure 3: Scatterplot of the data in Example 2. The two x’s represent observations 26

and 57 used in autocorrelation calculations for an indicator variable.
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Figure 4: Trace plots of the six algorithms in Example 1.
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Figure 5: Trace plots of the six algorithms in Example 2.
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Comment on Article by Jain and Neal

David B. Dahl∗

1 Introduction

Sonia Jain and Radford Neal (JN) make a significant contribution to the literature on

Markov chain Monte Carlo (MCMC) sampling techniques for Dirichlet process mixture

(DPM) models. The paper presents some very nice ideas and will be on my required

reading list for students working with me. DPM models are widely used for Bayesian

nonparametric analyses and efficient sampling techniques are essential for their routine

application. Incremental samplers for nonconjugate DPM models, such as the Auxiliary

Gibbs sampler in Neal (2000), are easily implemented and potentially very efficient.

Unfortunately, these samplers can also have difficulty mixing over the entire sample

space and standard MCMC diagnostics may fail to indicate the problem. JN’s paper

represents a significant advance by providing a non-incremental sampler for conditionally

conjugate DPM models.

The authors have a history of influential papers in this area, including Neal (2000)

and Jain and Neal (2004). Their 2004 paper provided a split-merge sampler for con-

jugate DPM models, where the base distribution G0 in the Dirichlet process prior is

conjugate to the likelihood F . By exploiting this conjugacy, the model parameters of a

cluster can be integrated away. The state of the Markov chain is merely the clustering of

observations. Thus, sampling algorithms for conjugate DPM model attempt to sample

from the posterior clustering distribution.

In nonconjugate DPM models, the model parameters of a cluster cannot be inte-

grated away. Sampling algorithms must simultaneously address the clustering and the

model parameters associated with each cluster. Green and Richardson (2001) were the

first to propose a split-merge sampler for nonconjugate DPM models. Their procedure is

based on reversible jump MCMC (Green 1995; Richardson and Green 1997) where the

Metropolis-Hastings proposals are model-specific. In this paper, JN provide an MCMC

sampler that can be generically applied to any conditionally conjugate DPM model.

2 Conditional Conjugate vs. Nonconjugate

It is important to note that conditional conjugacy is a necessary prerequisite for the

application of JN’s sampler. Suppose the model parameters for the cluster containing

observation i are φ1, . . . , φH with likelihood F (yi|φ1, . . . , φH) and prior G0(φ1, . . . , φH ).

A DPM model is conditionally conjugate if, for each φh ∈ {φ1, . . . , φH}, G0(φ1, . . . , φH )

is conjugate to F (yi|φ1, . . . , φH) in φh. JN’s procedure relies on conditional conjugacy

∗Department of Statistics, Texas A&M University, College Station, TX,
http://www.stat.tamu.edu/~dahl

c© 2007 International Society for Bayesian Analysis ba0007
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and hence their procedure is not applicable to all nonconjugate DPM model. Whether

the conditional conjugacy constraint imposes a practical limitation is perhaps problem-

specific.

3 Cluster Labels, Set Partition, and Implementation

JN describe their algorithm using notation involving cluster labels c1, . . . , cn. An al-

ternative way of describing sampling algorithms for DPM models uses set partition

notation. In my experience, the set partition notation provides a straightforward presen-

tation with simple notation. A set partition π = {S1, . . . , Sq} of S0 = {1, . . . , n} divides

the n integers into mutually-exclusive, non-empty, and exhaustive clusters S1, . . . , Sq . I

especially find the set partition notation helpful when translating sampling algorithms

for DPM models to computer code. I use an array of length n whose elements point to

C++ classes representing clusters containing the model parameters and a set of integers

(for the cluster membership).

Regardless of notational preference, readers should be assured that the actual imple-

mentation of JN’s sampler need not be complex. The core of my implementation of JN’s

split-merge procedure is 158 lines of C++ code, whereas the core of my implementation

of the Auxiliary Gibbs sampler is 53 lines of C++ code. The extra time and mental

effort needed to implement their split-merge sampler can pay large dividends for models

and datasets where the Auxiliary Gibbs sampler is likely to have problems.

4 Initial States & Benefits of Split/Merge Samplers

I applied JN’s split-merge algorithm to their Normal-Gamma mixture model and the

beetle data used in their example. In the top two plots of JN’s Figure 1, they use their

vague priors with hyperparameters wj = (100, 100, 50, 100, 25, 100),

B−1
j = (500, 100, 25, 100, 25, 150), and r = R = 1 across all six dimensions. The top left

plot corresponds to Auxiliary Gibbs sampling and shows that this sampler never moves

away from the configuration with all observations in one cluster. JN contrast that with

their Split-Merge (5,1,1,5) sampler (shown in the top right plot of JN’s Figure 1) which

is able to readily find the true three-component structure in the data.

In my implementation with 100 different random number seeds, the Auxiliary Gibbs

sampler was able to find the three-component structure in 98 instances and a two-

component structure (hinted at in the bottom left plot of JN’s Figure 1) in the remaining

two instances. Why could my implementation of the algorithm find the true structure,

but their implementation of the same algorithm could not? The issue was the initial

values of the model parameters. I sampled the initial value of the model parameters from

the prior G0. If, instead, I set the initial values of the model parameters to the sample

means and precisions, I am able to replicate the results of JN in 100 of 100 instances.

Also, if each observation is initially placed in its own cluster, the Auxiliary Gibbs sampler

performed well (regardless of the method used to set the model parameters). My Figure

1 summarizes the results, showing that the problem with the Auxiliary Gibbs sampler
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Figure 1: Trace plots from the Auxiliary Gibbs Sampler for the beetle data using JN’s

vague priors and four typical initial states for the Markov chain. The poor performance

of the Auxiliary Gibbs sampler (shown in top left plot of JN’s Figure 1) is only present

when every observation is initially clustered together and the model parameters are

initially set to the sample means and precisions.

is only present when every observation is initially clustered together and the model

parameters are initially set to the sample means and precisions.

In my experience replicating the JN’s Figure 1, their split-merge sampler is not

sensitive to the initial values. For the beetle data and their Normal-Gamma mixture

model, their sampler immediately finds the true three-component structure as shown in

the plots on the right in JN’s Figure 1.

It is interesting to observe that the posterior distribution apparently has virtually

no support for anything other than three components. Notice that the Split-Merge

(5,1,1,5) sampler never moves away from three clusters (to a configuration with two or

four clusters, for example). The jitter present in the right hand size of JN’s Figure 1 is

due purely to the fact that their split-merge sampler embeds the Auxiliary Gibbs sampler

(whose number of scans per split-merge attempt is given as the the third argument in
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Jain & Neal Dahl

Algorithm Example 1 Example 2 Example 1 Example 2

Gibbs Sampling v = 3 1.00 1.00 1.00 (0.80, 1.13) 1.00 (0.84, 1.12)
Split-Merge (0,1,0,0) 0.11 0.17 0.17 (0.17, 0.18) 0.18 (0.17, 0.19)
Split-Merge (0,1,1,0) 0.60 0.58 0.61 (0.60, 0.62) 0.61 (0.60, 0.63)
Split-Merge (5,1,0,5) 0.36 0.40 0.84 (0.79, 0.88) 0.86 (0.82, 0.89)
Split-Merge (5,1,1,5) 0.89 0.88 1.32 (1.30, 1.35) 1.34 (1.32, 1.37)
Seconds per Iteration 0.45 0.60 5.50 × 10−4 6.75 × 10−4

Table 1: Comparison of relative CPU time of the various samplers depending on the

dataset and the implementation. Jain & Neal columns are derived from Table 3. The

Dahl columns show averages from 100 replications and the 2.5th and 97.5th quantiles.

The data have been standardized by the “Seconds per Iteration” row to make them

comparable across computers and programming languages.

the quad specifying the details of their sampler). Thus, the CPU time spent on trying

to merge and split is wasted and time would be better spent on just the Auxiliary Gibbs

sampler. The same can be said concerning the first simulated dataset in JN’s Figure

4. In contrast, Example 2 (shown in JN’s Figure 5) does provide a compelling case for

the split-merge sampler. It freely moves between four and five components, whereas the

Auxiliary Gibbs sampler is unlikely to easily switch between four and five components.

5 Timing

My final point concerns inherent variability in the implementation of algorithms due to

the chosen programming language and data structures. JN have two simulated datasets

(labeled Example 1 and Example 2) which they use to compare the various samplers. My

Table 1 compares the CPU time of my C++ implementation of the various algorithms

with that of JN’s Matlab implementation. The first two columns are taken from JN’s

Table 3. The Dahl columns show averages from 100 replications and the 2.5th and 97.5th

quantiles. The important point is the relative performance of the various sampling

algorithms (not the speeds of different computers or programming languages), so the

data has been scaled by the “Seconds per Iteration” row. Specifically, the Auxiliary

Gibbs sampler with three auxiliary parameters (labeled as “Gibbs sampling v = 3”) is

set at 1.0 within each column.

Notice that relative CPU time taken by each of the samplers, within an implemen-

tation, is relatively constant across the two example datasets. There are, however, very

different relative CPU times across implementations within a dataset. Recall that the

Split-Merge(5,1,1,5) sampler embeds one Auxiliary Gibbs update with one auxiliary

parameter per split-merge attempt. The Split-Merge(5,1,0,5) does not have any embed-

ded Auxiliary Gibbs updates, leading to a 1 − 0.36/0.89 = 60% reduction in the CPU

time per iteration for JN’s implementation of Example 1. In contrast, my implemen-

tation of Split-Merge(5,1,0,5) provides only 1 − 0.84/1.32 = 36% reduction from my

Split-Merge(5,1,1,5).
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JN (2007) compare an Auxiliary Gibbs sampler with three auxiliary parameters with

their Split-Merge(5,1,1,5) sampler which embeds an Auxiliary Gibbs sampler with one

auxiliary parameter. They chose three and one auxiliary parameters respectively to

make the CPU times comparable per iteration and then run each sampler for a fixed

number of iterations. In my experience, additional auxiliary parameters are often not

worth the extra CPU effort. For the sake of comparison, it might be more useful to

have the number of auxiliary parameters be the same for both samplers. Comparisons

would then be based on a fixed CPU time rather than a fixed number of iterations.

6 Conclusion

JN have made a significant contribution to the literature on sampling algorithms for

DPM models. In implementing their algorithm and model and in using their example

datasets, I found their method can have substantial benefits over the Auxiliary Gibbs

sampler when used to sample from the posterior distribution of conditionally conjugate

DPM models. Their algorithm is certainly more complicated than the Auxiliary Gibbs

sampler, but perhaps not as difficult as one might initially expect. My experience with

JN’s Figure 1 reinforced the importance of using a variety of starting states, particularly

when using the Auxiliary Gibbs sampler. It was nice to see that initial starting values

were not an issue for JN’s split-merge sampler. Although the relative CPU timings of

JN’s implementation and mine can be quite different, the salient point is that split-

merge samplers can finding high-probability regions in posterior distributions that may

be missed by incremental samplers.
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C.P. Robert∗

From a stylistic point of view, I think this paper reads very much like a sequel to

the important paper Jain and Neal (2004) and therefore it is not exactly self-contained

since the main bulk of the paper is a commentary of the program provided in Section

4.2. Instead of the current version, I would thus have preferred a truly self-contained

version with a more user-friendly introduction, for instance when reading and re-reading

Sections 3 and 4.1...1

The central point of the paper is to extend Jain and Neal (2004) so that the lack

of complete conjugacy of the prior does not prevent the algorithm from being run.

Indeed, in Jain and Neal (2004), the model parameters are completely hidden in that the

likelihood and the prior only depend on the cluster index vector c, which means working

in a finite set. The difficulty with priors G0 that do not lead to closed form marginals

is that the parameters must take part in the simulation process. The idea at the core

of the current paper is to take advantage of the conditional conjugacy, i.e. the fact that

the prior on a given parameter is still conjugate and thus manageable, conditional on

all the other parameters, so that a Gibbs sampling version can be implemented.

At this stage, I understand the rationale of the partial conjugacy for the Metropolis-

Hastings ratio to be computed (Section 4.1) but I wonder how difficult it would be

to extend the idea to any type of prior distribution. I also note that at both split

and merge stages the algorithm simulates new values of the parameter from the prior
distribution, rather than from a more adapted distribution. This is as generic as it

can be, but simulating from vague priors usually slows down algorithms and it is of

course impossible for improper priors. It thus seems to me that the factor t directing

the number of intermediate Gibbs (or Metropolis-Hastings) iterations in Step 3 must

be influential in the overall behaviour of the algorithm and that large values of t may

be necessary to overcome the dependence on the starting value.

More generally, I also wonder why a more global tempering strategy would not fare

better than the local split-merge proposals used in the paper. For illustration purposes,

I implemented below the regular Gibbs sampler in the [BetaBinomial] Example 1 of

Jain and Neal (2004) and compared it with a näıve tempered version where the tem-

pered likelihood Lτ is made of a product of τ ≥ 1 (sub)likelihoods based on a partition

of the observations in τ random clusters, τ being itself uniform on {1, . . . , n/2}. (The

advantages of using this form of tempering are (a) that the same Gibbs sampler can

be used for the sublikelihoods and (b) that the normalising constant of the tempered

version is still available, as opposed to the choice of a power of the likelihood. The ac-

ceptance probability at the end of the tempered moves is then function of the likelihood

ratio L(θ|x)/Lτ (θ|x) and can be directly computed.) As shown on Figure 1 (bottom),
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explained below, the mixing and the exploration of various likelihood values is quite

improved with this tempered scheme, since no column sticks to a single colour theme.

Since Dirichlet mixtures are closely related to mixtures, I would have liked to

read some discussion on the label switching phenomenon (see, e.g., Stephens 2000;

Marin et al. 2005; Jasra et al. 2005). Indeed, while the original model of Jain and Neal

(2004) is somehow impervious to the issue of label switching, since the clustering pa-

rameterisation only focus on class allocations, the introduction of the parameter in the

game means that a proper exploration of the posterior requires the reproduction of the

symmetry in the various components of the mixture. Using a split-merge basis for this

exploration may then prove to be insufficiently powerful for this task.

In fact, it is close to impossible to judge of the overall convergence performances

from the simulation output, which solely concentrates on the cluster sizes. Addi-

tional graphical summaries would be welcome, like the “allocation map” advertised

in Robert and Casella (2004) and represented on both Figures 1 and 2. The pixelised

lines on the pictures represent the cluster index via different colours for all observa-

tions, the index on the first axis being the index of the observation. The second axis

corresponds to the iteration index. Long vertical stripes of similar colours indicate poor

mixing of the algorithm.

In this illustration, we see clearly that the 5 equal groups of Example 1 of Jain and Neal

(2004) are identified by the Gibbs sampler–as signalled by the homogeneous columns

1 − 20, 21− 40, 41 − 60, 61− 80 and 81 − 100—and, furthermore, that label switching

does occur, even if at a very slow pace—as shown by columns 61 − 80 for instance.

A point of detail (?) is that the algorithm must be (is) validated as a Gibbs procedure

rather than as a Metropolis-Hastings algorithm, given that at any stage only a subset

of the parameters and of the clustering indicators is updated. In addition, this is quite

an interesting example of algorithmic bypassing the varying dimension pitfalls, since

it avoids dealing with the measure theoretic subtleties encountered by reversible jump

for instance (Green 1995) while being in a continuous varying dimension state space,

contrary to the setup of Jain and Neal (2004).
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Figure 1: (top) Allocation map of the simulated cluster index vector c(t) for m = 6,

n = 100 observations and T = 105 Gibbs iterations (subsampled every 1000 iteration),

in the setup of Example 1 of Jain and Neal (2004). The colours used in the graphs range

from red (1) to white (6) and identify the labels of the cluster indicators ci along the

iterations. The superimposed graph is the corresponding sequence of likelihood values

over the T = 105 Gibbs iterations, associated with the scale on the right hand side.

(bottom) Same representation for a tempered version with T = 103 iterations made of

To = 102 tempered moves.



482 Comment on Article by Jain and Neal

20 40 60 80 100

0e
+0

0
2e

+0
4

4e
+0

4
6e

+0
4

8e
+0

4
1e

+0
5

observation index

ite
ra

tio
ns

Figure 2: Same representation as Figure 1 for another run of the Gibbs sampler,

on Mixtures of Distributions.” In Rao, C. and Dey, D. (eds.), Handbook of Statistics,
volume 25. Springer-Verlag, New York. 480

Robert, C. and Casella, G. (2004). Monte Carlo Statistical Methods. Springer-Verlag,

New York, second edition. 480

Stephens, M. (2000). “Dealing with label switching in mixture models.” J. Royal Statist.
Soc. Series B, 62(4): 795–809. 480



Bayesian Analysis (2007) 2, Number 3, pp. 483–494

Comment on Article by Jain and Neal

Steven N. MacEachern∗

1 Introduction

It was with great interest that I read Jain and Neal’s paper. In the paper, they address a

tough problem, namely how to improve the mixing/convergence of Markov chain Monte

Carlo (MCMC) algorithms for an important class of models. The models are those

involving mixtures of Dirichlet processes, ranging from a fairly straightforward mixture

of Dirichlet processes model to the more complex models that are springing up in a wide

variety of applications. The algorithms are in the split-merge vein, allowing a different

kind of step than incremental Gibbs samplers. The extension of the split-merge tech-

nology with targeted proposals to conditionally conjugate models is a welcome addition

to the collection of transitions available for fitting models that include the Dirichlet

process as a component.

Jain and Neal’s algorithms (see also Dahl, 2005) have refined the technology of split-

merge samplers so that proposals are no longer “blind”, but, through intermediate Gibbs

scans, move toward a region of higher posterior probability. The ability to target better

proposals results in algorithms that naturally make better proposals, and this improves

mixing of the Markov chain. An important element of these intermediate Gibbs scans

is their ability to move toward a more appropriate launch state.

This discussion focuses on two features that are hidden in the innards of the algo-

rithm. The first is the notion of identifiability and the second is that of a random scan.

Jain and Neal’s algorithms make nice use of a non-identifiable model for the interme-

diate Gibbs scans (section 4.2, step 3 and following) to produce what are presumably

better proposals. They also implicitly use a random scan for split and merge proposals

in the sense that cases i and j are selected at random (section 4.2, step 1). The remain-

der of this discussion looks at these issues in the context of a simple, artificial example

where one can explicitly calculate rates of convergence for a variety of incremental Gibbs

algorithms. The hope is that the example, in spite of its simplicity, provides insight into

the effectiveness of the algorithms and suggests potential directions for their further

refinement.

2 Identifiability

While details of various algorithms are left for the next section, one recurring issue

in proposals for novel algorithms for Dirichlet based models is identifiability. This is-

sue is not limited to mixture models, but arises in many other contexts. There is

∗Department of Statistics, The Ohio State University, Columbus, OH,
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c© 2007 International Society for Bayesian Analysis ba0007
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often a connection between identifiability and the convergence rate of a Markov chain:

Identifiable models may show quicker convergence to the limiting distribution than do

non-identifiable models. This has led some to suggest a general principle that non-

identifiable models be avoided when MCMC methods are to be used to fit the model.

This section reviews the arguments raised against non-identifiable models, and the fol-

lowing section develops the arguments in more detail through consideration of a simple

example.

Consider a model where there is a parameter space, say Θ. The distribution of the

data depends on the value of the parameter, so that X ∼ Fθ for some θ ∼ Θ. A model

is non-identifiable if there exist θ1, θ2 ∈ Θ, with θ1 6= θ2, for which Fθ1
= Fθ2

. Models

that are not non-identifiable are called identifiable models. Typically, when the model

is non-identifiable, it will be the case that for every θ1 ∈ Θ there exists a θ2 ∈ Θ, with

θ2 6= θ1 for which Fθ1
= Fθ2

.

Several reasons have been given for avoiding the use of non-identifiable models.

First, while a Bayesian approach places a prior over the parameter space, and so, in

principle, there is no difficulty in creating estimates with this methodology, there is the

question of consistency. Identifiability is closely connected with parameter estimation.

Methods such as maximum likelihood cannot distinguish between parameter values that

imply the same distribution for the data, and so may not produce unique estimates.

Bayes estimates, heavily based on the likelihood, are typically also inconsistent for non-

identifiable models. However, if consideration is restricted to identifiable functionals,

the Bayes estimates will typically be consistent, as they are under identifiable models. A

desire to interpret parameter values directly is closely related to a desire for consistency.

Restricting interpretation to identifiable quantities g(θ), such that if g(θ1) 6= g(θ2) then

Fθ1
6= Fθ2

, the worry about non-identifiability disappears. A complete, identical Bayes

analysis could be done on an identifiable model. This first objection has no connection

to the use of MCMC methods.

Second, there are examples where the convergence rate of a Markov chain is improved

by the choice of an identifiable model. The convergence here is convergence of πn, the

distribution of θn|θ0, to the limiting distribution of the Markov chain. The limiting

distribution is, by construction, also the posterior distribution of θ. The main purpose

of the simulation is to provide estimates of posterior summaries, and, although there is

a difference between the accuracy of these estimates and the convergence rate, in most

circumstances the two produce qualitative agreement: A better convergence rate means

more accurate estimators. This issue is examined in the next section.

Third, there is the practical issue of how well the MCMC algorithm works when ac-

tually implemented. The main concerns are the numerical accuracy and stability of the

computations. In some instances, particularly with very diffuse posterior distributions,

some of the parameter values generated during the course of the simulation may be

enormous. This can lead to unstable computations and hence to inaccurate estimates.

Fourth, there is the issue of prior elicitation. The choice of a model has an impact on

the particular prior that is chosen. This choice is not directly tied to the use of MCMC

methods, but is an issue of increasing importance now that more complex models are



S. N. MacEachern 485

being fit. Examples include collinearity and the variable selection problem where priors

are chosen according to prescription, problems based on the hierarchical model, and

nonparametric Bayes problems.

Consider fitting models with MCMC methods. The Markov chain upon which the

simulation is based is realized through successive generations of a parameter vector, θ.
The chain, assumed to be irreducible and aperiodic, is also assumed to have a fixed

transition matrix, say P . Consequently, it has a limiting distribution, π. The transition

matrix is chosen in such fashion that π is the posterior distribution for θ|X . A realization

of the chain consists of a sequence θ1, θ2, . . . , θN . Convergence is often described in

terms of the total variation norm: We wish ||πn − π|| to approach 0 quickly. For finite

state chains, the rate of convergence is governed by the second largest eigenvalue of the

transition matrix. The convergence rate of more complex chains is determined by a

similar quantity.

The MCMC method constructs P by creating a set of transition kernels. For a fixed

scan algorithm, the overall transition kernel is the product of, say, p transition kernels,

P = P1 . . . Pp. A random scan sampler selects one of the Pi at random. A popular

choice is to select the Pi with equal probabilities, so that P = p−1
∑

Pi.

Two useful techniques for improving convergence of a sampler are (i) to gener-

ate a block of parameters at a time (say θ1, . . . , θc is generated from [θ1, . . . , θc|θ −
{θ1, . . . , θc}, X ]), and (ii) to collapse or coarsen the state space of the Markov chain

by reducing the dimension of θ. The dimension of θ is reduced through integration.

For example, θp may be marginalized, leaving only θ1, . . . , θp−1. For discussion, theory

and examples of (i) and (ii) see Liu (1995); of (ii) see also MacEachern (1994). The

impact of non-identifiability on MCMC algorithms is closely connected to blocking and

coarsening.

3 Illustration

Nonparametric Bayesian models have been considered for several decades. Early mod-

els, such as those of Kraft and van Eeden (1964) and Ramsey (1972) for the bioassay

problem, provided a start in the area. These models were based on the notion of a

Dirichlet distribution being the conjugate prior for multinomial data. The models were

nonparametric in the sense that the prior had full support on the set of multinomial

probability vectors. This work was followed by the well-known work of Ferguson (1973)

and Antoniak (1974). Early work exploiting mixtures of Dirichlet processes includes

Berry and Christensen (1979) and Lo (1984).

The mixture of Dirichlet process model has many applications beyond bioassay. The

basic mixture of Dirichlet processes model may be written as follows:

F ∼ Dir(α)

θ1, . . . , θp|F ∼ F

Xi|θi ∼ Gθi
, for i = 1, . . . , p.
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Here, following Ferguson’s notation, α, the positive, finite measure that parameterizes

the Dirichlet process, is often split into its total mass, M , and its shape, say F0. Thus if

α is a measure on the real line, F0 is a distribution function, M > 0, and α((−∞, x]) =

MF0(x).

Gθ is a distribution indexed by the parameter θ. The models are easily generalized

to include hyperparameters that index α, groups of observations associated with each

θi, observation specific covariates, and additional parameters common to some or all

observations. The bioassay problem is one which fits into this framework.

There are three main types of MCMC methods that have been widely used for the

mixture of Dirichlet process models. The first is based directly on the hierarchical model

written above. It makes use of the sequence of conditional generations [F |θ], [θ|F ]. See

Kuo and Smith (1992), Gelfand and Kuo (1991) and, in a general setting, Ishwaran

and Zarepour (2000) for details. See also Diebolt and Robert (1994) in the context of

a related finite mixture model.

The second type of Markov chain method makes use of an alternative representation

of the Dirichlet process known as the Polya urn scheme (Blackwell and MacQueen,

1973). Under the Polya urn scheme, the random distribution function F is marginalized,

resulting in the model

θ1, . . . , θp ∼ Fθ1,...,θp

Xi|θi ∼ Gθi
, for i = 1, . . . , p.

To simplify description, take F0 to be continuous. With this model, the components

θi are no longer conditionally independent. Instead, they have a distribution that is

built up sequentially: θ1 ∼ F0. For i > 1, θi is set equal to θj with probability

1/(M + i − 1) and is drawn from F0, independent of previous draws from F0, with

probability M/(M + i − 1). The induced distribution on the vector θ is often thought

of in two parts. The first is the partition of θ into distinct values, and the second is

the location of the, say k, elements of the partition. Each partition receives positive

probability under the prior. Given a partition, the k locations of the elements, denoted

θ∗1 , . . . , θ
∗
k, are i.i.d. draws from F0. A Markov chain based on this representation of

the model involves sequential generation of [θi|θ−i], for i = 1, . . . , p, with the updating

performed immediately in each case. See Escobar (1994) and Escobar and West (1995)

for algorithms of this sort. These algorithms may be refined by discarding the locations

of the clusters and running a Markov chain on only the space of partitions of θ (Neal,

1992; MacEachern, 1994). Such chains tend to produce quicker convergence to the

posterior and naturally suggest better estimators. The calculations below refer to this

last refinement of the algorithm, though they can be replicated when the locations are

present.

The third type of algorithm is the split-merge algorithm with its ability to make

large moves in directions not easily traveled in with algorithms of the first two types.

The simple example can be fit with the simple split-merge algorithm of Jain and Neal

(2000). In this case, the improvements in the algorithm do not change its performance.
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The Markov chain runs on a state space which consists of all partitions of θ into

clusters. This is a finite state space, which is denoted by S. An element in the state space

is a p-dimensional vector, s = (s1, . . . , sp), with component si indicating to which cluster

θi belongs. If there are k clusters of θi, there will be k distinct integers in the partition

vector. If θi and θj are in the same cluster, si = sj ; if in different clusters, si 6= sj .

The fact that the state space is finite allows us to perform exact calculations on the

transition matrix of the Markov chain in small examples. Several chains are compared

for the case of p = 3. A major issue is the labelling of the state space. Two identifiable

labellings and one non-identifiable labelling are considered. The labelling/identifiability

issue is cleanest for Type II algorithms. The labellings are presented in Table 1.

The first Type II scheme numbers the clusters consecutively from 1 to k as they are

built up from the Polya urn scheme. Thus s1 = 1, and for all i for which θi = θ1, si = 1.

The second cluster is begun by the first θi 6= θ1, and so si = 2 for i = inf [j|θj 6= θ1]. All

other θj equal to this θi are in this cluster and so are assigned sj = 2. The numbering of

the later clusters proceeds in a similar fashion, so that for a legitimate partition vector

(i.e., one which receives positive probability under the prior) representing k clusters,

the numbers 1 through k will appear and their first appearances will occur in increasing

order. The final legitimate values of s for the case p = 3 appear in Table 1 under

the heading scheme 1. With this parameter space, the model is identifiable. Each

legitimate configuration vector produces a distinct partition of the θ and hence (under

the mild regularity condition that there is a set of θi with positive F0 probability such

that Gθ1
= Gθ2

iff θ1 = θ2) produces a distinct distribution for X .

The second Type II scheme is similar to the first in that there is a 1-1 mapping

between partitions and legitimate configuration vectors. The difference is in how the

clusters are labelled. Again, all θi in a cluster will have the same index in the config-

uration vector. Those θi in the cluster with θ1 have si = 1. Further clusters have an

index equal to inf [j|θj in cluster]. For example, define i = inf [j|θj 6= θ1]. Then sj = i
for all j such that θj = θi. The legitimate values for s under this labelling scheme when

p = 3 appear in Table 1 under the heading scheme 2. Since there is a 1 − 1 mapping

between this labelling and the previous one, identifiability for this model follows from

identifiability of scheme 1.

The third Type II scheme produces a non-identifiable model. With this scheme,

the clusters will each receive a distinct integer from 1 to n, and each θi in a particular

cluster will receive the same index. There is, however, no other restriction on the index

values assigned to the clusters. To create this scheme formally, begin with the first

labelling scheme. Probabilities of the legitimate states are determined by the Polya

urn scheme. Then the probability for a particular configuration is distributed among

the possible labellings for the configuration. For a configuration with k clusters, there

are n!/(n − k)! distinct labellings. The probability for this configuration is distributed

uniformly among these labellings. This model is clearly non-identifiable, since there are

several parameter values (here several different configuration vectors) which produce the

same distribution for the data. Interestingly, [F |θ, X, s] depends on s only through the

configuration. Hence, any inference depends only on the equivalence class on s defined

by the configuration itself.
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State Configuration scheme 1 scheme 2

a θ1, θ2, θ3 1,2,3 1,2,3

b θ1 = θ2; θ3 1,1,2 1,1,3

c θ1 = θ3; θ2 1,2,1 1,2,1

d θ1; θ2 = θ3 1,2,2 1,2,2

e θ1 = θ2 = θ3 1,1,1 1,1,1

Table 1: Labellings of configurations under schemes 1 and 2.

Gibbs samplers were developed for each of the labelling schemes above for the no-

data problem. The transition matrix for a fixed scan, in the order [s1|s2, s3], [s2|s1, s3],

and then [s3|s1, s2] was calculated analytically. For the first two schemes, the second

largest eigenvalue of the transition matrix was determined. To compare the third scheme

to the first two, identifiable functions are considered. In order to determine an effec-

tive rate of convergence for these functions, the transition matrix for the sampler is

rewritten in terms of an identifiable model. Happily, all of the transition vectors from

each non-identifiable state corresponding to a particular configuration to the distinct

configurations are identical (e.g., the transition probability for moving from the state

s = (1, 1, 3) to the configuration θ1 = θ2 = θ3 is the same as the transition probability

for moving from the state s = (2, 2, 1) to the configuration θ1 = θ2 = θ3). The chain,

in terms of this identifiable state space, retains the Markov property. The implication

is that the second largest eigenvalue of the rewritten transition matrix governs the rate

of convergence in the identifiable space.

The three Gibbs samplers corresponding to the three labelling schemes were com-

pared by means of the second largest eigenvalue of their transition matrices, presented

in Table 2. The comparison of the three schemes shows that scheme 3, based on the non-

identifiable model, produces the best performance. The non-identifiable model results

in better mixing.

Simulations were carried out to compare the Type I algorithm to the Type II algo-

rithms. The simulation made use of a non-identifiable version of the Type I algorithm.

The estimated second largest eigenvalue of the Type I algorithm appears in Table 2

along the row labelled Type I. Scheme 3 appears to dominate this type of algorithm.

This conclusion agrees with results that suggest a collapse of the state space improves

the convergence rate of a Markov chain, since the scheme 3 algorithm may be con-

structed by adding generations to a Type I algorithm and then collapsing the state

space. Interestingly, this is in opposition to the sometimes expressed intuition that a

two-stage Gibbs sampler, as the Type I method, should show quicker convergence than

a three-stage Gibbs sampler, as the scheme 3 algorithm is. These results in this sim-

ple context are in agreement with the careful simulations for more realistic settings in

Papasiliopoulos and Roberts (2008).

The random scan Gibbs sampler was investigated in a similar fashion. Table 2 con-

tains a summary of the results for 3 transitions (so chosen to match the three transitions
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M 1 5 10 100

scheme 1 .222 .327 .389 .485

scheme 2 .222 .0408 .0139 .000192

scheme 3 .0370 .00292 .000579 9.42e-7

Type I .301 .0837 .0332 .000559

M 1 5 10 100

scheme 1 .559 .630 .669 .726

scheme 2 .559 .395 .352 .303

scheme 3 .171 .0787 .0588 .0393

Split-merge 1.00 .152 .216 .287

Table 2: Second largest eigenvalues for MCMC algorithms. The top table is for fixed

scan samplers; the bottom table is for random scan samplers. M is the mass of the base

measure of the Dirichlet process.

of the fixed scan sampler). Notice that the second largest eigenvalues are considerably

larger for random scan samplers, corresponding to the potentially long lags between suc-

cessive sampling of a component. Again, scheme 3, corresponding to the non-identifiable

model, is preferable to the Type II schemes. The Type III (split-merge) sampler is, for

the larger values of M , preferable to the Type II samplers that impose identifiability.

In this example, it does not mix as well as the non-identifiable algorithm. Interestingly,

when M = 1, the sampler yields a periodic Markov chain, and so mixing is poor al-

though estimation (barring an even subsampling rate) is fine. It should be noted that

this periodicity is very special to this example.

4 Heuristics

The simplicity of the example allows us to focus on features of the algorithms that impact

mixing: Comparisons among the Type II algorithms suggest that non-identifiability (of a

certain sort) improves mixing; the comparison between fixed and random scans suggests

that fixed scans lead to better mixing; a good Type II algorithm leads to better mixing

than a Type I algorithm; for small clusters, the Type II algorithm mixes better than

the Type III algorithm.

Within Type II algorithms, the example shows a remarkable advantage for the non-

identifiable model. This appears to follow from the conditioning sets used to create

the Gibbs sampler. The non-identifiable model leads to conditioning sets that contain

the conditioning sets arising from the identifiable model. To illustrate this point, a

schematic of the transition matrices is provided in Table 3. Comparing the two P1’s, for

instance, under scheme 1 the transition matrix is the identity while under scheme 3 it

is a block diagonal matrix with only two blocks. Both chains are based on conditional

generations. For each current state, the set conditioned upon for the generation under
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P1

From To a b c d e a b c d e

a x - - - - x x x - -

b - x - - - x x x - -

c - - x - - x x x - -

d - - - x - - - - x x

e - - - - x - - - x x

P2

From To a b c d e a b c d e

a x - - - - x x - x -

b - x - x - x x - x -

c - - x - x - - x - x

d - x - x - x x - x -

e - - x - x - - x - x

P3

From To a b c d e a b c d e

a x - x x - x - x x -

b - x - - x - x - - x

c x - x x - x - x x -

d x - x x - x - x x -

e - x - - x - x - - x

Table 3: Scheme 1 transition matrices on the left, scheme 3 transition matrices on the

right. The states are described in Table 1. A dash indicates that a transition cannot

take place, an x that it can. Note the enlargement of the sets over which conditional

generations take place with scheme 3.

the scheme 3 chain contains the set conditioned upon for the generation under the

scheme 1 chain. Thus the conditioning sets for the scheme 1 chain are nested in those

for the scheme 3 chain. The following result connects the nesting of conditioning sets

to total variation distance.

Proposition 1. Suppose that we have a countable state space, and a distribution

π which assigns positive probability to each state. Further suppose that this state

space is partitioned into conditioning sets Ci. Define row i of the transition matrix

P to consist of the distribution π, restricted to the conditioning set in which state i
lies. Consider two partitions, A and B, where {CA,i} is a refinement of {CB,i} and the

corresponding transition matrices PA and PB . Then, for any initial distribution, πI ,

||π
′

IPA − π|| ≥ ||π
′

IPB − π||.

Proof. The total variation distance between the distributions F and G is defined

by ||F −G|| = supA(|F (A)−G(A)|+ |F (AC )−G(AC)|) where A ranges over all subsets

of the state space. When the initial distribution πI is modified through a transition

governed by a conditional distribution over a partition, the supremum is attained by a
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set A for which each element of the partition is either entirely contained in A or entirely

contained in AC . Since the conditioning sets used to create PA are a refinement of those

used to create PB , we may view the supremum in the former case as being taken over

a larger set. Hence, ||π
′

IPA − π|| is at least as large as ||π
′

IPB − π||.

Proposition 1 shows that one step of the chain based on larger conditioning sets

(i.e., the sampler based on the non-identifiable model) is preferable to one step of the

chain based on the smaller conditioning sets. However, the proof given here does not

extend to more steps. Presumably, the quicker one-step movement toward the posterior

will often carry over into a quicker rate of convergence for the chain, as it does in the

example of Section 3. Consideration of the impact of identifiability underlay, in part,

the development of nonconjugate algorithms in MacEachern and Muller (1998).

As Jain and Neal comment, the Type III algorithms are most beneficial when there

are large clusters of observations. With only a few large clusters, all observations will

frequently have a chance to switch clusters. However, my experience with models involv-

ing the Dirichlet process is that the posterior distribution typically includes a number

of small clusters (in addition to the large clusters). The simple example suggests that

including Type II steps is important to facilitate mixing for these small clusters.

5 Conclusions

The example presented herein, as well as others that I have examined, lead to the follow-

ing viewpoint on the four reasons presented earlier for avoiding non-identifiable models.

The first, interpretation of the model, has no connection to whether MCMC methods

are used to fit the model, and so in no way suggests that one restrict themself to use of

identifiable models. The second reason seems to be largely irrelevant. The important

convergence rate (if an identifiable model is to be considered at all) is convergence for

estimates of identifiable functionals. This may be quicker than the convergence rate of

the chain in the non-identifiable space. In any event, if an effective chain can be created

based on the identifiable form of the model, the same chain can be created based on

the non-identifiable form of the model. The third concern, for numerical stability of

the computations, remains a concern. The fourth issue is one of prior elicitation. Since

models and prior distributions are subjective and situation specific, any recommenda-

tion for one form of model over another is open to criticism. Nevertheless, some classes

of models seem much more natural than do others. Often, as in the case of the hier-

archical model, these classes contain non-identifiable models. A decision to replace a

natural, non-identifiable model with an identifiable model that seems to be less natural

seems unwise without a demonstrated improvement in the ease or effectiveness with

which the model is fit.

My own view on problems necessitating MCMC methods is this. One should first

write down the most natural model, whether it be identifiable or non-identifiable. Next,

lay out several MCMC methods for this version of the model. Further consider expand-

ing the parameter space to create non-identifiable models. Particular consideration
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should be given to inducing non-identifiability by adding symmetries such as the re-

labelling of the clusters in the simple Dirichlet process example. Again, examine a

batch of MCMC algorithms, with attention to generating blocks of parameters and to

marginalizing parameters. Finally, select an algorithm based on the heuristics of pre-

ferring those derived from larger conditioning sets, those that have collapsed the state

space, and those that generate blocks of parameters at a time. To this algorithm, add

steps that target particularly difficult transitions–such as splitting and merging large

clusters.

The hints in Jain and Neal’s paper and the simple example suggest a natural direction

for extension of the split-merge moves: a move away from a random scan (i.e., random

selection of observations i and j that determine the attempted split/merge) and toward

a scan with reduced randomness. The randomness of the scan can be lessened, for

example, by permuting the indices from 1 through n, and using successive pairs for

i and j. This type of permutation bounds the time between successive attempts at

updating each observation’s cluster membership. In turn, this ensures that the number

of iterates until every observation-specific parameter has had a chance to be updated

is controlled. I suspect that the benefits that Jain and Neal have demonstrated of

combining both incremental and split-merge moves in an algorithm are partly due to

the implicit reduction in randomness–a complete incremental Gibbs scan ensures that

all cases have had the opportunity to move.

A second possible extension is to reserve the split/merge moves for clusters of sub-

stantial size. To do so, one could partition the parameter space into two parts–one part

where the combined number of cases in clusters identified by observations i and j ex-

ceeds some threshold and the second part where the combined number of cases is small.

If the current state were in the first part, a split-merge move would be attempted, and

the state after transition would also remain in the first part. If the current state were

in the second part, slightly modified incremental steps would be attempted, with the

modification ensuring that the state after transition would also remain in the second

part. Alternatively, for this second part, one could make no transition at all. With

the posterior distribution invariant for each potential step, the posterior distribution

would remain invariant for the chain as a whole. Supplementing this type of move with

incremental Gibbs scans would yield irreducibility of the chain.
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Rejoinder

Sonia Jain∗ and Radford M. Neal†

We thank discussants Drs. MacEachern, Robert, and Dahl for their thoughtful

comments. Since many of their comments are related, we will address them by topic

below.

1 Creation, Deletion, Identifiability, and Tempering

Our conditionally conjugate split-merge technique belongs to the family of

trans-dimensional MCMC algorithms, which includes, for example, reversible-jump

MCMC (Green 1995), birth-death MCMC (Stephens 2000a), and split-merge MCMC

(Jain and Neal 2004), (Dahl 2003). Trans-dimensional MCMC algorithms construct

Markov chain transitions between states that vary in dimension. For Dirichlet process

mixture models, this involves the creation or deletion of mixture components.

Of course, even plain Gibbs Sampling updates for this model must be able to create

and delete mixture components, but they do so only in an incremental fashion, in which

a new component must start off explaining only a single observation — which may be

a rather unlikely state. A key strength of trans-dimensional MCMC procedures is the

ability to traverse the parameter space efficiently without having to pass through such

low-probability states. For simple problems, these techniques can save computation

time by reducing the required burn-in, and improving sampling thereafter. For more

complex and difficult problems, such as are encountered in areas such as genetics and

image analysis, these techniques may be essential if the problem is to be solved in any

reasonable amount of time.

The mixture components created are given arbitrary labels, which could be permuted

without affecting fit to the data, or prior probability. This “non-identifiability” has

been seen by some as raising issues with regard to proper interpretation of the results,

as discussed, for example by Stephens (2000b). These issues are of no relevance to our

paper, which is concerned only with efficiently sampling from the posterior distribution.

We agree with MacEachern that forcing the Dirichlet process mixture model to be

identifiable is a hindrance to efficient MCMC sampling.

In this regard, one should note that sampling of all equivalent labellings can easily

be obtained by simply introducing an additional MCMC update (applied at any desired

interval) that permutes the labels — though this would be pointless for most purposes,

since the labelling doesn’t matter. Robert demonstrates that Gibbs sampling alone may

fail to move easily between modes with different labellings. In itself, this failure is of

no practical significance. Lack of movement between these equivalent modes should be
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versity of California at San Diego, La Jolla, CA, mailto:sojain@ucsd.edu

†Department of Statistics and Department of Computer Science, University of Toronto, Toronto,
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worrying only to the extent that one thinks it is a sign that the MCMC method would

also fail to move between non-equivalent modes (if any) that correspond to substantively

different interpretations of the data. It is unclear to us that failure to move amongst

equivalent modes is actually indicative of a real problem of this sort. Conversely, there

is no guarantee that a method that moves amongst equivalent modes can also move

easily between non-equivalent modes.

Robert suggests that perhaps global tempering would perform better than a split-

merge procedure, with regard to movement between isolated modes. (We are not sure

which tempering method Robert used for his example, as it is not specified.) However,

his example considers the benefits of tempering only when transitions are done using

Gibbs sampling, without any split-merge updates. Moreover, his example concerns a

fully conjugate model of the type treated in our earlier work (Jain and Neal 2004),

rather than the nonconjugate models discussed in this article.

Also, the comparison looks only at mixing amongst equivalent modes, which as

mentioned above is of no importance in itself. For these reasons, this demonstration

does not convince us that tempering would work better than split-merge methods.

However, we do expect that for some complex problems, such as very high-dimensional

clustering, split-merge may not be sufficient. We hypothesize that tempering methods

may also have difficulty with such problems, but that applying tempering in conjunction

with split-merge updates might allow for their solution.

2 The Role of Conditional Conjugacy in Our Algorithm

As the discussants highlight, our split-merge method applies only to models in which the

prior for parameters of component distributions exhibits conditional conjugacy. Though

this limits the the usefulness of our algorithm, its domain is perhaps wider than one

might expect. For instance, consider MacEachern (1998), in which he describes how

a nonconjugate model can be treated as a conditionally conjugate problem by using

piecewise log-concavity.

Robert wonders whether it might be possible to extend the algorithm beyond condi-

tionally conjugate models. Conditional conjugacy is needed so that we can do a Gibbs

sampling scan from the launch state, and also compute the probability density for choos-

ing the value chosen at each stage of this scan. The underlying requirement is that we

have a way of proposing a new parameter vector based on the launch state such that

(a) the distribution of the proposed state is similar to the posterior distribution of pa-

rameter values, and (b) we can for this proposed state compute the probability density

of its having been proposed. This allows us to implement efficient Metropolis-Hastings

updates, with a particular update being chosen randomly by the procedure for selecting

a launch state. As an aside, note that from its very origins (Metropolis et al. 1953)

the Metropolis algorithm has commonly been used with proposals that change only a

subset of the variables. It is not necessary to justify such partial Metropolis-Hastings

updates in a special way (as Robert suggests), or to refer to such updates as anything

other than Metropolis-Hastings updates.
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An MCMC transition that leaves the posterior distribution invariant is a natural

way of trying to get a proposal for parameters of split/merged components that comes

from close to the posterior distribution. More than one such transition would be better,

but would make computing the density for a proposal impossible, as that would require

integrating over intermediate states. (Such an integral is avoided in our algorithm by

treating the intermediate Gibbs sampling updates not as part of the proposal distribu-

tion but rather as a procedure for choosing a launch state.) One could certainly imagine

using MCMC transitions other than Gibbs sampling for this purpose. One could, for

example, use a series of Metropolis-Hastings updates applied to each parameter in turn.

The probability density for proposing a state that differs in all components from the

launch state would then be easily computed, as the product of all the proposal densi-

ties and all the acceptance probabilities. Unfortunately, the probability density for a

state in which any of these Metropolis-Hastings updates was rejected (so that at least

component is the same in the launch state and in the proposal) will be infinite, which

will result in a zero acceptance probability for the split-merge update.

So, although one can imagine such variations, they may not be useful in practice.

One possibility that would be worth investigating is using some approximation to the

posterior distribution (for the model restricted to two components), such as a Gaus-

sian. The conditional distributions from this approximation could be used as proposals

(resulting in Gibbs sampling in the limit as the approximation becomes perfect). If the

rejection rate is small enough, this might work well. Alternatively, the approximation

could be used directly — the validity of our algorithm does not depend on the transi-

tion from the launch state (or the intermediate transitions) leaving the actual posterior

distribution invariant, though use of a bad approximation will of course lead to a low

acceptance rate for the split-merge updates.

3 The Usefulness of Incremental Markov Chain Updates

Together with Split-Merge

Our split-merge algorithm has four tuning parameters, controlling the number of in-

termediate restricted Gibbs sampling scans for splits proposals and merge proposals,

and the number of split-merge updates and incremental Markov chain updates (e.g.

Gibbs sampling scans) done as part of a full iteration. Both MacEachern and Dahl

remark on the importance of a final incremental Gibbs sampling scan. We agree with

MacEachern that the inclusion of such a step is important to facilitate mixing, as we

have demonstrated in the article. However, though MacEachern emphasizes the role of

such updates in mixing for small clusters, we believe that they are at least as important

for moving observations back and forth between large clusters, as this cannot be done

efficiently with split-merge updates.

Indeed, as we have described in our article and as Dahl observes, the “jitter” that

is observed in the trace plots of the beetle example can be attributed to the final

auxiliary Gibbs sampling scan. However, we disagree with Dahl’s conclusion from this

that the CPU time spent on split-merge updates is “wasted” when these moves are not
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accepted. How can we know a priori that these moves will not be accepted unless they

are proposed? Since split-merge updates are required to obtain a correct solution (in a

reasonable amount of time) for some problems, it is necessary to perform them for all

problems in order to determine if they are actually needed, and hence ensure that the

answer obtained is correct.

Further, Dahl’s demonstration with only auxiliary Gibbs sampling (no split-merge

updates) is not entirely convincing. On close inspection, the lower plots of his Figure

1 show that auxiliary Gibbs sampling is not actually performing that well! For several

thousand iterations, a number of observations seem to have been incorrectly allocated

to small clusters, with the Gibbs sampler making only slow progress in correcting this.

It is possible that just a few split-merge iterations could take care of these orphan

clusters. By performing both incremental and non-incremental split-merge updates,

one can take advantage of both large-scale changes to the cluster configuration via

split-merge moves and small-scale adjustments that move a few observations between

clusters, as is necessary depending on the problem.

4 MCMC Initialization

Robert suggests that sampling from the prior to initialize the intermediate restricted

Gibbs sampling could lead to wasted computational effort. In higher-dimensional prob-

lems, we agree that overcoming bad initial values could be a problem — i.e. many

restricted Gibbs sampling scan might be required. In the Discussion section of the

paper, we had suggested alternatives to sampling from the prior to initialize the re-

stricted Gibbs sampling, such as adapting a method used by Dahl (2003), or some other

posterior estimation method.

A feature of the split-merge technique that Dahl discusses is its insensitivity to

the initial value that the Markov chain is started with, whereas the Gibbs sampler

is susceptible to poor choices (as illustrated in the Beetle example). We agree with

this, but are puzzled by the discrepancies in the simulations. We also initialized the

chain by sampling the model parameters from the prior and not by setting the initial

values to the sample mean and precision. One possible explanation is differing orders

of updates — we sampled the indicators first and then the model parameters (means

before precisions).

5 Random versus Fixed Scan Sampling

MacEachern investigates in detail how MCMC performance differs for fixed versus ran-

dom scans, in the context of Gibbs sampling. He proposes a systematic scan as an

alternative to the random scan that we utilize to initiate the split-merge process (i.e.

select two observations, denoted as i and j, uniformly at random). MacEachern suggests

permuting the indices from 1 to n and then using successive pairs as i and j, thereby

reducing randomness. This gives a feasible scan length (unlike systematically using all

possible pairs of observations). We agree that this is likely to improve performance, but
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perhaps not by much. Partly, this is because there will still be considerable random-

ness in which clusters are chosen for split/merge operations — in particular, the same

clusters might well be chosen several times in a row.

More generally, however, MacEachern may be overestimating the difference between

fixed and random scans. The interpretation of his Table 2 is perhaps not obvious. The

number of iterations required to reach some small total variation distance is proportional

to −1/log(v), where v is the second-largest eigenvalue. So, for example, using scheme

3, with α = 1 (which is M = 1 in MacEachern’s notation), the fixed scan method is

not better by a factor of 0.171/0.037 = 4.6, as one might naively think, but rather

by a factor of log(0.037)/log(0.171) = 1.9. As α approaches infinity (approximated by

α = 100, i.e. corresponding to M = 100 in the table), the second largest eigenvalue

for the fixed scan approaches zero — all the variables are independent, so a single fixed

Gibbs sampling scan immediately reaches equilibrium. The random scan has a non-

zero second eigenvalue in the α → ∞ limit, reflecting the fact that after any number of

iterations there is a non-zero probability that some variable could still be left unchanged.

Technically, the asymptotic convergence rate of the fixed scan is infinitely better than

that of the random scan, but in practice a modest number of iterations is sufficient to

give the correct result with very high probability.

In this small example, Markov chain sampling is based on the prior distribution

of clusterings for three data points, but the likelihood factors deriving from the data

are omitted. However, in practical problems, where many split-merge proposals are

likely to be made for each that is accepted, the randomness in choice of clusters to

split/merge may be negligible compared to the randomness in proposing how to split

or merge them, and in whether or not to accept the result. Finding ways of further

improving the split/merge proposals may be a better focus for future research.
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Hidden Markov Dirichlet Process: Modeling

Genetic Inference in Open Ancestral Space

Eric P. Xing∗ and Kyung-Ah Sohn†

Abstract. The problem of inferring the population structure, linkage disequi-
librium pattern, and chromosomal recombination hotspots from genetic polymor-
phism data is essential for understanding the origin and characteristics of genome
variations, with important applications to the genetic analysis of disease propen-
sities and other complex traits. Statistical genetic methodologies developed so far
mostly address these problems separately using specialized models ranging from
coalescence and admixture models for population structures, to hidden Markov
models and renewal processes for recombination; but most of these approaches
ignore the inherent uncertainty in the genetic complexity (e.g., the number of ge-
netic founders of a population) of the data and the close statistical and biological
relationships among objects studied in these problems. We present a new statis-
tical framework called hidden Markov Dirichlet process (HMDP) to jointly model
the genetic recombinations among a possibly infinite number of founders and the
coalescence-with-mutation events in the resulting genealogies. The HMDP posits
that a haplotype of genetic markers is generated by a sequence of recombination
events that select an ancestor for each locus from an unbounded set of founders
according to a 1st-order Markov transition process. Conjoining this process with
a mutation model, our method accommodates both between-lineage recombina-
tion and within-lineage sequence variations, and leads to a compact and natural
interpretation of the population structure and inheritance process underlying hap-
lotype data. We have developed an efficient sampling algorithm for HMDP based
on a two-level nested Pólya urn scheme, and we present experimental results on
joint inference of population structure, linkage disequilibrium, and recombination
hotspots based on HMDP. On both simulated and real SNP haplotype data, our
method performs competitively or significantly better than extant methods in un-
covering the recombination hotspots along chromosomal loci; and in addition it
also infers the ancestral genetic patterns and offers a highly accurate map of an-
cestral compositions of modern populations.

Keywords: Dirichlet Process, Hierarchical DP, hidden Markov model, MCMC,
statistical genetics, recombination, population structure, SNP.

1 Introduction

The availability of nearly complete genome sequences for organisms such as humans

makes it possible to begin to explore individual differences between DNA sequences,

known as genetic polymorphisms, on a genome-wide scale, and to search for associations
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of such genotypic variations with diseases and other phenotypes. Most human variation

that is influenced by genes can be related to a particular kind of genetic polymorphism

known as the single nucleotide polymorphisms, or SNPs. A SNP refers to the existence

of two possible kinds of nucleotides from {A,C,G, T} at a single chromosomal locus (i.e.,

a position on the chromosome) in a population; each variant is called an allele ∗. A

haplotype is a list of alleles at contiguous sites in a local region of a single chromosome.

Assuming no recombination in this local region, a haplotype is inherited as a unit. But

under many realistic biological or genetic scenarios, repeated recombinations between

ancestral haplotypes during generations of inheritance may confound the genetic origin

of modern haplotypes (Figure 1).

Recombinations between ancestral chromosomes during meiosis play a key role in

shaping the patterns of linkage disequilibrium (LD)—the non-random association of

alleles at different loci—in a population. When a recombination occurs between two loci,

it tends to decouple the alleles carried at those loci in its decedents and thus reduce LD;

uneven occurrence of recombination events along chromosomal regions during genetic

history can lead to “block structures” in molecular genetic polymorphisms such that

within each block only low level of diversities are present in a population.

Statistically, for a pair of loci with genetic polymorphic markers, say, X and Y , the

LD between these two loci can be characterized by a number of so-called LD measures.
For example, for bi-allelic markers (i.e., markers that have only two possible states, say

“0” and “1”), LD can be measured by the gametic disequilibrium, D = p00p11 − p01p10,

where p00 := Prob(X = 0, Y = 0), p11 := Prob(X = 1, Y = 1), p01 := Prob(X =

0, Y = 1), and p10 := Prob(X = 1, Y = 0), are the empirical frequencies of joint

allele-state configurations. Another popular LD measure is the p-value for Fisher’s

exact test over samples of X and Y . When D = 0, which means that the two loci of

interest are not arranged randomly during inheritance (due to recombination of their

host chromosomes at a position between the two loci), they often emerge (e.g., from

all possible pairs in a large number of loci being surveyed) as candidates of marker

pairs on the chromosome whose locations are physically close so that there is a low

probability of having recombination events between them. However, to the best of

our knowledge, extant LD-measures remain primarily focused on offering population-

level descriptive statistics of the sample, rather than on modeling and inferring the

underlying genetic mechanisms and processes that may have generated the data. For

example, the pairwise LD measure ignores the global context and overall pattern of the

genetic polymorphisms, and thus can not distinguish linkages due to spurious statistical

association (e.g., due to problems in sample procedures) from those resulting from true

physical proximity, or from genetic coupling due to co-evolution †. Such an approach also

∗In general, an allele represents a variant of a SNP, a gene, or some other entity associated with a
locus on DNA. In our case (SNPs), the locus harbors a single nucleotide, and therefore the alleles can
generally be assumed to be binary, reflecting the fact that “lightning doesn’t tend to strike twice in the
same place”. That is, nucleotide substitutions (i.e., mutations) do not occur to the same locus twice
during the inheritance course from a common ancestor. More generally, e.g., in case of microsatellite

polymorphism, the allele-state can be k-nary, a scenario to which our proposed model also applies.
†Co-evolution can occur for DNA sequences that are far apart in the genome if they encode genes or

regulatory elements that jointly or corporately perform an indispensable biology function. For example,
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provides no information regarding the demographical history and ancestral composites

of each individual in the study population. In this paper, we propose a new model-based

approach to address these issues.

The problem of inferring chromosomal recombination hotspots is essential for under-

standing the origin and characteristics of genome variations; several combinatorial and

statistical approaches have been developed for uncovering optimum block boundaries

from single nucleotide polymorphism haplotypes

(Daly et al. 2001; Anderson and Novembre 2003; Patil et al. 2001; Zhang et al. 2002).

For example, Zhang et al. (2002) proposed a dynamic programming algorithm for parti-

tioning single nucleotide polymorphism (SNP) haplotypes (explained in the sequel) into

low-diversity blocks; Daly et al. (2001) and Greenspan and Geiger (2004a) have de-

veloped hidden Markov models for locating recombination hotspots in haplotypes; and

Anderson and Novembre (2003) proposed a minimum description length (MDL) method

for optimal haplotype block finding. Some recent studies resorted to more sophisticated

population genetics arguments that more explicitly capture the mechanistic and pop-

ulation genetic foundations underlying recombination and LD pattern formation. For

example, Li and Stephens (2003) used a tractable approximation to the recombinational

coalescence, via a (latent) genealogy of the population, to capture the conditional de-

pendencies between haplotypes. Rannala and Reeve (2001) also use a coalescence-based

model and an MCMC method to integrate over the unknown gene genealogy and coales-

cence times. These advances have important applications in genetic analysis of disease

propensities and other complex traits.

The deluge of SNP data also fuels the long-standing interest of analyzing patterns

of genetic variations to reconstruct the evolutionary history and ancestral structures

of human populations, using, for example, variants of admixture models on genetic

polymorphisms (Pritchard et al. 2000; Rosenberg et al. 2002; Falush et al. 2003). These

models are instances of a more general class of hierarchical Bayesian models known as

mixed membership models (Erosheva et al. 2004), which postulate that genetic markers

of each individual are iid (Pritchard et al. 2000) or spatially coupled (Falush et al. 2003)

samples from multiple population-specific fixed-dimensional multinomial-distributions

of marker alleles. However, the admixture models developed so far do model genetic drift

due to mutations from the ancestor allele and therefore do not enable inference of the

founding genetic patterns and the age of the founding alleles (Excoffier and Hamilton

2003).

This progress notwithstanding, the statistical methodologies developed so far mostly

deal with LD analysis and ancestral inference separately, using specialized models that

do not capture the close statistical and genetic relationships of these two problems.

Moreover, most of these approaches ignore the inherent uncertainty in the genetic com-

plexity (e.g., the number of genetic founders of a population) of the data and rely on

inflexible models built on a pre-fixed, closed genetic space. Recently, we have devel-

oped a nonparametric Bayesian framework for modeling genetic polymorphisms based

on the Dirichlet process (DP) mixtures and extensions, which attempts to allow more

proteins that form a complex to carry out enzymatic activities usually co-evolve.
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Figure 1: An illustration of a hidden Markov Dirichlet process for haplotype recombination and inher-
itance. Note that the total number of ancestors is unknown.

flexible control over the number of genetic founders than has been provided by the

statistical methods proposed thus far (Xing et al. 2004) . In this paper, we leverage

on this approach and present a unified framework to model complex genetic inheri-

tance processes that allows recombinations among possibly infinite founding alleles and

coalescence-with-mutation events in the resulting genealogies.

We assume that individual chromosomes in a modern population are originated from

an unknown number of ancestral haplotypes via biased random recombinations and mu-

tations (Figure 1). The recombinations between the ancestors follow a state-transition

process we refer to as hidden Markov Dirichlet process (originated from the infinite

HMM by Beal et al. (2002)), which travels in an open ancestor space, with nonstation-

ary recombination rates depending on the genetic distances between SNP loci. Our

model draws inspiration from the HMM proposed in Greenspan and Geiger (2004b),

but we employ a two-level Pólya urn scheme akin to the hierarchical DP (Teh et al.

2006) to accommodate an open ancestor space, and allow full posterior inference of the

recombination sites, mutation rates, haplotype origin, ancestor patterns, etc., condition-

ing on phased SNP data, rather than estimating them using information theoretic or

maximum likelihood principles. On both simulated and real genetic data, our model and

algorithm show competitive or superior performance on a number of genetic inference

tasks over the state-of-the-art parametric methods.

The remainder of this paper is presented as follows. In section 2, we formulate the

problem, and present details of the proposed model. In section 3, we describe a block

Gibbs sampling algorithm for posterior inference of the latent variables. In section 4, we

present experimental results on a simulated data haplotype data set, and on two pub-

lished real data sets, one from a single population, and the other from two populations.

We conclude with a brief discussion in section 6. A short version of this manuscript was

presented earlier in Sohn and Xing (2006), but the current version offers more details

on the biological background, the model specifications, and the experimental results.
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2 The Statistical Model

Sequentially choosing recombination targets from a set of ancestral chromosomes can

be modeled as a hidden Markov process (Niu et al. 2002; Greenspan and Geiger 2004b),

in which the hidden states correspond to the index of the candidate chromosomes, the

transition probabilities correspond to the recombination rates between the recombining

chromosome pairs, and the emission model corresponds to a mutation process that

passes the chosen chromosome region in the ancestors to the descents. When the number

of ancestral chromosomes is not known, it is natural to consider an HMM whose state

space is countably infinite (Beal et al. 2002; Teh et al. 2006). In this section, we describe

such an infinite HMM formalism, which we would like to call hidden Markov Dirichlet
process, for modeling recombination in an open ancestral space.

2.1 Dirichlet Process mixtures

For self-containedness, we begin with a quick overview of the fundamentals of the Dirich-

let process and its connection to the coalescent process in population genetics, followed

by a brief recapitulation of the basic Dirichlet process mixture model we proposed

in Xing et al. (2004) for haplytope inheritance without recombination.

As mentioned earlier, a haplotype refers to the joint allele configuration of a contigu-

ous list of SNPs located on a chromosome. Under a well-known genetic model known

as coalescence with infinite-many-alleles (IMA) mutations (but without recombination),

one can treat a haplotype from a modern individual as a descendent of a most recent

common ancestor (MRCA) of unknown haplotype via random mutations that alter the

allelic states of some SNPs (Kingman 1982). Hoppe (1984) observed that a coales-

cent process in an infinite population leads to a partition of the population at every

generation that can be succinctly captured by the following Pólya urn scheme.

Consider an urn that at the outset contains a ball of a single color. At each step

we either draw a ball from the urn and replace it with two balls of the same color, or

we are given a ball of a new color which we place in the urn. One can see that such a

scheme leads to a partition of the balls according to their color. Mapping each ball to a

haploid individual ‡ and each color to a possible haplotype, this partition is equivalent

to the one resulting from the coalescence-with-mutation process (Hoppe 1984), and the

probability distribution of the resulting allele spectrum—the numbers of colors (resp.

haplotypes) with every possible number of representative balls (resp. decedents)—is

captured by the well-known Ewens’ sampling formula (Tavare and Ewens 1998).

Letting parameter α define the probabilities of the two types of draws in the afore-

mentioned Pólya urn scheme, and viewing each (distinct) color as a sample from Q0,

and each ball as a sample from Q §, Blackwell and MacQueen (1973) showed that this

‡A haploid individual refers to an individual with only one haplotype — a simplifying assumption
often used on population genetics when the paternal and maternal haplotypes of a diploid individual
are inherited independently.

§Here we deviate from the conventional notations in the statistics literature (e.g., Neal (2000);
Escobar and West (2002); Ishwaran and James (2001)) and use Q and Q0, instead of G and G0 (or
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Pólya urn model yields samples whose distributions are those of Q0 the marginal prob-

abilities under the Dirichlet process (Ferguson 1973). Formally, a random probability

measure Q is generated by a DP if for any measurable partition B1, . . . , Bk of the sam-

ple space, the vector of random probabilities Q(Bi) follows a Dirichlet distribution:

(Q(B1), . . . , Q(Bk)) ∼ Dir(αQ0(B1), . . . , αQ0(Bk)), where α denotes a scaling param-

eter and Q0 denotes a base measure. The Pólya urn model makes explicit that the

association of data points to colors defines a “clustering” of the data. Specifically, hav-

ing observed n values (φ1, . . . , φn) sampled from a Dirichlet process DP (α,Q0), the

probability of the (n+ 1)th value is given by:

φn+1|φ1, . . . , φn, α,Q ∼

n
∑

i=1

1

n+ α
δφi

(·) +
α

n+ α
Q0(·), (1)

where δφi
(·) denotes a point mass at value φi. Another very useful representation of DP

is the stick-breaking construction by Sethuraman (1994). This construction is based on

independent sequences of independent random samples {π′
k,i}

∞
i=1 and {φi}

∞
i=1 generated

in the following way: π′
i|α,Q0 ∼ Beta(1, α) and φi|α,Q0 ∼ Q0, where Beta(a, b) is the

Beta distribution with parameter a and b. Let πi = π′
i

∏k−1
l=1 (1 − π′

l) (analogous to a

process of repetitively breaking a stick at fraction π′
l), Sethuraman showed that the

random measure arising from DP (α,Q0) admits the representation Q =
∑∞

i=1 πiδφi
.

The φi’s can be understood as the locations of samples in their space, and the πi’s are

the weights of these samples.

The discrete nature of the DP, as obviated from the stick-breaking construction, is

well suited for the problem of placing priors on mixture components in mixture model-

ing. In the context of mixture models, one can associate mixture component centroids

(e.g., haplotype founders, as explained in the sequel) with colors in the Pólya urn model

and thereby define a “clustering” of the (possibly noisy) data (e.g., modern haplotypes

that are “recognizable” variants of their corresponding founders). This mixture model

is known as a DP mixture (Antoniak 1973; Escobar and West 2002) (also known as

“infinite” mixture model in machine learning community). Note that a DP mixture re-

quires no prior specification of the number of components, which is typically unknown in

genetic demography and general data clustering problems. It is important to emphasize

that here DP is used as a prior distribution of mixture components. Multiplying this

prior by a likelihood that relates the mixture components to the actual data yields a pos-
terior distribution of the mixture components, and the design of the likelihood function is

completely up to the modeler based on specific problems. MCMC algorithms have been

developed to sample from the posterior associated with DP priors (Escobar and West

2002; Neal 2000; Ishwaran and James 2001). This nonparametric Bayesian formalism

forms the technical foundation of the haplotype modeling and inference algorithms to

be developed in this paper.

Back to haplotype modeling, a straightforward statistical genetics argument shows

that the distribution of haplotypes can be formulated as a mixture model, where the set

H), to denote the random probability measure under DP and the base measure of DP, because in
the genetic context, G and H have been used to denote the genotype and haplotype of polymorphic
markers (Pritchard et al. 2000; Stephens et al. 2001; Li and Stephens 2003; Xing et al. 2004).
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of mixture components corresponds to the pool of ancestor haplotypes, or founders, of

the population (Excoffier and Slatkin 1995; Niu et al. 2002; Kimmel and Shamir 2004).

Crucially, however, the size of this pool is unknown; indeed, knowing the size of the

pool would correspond to knowing something significant about the genome and its

history. On the other hand, despite its elegance, with a purely coalescence-based model

for genetic patterns, it is hard to perform statistical inference of ancestral features

and many other interesting genetic variables (for a large population, the number of

hidden variables in a coalescence tree is prohibitively large) (Stephens et al. 2001). In

most practical population genetic problems, usually the detailed genealogical structure

of a population (as provided by the coalescent trees) is of less importance than the

population-level features such as the pattern of major common ancestor alleles (i.e.,

founders) in a population bottleneck ¶, the age of such alleles, etc. In this case, the

DP mixture offers a principled approach to generalize the finite mixture model for

haplotypes to an infinite mixture model that models uncertainty regarding the size of

the ancestor haplotype pool; at the same time, it provides a reasonable approximation to

the coalescence model by utilizing the partition structure resulting therefrom (but allows

further mutations within each partite to introduce further diversity among descents of

the same founder, which correspond to the balls with the same color in the Pólya

urn metaphor). Without further digression, below we summarize the Dirichlet process

mixture model we proposed in Xing et al. (2004) for haplytope inheritance without

recombination.

Write Hi = [Hi,1, . . . , Hi,T ] for a haplotype over T SNPs from chromosome i ‖; let

Ak = [Ak,1, . . . , Ak,T ] denote an ancestor haplotype (indexed by k) and θk denote the

mutation rate of ancestor k; and let Ci denote an inheritance variable that specifies the

ancestor of haplotype Hi. Under a DP mixture, we have the following Pólya urn scheme

for sampling modern haplotypes:

• Draw first haplotype:

a1 | DP(τ, Q0) ∼ Q0(·), sample the 1st founder;

h1 ∼ Ph(·|a1, θ1),
sample the 1st haplotype from an inheritance model
defined on the 1st founder;

• for subsequent haplotypes:

– sample the founder indicator for the ith haplotype:

ci|DP(τ, Q0) ∼







p(ci = cj for some j < i|c1, ..., ci−1) =
ncj

i−1+α0

p(ci 6= cj for all j < i|c1, ..., ci−1) = α0

i−1+α0

where nci
is the occupancy number of class ci—the number of previous samples be-

longing to class ci.

¶A stage in coalescence when there are only a very small number of founding haplotype patterns
surviving and giving rise to all the haplotypes in the modern population.

‖We ignore the parental origin index of haplotypes as used in Xing et al. (2004), and assume
that the paternal and maternal haplotypes of each individual are given unambiguously (i.e., phased,
as known in genetics), as is the case in many LD and haplotype-block analyses (Daly et al. 2001;
Anderson and Novembre 2003). But it is noteworthy that our model can generalize straightforwardly
to unphased genotype data by incorporating a simple genotype model as in Xing et al. (2004).
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– sample the founder of haplotype i (indexed by ci):

φci
|DP(τ, Q0)















= {acj
, θcj

}
if ci = {acj

, θcj
} for some j < i (i.e., ci refers to an

inherited founder)

∼ Q0(a, θ)
if ci 6= cj for all j < i (i.e., ci refers to a new
founder)

– sample the haplotype according to its founder:

hi | ci ∼ Ph(·|aci
, θci

).

The usefulness of the DP mixture framework for the haplotype problem should

be clear—using a Dirichlet process prior we in essence maintain a pool of haplotype

founders that grows as observed individual haplotypes are processed. But notice that

the above generative process assumes each modern haplotype originates from a single

ancestor, which is only true for haplotypes spanning a short region on a chromosomal.

Now we consider long haplotypes possibly bearing multiple ancestors due to recombi-

nations between an unknown number of founders.

2.2 Hidden Markov Dirichlet Process (HMDP)

In a standard HMM, state-transitions across a discrete time- or space-interval take

place in a fixed-dimensional state space, thus it can be fully parameterized by, say, a

K-dimensional initial-state probability vector π0 and a K × K state-transition prob-

ability matrix ΠK×K . As first proposed in Beal et al. (2002), and later discussed in

Teh et al. (2006), one can “open” the state space of an HMM by treating the now infi-

nite number of discrete states of the HMM as the support of a DP, and the transition

probabilities to these states from some source as the masses associated with these states.

In particular, for each source state (say, state j), the possible transitions to the target

states need to be modeled by a unique DP Qj . Since all possible source states and

target states are taken from the same infinite state space, overall we need an open set

of DPs with different mass distributions on the SAME support (to capture the fact that

different source states can have different transition probabilities to any target state).

In the sequel, we describe such a nonparametric Bayesian HMM using an intuitive hi-

erarchical Pólya urn construction. We call this model a hidden Markov Dirichlet

process.

In an HMDP, both the columns and rows of the transition matrix Π are infinite

dimensional. To construct such an stochastic matrix, we will exploit the fact that in

practice only a finite number of states (although we don’t know what they are) will

be visited by each source state, and we only need to keep track of these states. The

following sampling scheme based on a hierarchical Pólya urn scheme captures this spirit

and yields a constructive definition of HMDP.

We set up a single “stock” urn at the top level, which contains balls of colors that

are represented by at least one ball in one or multiple urns at the bottom level. At

the bottom level, we have a set of distinct urns which are used to define the initial and

transition probabilities of the HMDP model (and are therefore referred as HMM-urns).
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Specifically, one of the HMM urns, Q0, is set aside to hold colored balls to be drawn at

the onset of the HMM state-transition sequence ∗∗. Each of the remaining HMM urns

is painted with a color represented by at least one ball in the stock urn, and is used

to hold balls to be drawn during the execution of a Markov chain of state-transitions.

Now let’s suppose that at time t the stock urn contains n balls of K distinct colors

indexed by an integer set C = {1, 2, . . . ,K}; the number of balls of color k in this urn is

denoted by nk, k ∈ C. For urn Q0 and urns Q1, . . . , QK , let mj,k denote the number of

balls of color k in urn Qj , and mj =
∑

k∈C mj,k denote the total number of balls in urn

Qj . Suppose that at time t− 1, we had drawn a ball with color k′. Then at time t, we

either draw a ball randomly from urn Qk′ , and place back two balls both of that color;

or with probability τ
mj+τ

we turn to the top level. From the stock urn, we can either

draw a ball randomly and put back two balls of that color to the stock urn and one to

Qk′ , or obtain a ball of a new color K + 1 with probability γ
n+γ

and put back a ball of

this color to both the stock urn and urn Qk′ of the lower level. Essentially, we have a

master DP Q0 (the stock urn) that serves as a source of atoms for infinite number of

child DPs {Qj} (the HMM-urns). As pointed out in Teh et al. (2006), this model can

be viewed as an instance of the hierarchical Dirichlet process mixture model, with an

infinite number of DP mixtures as components. Specifically, we have:

Q0|α, F ∼ DP(α, F ), The master DP over target states common for all sources;

Qj |τ,Q0 ∼ DP(τ,Q0), The HMM DP over target states of source j.

From the above equation we see that the base measure of the DP mixture associated

each of the source states in the HMM is itself drawn from a Dirichlet process DP(α, F ).

Since a draw from a DP is a discrete measure with probability 1, atoms drawn from

this measure—atoms which are used as targets for each of the (unbounded number of)

source states—are not generally distinct. Indeed, the transition probabilities from each

of the source states have the same support—the atoms in Q0.

The Pólya urn scheme described above is similar in spirit to the “Chinese restaurant

franchise” scheme discussed in Teh et al. (2006), but it differs in that it avoids having

separate occupancy counters in each lower-level DP for repeated draws of the same atom

from a top-level DP, and it also motivates a simpler sampling scheme for inference as

discussed in Section 3.

Associating each color k with an ancestor configuration φk = {ak, θk} whose values

are drawn from the base measure F , and recalling our discussion in the previous section,

we know that draws from the stock urn can be viewed as marginals from a random

measure distributed as a Dirichlet Process Q0 with parameter (α, F ). Specifically, for

n random draws φ = {φ1, . . . , φn} from Q0, the conditional prior for (φn|φ−n), where

the subscript “−n” denotes the index set of all but the n-th ball, is

φn|φ−n ∼

K
∑

k=1

nk

n− 1 + α
δφ∗

k
(φn) +

α

n− 1 + α
F (φn), (2)

∗∗Purposely, we overload the symbol Qj to let it denote both the urns in the hierarchical Pólya urn
scheme, and the Dirichlet processes distributions represented by each of these urns.
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where φ∗k, k = 1, . . . ,K denote the K distinct values (i.e., colors) of φ (i.e., all the balls

in the stock urn), nk denote the number of balls of color k in the top urn, and δa(φi)

denotes a unit point mass at φi = a.

Conditioning on the Dirichlet process underlying the stock urn, the samples in the

jth bottom-level urn are also distributed as marginals under a Dirichlet measure:

φmj
|φ−mj

∼

K
∑

k=1

mj,k + τ nk

n−1+α

mj − 1 + τ
δφ∗

k
(φmj

) +
τ

mj − 1 + τ

α

n− 1 + α
F (φmj

)

=

K
∑

k=1

πj,kδφ∗

k
(φmj

) + πj,K+1Q0(φmj
), (3)

where πj,k ≡
mj,k+τ

nk
n−1+α

mj−1+τ
, πj,K+1 ≡ τ

mj−1+τ
α

n−1+α
. Let πj ≡ [πj,1, πj,2, . . .]. Now we

have an infinite-dimensional Bayesian HMM that, given F, α, τ , and all initial states

and transitions sampled so far, follows an initial states distribution parameterized by

π0, and transition matrix Π whose rows are defined by {πj : j > 0}.

Finally, as in, e.g., Escobar and West (2002) and Rasmussen (2000), we can also

introduce vague priors such as a Gamma or an inverse Gamma for the scaling parameters

α and τ .

2.3 HMDP Model for Recombination and Inheritance

Now we describe a stochastic model, based on an HMDP, for generating individual

haplotypes in a modern population from a hypothetical pool of ancestral haplotypes via

recombination and mutations (i.e., random mating with neutral selection). See Figure

1 for an illustration.

First recall that a base measure F at the top of our hierarchical Pólya urn scheme

is defined as a distribution from which ancestor haplotype templates φk are drawn. We

define the base measure F as a joint measure on both ancestor A and mutation rate θ,
and let F (A, θ) = p(A)p(θ), where p(A) is uniform over all possible haplotypes and p(θ)
is a beta distribution, Beta(αh, βh), with a small value for βh/(αh + βh) corresponding

to a prior expectation of a low mutation rate. For simplicity, we assume each Ak,t (and

also each Hi,t) takes its value from an allele set B.

Now for each modern chromosome i, let Ci = [Ci,1, . . . , Ci,T ] denote the sequence

of inheritance variables specifying the index of the ancestral chromosome at each SNP

locus. When no recombination takes place during the inheritance process that produces

haplotype Hi (say, from ancestor k), then Ci,t = k, ∀t. When a recombination occurs,

say, between loci t and t+ 1, we have Ci,t 6= Ci,t+1. We can introduce a Poisson point

process to control the duration of non-recombinant inheritance. That is, given that

Ci,t = k, then with probability e−dr + (1 − e−dr)πkk , where d is the physical distance

between two loci, r reflects the rate of recombination per unit distance, and πkk is

the self-transition probability of ancestor k defined by HMDP, we have Ci,t+1 = Ci,t;

otherwise, the source state (i.e., ancestor chromosome k) pairs with a target state (e.g.,
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ancestor chromosome k′) between loci t and t + 1, with probability (1 − e−dr)πkk′ .

Hence, each haplotype Hi is a mosaic of segments of multiple ancestral chromosomes

from the ancestral pool {Ak}
∞
k=1. Essentially, the model we described so far is a time-

inhomogeneous infinite HMM. When the physical distance information between loci is

not available, we can simply set r to be infinity (hence e−dr ≈ 0) so that we are back

to a standard stationary HMDP model with infinite dimensional transition probability

matrix Π∞×∞ described earlier.

The emission process of the HMDP corresponds to an inheritance model from an

ancestor to the matching descendent. For simplicity, we adopt the single-locus mutation

model in Xing et al. (2004):

p(ht|at, θ) = θI(ht=at)
( 1 − θ

|B| − 1

)I(ht 6=at)

, (4)

where ht and at denote the alleles at locus t of an individual haplotype and its cor-

responding ancestor, respectively; θ indicates the ancestor-specific mutation rate; and

|B| denotes the number of possible alleles. As discussed in Liu et al. (2001), this model

corresponds to a star genealogy resulting from infrequent mutations over a shared an-

cestor, and is widely used in statistical genetics as an approximation to a full coalescent

genealogy starting from the shared ancestor.

Assume that the mutation rate θ admits a Beta prior with hyperparameter (αh, βh) ††,

the marginal conditional likelihood of all the haplotype instances h = {hi,t : i ∈
{1, 2, . . . , I}, t ∈ {1, 2, . . . , T}} given the set of ancestors a = {a1, . . . , aK} and the

ancestor indicators c = {ci,t : i ∈ {1, 2, . . . , I}, t ∈ {1, 2, . . . , T}} can be obtained by

integrating out θ from the joint conditional probability starting from Equation (4) as

follows:

p(h|c,a) =
∏

k

(

∫

∏

i,t|ci,t=k

p(hi,t, θk|ak,t)R(αh, βh)θαh−1
k (1 − θk)βh−1dθk

)

=
∏

k

R(αh, βh)
Γ(αh + lk)Γ(βh + l′k)

Γ(αh + βh + lk + l′k)

( 1

|B| − 1

)l′k
(5)

where Γ(·) is the gamma function, R(αh, βh) =
Γ(αh+βh)
Γ(αh)Γ(βh) is the normalization constant

associated with Beta(αh, βh) (which is a prior distribution for θ), lk =
∑

t

∑

i I(hi,t =

ak,t)I(ci,t = k) is the number of alleles that were not mutated with respect to the

ancestral allele, and l′k =
∑

t

∑

i I(hi,j 6= ak,j)I(ci,t = k) is the number of mutated

alleles. The counting record lk = {lk, l
′
k} is a sufficient statistic for the parameter θk.

The generative process and likelihood functions described above point naturally to

an algorithm for population genetic inference. Unlike the classical coalescence mod-

els for recombination (Hudson 1983), which have been primarily used for theoretical

analysis and simulation, but are hardly feasible for reverse ancestral inference based on

††For simplicity, we assume that the mutation rates pertaining to different ancestors follow the same
prior Beta(αh, βh).
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observed genetic data, the HMDP model described above for recombination and inheri-

tance provides a semi-parametric Bayesian formalism that is well suited for data-driven

posterior inference on the latent variables that can yield rich information on the pop-

ulation ancestry and genetic structure of the study population. For example, under a

HMDP, given the haplotype data, one can infer the ancestral pattern, LD structure and

recombination hotspot of a population using the posterior distribution of inheritance

variable c and ancestral state a, as we will elaborate in the sequel. It is also possi-

ble to infer the age of the haplotype alleles and/or the time of recombination events

by exploring the posterior estimates of the mutation and recombination rates under

HMDP.

3 Posterior Inference

In this section, we describe a Gibbs sampling algorithm for posterior inference under

HMDP. Recall that a Gibbs sampler draws samples of each random variable (or subset of

random variables) in the model from the conditional distribution of the variable(s) given

(previously sampled) values of all the remaining variables. The variables of interest in

our model include {Ci,t}, the inheritance variables specifying the origins of SNP alleles

of all loci on each haplotype, and {Ak,t}, the founding alleles at all loci of each ancestral

haplotype. All other variables in the model, e.g., the mutation rate θ, are integrated

out.

We assume that the individual haplotypes {Hie,t} are given unambiguously for the

study population, as is the case in many LD and haplotype-block analyses (Daly et al.

2001; Anderson and Novembre 2003); but it is noteworthy that our model can generalize

straightforwardly to unphased genotype data by incorporating a simple genotype model

as in Xing et al. (2004). Given that haplotypes are unambiguous, we can now treat the

paternal and maternal haplotypes of N individual as 2N iid samples from the HMDP

process and omit the parental index e.

The Gibbs sampler alternates between two sampling stages. First it samples the

inheritance variables {Ci,t}, conditioning on all given individual haplotypes

h = {h1, . . . , h2N}, and the most recently sampled configuration of the ancestor pool

a = {a1, . . . , aK}; then given h and current values of the Ci,t’s, it samples every ancestor

ak.

To improve the mixing rate, we sample the inheritance variables one block at a time.

That is, every time we sample δ consecutive states ct+1, . . . , ct+δ starting at a randomly

chosen locus t+1 along a haplotype. (For simplicity we omit the haplotype index i here

and in the forthcoming expositions when it is clear from context that the statements

or formulas apply to all individual haplotypes). Let c− denote the set of previously

sampled inheritance variables. Let n denote the totality of occupancy records of the

top-level DP (i.e. the “stock urn”) — {n} ∪ {nk : ∀k}, and m denote the totality

of the occupancy records of each lower-level DP (i.e., the urns corresponding to the

recombination choices by each ancestor) — {mk : ∀k} ∪ {mk,k′ : ∀k, k′}. Let lk
denote the sufficient statistics associated with all haplotype instances originating from
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ancestor k. The predictive distribution of a δ-block of inheritance variables can be

written as:

p(ct+1:t+δ |c−,h,a) ∝ p(ct+1:t+δ |ct, ct+δ+1,m,n)p(ht+1:t+δ|act+1,t+1, . . . , act+δ,t+δ)

∝
t+δ
∏

j=t

p(cj+1|cj ,m,n)

t+δ
∏

j=t+1

p(hj |acj ,j , lcj
). (6)

This expression is simply Bayes’ theorem with p(ht+1:t+δ|act+1,t+1, . . . , act+δ,t+δ) playing

the role of the likelihood and p(ct+1:t+δ |c−,h,a) playing the role of the posterior. One
should be careful that the sufficient statistics n, m and l employed here should exclude
the contributions by samples associated with the δ-block to be sampled. Note that
naively, the sampling space of an inheritance block of length δ is |A|δ where |A| represents
the cardinality of the ancestor pool. However, if we assume that the recombination rate
is low and block length is not too big, then the probability of having two or more
recombination events within a δ-block is very small and thus can be ignored. This
approximation reduces the sampling space of the δ-block to O(|A|δ), i.e., |A| possible
recombination targets times δ possible recombination locations. Accordingly, Eq. (6)
reduces to:

p(ct+1:t+δ |c−, h, a) ∝ p(ct′ |ct′−1
= ct, m, n)p(ct+δ+1 |ct+δ = ct′ , m,n)

t+δ
∏

j=t′

p(hj |ac
t′

,j , lct′
), (7)

for some t′ ∈ [t+1, t+δ]. Recall that in an HMDP model for recombination, given that
the total recombination probability between two loci d-units apart is λ ≡ 1− e−dr ≈ dr
(assuming d and r are both very small), the transition probability from state k to state
k′ is:

p(ct′ = k′ |ct′−1
= k, m,n, r, d)

=

{

λπk,k′ + (1 − λ)δ(k, k′) for k′ ∈ {1, ..., K}, i.e., transition to an existing ancestor,
λπk,K+1 for k′ = K + 1, i.e., transition to a new ancestor,

(8)

where πk represents the transition probability vector for ancestor k under HMDP, as

defined in Eq. (3). Note that when a new ancestor aK+1 is instantiated, we need to

immediately instantiate a new DP under F to model the transition probabilities from

this ancestor to all instantiated ancestors (including itself). Since the occupancy record

of this DP, mK+1 := {mK+1}∪ {mK+1,k : k = 1, . . . ,K+ 1}, is not yet defined at the

onset, with probability 1 we turn to the top-level DP when departing from stateK+1 for

the first time. Specifically, we define p(·|ct′ = K+1) according to the occupancy record

of ancestors in the stock urn. For example, at the distal border of the δ-block, since

ct+δ+1 always indexes a previously inherited ancestor (and therefore must be present in

the stock-urn), we have:

p(ct+δ+1 |ct+δ = K + 1,m,n) = λ×
nct+δ+1

n− 1 + α
. (9)

Now we can substitute the relevant terms in Eq. (6) with Eqs. (8) and (9). The

marginal likelihood term in Eq. (6) can be readily computed based on Eq. (4), by

integrating out the mutation rate θ under a Beta prior (and also the ancestor a under
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a uniform prior if ct′ refers to an ancestor to be newly instantiated) (Xing et al. 2004).

Putting everything together, we have the proposal distribution for a block of inheritance

variables. Upon sampling every ct, we update the sufficient statistics n, m and {lk}
as follows. First, before drawing the sample, we erase the contribution of ct to these

sufficient statistics. In particular, if an ancestor gets no occupancy in either the stock or

the HMM urns afterwards, we remove it from our repository. Then, after drawing a new

ct, we increment the relevant counts accordingly. In particular, if ct = K+1 (i.e., a new

ancestor is to be drawn), we update n = n+1, set nK+1 = 1,mct
= mct

+1,mct,K+1 = 1,

and set up a new (empty) HMM urn with color K + 1 (i.e. instantiating mK+1 with

all elements equal to zero).

Now we move on to sample the founders {ak,t}. From the mutation model in Equa-

tion (4), we can derive the following posterior distribution to sample the founder ak
‡‡:

p(ak,t|c,h) ∝

∫

(

∏

i|ci,t=k

p(hi,t|ak,t, θ)
)

Beta(θ|αh, βh)dθ

=
Γ(αh + lk,t)Γ(βh + l

′

k,t)

Γ(αh + βh + lk,t + l
′

k,t)(|B| − 1)l
′

k,t

R(αh, βh), (10)

where lk,t is the number of allelic instances originating from ancestor k at locus t that are

identical to the ancestor, when the ancestor has the pattern ak,t; and l
′

k,t =
∑

i I(ci,t =

k|ak,t) − lk,t represents the complement. The normalization constant of this proposal

distribution can be computed by summing the R.H.S. of Eq. (10) over all possible allele

states of an ancestor at the locus being sampled. If k is not represented previously,

we can just set lk,t and l
′

k,t both to zero. Note that when sampling a new ancestor,

we can only condition on a small segment of an individual haplotype. To instantiate

a complete ancestor, after sampling the alleles in the ancestor corresponding to the

segment according to Eq. (10), we first fill in the rest of the loci with random alleles.

When another segment of an individual haplotype needs a new ancestor, we do not

naively create a new full-length ancestor; rather, we use the empty slots (those with

random alleles) of one of the previously instantiated ancestors, if any, so that the number

of ancestors does not grow unnecessarily.

4 Experiments

We applied the HMDP model to both simulated and real haplotype data. Our analy-

ses focus on the following three popular problems in statistical genetics: 1. Ancestral

Inference: estimating the number of founders in a population and reconstructing the

ancestor haplotypes; 2) LD-block Analysis: inferring the recombination sites in each

individual haplotype and uncover population-level recombination hotspots on the chro-

mosome region; 3) Population Structural Analysis: mapping the genetic origins of all

‡‡In deriving Equation (10), instead of assuming a common mutation rate θk for all loci of ancestor
ak , we endow each locus with its own mutation parameter θk,t, with all parameters admitting the same
prior Beta(αh, βh). This is arguably a more accurate reflection of reality.
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loci of each individual haplotype in a population.

4.1 Analyzing simulated haplotype population

To simulate a population of individual haplotypes, we started with a fixed number, Ks

(unknown to the HMDP model), of randomly generated ancestor haplotypes, on each

of which a set of recombination hotspots were pre-specified. Then we applied a hand-

specified recombination process, which is defined by a Ks-dimensional HMM, to the

ancestor haplotypes to generate Ns individual haplotypes, via sequentially recombining

segments of different ancestors according to the simulated HMM states at each locus,

and mutating certain ancestor SNP alleles according to the emission model. All the

ancestor haplotypes were set to be 100 SNPs long. At the hotspots (pre-specified at

every 10-th loci in the ancestor haplotypes), we defined the recombination rate to be

0.05, otherwise it is 0.00001. We simulated the recombination process for each progeny

haplotype; but to force every progeny haplotype to have at least one recombination, in

the rare cases where no recombination event was simulated for an progeny haplotype,

we sampled one of the hotspots randomly and forced it to recombine with another

ancestor chosen at random at that loci. (Thus our simulated samples were not exactly

distributed according to the generative model we used, but such samples were arguably

more close to the real data.) Overall, 30 datasets each containing 100 individuals (i.e.,

200 haplotypes) with 100 SNPs were generated from Ks = 5 ancestor haplotypes.

As baseline models, we also implemented 3 standard fixed-dimensional HMM, with

K ′ equal to 3, 5 (the true number of ancestors for the simulated) and 10 hidden states,

respectively, which correspond to the number of ancestors available for recombination.

For these baseline HMMs, we follow the same mutation model for emission as that

of the HMDP (i.e., Eq. (4)), and we also subject the mutation rate to a Beta prior.

In these HMMs, the SNP-types of the ancestors at every locus, e.g., at,k, are treated

as the mean parameters of the observed SNPs samples at the corresponding locus; the

inheritance variables {Ci,t} correspond to the latent states following a 1-st order Markov

process; and the transition models governing recombinations amongst the ancestors as

indicated by the values ci,t’s are parameterized by a K ′-dimensional stochastic matrix.

We estimate these parameters via a maximal likelihood principle using the Balm-Welch

algorithm. Note that since K ′ is chosen a priori, we cannot estimate the number of

ancestors using these HMMs.

Following a collapsed Gibbs sampling scheme (Liu 1994), we integrated out the

mutation rate θ, and sample variables {Ak,t} and {Ci,t} iteratively. We monitor con-

vergence based on the occupancy counts of the top factors in the master DP. Typically,

convergence was achieved after around 3000 samples (Figure 2), and the samples ob-

tained after convergence (with proper de-autocorrelation, i.e., by using samples from

every 10 iterations over 5000 ∼ 10000 samples) are used for computing relevant sufficient

statistics. To increase the chance of proper mixing, 10 independent runs of sampling,

with different random seeds, are simultaneously performed. Convergence is monitored

at runtime using an on-line minimal pairwise Gelman-Rubin (GR) statistic (Gelman

1998) of scalar summaries of the model parameters (e.g., average occupancy of top fac-
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Figure 2: Sampling trace of the top three most occupied factors (ancestor chromosomes). The x-axis
represents the sampling iteration, and the y-axis represent the fraction of the occupancy (i.e., be chosen
as recombination target) of each factor over total occupancy.

tors) obtained in each Markov chain. The total running time for posterior inference on a

simulated data set described below was around 3.5 hours using a matlab implementation

on a Dell PowerEdge 1850 workstation with an Intel Xeon 3.6 GHz processor. (This

computation includes a huge disk-writing overhead for recording the running trace. The

actual CPU time for computing is less than 10% of that. We intend to soon release a

C++ implementation which is expected to further reduce computation cost.)

Ancestral Inference Using HMDP, we successfully recovered the correct number (i.e.,

K = 5) of ancestors in 21 out of 30 simulated populations; for the remaining 9 popula-

tions, we inferred 6 ancestors. From samples of ancestor states {ak,t}, we reconstructed

the ancestral haplotypes under the HMDP model. For comparison, we also inferred the

ancestors under the 3 standard HMM using an EM algorithm. We define the ancestor
reconstruction error εa for each ancestor to be the ratio of incorrectly recovered loci

over all the chromosomal sites. The average εa over 30 simulated populations under

4 different models are shown in Figure 3a. In particular, the average reconstruction

errors of HMDP for each of the five ancestors are 0.026, 0.078, 0.116, 0.168, and 0.335,

respectively. There is a good correlation between the reconstruction quality and the

population frequency of each ancestor. Specifically, the average (over all simulated

populations) fraction of SNP loci originated from each ancestor among all loci in the

population is 0.472, 0.258, 0.167, 0.068 and 0.034, respectively. As one would expect,

the higher the population frequency of an ancestor is, the better its reconstruction ac-

curacy. Interestingly, under the fixed-dimensional HMM, even when we use the correct

number of ancestor states, i.e., K = 5, the reconstruction error is still very high (Fig-

ure 3), typically 2.5 times or higher than the error of HMDP. We conjecture that this

is because the non-parametric Bayesian treatment of the transition rates and ancestor

configurations under the HMDP model leads to a desirable adaptive smoothing effect

and also less constraints on the model parameters, which allow them to be more accu-

rately estimated. Whereas under a parametric setting, parameter estimation can easily

be sub-optimal due to lack of appropriate smoothing or prior constraints, or deficiency

of the learning algorithm (e.g., local-optimality of EM).
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Figure 3: Analysis of simulated haplotype populations. (a) A comparison of ancestor reconstruction
errors for the five ancestors (indexed along x-axis). The vertical lines show ±1 standard deviation over
30 populations. (b) Plots of the empirical recombination rates along 100 SNP loci in one of the 30
populations for HMDP and 3 HMMs. The dotted lines show the pre-specified recombination hotspots.
(c) The true (panel 1) and estimated (panel 2 for HMDP, and panel 3-5 for 3 HMMs) population maps
of ancestral compositions in a simulated population. Figures were generated using the software distruct

from Rosenberg et al [2002].
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threshold 0.01 0.03

tolerance window 0 ± 1 ± 2 0 ± 1 ± 2

False positive rate 0.16 0.12 0.067 0.08 0.04 0.03

False negative rate 0 0 0 0.77 0.55 0.55

Table 1: False positive and false negative rates for recombination hotspot detection using medians of
the empirical recombination rates over 30 population samples as shown in Figure 4.

LD-block Analysis From samples of the inheritance variables {ci,t} under HMDP, we

can infer the recombination status of each locus of each haplotype. We define the em-

pirical recombination rates λe at each locus to be the ratio of individuals who had

recombinations at that locus over the total number of haploids in the population. Fig-

ure 3b shows plots of the λe from HMDP and the 3 HMMs in one of the 30 simulated

populations. We can identify the recombination hotspots directly from such a plot based

on an empirical threshold λt (i.e., λt = 0.05). For comparison, we also give the true

recombination hotspots (depicted as dotted vertical lines) chosen in the ancestors for

simulating the recombinant population. The inferred hotspots (i.e., the λe peaks) show

reasonable agreement with the reference in both HMDP and HMMs, but it appears that

in the HMMs the hotspots around position 20 and 60 are less obvious. Figure 4 shows a

boxplot of the empirical recombination rates at the 100 SNP loci estimated from the the

30 different population samples simulated from these ancestors. The gray vertical lines

along the x-axis correspond to the locations of pre-specified recombination hotspots.

A simple thresholding at 0.01 would identify 24 hotspots which include all the 9 true

hotspots and 15 false positive sites. This leads to the false negative rate to be 0 and the

false positive rate to be 0.16. To give credit to the false positive sites which are close to

the true hotspots, we may allow small discrepancy between the true hotspots and the

detected ones. By allowing ±2 sites discrepancy and eliminating possibly redundant

ones in the detection, (e.g., the two detected sites 70 and 71 would be just counted as

1 site of 70), the number of false positive sites decreased to 6, which resulted in the

false positive rate of 0.067 and the false negative rate unchanged. Using a threshold of

0.03, 10 hotspots would be detected, among which two sites agree with the true ones.

After allowing ±2 sites discrepancy 4 true hotspots could be identified with 3 remaining

false positive sites. The false positive and negative rates using these two thresholds are

summarized in Table 1.

Population Structural Analysis Finally, from samples of the inheritance variables {ci,t},
we can also uncover the genetic origins of all loci of each individual haplotype in a

population. For each individual, we define an empirical ancestor composition vector
ηe, which records the fractions of every ancestor in all the ci,t’s of that individuals.

Figure 3c displays a population map constructed from the ηe’s of all individual. In

the population map, each individual is represented by a thin vertical line which is

partitioned into colored segments in proportion to the ancestral fraction recorded by ηe.

Five population maps, corresponding to (1) true ancestor compositions, (2) ancestor

compositions inferred by HMDP, and (3-5) ancestor compositions inferred by HMMs

with 3, 5, 10 states, respectively, are shown in Figure 3c. To assess the accuracy of
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Figure 4: Boxplot of the empirical recombination rates at the 100 SNP loci over 30 different simulated
population samples. The gray vertical lines show the pre-specified recombination hotspots used for
simulating the data.

our estimation, we calculated the distance between the true ancestor compositions and

the estimated ones as the mean squared distance between true and the estimated ηe

over all individuals in a population, and then over all 30 simulated populations. We

found that the distance between the HMDP-derived population map and the true map is

0.190±0.0748, whereas the distance between HMM-map and true map is 0.319±0.0676,

significantly worse than that of HMDP even though the HMM is set to have the true

number of ancestral states (i.e., K = 5). Because of dimensionality incompatibility and

apparent dissimilarity to the true map for other HMMs (i.e., K = 3 and 10), we forgo

the above quantitative comparison for these two cases.

To summarize our analyses on the simulated data, although the fixed dimensional

HMMs are fast and easy to implement, they appear to offer much less accurate results

than that of the HMDP model on ancestor reconstruction, and population-map esti-

mation, even when the number of HMM states is set to the true number of haplotype

ancestors (which is in practice unknown). When the number of HMM states is chosen

incorrectly, the inference results degrade significantly. For hotspot prediction, quali-

tatively we have not seen significant differences in the accuracy, although the HMDP

model appeared to be slightly better. We will look into this issue via a more quantitative

analysis in our later study.



520 Hidden Markov Dirichlet Process

a

.

b

.

Figure 5: Analysis of the Daly data. (a) A plot of λe estimated via HMDP; and the haplotype block
boundaries according to HMDP (black solid line), HMM (Daly et al. 2001) (red dotted line), and
MDL (Anderson and Novembre 2003) (blue dashed line). (b) IT scores for haplotype blocks from each
method. The left panel shows cross-block MI and the right shows the average within-block entropy.
The total number of blocks inferred by each method are given on top of the bars.

Figure 6: The estimated population map of the Daly dataset.

4.2 Analyzing two real haplotype datasets

We applied HMDP to two real haplotype datasets, the single-population Daly data

(Daly et al. 2001), and the two-population (CEPH: Utah residents with northern/western

European ancestry; and YRI: Yoruba in Ibadan and Nigeria) HapMap data (Consortium”

2005; Thorisson et al. 2005). These data consist of trios of genotypes, so most of the

true haplotypes can be directly inferred from the genotype data. Note that for these

real biological data, there is no ground truth regarding the ancestral history, hotspot

location, and population composition, based on which we can validate our results, or

compare to other methods. We present our analysis as a demonstration of the utilities

of our model, which, to our knowledge, are not offered jointly under a unified model

by extant methods in statistical genetics. (As we discuss in the sequel, some extant

methods can perform some of the inference tasks that HMDP does, and in these cases

we show a comparison.)

The single-population Daly dataset We first analyzed the 256 individuals from Daly

data. This data set consists of the haplotypes 103 SNPs across a 616.7-kb region on

chromosome 5q31 of 129 trios from a European-derived population. Earlier studies

indicate that this region contains a genetic risk factor for Crohn disease. Earlier analysis

of this data set using a hidden Markov model revealed the existence of discrete haplotype



Eric P. Xing and Kyung-Ah Sohn 521

blocks, each with low diversity, in this region (Daly et al. 2001).

We compared the recovered recombination hotspots with those reported in

Daly et al. (2001) (which is based on an HMM employing different number of states at

different chromosome segments) and in Anderson and Novembre (2003) (which is based

on a minimal description length (MDL) principle applied to Daly’s HMM). Note that the

HMM used by Daly et al. (2001) and Anderson and Novembre (2003) is different from

the ones we used in our simulation study in section 4.1. Their HMM models a stochastic

process that selects haplotype-segments from pools of “ancestors” without mutation for

a concatenating list of haplotype-block regions constituting the study SNP sequences.

Each region has their own ancestor pool of possibly unequal sizes; thus between each pair

of adjacent blocks, the HMM needs a unique (possibly rectangular) stochastic matrix

for ancestor transitions. The block boundaries are fixed under this HMM (and the only

stochasticity lies in the choice of local “ancestors” for each block), and determining

the block boundaries is treated as a model-selection problem based on a maximal-

likehood (Daly et al. 2001) or MDL (Anderson and Novembre 2003) principle. Strictly

speaking, Daly’s HMM model itself offers little means to infer recombination events and

the ancestor association map, because the “ancestors” thereof are defined independently

for each block rather than as whole founding chromosomes; different blocks have different

number of ancestors; and the determination of these “local ancestors” employs an initial

heuristic scan for regions of low haplotype diversity, whose formal connection to the

HMM model is not clear.

Figure 5a shows the plot of empirical recombination rates estimated under HMDP,

side-by-side with the reported recombination hotspots. There is no ground truth to

judge which one is correct; hence we computed information-theoretic (IT) scores based

on the estimated within-block haplotype frequencies and the between-block transition

probabilities under each model for a comparison. Figure 5b shows a comparison of these

scores for haplotype blocks obtained from HMDP and the other two sources. The left

panel of Figure 5b shows the total pairwise mutual information between adjacent haplo-

type blocks segmented by the recombination hotspots uncovered by the three methods.

The right panel shows the average entropies of haplotypes within each block. The num-

ber above each bar denotes the total number of blocks. The pairwise mutual information

score of the HMDP block structure is similar to that of the Daly structure, but smaller

than that of MDL. Similar tendencies are observed for average entropies. Note that

the Daly and the MDL methods allow the number of haplotype founders to vary across

blocks to get the most compact local ancestor constructions. Thus their reported scores

are an underestimate of the true global score because certain segments of an ancestor

haplotype that are not or rarely inherited are not counted in the score. Thus the low IT

scores achieved by HMDP suggest that HMDP can effectively avoid inferring spurious

global and local ancestor patterns. This is confirmed by the population map shown

in Figure 6, which shows that HMDP recovered 6 ancestors and among them the 3

dominant ancestors account for 98% of all the modern haplotypes in the population.

We did not compare our results with that of Daly et al. (2001) and

Anderson and Novembre (2003) exhaustively, e.g., on ancestor reconstruction and popu-

lation map estimation, because their methods cannot perform these inferential tasks. In-
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deed, to our knowledge there is no single model that does all the inferential tasks HMDP

is capable of. Thus we can only compare HMDP with specialized models on certain

tasks, as described above. Since implementations of the methods in Daly et al. (2001)

and Anderson and Novembre (2003) are not available, we can only compare with their

results reported on the original papers, which are obtained on the Daly data. But we

cannot apply their methods to our simulated data or the HapMap data for more in-

formative comparisons. The total running time of our algorithm on the Daly data set

(with the 3000 burn-in steps, 3000 samples, and 1 per 5 sample deceleration sampling

interval) is about 14hr, which includes the disk-writing overhead for trace-recording.

The two-population HapMap dataset The HapMap data was generated by the Interna-

tional HapMap Project that attempts to identify and catalog genetic similarities and dif-

ferences in human beings of different ethnic origins (Consortium” 2005; Thorisson et al.

2005). The current release of the whole HapMap data contains over 1 million SNPs,

from 269 individuals belonging to four populations. In this study, we only focus on

a small subset of SNPs common to all populations; we use data from two of the four

populations, YRI and CEPH. Specifically, we have 30 trios of YRI and 30 trios of

CEPH (i.e., 180 individuals in total), of which the 120 unrelated phase-known individu-

als corresponding to the parents in the trios were used in the experiment (the children’s

haplotypes are inherited from the parents and are redundant in the population). We

concern ourselves with 254 SNPs, which are located in the region of ENm010.7p15.2
spanning 497.5 kilo-basepair (kb). The computation time for analyzing this data set is

comparable to that of the Daly data set.

We applied HMDP to the union of the populations, with a random individual order.

Delightfully, the two-population structure is clearly retrieved from the population map

constructed from the population composition vectors ηe for every individual. As seen

in Figure 7a, the left half of the map clearly represents the CEPH population and the

right half the YRI population. We found that the two dominant haplotypes covered

over 85% of the CEPH population (and the overall breakup among all four ancestors

is 0.5618, 0.3036, 0.0827, 0.0518). On the other hand, the frequencies of each ancestor

in YRI population are 0.2141, 0.1784, 0.3209, 0.1622, 0.1215 and 0.0029, showing that

the YRI population is much more diverse than CEPH. This might explain an earlier

observation that genetic inference on the YRI population appeared to be more difficult

than for CEPH (Marchini et al. 2006). The recombination maps of the two different

populations also show noticeably different spatial patterns of recombination hotspots

(Figure 7b), which may reflect different recombination histories of the founders of the

two populations.

Note that the population partition result reported in Figure 7b is trivial because it

is inferred purely based on SNPs haplotypes without knowledge of ethnic labels of the

samples. In most genetic samples, ethnic labels are either not available or ambiguous

(e.g., the Daly data has no subpopulation details). By discovering the right popula-

tion separation, one can perform hotspot estimation for each population and capture

population-specific LD (as in Figure 7a); whereas in a mixed population, one may not

be able to correctly estimate such patterns.
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Figure 7: Result on the two-population (CEPH and YRI) HapMap data. (a) The estimated population
map of the whole dateset with two populations. (b) The estimated recombination rates along the
chromosomal position in the two populations.

5 Conclusion

We have proposed a new Bayesian approach for joint modeling of genetic recombinations

among possibly infinite founding alleles and coalescence-with-mutation events in the

resulting genealogies. By incorporating a hierarchical DP prior to the stochastic matrix

underlying an HMM, which facilitates a well-defined transition process between infinitely

many ancestors, our proposed method can efficiently infer a number of important genetic

variables, such as recombination hotspot, mutation rates, haplotype origin, and ancestor

patterns, jointly underly a unified statistical framework.

Empirically, on both simulated and real data, our approach compares favorably to

its parametric counterpart—a fixed-dimensional HMM (even when the number of its

hidden states, i.e., the ancestors, is correctly specified) and a few other specialized

methods, on ancestral inference, haplotype-block uncovering and population structural

analysis. We are interested in further investigating the behavior of an alternative scheme

based on reverse-jump MCMC over Bayesian HMMs with different latent states in

comparison with HMDP; we also intend to apply our methods to genome-scale LD and

demographic analysis using the full HapMap data. While our current model employs

only phased haplotype data, it is straightforward to generalize it to unphased genotype

data as provided by the HapMap project. HMDP can also be easily adapted to many

engineering and information retrieval contexts such as object and theme tracking in

open space.
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Re-considering the variance parameterization in

multiple precision models

Yi He∗, James S. Hodges†, and Bradley P. Carlin‡

Abstract. Recent developments in Bayesian computing allow accurate estimation
of integrals, making advanced Bayesian analysis feasible. However, some problems
remain difficult, such as estimating posterior distributions for variance parameters.
For models with three or more variances, this paper proposes a simplex parame-
terization for the variance structure, which has appealing properties and eases the
related burden of specifying a reference prior. This parameterization can be prof-
itably used in several multiple-precision models, including crossed random-effect
models, many linear mixed models, smoothed ANOVA, and the conditionally au-
toregressive (CAR) model with two classes of neighbor relations, often useful for
spatial data. The simplex parameterization has at least two attractive features.
First, it typically leads to simple MCMC algorithms with good mixing proper-
ties regardless of the parameterization used to specify the model’s reference prior.
Thus, a Bayesian analysis can take computational advantage of the simplex param-
eterization even if its prior was specified using another parameterization. Second,
the simplex parameterization suggests a natural reference prior that is proper,
invariant under multiplication of the data by a constant, and which appears to
reduce the posterior correlation of smoothing parameters with the error precision.
We use simulations to compare the simplex parameterization, with its reference
prior, to other parameterizations with their reference priors, according to bias
and mean-squared error of point estimates and coverage of posterior 95% credible
intervals. The results suggest advantages for the simplex approach, particularly
when the error precision is small. We offer results in the context of two real data
sets from the fields of periodontics and prosthodontics.

1 Introduction

Recent developments in Bayesian computing have made it possible to analyze many

previously intractable models, but some problems remain difficult, such as estimat-

ing posterior distributions for variance parameters. This paper considers the class of

multiple-precision linear models, having linear mean structure, normal errors, and at

least three precision parameters. This class includes the conditionally autoregressive

(CAR) model with two types of neighbor relations (2NRCAR; Besag & Higdon 1999,

Reich et al 2007), crossed random-effects models (Box & Tiao 1992, Chapter 5), some

dynamic linear models (West & Harrison 1999, Chapter 4), smoothed analysis of vari-

ance (Gelman 2005a, Hodges et al 2007), some spatio-temporal models with 1 or 2 spa-
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tial neighbor relations and 1 temporal relation (2NRCAR or 3NRCAR), several linear

mixed models (Zhao et al 2006), e.g., additive mixed models and bivariate smoothing,

and, finally, many problem-specific models (e.g., Gelman & Huang 2007). To make this

discussion concrete, we use the 2NRCAR model applied to periodontal data, as follows.

In periodontics, attachment loss is used to assess cumulative damage to a patient’s

periodontium and to monitor disease progression (Darby & Walsh 1995). Attachment

loss is measured at six sites on each tooth; Figure 1 shows one patient’s data. Each

measurement site is indicated by a small circle whose shade of grey indicates measured

attachment loss, with darker shade indicating larger (worse) attachment loss. Excluding

the four “wisdom teeth” (third molars), a full mouth of 28 teeth gives 168 measurements.

If the two jaws are treated as isolated from each other, this spatial structure has at least

2 “islands”, i.e., disconnected groups of measurement sites.

Attachment loss measurements are spatially correlated, but the correlation may not

simply be a function of distance. Instead of using point-data (geostatistical) methods, it

is practical and intuitive to model attachment loss as measurements on a lattice, which

suggests conditionally autoregressive (CAR) models. However, the 168 measurement

sites have a complex topography, so more than one smoothing parameter may be needed

for adequate fidelity. We consider CAR models with two classes of neighbor relations.

Pairs of neighboring sites come in four types (Figure 2): direct neighbor (Type a), same-

side neighbors crossing the gap between teeth (Type b), opposite-side neighbors on the

same tooth (Type c), and opposite-side neighbors crossing the gap between teeth (Type

d). These four types of neighbor pairs can be grouped into two classes in various ways

(Reich et al 2007). This paper considers the classes shown in Figure 2, with solid and

dashed lines for class 1 and 2 pairs respectively (Grid A in Reich et al., 2007).

Figure 1 summarizes one patient’s data, to which we fit the 2NRCAR model, as

follows. Let y = (y1, · · · , yn)T denote the attachment loss measurements, where the

subscript indexes measurement sites, and specify this 2NRCAR model:

y|θ, τ0 ∼ N(θ, τ0In)

θ|τ1, τ2 ∝ c(τ1, τ2)
1/2exp

(

−
1

2
θ′{τ1Q1 + τ2Q2}θ

)

, (1)

where τ0, τ1, and τ2 are precisions and Q1 and Q2 specify the spatial neighbor relations

smoothed by τ1 and τ2 respectively. Qk, k = 1, 2, is n × n with off-diagonal entries

qk,ij = −1 if sites i and j are class-k neighbors and 0 otherwise, and diagonal entries

qk,ii the number of site i’s class-k neighbors.

Models are often reparameterized to improve computing or interpretation, e.g., a

density with long, narrow contours can be transformed to have more circular contours.

This paper proposes an alternative parameterization for variance-structure parameters,

the simplex parameterization (Besag & Higdon 1999), and a slice sampler for MCMC

draws in this parameterization. The simplex parameterization and its associated ref-

erence prior are then compared to other parameterizations and their reference priors.

Often, the posterior for variance-structure parameters is sensitive to the prior because

the data give little information about them, e.g., because of the spatial structure
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(Reich et al 2007). Thus, reference priors for variance-structure parameters are an active

research area (e.g., Browne & Draper 2006; Gelman 2005b).

Section 2 illustrates some problems that can arise in the posterior distributions

of variance-structure parameters, motivating the simplex parameterization. Section 3

develops the new parameterization and a slice sampler for it. Section 4 uses effec-

tive sample size to compare the computing performance of MCMC algorithms aris-

ing from the simplex parameterizations and three competing parameterizations: pre-

cisions with gamma priors; standard deviations with flat priors (Gelman 2005b); and

log precision ratios (defined below; Reich et al 2007) with flat priors. Our MCMC

routine on the simplex parameterization generally outperforms MCMC routines on

other parameterizations, even for reference priors specified on those other parame-

terizations. Section 5 uses simulation studies to explore statistical properties of the

reference priors associated with each parameterization. Section 6 summarizes our find-

ings. The computer code (in R) used for the simplex parameterization is available at

http://www.biostat.umn.edu/~brad/software.html.

2 Problems with commonly-used parameterizations

For Bayesian analysis of multiple-precision models, several parameterizations have been

proposed for the variance structure, including precisions τk, standard deviations σk =

τ
−1/2
k (Gelman 2004), precision ratios rk = τk/τ0, k = 1, 2, . . . , and log precision ratios

zk = log rk (Reich et al 2004). These parameterizations are often associated with

specific reference priors. For the precision parameterization, the standard “vague” prior

is τk ∼ Gamma(ε, ε) for ε = 0.01 or 0.001. For the standard deviation parameterization,

Gelman (2005b) proposed σk ∼ Unif(0, L) for a suitable upper bound L. The precision

ratios, rk , are positive and somewhat like precisions, which suggests rk ∼ Gamma(ε, ε)
as a “vague” prior. Finally, the log precision ratios take values anywhere in the real

line, which suggests zk ∼ Unif(−L,L) for a suitable L.

These parameterizations are all subject to problems that we illustrate using the

2NRCAR model (1) and Figure 1’s data. Figure 3 suggests how the problems arise.

Specifically, for each panel in Figure 3, we re-parameterized model (1) in terms of that

panel’s parameterization, applied the reference prior described above, derived the exact

marginal posterior distribution of the smoothing parameters, and plotted its contours.

For the precision ratios (r1, r2) and log precision ratios (z1, z2), Figure 3’s panels c and

d respectively show contours of the log marginal posterior after integrating all other

parameters out of the posterior. Panels a and b show the log conditional posterior for

the precisions (τ1, τ2) and standard deviations (σ1, σ2) after integrating θ out of the

posterior and fixing τ0 = 1 and σ0 = 1, respectively. (These values of τ0 and σ0 are

typical of those estimated in calibration studies.)

The contours for (τ1, τ2), (σ1, σ2), and (r1, r2) (panels a, b, and c, respectively) are

L-shaped with two long arms and modes pressed tightly against one or both coordinate

axes. While each plot assumes a particular reference prior, the same qualitative prob-

lems are present for other reference priors. The contours of (z1, z2)’s posterior are long

http://www.biostat.umn.edu/~brad/software.html
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and narrow here (panel d) but are distinctly L-shaped for other periodontal datasets

(Reich et al 2007). Bimodal posteriors have been observed in the (r1, r2) and (z1, z2)
parameterizations (Reich et al 2007), and indeed bimodality occurs readily even in the

simplest hierarchical models (Liu & Hodges 2003).

Posterior distributions like these create predictable difficulties. First, standard

MCMC approaches tend to give chains with high lagged autocorrelations and small

effective sample sizes. For example, for the parameterizations in Figure 3 a, b, c, the

autocorrelations at lag 10 are 0.2 to 0.4. Second, the parameters can be poorly identi-

fied, that is, either they are highly correlated a posteriori, or the posterior has a large

flat mode indicating poor ability to distinguish between possible parameter values. Re-

ich et al (2007) showed that for a variety of 2NRCAR spatial structures, posteriors for

the precision parameters are either very flat or have pronounced ridges, inducing bad

MCMC convergence and mixing (Gelfand et al 1995).

Different problems affect other aspects of Bayesian analysis. The posterior corre-

lation between the error precision and the smoothing precisions is often high because

the error precision in effect specifies the data’s scale, and the data generally give much

more information about this precision than about higher-level precisions. The variance,

precision and standard deviation parameterizations are scale-dependent, so for example

if the measurement unit is changed from centimeters to millimeters, these parameters

are multiplied by 100, 0.01, and 10 respectively. This affects interpretation of hyperpa-

rameters and makes it difficult to specify a reference prior. The precision ratio and log

precision ratio parameters rk and zk are scale-invariant, i.e., invariant if the data are

multiplied by a constant, but as mentioned are prone to bimodality and highly auto-

correlated MCMC draws. Sections 4.2 and 4.3 illustrate the latter point in detail. The

simplex parameterization (Besag & Higdon 1999), which we now introduce, appears to

avoid or mitigate these difficulties.

3 The simplex parameterization and associated methods

3.1 Definition of the simplex parameterization

For a multiple-precision model with precisions (τ0, τ1, · · · , τm), define the total relative

precision

λ =

m
∑

k=1

rk =
1

τ0

m
∑

k=1

τk,

where rk = τk/τ0. Define the allocation of total relative precision as β = (β1, · · · , βm),

where

βk =
rk
λ

=
rk

∑m

j=1 rj
=

τk
∑m

j=1 τj
;

∑m

k=1 βk = 1, and β = (β1, · · · , βm) takes values in the m-dimensional simplex. The 2,

3, and 4-dimensional simplices are a line segment, equilateral triangle, and tetrahedron,

respectively.
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This parameterization has two a priori attractive features. First, it is scale-invariant,

that is, it does not change when the data are multiplied by a constant. Also, the simplex

parameter β lies in a bounded space, so a natural reference prior, the flat prior, is proper

and exchangeable. The rest of this paper uses a flat prior on β and gamma priors on λ
and τ0.

3.2 Computing strategy for the simplex parameterization

For a multiple-precision model like (1), the vector of unknown parameters is (θ, τ0, λ,β),

where θ is the mean-structure parameters, τ0 the error precision, λ the total relative

precision, and β the allocation of total relative precision. To avoid MCMC sampling

variation, we analytically integrate θ and τ0 out of the joint posterior and run a slice

sampler on the marginal posterior of (λ,β). Posterior summaries for θ and τ0 are then

obtained by Rao-Blackwellizing.

Suppose the precision parameters in the 2NRCAR model (1) have prior p(τ0, τ1, τ2).
Then the joint posterior of all the unknowns is

p(θ, τ0, τ1, τ2|y) ∝ p(τ0, τ1, τ2)p(y|θ, τ0)p(θ|τ1, τ2)

∝ p(τ0, τ1, τ2)τ
n/2
0 exp

(

−
τ0
2

∑

(yi − θi)
2
)

×

n−G
∏

j=1

(τ1d1j + τ2d2j)
1/2 exp

(

−
1

2
θ
′(τ1Q1 + τ2Q2)θ

)

, (2)

where G is the number of islands in the spatial map and dkj is defined as follows.

Simultaneously diagonalize the two positive semi-definite matrices Qk as B′DkB, where

B is nonsingular (Newcomb 1961), and let Dk have jth diagonal element dkj . It is easy

to see θ|y, τ0, r1, r2 ∼ N((Qr + In)−1X ′y, τ0(Qr + In)), where Qr = r1Q1 + r2Q2 and

rk = τk/τ0. After integrating out θ,

p(τ0, r1, r2|y) ∝ p(τ0, r1, r2)τ
n−G

2

0 |Qr + In|
− 1

2

n−G
∏

j=1

(r1d1j + r2d2j)
1/2

× exp
(

−
τ0
2

[y′y − y′(Qr + In)−1y]
)

.

Then if τ0’s prior is Gamma(a0, b0), with mean a0

b0
, integrate out τ0 to give

p(r1, r2|y) ∝ p(r1, r2)

n−G
∏

j=1

(r1d1j + r2d2j)
1/2|Qr + In|

− 1

2R−b,

where R = b0 + 1
2

[

y′y − y′(Qr + In)−1y
]

, and b = a0 + n−G
2 . Now change to the

simplex parameterization λ = r1 + r2 and β = r1/λ, giving

p(λ, β|y) ∝ p(λ, β)λ
n−G

2 |I + λQβ |
− 1

2

n−G
∏

j=1

(β(d1j − d2j) + d2j)
1

2R−b,
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where R = b0 + 1
2 (y′y − y′(I + λQβ)−1y), Qβ = βQ1 + (1− β)Q2, and the Jacobian is

implicit in the change of variables in the prior, from p(r1, r2) to p(λ, β). B is orthogonal

if and only if Q1Q2 is symmetric, in which case

p(λ, β|y) ∝ p(λ, β)

n−G
∏

j=1

(

λγj

1 + λγj

)
1

2



b0 +
1

2





∑

j

λγj

1 + λγj

y∗2
j









−b

, (3)

where y∗ = By and γj = β(d1j − d2j) + d2j , so (3) depends on λ and γj only through
λγj

1+λγj
.

For this problem, we propose a slice sampler with one auxiliary variable. A slice

sampler can be more efficient than an ordinary Metropolis-Hastings algorithm, e.g., Neal

(1997, 2003), Tierney & Mira (1999). Generally, the slice sampler can be described as

follows (Damien et al 1999). Suppose an MCMC has stationary distribution π(λ,β) ∝
p(λ,β)l(λ,β). Introduce an auxiliary random variable U with a conditional uniform

distribution U |β, λ ∼ Unif(0, l(λ,β)). Then (λ,β, U) has joint distribution

f(λ,β, u) ∝ p(λ,β)I{u<l(λ,β)}(λ,β, u).

The slice sampler is then a special case of the Gibbs sampler:

1. Initialize β(0), λ(0);

2. Generate U |(λ,β) from a uniform distribution:

U t|(λt−1,βt−1) ∝ Unif(0, l(λt−1,βt−1)).

3. Generate β|(u, λ) from p(λ,β) restricted to l(λ,β) > u:
βt|(λt−1, U t) ∝ p(λ,β)I(l(λt−1,β) > U t).

4. Generate λ|(u,β) from p(λ, β) restricted to l(λ,β) > u:
λt|(βt, U t) ∝ p(λ,β)I(l(λ,βt) > U t).

Repeat steps 2-4; after convergence, (βt, λt) are samples from the stationary distribution

π(λ,β).

A natural p(λ,β) is p(λ,β) = p1(λ)p2(β), where p1 is a gamma density and p2

is uniform on the simplex, a special case of the Dirichlet distribution. With this

choice, candidate βj can be generated as Xj/
∑m

j=1Xj , where X1, · · · , Xm are indepen-

dent exponential variates. An informative prior for β can be Dirichlet(α1, · · · , αm),

from which samples can also be generated using draws from gamma distributions. For

the 2NRCAR model, l(λ,β) = λ
n−G

2

∏n−G

j=1 (βd1j + (1 − β)d2j)
1

2 |I + λQβ |
− 1

2R−b and

p(λ, β) = 1
Γ(aλ)λ

aλ−1e−bλλI(β ∈ [0, 1]).

The posterior distributions of θ and τ0 can be estimated by Rao-Blackwellizing

(Casella & Robert 1996). For posterior samples (λt,βt), t = 1, 2, · · · ,M , θ’s posterior

density can be estimated as

p(θ|y) =

∫

p(θ|λ,β,y)p(λ,β|y)dλdβ ≈
1

M

M
∑

t=1

p(θ|λt,βt,y), (4)
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where p(θ|λt,βt,y) is θ’s conditional posterior given (λt,βt). For the normal-error

model (1), θ|λ,β,y is multivariate-t with center (P t)−1y, scale (P t)−1Rt/b and 2b
degrees of freedom, where Rt = b0 + 1

2

[

y′y − y′(P t)−1y
]

, and P t = λtB′(βtD1 + (1 −
βt)D2)B + In. Thus θ’s posterior mean and variance are estimated by

E(θ|y) = E(E(θ|λ,β,y)) ≈
1

M

M
∑

t=1

E(θ|λt,βt,y) =
1

M

M
∑

t=1

µt

θ = µ̄θ

V ar(θ|y) = E(V ar(θ|y, λ,β)) + V ar(E(θ|y, λ,β))

≈
1

M

[

M
∑

t=1

Σt

θ +

M
∑

t=1

(µt

θ − µ̄θ)(µt

θ − µ̄θ)′

]

, (5)

where µt

θ
and Σt

θ
are the posterior mean and variance of p(θ|λt,βt,y), respectively.

Similarly, τ0|λ
t, βt,y is gamma distributed with shape b and rate Rt, so posterior sum-

maries for τ0 can be obtained analogously.

4 MCMC algorithm performance in the different param-
eterizations

4.1 Effective sample size (ESS)

Effective sample size (ESS) is commonly used to assess MCMC mixing (e.g., Carlin &

Louis 2000, Chapter 5; Sargent et al 2000; Chen et al 2000; Ridgeway & Madigan 2003).

The ESS of a sampled quantity is defined (Kass et al 1998) as

ESS =
M

1 + 2
∑∞

l=1 ρl

, (6)

where M is the number of MCMC samples for that quantity and ρl is the estimated

lag l autocorrelation of the samples. ESS can be interpreted as the size of an indepen-

dent, identically distributed sample giving information equivalent to the autocorrelated

MCMC sample. In practice ρl is estimated with error, and past a certain l the ρ̂l are

dominated by noise (Gilks et al 1996; Chapter 3). To avoid summing noise, Geyer (1992)

proposed the initial convex sequence estimator, which requires a sequence of empirical

Γm estimates that are positive, monotone, and convex, where Γm is the sum of two

lagged autocovariances γ2m and γ2m+1. The natural estimator of the lagged autoco-

variance is the empirical autocovariance γ̂l = 1
M

∑M−l

t=1 (Xt−X̄)(Xt+l−X̄), where {Xt}
is the sequence of MCMC samples. Priestley (1981, p. 323) suggests using this “biased”

estimate with divisor M rather than the “unbiased” estimate with divisor M − l. De-

fine m∗ as the largest integer such that Γ̂m is a positive, monotonely decreasing, and

convex sequence in m. Then the ESS in (6) sums only estimated autocorrelations ρ̂l for

l ≤ 2m∗.
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4.2 Periodontal data analyzed using 2NRCAR

This section compares MCMC algorithms specified in each of four parameterizations,

for the 2NRCAR model applied to Figure 1’s data. For each parameterization, the data

were analyzed three times, using three different prior distributions, each a reference prior

for one of the parameterizations. This is an unusual simulation study design; the point is

that one may prefer inferences using a reference prior specified on one parameterization,

while it is advantageous to specify the MCMC algorithm on a different parameterization.

The four parameterizations are simplex, log precision ratios (z1, z2), precisions

(τ0, τ1, τ2), and standard deviations (σ0, σ1, σ2). The three reference priors are as follows:

for the simplex parameterization, we put a Gamma(0.01, 0.01) prior on λ, and on β, a

uniform distribution on the unit interval; for the parameterization with three precisions,

we gave each precision a Gamma(0.01, 0.01) prior; and for the parameterization with

three standard deviations, we gave each standard deviation a uniform prior on the

interval (0, 10). For each parameterization, for each prior, 10000 MCMC draws were

made with 5000 discarded for burn-in. Table 1 describes the MCMC algorithm for

each parameterization. Except for the simplex parameterization, the algorithms were

Metropolis-Hastings with normal candidate draws for the working parameters (Table

1), centered on the current draw. For each working parameter, the sample standard

deviation of the 5000 burn-in draws was used as the standard deviation of the candidate

draws in the subsequent 5000 retained iterations. A dynamic search procedure (see the

Appendix) was used to accelerate the slice sampler.

Table 2 shows effective sample size (ESS) for the four parameterizations and three

priors. The simplex parameterization has the largest ESS for two priors, and roughly

the same ESS as (z1, z2) for the flat prior on (σ0, σ1, σ2). The simplex parameterization’s

sample autocorrelations decrease quickly as lag increases and generally vanish by lag 10,

while the alternatives have much larger autocorrelations at all lags (data not shown).

As currently programmed, the simplex parameterization’s slice sampler usually runs

more slowly than the other algorithms, so it has a smaller advantage in ESS per second

of run time (Table 3), and is roughly tied with the log precision ratio parameterization

(z1, z2).

Section 2 suggested that the simplex parameters (λ, β) might have smaller posterior

correlations with the error precision τ0, compared to other parameterizations’ smoothing

parameters. This was true for the present dataset, with the prior distribution having

little effect. For each parameterization, we report the posterior correlation only for the

parameter having the largest absolute correlation. In the simplex parameterization, β
had the largest absolute posterior correlation with τ0, about 0.33 for all three priors.

The analogous results for the other three parameterizations were: (z1, z2), 0.53 for z1;
precisions, 0.53 for τ1; and standard deviations, 0.76 for σ1. Contrary to our expectation,

(z1, z2) — which, like the simplex parameterization, is invariant when the data are

multiplied by a constant — gave the same maximum absolute posterior correlations as

did the precision parameterization.

Figure 4 shows a contour plot of the log marginal posterior arising from the simplex
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parameterization and its reference prior. While this is not especially like a bivariate

normal density, it does seem rather less irregular than the analogous contour plots for

the other parameterizations (Figure 3).

4.3 Smoothed ANOVA (SANOVA) model

The smoothed ANOVA model used here was introduced by Sargent & Hodges (1997)

and fully developed in Hodges et al (2007; see also Smith 1973, Gelman 2005a). Suppose

the experimental design has one error term, c design cells, and n replications per cell.

Parameterize each effect so the design matrix has orthogonal columns. Group the L
columns for main effects, including the intercept, into a matrix A1, and the N columns

for interactions into a matrix A2, and scale A1 and A2 so A′
1A1 = cnIL and A′

2A2 =

cnIN ; A′
1A2 = 0. The SANOVA model is

y = A1Θ1 +A2Θ2 + ε, (7)

where y is the cn-vector of observed outcomes, ε ∼ N(0,Γ1), the grand mean and main

effects in Θ1 have an improper flat prior, the interactions in Θ2 have a N(0,Γ2) prior,

ε and [Θ1|Θ2] are independent a priori, and the two covariance matrices Γ1 and Γ2 are

specified as Γ1 = 1
τ0

Icn and Γ−1
2 = diag(φ1, · · · , φN ). For a set of distinct smoothing

precisions (τ1, · · · , τs), s ≤ N , define a deterministic assignment function j(k) that

specifies groups of φk within which φk = τj(k), and let nj be the number of φk mapping

to τj . The joint posterior after integrating out Θ is

f(τ0, r|Y ) ∝ π(τ0, r)τ
cn−L

2

0 exp(−
1

2
τ0W (r))

s
∏

j=1

(

rj
rj + cn

)nj/2

, (8)

where rj =
τj

τ0

and W (r) = y′y − 1
cn

y′A1A
′
1y − y′A2diag((cn+ rj(k))

−1)A′
2y.

This model has s smoothing precisions τ1, · · · , τs, so the simplex parameter β is s-
dimensional. If τ0 has a gamma prior G(a0, b0), with mean a0

b0
, then τ0’s full conditional

posterior is also gamma. After integrating out τ0, (λ,β) has marginal posterior

f(λ,β|Y ) ∝ π(λ,β)

s
∏

j=1

[

1 +
cn

λβj

]−nj/2

R−b, (9)

where R = b0+ 1
2y′y− 1

2cn
y′A1A

′
1y−

1
2y′A2diag((cn+λβj(k))

−1)A′
2y and b = a0+ cn−L

2 .

Hodges & Sargent (2001, Section 6) applied smoothed ANOVA to a 23 factorial

experiment testing a material’s tensile strength (Lai & Hodges 1999). The three design

factors were the type of mold, presence of pigment, and type of cure, with n = 6

replications per cell. The dataset is in Hodges & Sargent (2001). We used this dataset

to compare MCMC routines for different parameterizations and priors, as in Section

4.2’s comparison for the 2NRCAR model, and using the same priors as in Section 4.2.

For all three priors, the MCMC on the simplex parameterization has by far the largest

ESS (Table 4) and the smallest autocorrelations (data not shown). The MCMC on the

simplex parameterization also has the largest ESS/sec for two of the three priors (Table

5). Overall, the smoothed ANOVA results are consistent with the 2NRCAR results.
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5 Statistical performance of each parameterization’s ref-
erence prior

5.1 2NRCAR model

To reduce computing time, we simulated periodontal measurements on upper and lower

jaws with 5 teeth each, for 60 total measurements in one “patient”. The two neighbor

classes are as in Figure 2. This simulation experiment’s design considered three factors:

(1) true error precision τ0; (2) the true degree of smoothness in the two classes of neigh-

bor pairs, (τ1, τ2); and (3) the 4 parameterizations, each with its associated reference

prior (Table 6). Table 7 gives the specific true values of (τ0, τ1, τ2).

For each design cell, the 1000 simulated datasets were drawn as follows. By the

spectral decomposition, τ1Q1 + τ2Q2 = Γ′ΛΓ, where Γ is an orthogonal matrix and Λ

is diagonal. Then θ∗ = Γθ has density

p(θ∗) ∝ exp(−
1

2
θ∗′Λθ∗) = exp(−

1

2
θ∗′

n−GΛn−Gθ∗
n−G)

where the subscript n − G indicates the first n − G rows and/or columns. Thus, the

first n−G elements of θ∗ were drawn from independent normal distributions, for G = 2

islands in the “mouth”. The last 2 elements of θ∗ have flat priors under p(θ∗) and

were drawn from a uniform on (−10, 10). Then the sample of true θ were obtained as

θ = Γ′θ∗.

For the simplex and log precision ratio (Z) parameterizations, MCMC samples were

drawn from the marginal posterior after integrating out θ and τ0, and the posterior

mean and interval coverage were estimated by Rao-Blackwellizing. For the precision

and SD parameterizations, MCMC samples were drawn from the marginal posterior

after integrating out only θ. For the simplex parameterization, we used the slice sampler

(Section 3.2) with starting values βk = 1
s
, where s is the number of smoothing precisions,

and for the other parameterizations we used adaptive Metropolis algorithms as described

in Section 4. Trace plots were checked for a sample of artificial datasets and in all cases

indicated sampler convergence.

The parameterization/reference prior combinations (henceforth, “methods”) were

compared according to their results on the standard deviation scale, i.e., σk = 1/
√
τk,

the same scale as the data, using bias and MSE of posterior means as point estimates,

and coverage of equal-tailed 95% credible intervals. (The Appendix gives equations for

Rao-Blackwellizing the Z and simplex parameters in the standard deviation scale.) To

remove effects that obscure comparisons, we report bias as a percent of the true value

and we scale MSE according to the true error variance.

Figure 5 displays scaled bias, scaled MSE, and 95% interval coverage for the four

methods. All methods have small biases for the error standard deviation σ0 except the

Z method in case 3, where the posterior mean overestimates σ0 by about 30%. By

contrast, the Z method consistently underestimates σ1, while the other methods have

small biases. For σ2, all methods have larger bias and the SD method performs worst,
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overestimating substantially in all cases. For all methods and cases, the MSEs for σ0

and σ1 are small. The Z method has the largest MSE for σ1. For σ2, all methods’

MSEs vary a lot, but the simplex method consistently gives the smallest MSE and the

SD method the largest. Finally, all methods give coverage close to 95% for σ0 and σ1

except for Z, which gives low coverage. For σ2, the precision and simplex methods

give coverage 95% or higher for all cases, while the Z and SD methods had quite low

coverage for some cases.

5.2 SANOVA model

This simulation experiment used artificial data from a 23 design with n = 6 replications

per cell, as in Hodges et al’s (2007, section 3) simulation study. The three design factors

were: (1) the true error precision τ0 (note that increasing n and τ0 have the same effect);

(2) the number of truly present interactions (1 or 3); and (3) the four parameterizations

with associated reference priors, described in Table 6. Two further cases were simulated

to examine the effect of multiplying the data by a constant. Table 7 gives the design

values for the 8 cases considered.

We again generated 1000 simulated datasets for each “case”. The design matrix for

the 23 mean structure was orthogonal, so without loss of generality the true grand mean

and main effects θ1, θ2, θ3, θ4 were set to zero. If an interaction term was present, its

θk was set to 1, otherwise to zero. The interaction terms were a priori exchangeable

and each was smoothed by its own smoothing precision, so as in Hodges et al. (2007,

Section 3), we need only consider how many interactions are truly present, not which

ones.

The four methods were compared according to their performance for three groups

of parameters: the four interaction θk, k = 5, · · · , 8; the error precision τ0; and the

eight cell means cj , j = 1, · · · , 8. For each group of parameters, the methods were

compared according to bias and MSE of posterior means as point estimates, and coverage

probability of the 95% equal-tail credible interval, with one exception: cell-mean bias

is a simple linear function of bias of the interaction θk and is thus omitted. By design,

all methods give identical bias and MSE for the grand mean and main effects, so they

are not considered further. We follow Hodges et al (2007) in calling truly present

interactions “target interactions” and truly absent interactions “null interactions”. By

the simulation design’s exchangeability, all target interactions have the same true bias,

MSE, and coverage for a given method, as do all null interactions, so we present average

bias and MSE for the targets and for the nulls. For the interactions θk and cell means

cj , we scaled bias and MSE as percents of the true error standard deviation 1√
τ0

and the

true error variance 1
τ0

, respectively. Similarly, for the estimates of the error precision

τ0, we report bias and square root of MSE as percents of τ0.

Figure 6 displays the bias and MSE of posterior mean estimates of the interaction θk,

and coverage of their 95% posterior intervals. For the target interactions, the number

of truly present interactions has little effect on bias or MSE. Compared to the simplex

method, the SD method has smaller bias (Figure 6a). In general, the SD method
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performs better than the precision method, which in turn performs better than the

Z method. For the null interactions, all methods are essentially unbiased and the Z
method has the smallest MSE (Figure 6b). As for 95% posterior intervals (Figure 6c,d),

for the target interactions, the simplex and SD methods give coverage much closer to the

nominal 95% than the Z and precision methods, which are too low for cases with small

error precision. For the null interactions, the simplex and SD methods have about 95%

coverage while coverage for the other two methods is too high. Broadly speaking, for

the interaction θk, the simplex method gives good performance that improves relative

to the other methods as the error precision decreases.

Figure 7 shows scaled bias and MSE for the error precision τ0 (panels a,b), and

MSE and coverage probability for the cell means (panels c,d). For τ0, the SD method

outperforms the others in both bias and MSE (Figure 7a,b). The 95% CI coverage is

close to the nominal 95% for all methods and cases (data not shown). For the cell

means, Figure 7c,d show the scaled MSE (as a percent of 1
τ0

) and 95% interval coverage

averaged over the 8 cells. The simplex and SD methods perform similarly. When 1

target interaction is present, these methods have higher bias than the other two, but

when 3 target interactions are present, they have smaller bias. Coverage of 95% credible

intervals is close to the nominal 95% for all methods, except for the Z method for small

error precisions when 3 target interactions are present.

5.3 Crossed random effect model

The crossed random effect model (10) has error precision τ0 and two smoothing preci-

sions τ1 and τ2 for rows and columns respectively in the two-way layout, as follows:

yijk = µ+ αi + γj + εijk i = 1, · · · , I ; j = 1, · · · , J ; k = 1, · · · ,K, (10)

where αi ∼ N(0, τ1), γj ∼ N(0, τ2), and εijk ∼ N(0, τ0) for unknown τ0, τ1, τ2. This

simulation experiment’s design had three factors: (1) the true error precision τ0; (2) the

true τ1 and τ2, considering equal and unequal smoothness in rows and columns; and (3)

the four parameterizations with their reference priors, described in Table 6.

Each of the 1000 artificial datasets per simulation design cell had 5 row levels (αi, i =

1, · · · , 5), 5 column levels (γj , j = 1, · · · , 5), and 5 replicates (εijk , k = 1, · · · , 5).

Without loss of generality, the grand mean µ was set to zero. We generated artificial

datasets as follows: Generate row effects α1, · · · , α5, column effects γ1, · · · , γ5, then

in each of the 25 cells, add 5 random normal errors to give 125 total observations.

The algorithms and outcome measures in this simulation study are the same as for the

2NRCAR simulation study (Section 5.1).

Figure 8 shows bias and MSE of posterior means as point estimates and 95% credible

interval coverage, for the three standard deviations σ0, σ1, and σ2. For the error standard

deviation σ0, all methods are essentially unbiased and have small MSE. However, bias

is complex for the two smoothing standard deviations σ1 and σ2. The simplex method

has much smaller bias than the SD method for most cases (Figure 8a), but otherwise

it is difficult to generalize. For MSE (Figure 8b), the simplex method is lower than
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the alternatives except for cases 3 and 6 for σ2. For coverage of 95% intervals (Figure

8c), all methods are consistently close to the nominal 95% for σ0. For σ1 and σ2,

the simplex, precision, and SD methods perform similarly and fairly well, while the Z
method performs worse, particularly for σ2.

6 Discussion

We have developed a parameterization for multiple-precision models, first mentioned

for 2NRCAR by Besag & Higdon (1999). Based on Sections 4 & 5, the simplex param-

eterization appears to have two advantages. First, it gives simple MCMC algorithms

with good mixing properties for various reference priors. Thus Bayesian analyses may

benefit from this parameterization even for priors specified in another parameteriza-

tion. Second, β has a proper natural reference prior that is invariant when the data

are multiplied by a constant; λ has the same invariance property. Section 5 showed

that compared to other proposed reference priors, this prior yields posterior means with

generally good bias and mean squared error, and 95% credible intervals with close to

nominal coverage, for the range of cases considered. Its worst performance was for

smoothed ANOVA in Section 5.2. If one were designing a software package solely to

do smoothed ANOVA, these results suggest that the simplex parameterization — with

the reference prior used here — might not be the best choice for a prior distribution.

However, if one were seeking an all- purpose off-the-shelf prior, these results are not so

discouraging: while the simplex parameterization was not the best prior for smoothed

ANOVA, it did not lose badly to the other priors, while each of the other priors did

perform poorly for at least one example.

The obvious question is: can we improve the statistical performance of the simplex

parameterization? The first consideration in this vein is the reference prior. The allo-

cation parameter β has a natural reference prior, but the total relative precision λ does

not. Sections 4 & 5 used the conventional “vague” Gamma(0.01,0.01) prior, which, with

50th and 90th percentiles 4×20−29 and 0.0015 respectively, is in fact quite informative.

Other priors for λ may improve statistical or computing performance, though we do not

yet have a firm basis for proposing an alternative. One simple alternative would be a

log-normal prior. In preliminary results from a simulation study of smoothed ANOVA,

giving λ a lognormal prior with a large variance seems to improve coverage of poste-

rior 95% intervals compared to the gamma prior considered here, but otherwise the

operating characteristics are similar.

It seems pertinent that λ is unitless or, put another way, that λ has the same scale

for all problems. Thus, for the smoothed ANOVA and crossed random-effects models,

it should be possible to determine universally-applicable large and small values of λ,
and perhaps use that information to specify, say, a uniform prior for λ. The 2NRCAR

example is more complicated in a manner that is beyond the present paper’s scope, but

it might be possible to extend this general idea.

Some literature on priors for hierarchical models (e.g., Daniels 1999; Gustafson et.

al. 2007) suggests that a prior may be judged by the relative weight it gives to informa-
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tion arising from the data (governed by the error precision τ0) and information arising

from the model (governed by the smoothing parameters τk). One way to implement

this idea is to consider, in our notation, τk/
∑s

j=0 τj for k = 0, . . . , s. The simplex

parameterization lends itself readily to this suggestion. The error precision’s fraction of

total precision is easily shown to be 1/(1+λ), which is readily computed in the context

of MCMC. As for the smoothing precisions τk, k = 1, . . . , s, their aggregate fraction of

total precision is λ/(1+λ), and τk’s fraction of total precision is βkλ/(1+λ), also easily

computed using MCMC. A flat prior on β treats τk, k = 1, . . . , s, exchangeably; priors

on λ might be compared according to how they weigh τ0 against individual τk or the

ensemble of τks.

The simplex parameterization extends straightforwardly in two ways. First, it ex-

tends immediately if any of the models presented here is extended by adding one or

more random effects parameterized by variances or precisions. For example, the 2NR-

CAR model (1) can be extended to a spatio-temporal model for multiple dental visits

by adding a third class of neighbor pairs representing two consecutive observations at a

given measurement site. This adds a third smoothing precision, which can be handled in

the obvious manner. A second extension is for models with many smoothing precisions

that naturally fall into, say, two groups. In such a model, a separate simplex parameter

pair (λ, β) can be used for each of the groups of smoothing precisions.

Although the simplex parameterization is applicable to a broad class of models (Sec-

tion 1), extension to models with covariance matrices would be desirable. The approach

of Barnard et al (2000), in which the covariance matrix is decomposed into standard

deviations and correlations, is one possible extension, where the simplex parameteri-

zation would be applied to the vector of standard deviations, after standardizing the

regressors to put them all on the same scale.

Appendix

6.1 Rao-Blackwellizing on the standard deviation scale

In Section 5, the four parameterizations with their associated priors were compared ac-

cording to point-estimate and interval-coverage performance on the standard deviation

scale, with Rao-Blackwellizing done as follows. Suppose τ0|λ, β,y ∼ Gamma(b, R), then

p(τ0|y) ≈ 1
M

∑M
t=1Gamma(τ0|b

t, Rt). Changing variables to σ0 = τ
−1/2
0 and including
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the Jacobian, p(σ0|y) ≈ 1
M

∑M
t=1 2σ−3

0 Gamma(σ−2
0 |bt, Rt), so

E(σ0|y) ≈
1

M

M
∑

t=1

∫

2σ−2
0 Gamma(σ−2

0 |bt, Rt)dσ0

=
1

M

M
∑

t=1

∫

τ
− 1

2

0 Gamma(τ0|b
t, Rt)dτ0

=
1

M

M
∑

t=1

E(τ
− 1

2

0 |bt, Rt) =
1

M

M
∑

t=1

Γ(bt − 1
2 )

Γ(bt)
(Rt)

1

2

Similarly, noting that σ1 = r
− 1

2

1 τ
− 1

2

0 and σ2 = r
− 1

2

2 τ
− 1

2

0 ,

E(σ1|λ, β,y) = r
− 1

2

1 E(τ
− 1

2

0 |λ, β,y) = r
− 1

2

1

Γ(b− 1
2 )

Γ(b)
(R)

1

2

E(σ1|y) ≈
1

M

M
∑

t=1

(rt
1)

− 1

2

Γ(bt − 1
2 )

Γ(bt)
(Rt)

1

2

E(σ2|y) ≈
1

M

M
∑

t=1

(rt
2)

− 1

2

Γ(bt − 1
2 )

Γ(bt)
(Rt)

1

2 (11)

6.2 Dynamic search for the slice sampler

In the simplex parameterization’s slice sampler (Section 3.2), to accept one sample,

generally a large number of samples need to be drawn from p(λ, β). The slice sampler

can be accelerated by improving this acceptance rate. The following dynamic search is

one approach for a low-dimensional parameter space; we show it for a scalar β.

1. Choose grid points for λ, β by a preliminary analysis, say, λ1 < · · · < λΩ and

β1 < · · · < βΠ.

2. Calculate lij = l(λi, βj |y) at these grid points (λi, βj).

3. At the tth MCMC cycle, given λt and U t, β is conditionally uniform on {l(λt, β) >
U t}. Thus, β can be generated from a uniform distribution on (aβ , bβ) ⊃ {l(λt, β) >
U t}, chosen as follows.

(a) From the pre-selected grid for λ, find the two λi that bracket λt. Call them

Lλ and Uλ.

(b) Find the bounds of β, (a∗β , b
∗
β) among (Lλ, β

j) and (Uλ, β
j) such that

l(Lλ, β|y) > U t and l(Uλ, β|y) > U t.

(c) Extend both ends of the interval (a∗β , b
∗
β) until l(λt, a∗β |y) ≤ U t and

l(λ0, b∗β|y) ≤ U t, giving (aβ , bβ).
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4. Draw β from Unif(aβ, bβ), until l(λt, β|y) > U t.

The pre-processing steps 1 and 2 are done before the MCMC draws. The interval

(aβ , bβ) is in general much narrower than the original (0, 1), so the acceptance rate is

improved.

We present this accelerator as part of a proof of principle and do not claim it can be

used generally. Obviously the efficiency of our slice sampler can and should be improved.
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Simplex (z1, z2)
Slice sampler adaptive

Algorithm with 1 uniform Metropolis w/

auxiliary variable Normal candidate

Working par. (λ,β) (z1, z2)
Initial values (4, 0.2) (1, 1)

Initial tuning — 0.5

constants

(τ0, τ1, τ2) (σ0, σ1, σ2)

adaptive adaptive

Algorithm Metropolis w/ Metropolis w/

Normal candidate Normal candidate

Working par. (log τ0, log τ1, log τ2) (logσ0, logσ1, logσ2)

Initial values (1, 2, 1) (1, 2, 1)

Initial tuning — 0.2

constants

Table 1: Description of algorithms for the 2NRCAR model

Parameterization used in MCMC algorithm

Prior (λ,β) (r1, r2) (τ1, τ2, τ0) (σ1, σ2, σ0)

λ ∼ Gamma(0.01, 0.01) λ: 573 log(r1): 577 log(τ1): 275 log(σ1): 379

β ∼ uniform on simplex β: 1009 log(r2): 531 log(τ2): 591 log(σ2): 672

log(τ0): 301 log(σ0): 359

Gamma(0.01, 0.01) for λ: 1037 log(r1): 640 log(τ1): 261 log(σ1): 261

τ0, τ1 and τ2 β: 1035 log(r2): 713 log(τ2): 697 log(σ2): 253

log(τ0): 248 log(σ0): 418

flat for SDs λ: 1389 log(r1): 648 log(τ1): 175 log(σ1): 265

σ0, σ1, σ2 β: 860 log(r2): 651 log(τ2): 406 log(σ2): 156

log(τ0): 215 log(σ0): 234

Table 2: Effective sample size (ESS) comparison of various parameterizations for the CAR model with
two classes of neighbor relations.
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Parameterization used in MCMC algorithm

Prior (λ,β) (r1, r2) (τ0, τ1, τ2) (σ0, σ1, σ2)

λ ∼ Gamma(0.01, 0.01) λ: 0.43 log(r1): 0.94 log(τ1): 0.17 log(σ1): 0.24

β ∼ uniform on simplex β: 0.75 log(r2): 0.87 log(τ2): 0.36 log(σ2): 0.43

log(τ0): 0.18 log(σ0): 0.23

Gamma(0.01, 0.01) for λ: 0.59 log(r1): 1.02 log(τ1): 0.17 log(σ1): 0.16

τ0, τ1 and τ2 β: 0.59 log(r2): 1.14 log(τ2): 0.44 log(σ2): 0.26

log(τ0): 0.16 log(σ0): 0.16

flat for SDs λ: 0.78 log(r1): 1.04 log(τ1): 0.11 log(σ1): 0.29

σ0, σ1, σ2 β: 0.48 log(r2): 1.05 log(τ2): 0.26 log(σ2): 0.17

log(τ0): 0.14 log(σ0): 0.26

Table 3: Effective sample size per second (ESS/sec) comparison of various parameterizations for the
CAR model with two classes of neighbor relations.

Parameterization used in MCMC algorithm

Prior (λ,β) r τ σ

λ ∼ Gamma(0.01, 0.01) λ: 1615 log(r1): 336 log(τ0): 280 log(σ0): 313

β ∼ uniform on simplex β: 3965 log(r2): 231 log(τ1): 244 log(σ1): 194

4617 log(r3): 294 log(τ2): 227 log(σ2): 169

4971 log(r4): 331 log(τ3): 219 log(σ3): 343

log(τ4): 230 log(σ4): 329

Gamma(0.01, 0.01) for λ: 2498 log(r1): 210 log(τ0): 436 log(σ0): 287

τ0, τ1, τ2, τ3, τ4 β: 4110 log(r2): 365 log(τ1): 336 log(σ1): 172

5000 log(r3): 244 log(τ2): 198 log(σ2): 240

5000 log(r4): 370 log(τ3): 321 log(σ3): 204

log(τ4): 149 log(σ4): 137

flat for SDs λ: 4614 log(r1): 638 log(τ0): 484 log(σ0): 453

σ0, σ1, σ2, σ3, σ4 β: 4657 log(r2): 752 log(τ1): 506 log(σ1): 591

4576 log(r3): 626 log(τ2): 503 log(σ2): 470

5000 log(r4): 655 log(τ3): 629 log(σ3): 516

log(τ4): 500 log(σ4): 199

Table 4: Comparison of effective sample size (ESS) in SANOVA model
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Parameterization used in MCMC algorithm

Prior (λ,β) r τ σ

λ ∼ Gamma(0.01, 0.01) λ: 152.5 log(r1): 60.1 log(τ0): 46.0 log(σ0): 50.7

β ∼ uniform on simplex β: 374.4 log(r2): 41.3 log(τ1): 40.1 log(σ1): 31.4

436.0 log(r3): 52.6 log(τ2): 37.3 log(σ2): 27.4

469.4 log(r4): 59.2 log(τ3): 36.0 log(σ3): 55.6

log(τ4): 37.8 log(σ4): 53.3

Gamma(0.01, 0.01) for λ: 215.3 log(r1): 36.6 log(τ0): 75.2 log(σ0): 50.8

τ0, τ1, τ2, τ3, τ4 β: 354.3 log(r2): 63.6 log(τ1): 57.9 log(σ1): 30.4

431.0 log(r3): 42.5 log(τ2): 34.1 log(σ2): 42.5

431.0 log(r4): 64.5 log(τ3): 55.3 log(σ3): 36.1

log(τ4): 25.7 log(σ4): 24.2

flat for SDs λ: 36.5 log(r1): 80.1 log(τ0): 61.2 log(σ0): 57.9

σ0, σ1, σ2, σ3, σ4 β: 36.8 log(r2): 94.4 log(τ1): 64.0 log(σ1): 75.5

36.2 log(r3): 78.5 log(τ2): 63.6 log(σ2): 60.0

39.5 log(r4): 82.2 log(τ3): 79.5 log(σ3): 65.9

log(τ4): 63.2 log(σ4): 25.4

Table 5: Comparison of effective sample size per second (ESS/sec) in SANOVA model

Table 6: Parameterization and associated reference priors

Method Parameter Prior Integrate out τ0?
Simplex βk = τk

∑

τj
; λ ∼ Gamma(0.01, 0.01), Yes

λ =
∑

τj

τ0

β ∼ Unif on the simplex

Precision τ0, τ1, · · · , τs τk ∼ Gamma(0.01, 0.01), k = 0, · · · , s No

SD σ0 = 1√
τ0

, σk ∼ Unif(0, 100), k = 0, · · · , s No

σk = 1√
τk

except SANOVA σk ∼ Unif(0, 10)

Z zk = log( τk

τ0

) zk ∼ Unif(−15, 15), k = 1, · · · , s Yes

Table 7: Design values in the simulation studies

2NRCAR SANOVA Crossed RE

Case τ0 τ1 τ2 τ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 τ0 τ1 τ2
1 1 1 1 1 0 0 0 0 1 0 0 0 1

4 1 1

2 1 1 1
4

1
4 0 0 0 0 1 0 0 0 1

4
1
16

1
16

3 1 1
4

1
4

1
16 0 0 0 0 1 0 0 0 1

4
1
16 1

4 1 1
4 1 1 0 0 0 0 1 1 1 0 1

16 1 1

5 1
4 1 1 1

4 0 0 0 0 1 1 1 0 1
16

1
16

1
16

6 1
4 1 1

4
1
16 0 0 0 0 1 1 1 0 1

16
1
16 1

7 1
4

1
4

1
4

1
100 0 0 0 0 10 0 0 0 1

100
1
25

1
25

8 1
4

1
4 1 1 0 0 0 0 10 0 0 0 – – –
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Figure 1: Attachment loss measurements for one patient. The maxilla is the upper jaw, the mandible
is the lower jaw, the gray boxes are teeth, the small number counting from the center of each jaw is
the tooth number. Small circles indicate the six measurement sites per tooth.
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Figure 2: Neighbor types in periodontal measurements. Letters a-d specify neighbor types. Solid and
dotted lines indicate the two classes of neighbors considered in this paper.
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Figure 3: 2NRCAR model: Logarithm posterior contour plots with contours at 1 log intervals for
four parameterizations with their own reference priors: τ0, τ1, τ2 ∼ Gamma(0.01, 0.01), σ0, σ1, σ2 ∼

Unif(0, L), r1, r2 ∼ Gamma(0.01, 0.01), z1, z2 ∼ Unif(−15, 15). The contours for (τ0, τ1, τ2) and
(σ0, σ1, σ2) are drawn for the slice τ0 = 1 and σ0 = 1, respectively.
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Figure 4: 2NRCAR model: Log posterior contour plot with contours at 1 log intervals, for the simplex
parameterization with its reference prior.
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Figure 5: 2NRCAR simulation: Standard deviation bias (as a percent of true standard deviation) and
MSE (divided by the true error variance 1

τ0

). (a) scaled bias for σ0, σ1, and σ2; (b) scaled MSE for

σ0, σ1, and σ2; (c) 95% interval coverage for σ0, σ1, and σ2.
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curves are MSE and the lower curves are biases. 95% interval coverage probability for θk for truly
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Cluster Allocation Design Networks

Ana Maria Madrigal∗

Abstract. When planning and designing a policy intervention and evaluation,
it is important to differentiate between (future) policy interventions we want to
evaluate, FT , affecting “the world”, and experimental allocations, AT , affecting
“our picture of the world”. The policy maker usually has to define a strategy that
involves policy assignment and recording mechanisms that will affect the (condi-
tional independence) structure of the data available. Causal inference is sensitive
to the specification of these mechanisms. Influence diagrams have been used for
causal reasoning within a Bayesian decision-theoretic framework that introduces
interventions as decision nodes (Dawid 2002). Design Networks expand this frame-
work by including experimental design decision nodes (Madrigal and Smith 2004).
They provide semantics to discuss how a design decision strategy (such as a clus-
ter randomised study) might assist the identification of intervention causal effects.
The Design Network framework is extended to Cluster Allocation. It is used to
assess identifiability when the experimental unit’s level is different from the analy-
sis unit’s level, and to discuss the evaluation of cluster- and individual-level future
policies. Cases of ‘pure’ cluster (all individuals in a cluster receiving the same
intervention) and ‘non-pure’ cluster (only a subset receiving the policy) are dis-
cussed in terms of causal effects. The representation and analysis of a simplified
version of a Mexican social policy programme to alleviate poverty (Progresa) is
performed as an illustration of the use of Bayesian hierarchical models to make
causal inferences relating to household and community level interventions.

Keywords: Cluster allocation, Influence diagrams, Causal inference, Identification
of policy effects, DAGs

1 Introduction

Different data sets provide different types of information. Different queries might require

different information to obtain answers. When using data for learning, it is important

to consider the conditions and circumstances under which the data were collected. The

distributions that can be learnt (or not) might vary among apparently similar data sets.

This is an important consideration to the analyst before learning model parameters.

Consider the case in which we have two data sets that contain records of whether or

not children in a population take food nutrition supplements (FS) and whether or not

they have gained weight. The first data set comes from a census sample, and the second

comes from an experiment where half the children were given food supplements and

half of them were not. Suppose we are interested in learning the prevalence of children

taking supplements in the population, p(FS). It is clear that learning from the second

data set that p(FS) = 0.5 only reflects an experimental choice and not a population

prevalence, as would be the case if we were to use the first data set (e.g. showing how

∗University of Warwick, UK mailto:am.madrigal@warwickgrad.net

c© 2007 International Society for Bayesian Analysis ba0007
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parents ‘naturally’ choose to give FS to children). The collecting strategy defines the

structure of the data set. A perfect design of experiments will give a more organised

layout of the data. An observational study might be more ‘disorganised’, as data is

allowed to arise naturally. In this paper, we focus our attention on a particular type of

query related to policy intervention evaluations and discuss which data set structures

do or do not let us answer causal queries and extract appropriate causal effects (e.g. the

causal effect of FS on children’s weight). Discussions about the identifiability of causal

effects have been usually phrased as ‘Is the causal effect of T on Y identifiable?’ (see

Pearl 2000; Lauritzen 2001; Dawid 2002). In this paper, the role of data structures is

made explicit by phrasing the identifiability question as ‘Is the causal effect of T on Y
identifiable from the data available?’.

Intervention has to do with ‘perturbing’ the dynamics of a system. If we say that

a system consists of components which influence each other and that its dynamics

describe the way these components interact with each other in an equilibrium state,

some examples of systems might be consumption-expenditure patterns, road traffic in

a town or the human body. The system at present has some pre-intervention dynamics

attached to it. When we intervene a system, by introducing a promotion-advertisement

campaign, by adding a red light at a corner, or by giving medicine, we are introducing

a new component into a system that will imply new post-intervention dynamics. The

intervention might have both qualitative effects, modifying the structure of the system

(maybe by ‘blocking’ the interaction between two of its components), and quantitative

effects, modifying the value of the components. One of the main interests consists in

describing if and how the intervention affects the system. Evaluation of the intervention

effects is required and it is usually measured in terms of a response variable, such as

sales-awareness, number of accidents, or health condition.

Discussions of causal reasoning have been made usually assuming that the graph rep-

resenting the system implicitly includes the underlying (experimental) mechanism that

is generating the data (see Pearl 2000). Then, in this fixed ‘natural’ or ‘idle’ system,

whether the future policy intervention FT effect is identifiable and can be obtained is

evaluated. Randomised allocation of treatments to units is a well known practice within

medical clinical trials but, because of ethical, social and financial issues, complete ran-

domisation within an experiment designed to evaluate a social policy will usually be

unfeasible. Knowing the details of the policy assignment mechanism and a well-planned

recording of the data become very relevant issues in order to obtain all the information

needed to measure the right ‘causal’ effects (see Rubin 1978). Influence Diagrams (IDs)

are used to represent the system dynamics and interventions graphically; a review of

the main features of the framework used is made in Section 2. Our interpretation of

causal effects for interventions is Bayesian decision-theoretic, where an intervention on

a system is regarded as a decision. Dawid (2002)’s extended influence diagrams are

augmented by including ‘experimental design’ decisions nodes within the set of inter-

vention strategies to create what we call a Design Network (DN), to provide semantics

to discuss how a ‘design’ strategy (such as clustering) might assist the systematic iden-

tification of intervention causal effects, to give a taxonomy for design decisions, and to

show how these decisions might alter the graphical (conditional independence) struc-
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ture used to evaluate the causal effect of policy FT . It is maintained that experimental

design decisions are intrinsic to any causal analysis of policy intervention strategies.

Design Networks were introduced in Madrigal and Smith (2004) for random allocation,

and their main characteristics are presented in Section 3. Design Networks for cluster

allocation are discussed in Section 4; the propositions can be derived from the discussion

in Appendix A.

This research was motivated by a Mexican Social Policy Programme (Progresa)

whose objective is to alleviate poverty. It consists of a three-stage mechanism to target

its eligible population, based on community and household characteristics. The policy

involves a collection of interventions at different levels (community, household and indi-

vidual). All households are recipients of the community-level interventions (e.g. health

infrastructure and services). Actions at household and individual level (e.g. extra mon-

etary support and nutritional supplements) affect only ‘poor’ (eligible) households and

vary according to household/individual demographics, so not all units in the community

(cluster) are intervened equally. This motivates the discussion about the data structure

arising from a cluster allocation, the distinction of ‘overall’ and ‘total’ effects, the dif-

ferences in the inference of cluster- and individual-level interventions, and the nested

structures in design and analysis. The design of the study included a randomised clus-

ter allocation for treatment and control communities. To illustrate some features of

causal analysis in a cluster allocation setting, this paper presents in Section 5, a hierar-

chical model analysis based on Spiegelhalter (2001). Formulation is performed for the

evaluation of cluster- and individual-level interventions based on Progresa data.

2 Intervention Graphical Framework and Causal Infer-

ence

Influence diagrams (IDs) have been used for over 20 years to form the framework for both

describing (see Howard and Matheson 1981; Oliver and Smith 1990) and also devising

efficient algorithms to calculate the effects of decisions (see Jensen 2001) in complex

systems which implicitly embody strong conditional independence assertions. However,

it is only recently that they have been used to explain causal relationships (Dawid 2000,

2002), and been shown to be much more versatile than Causal Bayesian Networks (Pearl

1993, 1995).

The simplest form of external intervention is when a single variable X is forced to

take on some fixed value x′. This is known as an ‘atomic intervention’ and, following

Pearl (2000), it is denoted by do(X = x′). The atomic intervention replaces the original

mechanism: p(x | pa(x)) by p(x | pa(x); do(X = x′)) = 1 if X = x′ where pa(x)
denotes the parent nodes of X . This conditioning by intervention formula has appeared

in various forms (see Pearl 1993; Spirtes et al. 2000; Robins 1986). It cannot be asserted

in general that the effect of setting the value of X to x′ is the same as the effect of

observing X = x′. Only in limited circumstances (as when the node for X has no

parents in the graph) will conditioning by intervention and conditioning by observation

coincide. Graphically, interventions are represented by deleting the arrows that enter
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the intervened node in the original graph, making explicit the fact that when the value

is set externally, the parents’ values are not relevant post-intervention. Pearl’s do(·)
corresponds to an external intervention. By recognising interventions as decisions, the

Bayesian decision-theoretical framework embeds Pearl’s doing operation and provides a

stronger framework for causal inference. The strong links between decision theory and

Pearl’s causal model have been discussed by Heckerman and Shachter (2003). Those

who are familiar with Bayesian decision theory will find comfort, as I have, in these

connections.

Dawid (2002) points out that, traditionally, in IDs conditional distributions are

given for random nodes, but no description is supplied of the functions or distributions

involved at the decision nodes, which are left arbitrarily at the choice of the decision

maker. If we choose to provide some descriptions of the decision rules, then any given

specification of the functions or distributions at decision nodes constitutes a decision

strategy, π. Decisions determine what we may term the partial distribution, p, of

random nodes given decision nodes which is not in general the same as the associated

conditional distributions (see Cowell et al. 1999, section 2.3). If E and D denote the set

of random events and the set of decisions, respectively, then the full joint specification

pπ, consisting of decision strategy π and partial distribution p for all e ∈ E and d ∈ D is

given by pπ (e, d) . The graphical representation of pπ can be made by using extended IDs

that incorporate non-random parameter nodes (θe = p(e | pa0 (e)) and strategy nodes
(

πd = π(d | pa0 (d))
)

representing the mechanisms that generate random and decision

nodes respectively. Here, pa0 (.) denotes the set of domain parents of X (i.e. parents

in the original non-extended version of the ID). In what he calls augmented DAGs,

Dawid incorporates intervention nodes F where FX = x corresponds to ‘setting’ the

value of node X to x (in Pearl’s language: FX = do(X = x)), and he introduces a

new value ∅ such that when FX = ∅, X is left to have its ‘natural’ distribution, termed

by Pearl the ‘idle’ system. Figure 1 shows, for a simple case, the usual representation

of IDs as well as its extended and augmented versions, for the set (T,B, Y ) where

T = (T1, T2, .., Ts) represents a set of policy variables (treatments), B = (B1, B2, .., Br)

is a set of background variables (potential confounders) and Y is a response variable.
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T Y
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θ�

θ �

( b )  E x t e n d e d  I D( a )  I n f l u e n c e  D i a g r a m ( c )  A u g m e n t e d  D A G

Figure 1: Extended influence diagrams and augmented DAGs

Causal reasoning is related to prediction in the face of intervention. It relates to the

idea that a variable is a ‘cause’ if setting this variable to a specific value (by intervention)

changes the distribution of the response. Causal enquiries about the ‘effect of T on Y ’ are

seen as relating to (comparisons between) the distributions of Y given FT = do(T = t′)
for various settings of t′. The intervention node F of the augmented DAG is used as

an ‘auxiliary’ variable to discuss the identifiability of these effects under certain DAG
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structures. In particular, there is interest in establishing if the causal effect of FT on Y
can be identified and estimated correctly from the available data. The structure of the

data available is defined by the set of conditional independencies that are derived from

the graph.

Definition (Conditional independence) If X,Y, Z are random variables with a joint
distribution P(·), we say that X is conditionally independent of Y given Z under P , if for
any possible pair of values (y, z) for (Y, Z) such that p(x, y) > 0, P (x | y, z) = P (x | z).
This can be written following Dawid (1979)’s notation as (X⊥⊥Y | Z)P .

The discussion is conducted in terms of the relevance of learning the strategy that

gave the value t′ to T , namely whether it arose from the original experimental setting

π(t | b) (FT = ∅) or whether it was set externally (FT = do(T = t′)). Conditional

independencies of the form (Y⊥⊥FT | T, ·)dE
are used for this. Different examples of

identifiable and unidentifiable situations are discussed by Pearl (2000), Lauritzen (2001)

and Dawid (2002), each with their particular framework and notation. Imagine the set

(T,B, Y ) is available to us in the data set ∆. Figures 2(a) and 2(b) show the cases where

B is said to be irrelevant for Y and where B is said to be white noise of Y (with respect to

T ) respectively. The case where B is an intermediate variable between T and Y (i.e. T
affectsB andB affects Y ) is shown in Figure 2(c). In these three structures the definition

of absolute non-confounding given by Y⊥⊥FT | T holds (see Dawid 2002, §7). This

asserts that the distribution of Y given T will be the same, whether T arose ‘naturally’

or T is set by intervention. Thus the causal effect can be estimated directly from the

data available, ∆, using p(y | t′, FT = do(T = t′)) = p(y | t′, FT = ∅) = p(y | t′). The

definition of non-confounding (Y⊥⊥FT | T ) does not hold for the structure shown in

Figure 2(d). In this latter system, B is said to act as a confounder, as it affects both

treatment T and response Y . So, in order to obtain the causal effect, we are required

to know (or observe) the marginal distribution p (B). If this is the case, then the causal

effect p(y | FT = t′) can be obtained using the ‘back-door formula’ (Pearl 1993) which

‘adjusts’ for B such that p(y | FT = t′) =
∑

b p(y | t′, b)p (b) .
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Figure 2: Possible basic structures

Social policies will usually be more complex systems including all irrelevant (BT ) and

white-noise (BY ) background variables, possible confounders (BC) and an intermediate

process, as shown in Figure 2(e). Most of the examples in social policy interventions FT

involve (a collection of) atomic or contingent interventions. Therefore, the intermediate

process might involve both intermediate variables affected by T and possible actions G
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that will be triggered when the policy T is done. The ‘overall’ causal effect will include

all direct and indirect effects of do(T = t′) on Y .

3 Introducing experimental nodes

3.1 Policy versus Experimental Decisions

When planning and designing a policy intervention and evaluation, the policy maker

will have to define a strategy that involves ‘policy intervention’ actions (DT = {d′}) and

‘experimental design’ actions (DE = {d∗}). The former includes decisions related to how

the policy is implemented and what (which doses and to whom) will be provided. The

latter is related to the evaluation of the policy and includes experimental design decisions

that define the (chosen or controlled) conditions under which the study is carried out

and the data (∆) recorded. If D = {d′1, .., d
′
DT

, d∗1, .., d
∗
DE

} are the components of a

particular decision strategy πD, the interest lies in describing πD (D | E). In this sense,

we say that policy intervention actions (DT ) are concerned with intervening ‘the world’,

while experimental design actions (DE) relate to intervening the statistician’s ‘view of

the world’.

It is important to differentiate between ‘choosing a policy’ and ‘choosing a design’, as

the goals of these interventions are different. The ‘success’ of a policy intervention DT

is measured in terms of its efficacy to provoke ‘better’ values on the response variable

Y through its overall effects reflected by p(Y | FT = do(T = t′);DE). The efficacy

of an experimental intervention, DE, is measured in terms of its ability to isolate the

policy effect as much as possible. Making an explicit representation of both types of

interventions will assist decisions of the experimenter and considerations of the analyst,
when the aim is to evaluate the causal effect of policy FT .

When we, as data-collectors, approach the world, the data we collect depend on our

way of approaching it. The data we observe in the database (available data, ∆dE
) will

reflect the experimental design decisions DE = dE made (or deliberately ‘not made’) at

the time of its collection through p(data | DE). Two extreme cases of designed studies

might be, on the one hand, the ‘perfect’ experiment where all factors are controlled,

balanced and randomised and, on the other hand, the complete observational study

with all the relations that happen in ‘natural’ conditions (approximated by a census

of all population). The available literature discusses broadly the cases for completely

experimental data (see, for example, Chaloner and Verdinelli 1995; Wu and Hamada

2000) or completely observational data (e.g. Rosenbaum 2002). Although in the social

sciences access to perfect experimental data is usually not feasible, the data is not

always completely observational. In some cases, controls are taken at the time of the

design/collection of data, which gives rise to partially experimental data. In this work,

we consider DE to include any experimental conditions that might involve a decision by

the experimenter (data collector). The choice of ‘no control at all’ leads to observational

data (∆∅) which is assumed to be a (degenerate) special type of experimental data.

Experimental design interventions, DE = {M,R(B)}, contain the mechanisms M =
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{ME,MS ,MT} through which units are selected and assigned to eligible, sample and

treatment groups, and the recording mechanism R(B) that determines whether the

background variables are observed and available to us in the data ∆dE
. In addition,

implementation details which refer to the logistics and how the study will be carried

out are important, as they can introduce some biases. A complete description of these

mechanisms is presented in Madrigal (2004). In this paper we focus on the treatment

assignment mechanisms MT .

As an example, imagine a policy will be implemented to increase the nutritional state

(Y ) of ‘poor’ children in a certain geographical area. Suppose there are two different

brands of food supplements (FS) in green or red packages. A decision to sign a contract

with the food supplement provider(s) for as long as the policy takes place has to be

made. Imagine the policy maker is faced with four possible policy interventions: Policy

0 (t′0): ‘Do not give any FS’; Policy 1 (t′1): ‘Give green FS’; Policy 2 (t′2): ‘Give red FS’;

and Policy 3 (t′3):‘Give green FS to young babies; and give red FS to older children’.

Once a policy is chosen, all children in the target population will be under the same

policy. In this case, policy intervention strategies (DT ) are defined for the same target

population (namely, children in poverty), and the future policy interventions (FT ) are

given by t′0, t
′
1, t

′
2 and t′3. When evaluating the policy intervention effect we obtain the

‘overall effect’ of each of the policies. Although the policy interventions act on children

through the actual FS given, it is important to bear in mind that questions ‘Is policy

t′i giving better results than policy t′j?’ are different from the question ‘Is the green

FS working better than the red FS?’. In this case, they will coincide when we are

comparing policies t′1 and t′2, but to draw conclusions about the effects of green and

red FS from a comparison between, say, t′0 and t′3 could be dangerous, as in t′3, the

effect of FS is confounded with age. The policy maker, as an experimenter, has to

choose the experimental design strategy (DE) used to collect data ∆dE
. This data is

used to evaluate policy intervention strategies (DT ) and compare the effects of policies

FT = do(Policy = t′s). Imagine that policy makers in principle have in mind the

implementation of contingent policy t′3 (against the option of not providing any food

supplement at all t′0). First, the experimental levels {t∗} have to be set. These are

allocated through action AT = do(Policy = t∗). Choosing some experimental levels

{t∗} to be equal to future policy levels {t′}, such that t∗1 = t′0 and t∗2 = t′3, ensures

the positivity condition (see Appendix A), and then {t∗} = {t∗1, t
∗
2} = {t′0, t

′
3}. Imagine

the allocation of policies is done randomly with probability of one half. This random

intervention could be expressed as AθT
= do(θT = θ∗T ) such that it fixes θ∗T = p(AT =

do(Policy = t∗m)) = 1
2 for m=1,2. Policy allocation is randomised and it is defined by

the experimental design strategy, DE.

Dawid (2002)’s framework, although open to different strategies for setting the value

of a treatment T = t′, including randomised or atomic definitions, does not allow us to

represent in the same graph and formulae both the atomic (future) policy intervention

FT ∈ DT (allocating treatment T = t′ with probability one) and the (contingent or

randomised) experimental allocation strategy followed when collecting data AT ∈ DE

(allocating treatment T = t∗ according to θ). Neither does it allow us to represent the

impact on the (graphical) data structure of the experimental actions. Therefore, an
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extension is needed.

3.2 Design Networks: Basics

In its simplified version, let DE = {A,R(B)} where A contains all the policy assignment

mechanisms and R(B) contains the recording mechanism, such that R(Bq) = 1, for

q = 1, 2...Q, if variable Bq is recorded and R(Bq) = 0 if Bq is either unobservable

or not recorded. Assignment nodes A and recording nodes R can be included in the

DAG as decision nodes to create a design network (DN). The design network shows the

‘natural’ (experimental) mechanisms that generate the data available ∆dE
. In general,

no matter whether the data has been collected already or we are planning the design to

generate the data, DE represents decisions to be made at the data collection time.

Consider the set (T,B, Y ). For simplicity, suppose that T and Y are univariate,

that B does not contain intermediate variables between T and Y (i.e. B consists of

pre-intervention variables not affected by T ), and that the future policy is an atomic

intervention FT = do(T = t′). Figure 3(a) shows the usual influence diagram represen-

tation of this case, and Figure 3(b) gives the corresponding design network. Note that

A blocks all the paths going from B to the policy node T. This follows from the as-

sumption that A captures all the allocation mechanisms for T that might be influenced

by the background variables B, so that A is the only parent of the policy node T in the

design network. Recording nodes, R(B), are added for each background variable Bq ,

introducing the decision to record Bq versus not to record it. A double circle containing

a dashed and solid line is given to each background node Bq to show its potential ob-

servability. It is assumed that policy T and response variable Y will be recorded. Figure

3(c) shows an augmented design network in which the future atomic intervention node

FT is added to the design network.
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Figure 3: Design Networks

By representing simultaneously the design nodes DE = {A,R(B)} and the future

intervention node FT , the augmented design network is useful to make conclusions about

two different tasks involved in policy evaluation and design: (1) the identifiability of the

causal effect of T on Y , given a design dE ⊂ DE ; and (2) the choice of a design strategy

dE to collect data when the interest is to evaluate the effect of intervention FT . As

mentioned before, the identifiability of intervention FT depends on the data available

(determined by mechanisms dE); and the efficacy of experimental design (dE) is always
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to be determined with respect to the effects it tries to isolate (here FT ). Thus, DE and

FT are and should always be read in the light of each other, and the augmented design

network allows us to do that.

For causal reasoning in task (1), to discuss the identifiability of the causal effect of T
on Y , we are interested in comparing the relevance of the choice of FT given particular

experimental conditions d∗E , namely comparing p(y | t′, FT = do(T = t′);DE = d∗E)

and p(y | t′, FT = ∅;DE = d∗E). This provides us with expressions and guidelines for

control via analysis of possible confounders. On the other hand, in task (2), when

planning the data collection by choosing an experimental design, we are interested in

the relevance (or irrelevance) of the choice of experimental conditions dE , (with respect

to the identifiability of FT ) for different experimental choices dE ⊂ DE . So, we are

interested in making comparisons between different settings of d∗E and then choosing

the optimal design from all experimental designs available in DE . This provides us with

guidelines for control via design.

Augmented DAGs and the set of conditional independencies derived from them

have been used for causal reasoning in task (1) (see Dawid 2002). If two augmented

DAGs derived from experimental conditions dE1 and dE2 share the same conditional

independence statements, then they are equivalent for causal reasoning. Assignment

actions A might affect the original collection of conditional independence statements.
Recording decisions will have an effect on the set of variables that will be available

to us through the available (sic) experimental data. Thus R(B) will not introduce

any new (in)dependencies in the structure, but will be relevant when discussing the

potential identifiability of effects given assignment actions A = a∗. Some additional

general remarks about the Decision Networks framework can be found in Appendix A.

4 Causal graphical analysis for cluster allocation

Most of the literature in Cluster Randomised Trials (CRTs) has emphasised the fact

that Fisher’s principle is violated, as the experimental unit does not coincide with the

analysis unit, and the difference in levels where the experimental allocation generating

data available, ∆, is at cluster level and the analysis is undertaken for a response at

individual level. When introducing the need for the evaluation of a future intervention

FT using data generated from a (past) experiment dE , it is important to acknowledge

the fact that the future intervention level might differ from the experimental level.

In general, the future intervention (FT = do(T = t′)), the experimental allocation

(AT = do(T = t∗)) and the response variable (Y ) could each be at cluster/individual

level and would not necessarily coincide. The experimental level will define the data

structure and the conditional independence statements reflected in the ‘experimental’

causal graph through dE . The future intervention FT level will define the ‘future’ causal

graph structure.

The interest could lie in the causal effect at cluster level or at individual level.

Responses at cluster level will summarise what is observed at a community level, while

responses at individual level are usually more of interest to describe what is the effect in,
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say, a household within a community. If we are interested in the intervention effect on an

individual level response, depending on how the future intervention will be implemented,

there are two possible (causal) intervention effects we might be interested to identify:

namely, the distribution of the individual outcome given a clustered intervention, P (Yjk |
FTj = do(Tj = t′)), and the distribution of the individual outcome given an individual

intervention, P (Yjk | FTjk = do(Tjk = t′)). The former would try to estimate the effect

of a cluster-level intervention (usually the interest in social policy) and the latter would

try to estimate the effect of an individual-level intervention (as could be the goal of

many medical trials).

4.1 Cluster design networks

In terms of design decision strategies, a cluster-randomised study implicitly involves two

design decisions: (1) the decision of clustering (i.e. to allocate the treatments to clusters

of individuals) and (2) the decision of randomising (i.e. to perform the allocation using

a random procedure).

When an intervention at cluster level occurs we distinguish between two cases. The

first is related to the case in which the intervention affects all individuals in the cluster:

for example, when the improvement of health services is undertaken at community level

and all families within a community are subject to the same infrastructure. In this case,

individuals within the cluster cannot choose not to be affected by the policy intervention.

In this paper this case will be referred to as a ‘pure-cluster’ intervention (and denoted

by dC = 1). The second case refers to the situation in which, although an intervention

is allocated at cluster level, not all individuals, but only a subset of them within a

cluster, will be subject to the intervention. Actions, in this second case, are ‘done’ at

individual-level to individuals within a cluster, and thus individual characteristics might

have an influence in the individual’s allocation of treatment

An example of the latter is when the intervention affects only eligible individuals.

A cluster policy of this type could be seen as: ‘all eligible individuals k in cluster j will

receive policy t′ ’ via ATj = do(Tj = t′). So, allocation of policy is done at cluster level

and two eligible individuals in the same cluster cannot be allocated different policies

(contrary to what would happen if the policy allocation was done at individual level).

In the case of Progresa, this will correspond to the case where only poor households are

receiving extra money for nutrition and educational grants. These actions are aimed at

household-level; however, not all households in a community are poor and therefore not

all households within a community receive the same treatment, only the eligible ones.

In a more general setting, the individual choice of treatment might depend on some

possibly unobserved background variables and not necessarily only on some previously

defined (and observed) eligibility criteria. For example, imagine that some health centres

are allocated a certain restricted quantity of food supplements to be distributed among

families visiting them, but the amount of food supplements is not enough to cover all

families. Then, the fact that a family is receiving the food supplement or not could

depend on the (unobserved) nurses’ choice or on a first-come-first-served basis. In any

case, when different units within a cluster do not necessarily receive the same treatment
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and this is dependent on certain individual-level background variables, the experiment

will be referred as a ‘non-pure’ cluster allocation (and denoted by dC = 0).

4.2 Effects of cluster allocation design decisions

A design network for the general cluster setting for a cluster-level future intervention

FTj is presented in Figure 4. As we are discussing clusters of individuals, naturally

variables are not all at the same level and a simple DAG cannot be used without further

notation The levels are represented in the graph by squares, following Spiegelhalter’s

notation (see WinBUGS), meaning that the same graphical structure applies for each

of the observations at the same level. Design decisions can then be taken at both

individual and cluster level. The structure has been kept similar to that used above,

but now we have the situation replicated for the two levels involved. Let cluster j (for

j = 1, 2, ...J) have Kj units and let Tj and Tjk be variables for intervention status

(Treatment / Control) at cluster and unit level respectively. Similarly, let Bj and

Bjk represent the background variables at cluster and unit level and Zj some recorded

cluster-level covariates that might be affected by the policy. Nodes Aj and Ajk will

correspond to the assignment mechanisms to allocate policy at cluster and individual

levels respectively. Action ATj = do(Tj = t∗) defined in Aj will imply Tj = 1 if the value

t∗ corresponds to the policy taking place in cluster j, and will imply Tj = 0 if the value

t∗ corresponds to ‘control’. This will work similarly for the individual-level case. The

recording mechanisms could be defined over the set of cluster and individual background

variables, R(Bj) and R(Bjk), respectively. The response Yjk will correspond to that

observed for individual k in cluster j.

The decision of running a ‘pure’ cluster allocation experiment (dC = 1) will imply

that the intervention is done equally to all members in the cluster. So, once the treat-

ment for cluster j Tj is fixed by action ATj = do(Tj = t∗), this fully implies actions

ATjk = do(Tjk = t∗), and so the values of the treatments Tjk for all Kj individu-

als in cluster j. Then tj = tjk = tjk′ for all individuals k, k′ = 1, 2, ...Kj in cluster

j. So, the effect of pure-clustering prohibits individual covariates from influencing the

choice of treatment, breaking any links that could be present from Bjk (any background

individual-level covariates) to Tjk in the graph. When ‘non-pure’ cluster allocation takes

place (dC = 0), although the experimental allocation is made at cluster level, individual

k within cluster j might be receiving treatment or not depending on some individual-

level covariates Bjk, and thus tjk might differ from tjk′ for k 6= k′.

The assignment mechanism nodes Aj and Ajk could be expanded. This is not done

in Figure 4, to keep the (already complex) graph as simple as possible. The individual

assignment mechanism Ajk is considered to be dependent on the actual policy that was

allocated to cluster j, Tj , and (possibly) on some individual background variables. Thus,

the action assigning policy t∗ to individual k ATjk = do(Tjk = t∗) is considered to be de-

pendent on Tj and Bjk such that θTjk = p (ATjk = do(Tjk = t∗) | Tj , Bjk) = q(Tj , Bjk).

The ‘pure-cluster’ case will imply that the individual assignment mechanism does not

depend on individual background variables Bjk and

θTjk = p (ATjk = do(Tjk = t∗) | ATj = do(Tj = t∗), dC = 1) = 1 and the following propo-
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Figure 4: Design Network for cluster allocation and cluster-level future intervention FTj

sition is thus established.

Proposition (Pure-Clustering) If the experimental design strategy dE includes the
action of performing a ‘pure cluster’ experiment such that {dC = 1} ∈ dE , then the
‘structural’ effect of dC = 1 on the ‘original’ set of conditional independencies, is to
introduce the set of conditional independencies (Tjk⊥⊥Bjk)

dC=1 that will hold on the
data ∆dE

generated by dE .

Figure 5 includes a close-up of the individual-level plateau in Figure 4, in which the

design network has been extended for node Ajk and variables Zjk introduced. Now let

us refer to the situation when a ‘pure’ cluster experimental intervention is not feasible,

but when we have a non-pure cluster experiment such that, within each cluster j, indi-

vidual policy allocation follows a deterministic rule based on individual-level observed

covariates Zjk. The final policy allocated to an individual through Ajk will be a function

of Zjk, and any other possible influences on Tjk from background variables Bjk (other

than Zjk) are eliminated. The prevalences of Tjk in the experimental data available

∆ will depend on the policy allocated to the cluster Tj and Zjk but not on Bjk .(e.g.

θTjk = p (ATjk = do(Tjk = t∗) | Tj , Zjk) = q(Tj , Zjk)) The structure obtained is similar

to the stratified allocation presented in Madrigal (2005), and arrow (c) will be deleted

when this ‘deterministic’ allocation takes place.

Proposition If a ‘non-pure cluster’ experiment includes a design strategy in which poli-
cies at individual level are allocated following a ‘deterministic’ rule defined by the exper-
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Figure 5: Close-up of individual-level plateau

imenter based on covariates Zjk , then conditional independencies (Tjk⊥⊥Bjk | Zjk)
dE

are introduced and will hold on the data ∆dE
generated by dE .

As introduced in Madrigal and Smith (2004), design decision strategy dE including

random allocation of policies (i.e. AθT
= do(θT = θ∗T ) ∈ dE) might, qualitatively speak-

ing, modify the structure of the data we are to collect (see Appendix A). By allocating

the treatments completely at random (i.e. AθTj
= do(θTj = θ∗Tj)) we ensure that the

treatment received is independent of any background variables Bj that, otherwise, might

have an influence on the policy assignment mechanism. Then, when random allocation

takes place, arrow (r) from Bj to Aj in Figure 4 disappears and the conditional inde-

pendence statement (Tj⊥⊥Bj)dE
holds. Again, this probability, θ∗Tj , might depend on

possible stratification observed variables. When randomising at cluster level we there-

fore ensure that the level of treatment that is received by cluster j is independent of

the level received by cluster j ′ (i.e. knowing that cluster j was assigned intervention t∗

does not give us any further information about the intervention group at cluster j ′).

4.3 Identifying cluster-level interventions

The appropriateness and consequences of different design decisions dE ⊂ DE will depend

on the goals of the experiment. The case in which the interest is in the effect of a cluster-

level future intervention FTj = do(Tj = t′) on a cluster-level response Yj will degenerate

to the one-level case. When the interest lies in an individual-level response Yjk , it can be
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seen in Figure 4 that, if d∗E includes a random cluster allocation procedure and arrow

(r) is not present, the conditional independencies (Yjk⊥⊥FTj | Tj)d∗

E
hold for all j,k.

Thus, once the value of the policy assigned to the cluster Tj is known, learning whether

the policy status Tj arose from the future policy implemented FTj = do(Tj = t′)
or from the ‘original’ experimental allocation ATj = do(Tj = t∗) when FTj = ∅, is

irrelevant. Therefore, direct identifiability of the effect FTj = do(Tj = t′) on Yjk holds

and p(yjk | FTj = do(Tj = t′)) can be directly obtained from data ∆d∗

E
available as long

as t′ ∈ {t∗} such that

p(yjk | FTj = do(Tj = t′); ∆d∗

E
) = p(yjk | Tj = t′; ∆d∗

E
)

This does not disregard the fact that individuals belonging to the same cluster will

have a positive correlation, which must be taken into account in any model used for the

analysis and estimation of the effect on an individual-level response.

Again, when non-random cluster allocation is performed as part of the experimental

design d∗E , (Yjk⊥⊥FTj | Tj)d∗

E
does not hold anymore, but the conditional independencies

(Yjk⊥⊥FTj | Tj , Bj)d∗

E
hold for all j,k. Thus, the identifiability of the effect of a future

policy FTj = do(Tj = t′) on Yjk will depend on the recordability of cluster-background

variables R(Bj) and the causal effect will need to be obtained through an ‘adjustment’

procedure such that, as before, using the back-door criteria

p(yjk | FTj = do(Tj = t′)) =

∫

p(yjk | Tj = t′, Bj)p(Bj)dBj .

Unless we are ready to assume some prior distribution for p(Bj), the recording of vari-

ables Bj as part of the design ({R(Bj) = 1} ∈ d∗E) are needed to achieve an ‘adjusted

identification’ of the causal effect.

Different recording mechanisms might assist identification. For instance, if we were

ready to assume that cluster background variables did not have a direct effect on the

individual response, such that arrow from Bj to Yjk was deleted, then all the influence

fromBj would be through individual background variables and the observed cluster-level

variables Zj . In this case, conditioning on Tj , Bjk and Zj would be enough and a design

able to record these variables will provide identifiability. Thus, if cluster background

variables Bj were not accessible to the experiment, this new set of covariates {Bjk, Zj}
could assist identification.

4.3.1 Bayesian hierarchical models

In a hierarchical setting, data within each cluster j is assumed to depend on parameters

θj , which in turn are assumed to be drawn from some population distribution with

parameters ψ. In an initial model, the response yjk for individual k in cluster j is

assumed to have a Normal distribution, such that

yjk ∼ N(µjk , σ
2)

µjk = uj (1)
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and cluster-specific random effects (uj) are assumed to have a Normal distribution with

mean φj and variance σ2
u, such that

uj ∼ N(φj , σ
2
u)

φj = α+ βTj (2)

where Tj represents the treatment given to the jth cluster. There are many potential

elaborations to this basic model (see Spiegelhalter 2001; Turner et al. 2001). The priors

that need to be specified for this model are p(α), p(β), p(σ2), p(σ2
u). Making causal

assumptions and a graphical representation of all influences present in the particular

system analysed could assist recognition of possible confounders and thus assist both

the experimenter’s decisions for control via design and the analyst’s decisions for control

via analysis.

When cluster allocation is done randomly, if we are ready to assume linear relations,

the two-level Bayesian hierarchical model as specified in equations (1) and (2) could

be used to estimate the effect of FTj on Yjk, and coefficient beta can ‘safely’ be given

a causal interpretation as an ‘overall’ effect. For the non-random case, the analysis

will need the conditioning on the ‘relevant’ background variables. The inclusion of

individual-level and cluster-level covariates in the analysis could be done directly by

including them in equations (1) and (2) respectively. The conclusions just derived hold

for both ‘pure’ cluster and ‘non-pure’ cluster allocations. The ‘overall’ causal effect will

correspond to a ‘total effect’ when a ‘pure’ cluster allocation (dC = 1) is done. However,

this will not be the case for dC = 0, where the ‘total effect’ cannot be obtained. To make

the difference between ‘overall’ and ‘total’ effects clearer, the interactions of individuals

in a cluster have to be considered, and this is discussed below in Section 4.5.

4.4 Identifying individual interventions from clustered data

Consider the case where the main interest is in obtaining the individual-level causal

effect, namely P (Yjk | FTjk = do(Tjk = t′)) from data that is clustered. If randomised

allocation could take place at individual level, then it could be directly identified from

the experimental data ∆, as individual random allocation will break the possible influ-

ence of cluster background variables on the policy allocated to the individual. Suppose

that it is not feasible to randomise at individual level, but to intervene clusters is possi-

ble. The design network for this case will basically coincide with that shown in Figure 4,

but in this case we assume that the future policy will consist of an individual intervention

FTjk , and that we are interested in identifying effects at the individual level.

From the design network in Figure 6 it can be seen that (Yjk⊥⊥FTjk | Tjk) does

not hold even if arrows (r) and (c) are deleted from the graph. So, the effect of policy

intervention FTjk = do(Tjk = t′) on Yjk cannot be identified directly from the data

and some adjustment will be needed.

When a ‘non-pure’ cluster allocation takes place in the experiment, individual policy
assignment will depend on both the policy allocated Tj and individual background
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Figure 6: Design Network for cluster allocation and individual-level future intervention FTjk

variables Bjk. Conditioning on this set of variables, the irrelevance of FTjk is gained
such that (Yjk⊥⊥FTjk | Tjk, Tj , Bjk) Thus the recording of Bjk is needed in order to
obtain adjusted identifiability through

p(yjk | FTjk = do(Tjk = t′); dC = 0) =

∫

p(yjk | Tjk = t′, Tj = t∗, Bjk)p(Tj = t∗, Bjk)dBjkdTj ,

where, if randomisation did not take place at cluster level, Tj and Bjk are not indepen-

dent (both having Bj as an ancestor) and their joint distribution is needed. If recording

at individual level for Bjk is not undertaken, the causal effect will be unidentifiable.

When ‘pure’ cluster allocation is done, and as a result arrow (c) is deleted, then there

are no individual level confounders and all possible confounders will be at cluster-level.

So, ‘pure cluster’ assignment might improve identification of individual intervention

effects, in particular, when randomisation at cluster level is feasible or in the case when

cluster-level confounders (Bj) are easier to observe and/or control than individual-level

confounders (Bjk).

As shown above, the ‘overall’ effect of a future cluster-level intervention at cluster

level FTj can be identified from the experimental data when policies in the experiment

are allocated randomly at cluster level. Something similar happens when the assignment

is not carried out randomly, but cluster background variables are recordable and an

‘adjustment’ measure is needed. Moreover, for dC = 1, the overall effect will coincide

with the participants’ total effect. Thus, if the indirect effect due to interaction among

neighbours is negligible, as could be the case when vitamin supplements are administered

to children in Progresa, the total effect measured will be equal to the direct (personal)
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effect. Although this might not be always true for social policies, this might be the case

for some treatments in a medical setting in which, for example, a drug is supposed to

act in an individual regardless of his interaction with other people in the cluster. In

this case, a ‘pure cluster’ design could assist identification of individual interventions.

Therefore, a ‘good’ (randomised or controlled) cluster design might be able to provide

more information than a ‘bad’ (with unobserved confounders) individual design. The

distinction of overall, total, direct and indirect effects will be discussed next.

4.5 Overall versus total effects

As Koepsell (1998) states, ‘just as infectious agents can be spread from person to per-

son, transmission of attitudes, norms and behaviours among people who are in regular

contact can result in similar responses’. So, when people interact or communicate, their

response to an intervention can be explained (and partitioned) in terms of direct (‘per-

sonal’) effect and indirect (‘neighbours’) effect. So, interventions may affect the whole

population, not just those who participate (or were subject to interventions).

The fact that all individuals in a group follow the same policy, or are encouraged

to take a particular action, has thus an additional ‘interaction effect’. This is so as

individuals interact with each other, creating a domino effect. In the case of Progresa

we have, for example, the fact that mothers talk! Thus, if a mother is encouraged to

take children to the health centre for food supplements, besides her possible individual

motivation, the fact that other mothers in the village are encouraged as well, creates an

additional effect on her (i.e. if everybody is doing it, there is an extra motivation to do

it, and being the only one not doing it will be rare and possibly socially penalised).

If in a cluster, not all individuals are allocated the same intervention, then the effects

of interventions can be classified, following Hayes et al. (2000)’s definition, according to

the ‘intervention status of the individual’ as participants (treated) or nonparticipants

(controls). Those who participate receive both a direct
(

DE(P )

)

and an indirect effect
(

IE(P )

)

, which combine to form the total effect
(

λ(P ) = DE(P ) + IE(P )

)

. The non-

participants receive only an indirect effect, IE(NP ), so their total effect contains only

those indirect effects (λ(NP ) = IE(NP )). The indirect effects received by participants

and non-participants may differ in magnitude, so an index is used to distinguish them:

Participants (P) Non-participants (NP)

Total effects λ(P ) = DE(P ) + IE(P ) λ(NP ) = IE(NP )

If we are ready to assume that these effects are equal for all individuals in a cluster,

then the overall effect observed in a cluster will correspond to the weighted average of

the effects on participants and non-participants such that

Overall effect = w(P )λ(P ) + w(NP )λ(NP ) (3)

where w(P ) and w(NP ) are just weights that will be functions of the number of partici-

pants and non-participants in the cluster (or in terms of the ‘coverage’ -% of participants-

of the experiment). So, the overall effect will include a combination of direct and indirect
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effects. In particular, expression (3) could be extended to be re-written as

Overall effect = w(P )

(

DE(P ) + IE(P )

)

+ w(NP )IE(NP )

= w(P )DE(P ) +
(

w(P )IE(P ) + w(NP )IE(NP )

)

In the case where indirect effects, for both participants and non-participants, are as-

sumed to be negligible such that IE(P ) ≈ 0 and IE(NP ) ≈ 0, then the overall effect will

be approximately proportional to the direct effect such that

Overall effect ≈ w(P )DE(P ).

In the case of a ‘pure cluster’ experiment, either all individuals are participants (treated

cluster) or all are non-participants (control cluster). In this situation, contamination

within clusters is completely avoided, and in control clusters no intervention indirect

effects are observed (i.e. IE(NP ) = 0). For the treated clusters, all individuals are

participants, and overall intervention effect of the cluster will coincide with the total

participant effect, denoted by τ(P ) : namely,

Overall effect (control cluster) = 0 · λ(P ) + 1 · λ(NP ) = total effect(NP ) = 0

Overall effect (treated cluster) = 1 · λ(P ) + 0 · λ(NP ) = total effect(P ) = τ(P )

and therefore

Overall effect(dC=1) = total effect (P ) = τ(P ) = DE(P ) + IE(P )

Individually randomised trials typically aim to measure the direct effect, DE(P ). By

contrast, CRTs measure the total effect τ(P ) if all individuals participate, but otherwise

they measure the overall effect, which will vary according to intervention coverage and

the characteristics of the population.

If individuals are naturally clustered, the magnitude of the indirect effect of an

intervention is likely to be important in deciding whether a trial should be individually

- or cluster- randomised. Indirect effects, due to interaction, will be included in the

outcome measure. As a consequence, if the main interest is in measuring only the direct

effect that a possible drug/treatment, say, has on an individual and it is known that

indirect effects could be relevant, then CRTs might not be the best option as they will

measure the overall effect instead of the direct effect.

In assessing the value of intervention it is important to take into account their

indirect as well as direct effects. In some cases it may be better to avoid intervention if

the coverage needed to make it beneficial is too high to be realistically achievable. In

addition, it may be desirable to separate the overall effect into its direct and indirect

components. Methods for measuring direct and indirect effects separately have mostly

been developed in the context of vaccination (see Hayes et al. 2000; Longini et al. 1998).

Standard CRT designs measure the overall effect of intervention, and this is often the

most useful measure for policy makers because it includes all the components, both

direct and indirect, which a population would experience if a cluster policy were to be

implemented.
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It should be clear that the stable-unit-treatment-value-assumption (SUTVA, as la-

beled in Rubin 1980), which implies that the response of the unit does not depend on

which treatment was applied to other units, does not hold when units interact and the

indirect neighbours effects are not negligible. However the Bayesian predictive decision-

theoretic approach that is followed in this paper does not require this assumption, as

would be the case in Rubin’s counterfactual approach. The counterfactual model for

causal inference could lead to ambiguities and pitfalls, as discussed by Dawid (2000).

5 Progresa effect example using hierarchical models

In this section a hierarchical model analysis based on Spiegelhalter (2001) is performed

for the evaluation of cluster- and individual-level interventions based on Progresa data.

In the programme, communities were randomly allocated either to a treatment or a

control group. The community level interventions G1 (such as the improvement of

health services and educational talks) are received by all households in a ‘treatment’

community. In addition, all eligible (poor) households that belong to a ‘treatment’

community receive household interventions, such as financial support, G2. The data

recorded includes a census of eligible and non-eligible households for (treated and con-

trol) communities selected for the study.

Let Tj be the cluster treatment indicator, such that ATj
= do(Tj = 1) if community

j was allocated to Progresa programme and ATj = do(Tj = 0) if it was allocated to

control, so we have

Tj =

{

1 if community Treatment

0 if community Control

Let E be an indicator variable denoting eligibility status. Then Ejk = 1 if household k
in community j is eligible and Ejk = 0 if non-eligible. In Progresa, Ejk = 1 corresponds

to a poor household. Thus,

Ejk =

{

1 if ‘poor’ household

0 if ‘non-poor’ household

So, household k in community j will be allocated household-level Progresa interventions

Tjk (e.g. financial support) through an allocation Ajk , in which a household is given

extra money if, in addition to belonging to a treatment cluster, the household is ‘eligible’.

It will not be given extra money if either it is not eligible or if it belongs to a control

community. If we denote by Pjk , the indicator variable for ‘Progresa participant’, such

that Pjk = 1 if household k in cluster j receives economical support and Pjk = 0 if not,

then, Pjk is defined as

Pjk =

{

1 if Tj = 1 and Ejk = 1

0 otherwise

From the general formulation of the Design Network for cluster allocation presented

above, a simplified version of Progresa’s experimental design containing the main fea-

tures is shown in Figure 7, where Yjk represents the response of household k in commu-

nity j for k = 1, 2, ...Kj ; Bj represents the background variables that are shared by all
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individuals in community j. Background variables at individual level were not added

to keep the graph simple, but could be easily incorporated. As allocation at cluster

level was done randomly in Progresa, no arrow is drawn from Bj to Tj . If G1 denotes

Progresa’s cluster-level intervention (action) corresponding to health services and talks

(i.e. the ‘encouragement’ that communities receive to improve their nutrition) and G2

denotes Progresa’s household-level action of giving financial support to poor households,

then note that the action do(Tj = 1) will trigger both atomic cluster-level intervention

G1 and contingent (on Tj and Ejk) individual-level intervention G2.

T̂
B̂

G _ Ŷ `

Ê `

aFbdcfe g6e h h h iEj
jkblcfe g�e h h h m

G n

P̂ `

Figure 7: Progresa experimental Design Network for basic nodes

5.1 Cluster-level intervention effect

Imagine that we are interested in the effect of Progresa on the total food consumption

yjk, measured in terms of the amount of money spent on food in a household. The com-

plete data set, including poor and non-poor households, consists of 20,589 households

in 500 clusters. To begin with, assume we are interested in measuring the overall effect

of Progresa intervention FTj = do(Tj = t′). A hierarchical model following the setting

presented in Section 4.3 (equations (1) and (2)) is used to estimate this effect. This

model was run in BUGS using vague priors following Spiegelhalter (2001) with

p(α) ∼ Uniform(−10000, 10000)

p(β∗) ∼ Uniform(−10000, 10000)

p(σ−2) ∼ Gamma(0.01, 0.01)

p(σ−2
u ) ∼ Gamma(0.01, 0.01)

We encountered no difficulties in convergence of this model. The analysis is based on a

sample of 10,000 iterations following a burn-in of 5,000.

The posterior inference (means and 95% intervals) for the parameters involved is

presented in Table 1. As can be seen from the table, the posterior mean for beta
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Parameter Mean 95% interval

β∗ 39.48 (20.36, 58.33)

α 444.9 (435.2, 454.6)

σ−2 2.102E − 5 (2.061E − 5, 2.143E − 5)

σ−2
u 1.054E − 4 (1.052E − 41, .216E − 4)

Table 1: Posterior distributions of parameters for cluster-level intervention

is E [β∗ | ∆] = 39.48 with a 95% interval of (20.36,58.33). In this case β∗ gives the

cluster-level total overall effect of Progresa intervention on the food expenditure in a

household. So, β∗ contains a summary of the effects of the programme (through G1 and

G2) on Y for all the population in a cluster, by averaging participants (receiving G1

and G2) and non-participants (only receiving G1). Depending on the aims of the study

this total overall effect might be the relevant causal effect of interest. In such a case,

it could be said that the causal effect of Progresa is to increase, on average, the food

expenditure of a household by 39.48 Mexican Pesos. This in relation to the average food

expenditure for a household in a control community that will be of E [α | ∆] = 444.9
Mexican Pesos.

5.2 Individual-level effect

Now imagine that we are interested in obtaining an estimate of the ‘causal’ effect of the

individual-level intervention FG2
= do(G2 = g′2 = q(poor)) of giving financial support

to poor households. The allocation of G2 depends on the cluster-allocated policy Tj

(Treatment/Control) and on the eligibility condition Ejk of a household defined as

‘poor’: both are assumed to have an effect on the household expenditure level and thus

act as confounders in this case. So, to identify the individual-level effect of FG2
, it is

needed to control by including these two confounders in the analysis.

The hierarchal model used for the cluster-level effect above can be extended to

include covariates Tj and Ejk at cluster and individual level respectively. The ‘Progresa

participants’ status of a household Pjk acts as an indicator variable of the presence

of economic support provided by G2. We include here the household size Zjk as an

individual covariate to illustrate the possible inclusion of other covariates in the model.

Household size will have an influence on the total expenses of the household Y, and it

is neither affected by the policy nor affecting (at least directly) policy allocation. So

now this is considered part of the white noise (with respect to T and P) at the recorded

individual level. Equations (1) and (2) can be substituted by

yjk ∼ N(µjk, σ
2)

µjk = uj + β2Pjk + δEjk + γZjk (4)

uj ∼ N(φj , σ
2
u)

φj = α+ β1Tj (5)
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We chose to use the same priors to estimate this model, as before. Thus all the coeffi-

cients (namely α, β1, β2, δ and γ) were given vague uniform distributions a priori. Again,

we encountered no difficulties in obtaining convergence and the sample simulated is the

same size as before.

The posterior means and 95% intervals for all the parameters are given in Table 2.

The individual-level effect here will be measured by the coefficient of Pjk , namely β2,

whose posterior mean is given by E [β2 | ∆] = 45.71 with a 95% interval of (33.95, 57.49).

In general β2 will isolate the effect of G2 (from the effect of G1) and we could say that the

effect of a policy FG2 that provides economic support according to the poverty level of

a household will increase, on average, the food expenditure of a participant household

by 45 Mexican Pesos (regardless of the presence or not of a secondary action G1).

However, β2 implicitly includes possible indirect effects resulting from the interaction

of participant households with non-participant households in a community.

Parameter Mean 95% interval

α 473.5 (461.7 , 485.5)

β1 16.7 (-3.848 , 36.63)

β2 45.71 (33.95 , 57.49)

δ -34.14 (-43.54 , -24.69)

γ 30.56 (29.54 , 31.6)

Table 2: Posterior distributions of parameters for individual-level intervention

A second reading of this analysis could consider the case in which the total effect of

Progresa (defined by G1 and G2) is split in its effect on food expenditure, due to the

community-level action of educational talks (G1) and the economic support provided

at household level to poor people (G2). Then, β1 becomes a parameter of interest

containing the direct effect of G1 (i.e. the effect of Progresa on food expenditure that is

not due to economic support) and Pjk is regarded as an intermediate variable. In this

case, and following the reasoning of path analysis (Bollen 1989; Pearl 2000), we can see

that the total overall effect of Progresa β∗ could be written as β∗ = β1+λβ∗
2 where λ will

contain information about the prevalence of participants within a treated community.

The total overall effect at household level is here denoted by β∗
2 (= β2 + δb(E)P ) where,

as before, β2 represents the direct individual-level effect and δb(E)P the confounding

effect, which in this case has been controlled via analysis.. In this case it can be seen

that, although the posterior mean for β1 has a value of 16.7, the 95% posterior interval

includes the value zero. So we cannot assert that the direct effect of the cluster-level

intervention G1 was different from zero. A more careful analysis, possibly including

more ‘white noise’ covariates at cluster level, might provide narrower intervals for the

coefficients. However, given that this response variable is measured in money terms, the

main effect of the programme could be expected to be due to the increase of income of

the participant households derived from G2. This might not be true for other response

variables.

We can notice that one could be tempted to offer a causal interpretation to the
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Figure 8: Posterior distribution for (a) β2 and (b) β1

coefficient of eligibility (δ) that distinguishes between poor and non-poor households.

However, the data available was not properly selected in order to isolate the relationship

between poorness and food expenditure. The level of poorness in Progresa was obtained

through a discriminant function that depends on many household level covariates that

could also affect the response, becoming confounders for this coefficient. Therefore, if

we are interested in interpreting δ, a data set including these covariates will be needed.

In this analysis, household size is known to be part of the variables used to define the

poorness of a household. Its inclusion or not in the model (analysis not shown), although

‘transparent’ for β1 and β2 (given Ejk), will have an important effect on the posterior

mean E [δ | ∆] . Although, in this case the posterior mean seems to be significantly

different from zero and has the ‘correct’ sign (i.e. it should be expected that poor

people spend less money than non-poor people), this superficial conclusion might still

be subject to unrecorded confounding.

6 Conclusion

The primary contribution of this paper is to expand on Dawid (2002)’s model for causal-

ity reasoning within the Bayesian decision-theoretic framework: to ‘adapt’ it to policy

analysis, to include experimental nodes, to allow intervention nodes ‘do’ parameters

nodes, to discuss the relevance (or irrelevance) of experimental design and to include

interventions at different levels (clusters) of units. Observational data is considered a

degenerate type of experimental data. In addition, there was a need to create some nota-

tion to describe the mechanisms derived from choices, such choices as the experimenter

might make when choosing the ‘lens of the camera’ to picture the world. These choices

affect the characteristics (units, variables and distributions) of the database. The inspec-

tion of influence diagrams and, in particular, the augmented DAGs derived from them,

has been shown to be useful to decide if the data available is sufficient for obtaining

consistent estimates of the target causal effect of policy intervention FT = do(T = t′).
If so, we can derive a closed-form expression for the target quantity in terms of distribu-

tions of available quantities. If it is not sufficient, this framework can help suggest a set

of observations and experiments that, if performed, would render a consistent estimate

feasible. Design Networks expand the IDs framework to address explicitly experimental

design and provide the semantics to discuss how design can assist identification, and

when and how one can identify causal effects. Incorporating nodes for experimental

design decisions is useful in demonstrating their impact on the graphical structure and
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on the ‘data structure’ derived from it. Certain policy assignment mechanisms, such

as randomised cluster allocation, will add ‘extra’ independencies to the ID, defining a

new collection of conditional independencies. To make a causal inference of FT , it is

important that we consider the mechanisms producing the data (dE). Furthermore, we

need to differentiate between policy interventions we want to evaluate, FT ∈ DT , and

experimental allocations, AT ∈ DE. The relevance of DE in assisting the identification

and comparison of different mechanisms d∗E in terms of identifiability can be addressed

using DN for diverse types of assignment. Design networks were introduced for cluster

allocation, and Spiegelhalter (2001)’s Bayesian hierarchical model was extended to in-

clude causal interpretation and used to illustrate a causal analysis of a simplified version

of the Progresa programme.

When cluster allocation is done randomly, two-level Bayesian hierarchical models

could be used to obtain the effect of FTj on Yjk and the relevant coefficient can ‘safely’

be given a causal interpretation as an ‘overall’ effect. For the non-random case the

analysis will need the conditioning on the ‘relevant’ background variables. Cluster

allocation might help identifying individual-policy effects in certain cases.

Design of experiments within the Bayesian decision theoretic approach has been

studied broadly in the literature; however, not in terms of causal reasoning and identi-

fiability. In most of the literature on Bayesian experimental design the discussions have

been limited to a) a set of options which include the choice of the levels of treatment

and the number of repetitions within each level, and b) to a utility function usually de-

fined in terms of minimising the posterior variance of estimates (or maximising entropy),

which is an important issue. However, an experiment that overlooks identification could

lead to the wrong conclusions if causal analysis is of interest. Causal inference imposes

an extra criterion for the evaluation of the designs. This work extends the on-going

discussion to a more general setting where the set of options is extended to include deci-

sions about policy allocation and recording mechanisms and where the utility function

is allowed to include a measurement of identifiability.

Appendix A. Design Networks: General remarks

By allowing the ‘idle’ system in Dawid (2002) to refer to any experimental system, the

list of propositions in this section could be derived directly or are analogous to the

results presented in Dawid (2002).

In general, we will say that the ‘causal’ effect of T on Y is identifiable directly from

the available (experimental) data collected under DE = dE , if learning the value of FT

(i.e. learning if the future policy was set to a value or left to vary ‘naturally’) does not

provide any ‘extra’ information about the response variable Y given the value of T and

experimental conditions DE = dE (i.e. if (Y⊥⊥FT | T )DE
) then p(y | t′, FT = do(T =

t′);DE = dE) = p(y | t′, FT = ∅;DE = dE). Note that this will hold (or not) regardless

of R(B).

Definition (Direct identifiability) The ‘causal’ effect of T on Y is identifiable directly
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from available (experimental) data collected under DE = dE , if (Y⊥⊥FT | T )dE
. Then

p(y | FT = do(T = t′);DE = dE) = p(y | t′;DE = dE).

This will imply that the conditional distribution p(y | t′) that is extracted from

data generated according to dE can be used directly to estimate the target causal effect

p(y | FT = do(T = t′)) regardless of the recordability or the actual values of B.

Let dE1 = {A = a1;R(B) = r1} and dE2 = {A = a2;R(B) = r2} be two experimen-

tal design interventions.

Proposition If two experimental DNs under allocations defined by A = a1 and A = a2

share the same conditional independencies Sa1
= Sa2

, and (Y⊥⊥FT | T )a holds for
a = a1, a2 then experiments dE1 and dE2 share the same ‘direct identifiability’ status
for the causal effect of T on Y defined by intervention FT for any recording mechanisms
r1 and r2 Thus, the choice of assignment mechanism (between a1 and a2) is said to be
irrelevant to obtaining direct identification.

For instance, if a1= pure random allocation with probability θ∗1 and a2= pure random

allocation with probability θ∗2 , such that 0 < θ∗T < 1 for all t∗, both assignments lead to

direct identifiability. Then, regardless of the background variables recorded, the choice

between a1 and a2 is irrelevant for identification purposes. Both allocations might be

different in terms of a balanced sample and the variance and efficacy of the estimates,

but this is regarded as a secondary goal of the choice of experiment.

Proposition If direct identifiability holds for a1, i.e. (Y⊥⊥FT | T )a1 , but not for a2,
then the choice between dE1 = {a1, r} and dE2 = {a2, r} is not irrelevant for direct
identifiability.

An example of this is when a1 = pure random allocation and a2 = ∅. Although

naturally it could be observed that (T⊥⊥B)∅ holds, direct identifiability will usually

not hold for a2 = ∅. So, the choice between performing a randomised experiment and

observing the original mechanism is not irrelevant for the isolation of effects and their

direct identification.

Direct identifiability of the causal effect implies assuming (Y⊥⊥FT | T )dE
, which

is a very strong assumption that usually will not hold when observational studies or

imperfect experiments take place. However, we might be ready to assume that for a

set B∗ ⊆ B where B∗⊥⊥FT , conditional on B∗ the learning of FT is irrelevant for the

response, such that (Y⊥⊥FT | T,B∗)dE
and then

p(y | t′, B∗, FT = do(T = t′);DE = dE) = p(y | t′, B∗, FT = ∅;DE = dE)

so we could ‘substitute’ the future intervened probability with the ‘natural experimental’

distribution available from the data.
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Definition (Conditional identifiability) The ‘causal’ effect of T on Y conditional on B∗

is identifiable directly from the available (experimental) data collected under DE = dE ,
if (Y⊥⊥FT | (T,B∗))dE

. Then

p(y | FT = do(T = t′), B∗;DE = dE) = p(y | t′, B∗;DE = dE).

Notice that conditional identifiability alone does not imply that procedures like the

back-door formula can be used to calculate the overall effect of T on Y, which needs

condition (B∗⊥⊥FT )dE
to hold as well.

Proposition If direct identifiability does not hold for a1, dE1 = {a1, r1}, then the
choice of the recording mechanism R(B) = r1 in the experimental design defined by
dE1 = {a1, r1}, is relevant for obtaining ‘adjusted’ identifiability.

When identifiability cannot be obtained directly from the data defined by DE , iden-

tifiability can still hold for a particular configuration of R(B). Then, we say that the

causal effect is identifiable through an ‘adjustment’ procedure, and this leads to another

definition.

Definition (Adjusted identifiability) The ‘causal’ effect of T on Y is identifiable through
an ‘adjustment’ procedure if

p(y | t′, FT = do(T = t′);DE = dE) = h(y, t′, B∗ | DE = dE)

such that R(B∗
q ) = 1 for all B∗

q ∈ B∗ ⊆ B and h is a function of known probabilistic
distributions of recorded variables under dE .

If we had a complete picture of the systems, then we could observe all background

variables B and their influences and no unobserved or latent variables would exist.

Then, R(Bq) = 1 would be plausible for all q and we would always be able to find

a combination R(B∗) such that p(y | FT = do(T = t′);R(B∗)) would be identifiable

through an adjustment procedure. However, our vision as experimenters willing to

collect data is much narrower and is restricted to a partial view in which not all back-

ground variables are accessible and not all settings r are accessible. Nevertheless, we

can still choose among different settings of R(B). The design network representation

permits us to evaluate identifiability for different choices of the recording mechanism

R(B). In consequence, it could assist the experimenter to choose among a possible set

of recording settings, r, in order to assist identification of the effect of interest. In a

first raw classification, recording mechanisms could be classified into those for which

adjusted identifiability holds (h exists) and those for which the effect remains uniden-

tifiable. Different recordings might have further consequences in the inference of causal

effect; however, in terms of identifiability, the choice between two recordings that ensure

adjusted identifiability is irrelevant. Thus we have,
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Proposition Let dE1 = {a, r1} and dE2 = {a, r2} be two experimental conditions such
that direct identifiability does not hold for the policy assignment mechanism defined by
A = a, and where r1 and r2 represent recording mechanisms in which collections B∗

1 and
B∗

2 are recorded respectively. If functions h1 and h2 of known probabilistic distributions
can be found for both recordings r1 and r2, then dE1 and dE2 are said to be equivalent
for adjusted identifiability and the choice between recording mechanisms r1 and r2 is
irrelevant for identifiability.

In the case where neither h1 nor h2 can be found, the choice of r1 and r2 is also

irrelevant, but in this case both recordings produce non-identifiability. However, when

h1 exists, but h2 does not, then dE1 and dE2 do not share the same identifiability

status, as the target causal effect of future intervention FT can be obtained through an

adjustment procedure for dE1 but it is not identifiable under dE2.

When ‘adjustment’ is needed, some closed-forms for the function h have been given.

The ‘back-door’ criterion (Pearl 1993), the ‘front-door’ formula (Pearl 1995) and the ‘G-

computation’ formula (Robins 1986) are examples of criteria and formulae that imply

the use of background variables to obtain ‘adjusted’ estimates and are all particular

cases of functions h. A broader discussion of these criteria under different approaches

can be found in Pearl (2000), Dawid (2002) and Lauritzen (2001).

If we can assume we are in a situation represented by a system in which potential

confounders exist, pure random allocation will provide a data-generating mechanism

that ensures direct identifiability of the effect of interest. In this case, we are performing

control via design of the potential confounders that might be affecting the choice of

policy, like politicians’ preferences to benefit some particular communities. A generating

mechanism that can only provide identifiability through an ‘adjustment’ formulation

will correspond to a situation in which potential confounders have to be controlled via
analysis.

Even if functions h1 and h2 can be found for dE1 and dE2 and adjusted identifiability

can be obtained, further considerations are necessary when choosing an experiment. If

r1 and r2 are such that B1 ⊆ B2 then dE1 will be generally preferred to dE2, as recording

a larger data set implies a more costly implementation and storage. In this sense, we

would like the set of recorded variables to be minimal, but sufficient for identifiability.

Definitions of sufficient sets have been made (see Lauritzen 2001; Dawid 2002; Pearl

2000). Functions h1 and h2 might be found for sets B1 6= B2 where neither of them is

a subset of the other. In any case, functions h1 and h2 might not have the same form

and particular estimates might not be equally efficient when derived from h1 than when

derived from h2, reflecting the loss of information associated with our restricted partial

views determined by r1 and r2. An example of this, for the front-door formulation, can

be found in Lauritzen (2001).

When direct or adjusted identifiability holds, the design dE is ignorable. However, as

Rubin (1978) notes, not all ignorable mechanisms can yield data from which inferences

for causal effects are insensitive to prior specifications. Direct identifiability gives a

situation where effects are insensitive to the specification of prior distributions of the
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data. However, this will not hold for adjusted identifiability where the causal effect is

dependent on the prior distribution of background variables, P (B).

A.1 The positivity condition

In general, the set {t∗} of intervention-values assigned through AT is not necessarily the

same as the set of future-policy-values {t′} defined by FT . In order to be able to evaluate

the causal effects of intervention FT = do(T = t′), we need treatment t′ to be observed

under experimental conditions dE . So, we need p(t′ | B∗, FT = ∅;DE = dE) > 0. This

requires that treatment assignment mechanism AT includes t′ as one of its allocated

values. In other words, this requires that t′ ∈ {t∗}. In a prospective study, this condition

will usually hold. However, when data has been already collected, we might face the

case where t′ /∈ {t∗}. In this case, we would only be able to use the data available if

we could make some parametric assumptions for p(Y | T, ·) before the policy effects can

be identified. In general, if all the relevant information needed to evaluate the causal

effect is encoded in a function τ (η) of η, and the experimental data provides us with

information about λ (η) , it will suffice if τ (η) ⊆ λ (η) . In this case, predictively,

p(y | FT = do(T = t′); dE) =

∫

η

p(y | FT = do(T = t′), τ (η))p(λ (η) | ∆dE
; dE)dη.

If different policies represent categorical variables, this could be difficult. In the FS

example, imagine the two supplements provided in the experiment through assignment

AT = do(T = t∗) are from different brands, say brand A (t∗A) and brand B (t∗B), and

the future policy consists of providing a food supplement from brand C (t′C). The data

available, no matter how the actual assignment was made (random or not), will hardly

be useful to conclude anything about the effect of food supplement C. However, imagine,

that we have a measure in terms of the calorie intake that each supplement provides

and that t∗A = 100 kcal and t∗B = 300 kcal, and we know that supplement C has 200

kcal, then if we are ready to assume that η contains a summary of the effect on weight

per each increase of one kcal, then we would be able to estimate its effect.

A.2 Choice of experimental design

The problem of choosing an experiment has been set in Bayesian decision theory using

decision trees (see Lindley 1971; Bernardo and Smith 1994). A DN could be viewed as

its corresponding ID, allowing us to represent influences between decisions and random

nodes. Optimality can be defined in various ways, and qualities for the distributions

of estimators, such as minimum variance, are desirable (see Chaloner and Verdinelli

1995). Here we focus on the isolation of the target causal effect and thus on its identi-

fication. The efficacy of experimental design interventions DE could then be measured

in terms of making the (causal) effects of FT = do(T = t′) identifiable and then two

(or more) experiments can be compared in these terms, and among the experimental

decisions DE we choose the one with highest utility. ‘Pure’ (i.e. non-stratified) indi-

vidual random allocation contrasted with the ‘no experiment’ choice (i.e. observational
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data) is used to introduce this procedure. When the policy assignment is done through

random allocation, two control actions are performed: randomisation and intervention.

So treatment t∗ is done, AT = do(T = t∗), according to a probability distribution θ∗T
totally fixed and controlled by the experimenter through AθT

= do(θT = θ∗T ). Node A
might be expanded to show explicitly the mechanisms underlying the assignment and

the new independencies that might be introduced. This expansion involves parameter

and intervention nodes that are included in an augmented-extended design network.

• AθT   = Ø :=  N o  R a n d o m i s a t i o n
θT (predispositions in the choice of T) is left to 
v a ry   “na tu ra lly ” a ccording  to θT =p(AT | B) 

• R a n d o m  a l l o c a t i o n ,  b y  d o i n g  (θT = θ*
T ) :

•Brea k s link  (r) a nd introdu ces conditiona l 
independencies:

B T Y FT |  T T Y

AT

θTAθT

FT

B R ( B)
( r )

• AθT   = Ø :=  N o  R a n d o m i s a t i o n
θT (predispositions in the choice of T) is left to 
v a ry   “na tu ra lly ” a ccording  to θT =p(AT | B) 

• R a n d o m  a l l o c a t i o n ,  b y  d o i n g  (θT = θ*
T ) :

•Brea k s link  (r) a nd introdu ces conditiona l 
independencies:

B T Y FT |  T T Y

AT

θTAθT

FT

B R ( B)
( r )

Figure 9: Augmented - Extended DN for random allocation

Experimental actions ‘do’ parameter nodes. Random allocation breaks the link

(r) and therefore two experimental structures arise from this choice. For each design

strategy d∗E ⊂ DE taken we can obtain an experimental DN from which independencies

can be easily read. These experimental DNs define the data structure or data pattern.

T YFT
E x p e rime ntal D N 

for Random Allocation

B R(B)

T YFT
E x p e rime ntal D N 

for No Random Allocation

B R(B)

T YFT
E x p e rime ntal D N 

for Random Allocation

B R(B)

T YFT
E x p e rime ntal D N 

for No Random Allocation

B R(B)

Figure 10: Experimental DN

Imagine we establish that the utilities associated with obtaining direct identifiability,

adjusted identifiability and unidentifiability are given by UD, UA and UU respectively.

Then for the pure random allocation vs observational case, the four possible combi-

nations of (A,R(B)) are shown in Table 3. Both experimental decisions that include

random allocation, AθT
= do(θT = θ∗T ), have the same utility associated in terms of

identifiability and are equivalent in these terms. However, performing an experiment

(randomising and/or recording) will typically involve an associated cost that is not in-

cluded here. The fact that UD 6= UA (and actually we consider UD > UA) is due

to the fact that the recording of B will increase the cost of the experiment and that

p(y | FT = t′, dE = 3) is sensitive to the specification of prior distributions of the data.

The choice of θ∗T could have an effect on the efficacy of the estimators as it could af-
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fect the balance of the experiment, but the actual value θ∗T does not affect the graph

independence structure and the identifiability status derived from it.

Experimental Decisions Design Consequence Utility(dE)

DE AθT
R(B) p(y | F T = t′; dE) U

1 random 1 direct identifiability UD

2 random 0 direct identifiability UD

3 ∅ 1 adjusted identifiability UA

4 ∅ 0 No identifiable UU

Table 3: Choice of experimental design for pure random example

A.3 An influence diagram for policy analysis

Figure 11 shows an influence diagram of the (simplified version of the) complete system

for policy analysis. As before, the policy variable is denoted by a decision node T
that has been augmented to make explicit policy intervention FT . When the policy is

defined through policy intervention decisions DT , it can contain a collection of actions

G that are triggered when intervention FT = do(T = t′) takes place. Actions G can be

contingent on a set of observed variables Z and are children nodes of T . The definition of

possible structures and correspondent formulae for the calculation of the overall effect

of intervention FT in Y through actions G have been discussed in Madrigal (2004).

The policy assignment mechanisms are contained in decision node A, which could be

influenced by some background variables B. Both, the policy assignment mechanisms,

A, and the recording mechanisms of B, R(B), are defined as part of the experimental

decisions DE .

G

Z

Y

B

A

TF o

Figure 11: Complete ID for policy analysis

This simple structure shows how the two sets of decisions (namely, policy intervention

decisionsDT and experimental decisionsDE) could be represented in the same graph. A

more realistic graph should include some possible links between the background variables

B and the variables Z in which actions G are contingent on, and possibly some type of

influence of Z in the policy assignment mechanism. It is important to use the policy

makers’ expertise and knowledge to be able to represent in the influence diagram a most

accurate version of the ‘real’ system with all possible influences. This will assist our
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causal inferences conclusions and help the choice of actions.
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Abstract. The multiresolution estimator, developed originally in engineering ap-
plications as a wavelet-based method for density estimation, has been recently ex-
tended and adapted for estimation of hazard functions (Bouman et al. 2005, 2007).
Using the multiresolution hazard (MRH) estimator in the Bayesian framework, we
are able to incorporate any a priori desired shape and amount of smoothness in
the hazard function. The MRH method’s main appeal is in its relatively simple
estimation and inference procedures, making it possible to obtain simultaneous
confidence bands on the hazard function over the entire time span of interest.
Moreover, these confidence bands properly reflect the multiple sources of uncer-
tainty, such as multiple centers or heterogeneity in the patient population. Also,
rather than the commonly employed approach of estimating covariate effects and
the hazard function separately, the Bayesian MRH method estimates all of these
parameters jointly, thus resulting in properly adjusted inference about any of the
quantities.

In this paper, we extend the previously proposed MRH methods (Bouman et al.
2005, 2007) into the hierarchical multiresolution hazard setting (HMRH), to ac-
commodate the case of separate hazard rate functions within each of several strata
as well as some common covariate effects across all strata while accounting for
within-stratum correlation. We apply this method to examine patterns of tu-
mor recurrence after treatment for early stage breast cancer, using data from
two large-scale randomized clinical trials that have substantially influenced breast
cancer treatment standards. We implement the proposed model to estimate the
recurrence hazard and explore how the shape differs between patients grouped
by a key tumor characteristic (estrogen receptor status) and treatment types, af-
ter adjusting for other important patient characteristics such as age, tumor size
and progesterone level. We also comment on whether the hazards exhibit non-
monotonic patterns consistent with recent hypotheses suggesting multiple hazard
change-points at specific time landmarks.
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1 Introduction

In survival analysis, because the hazard function h(t) often exhibits unstable behavior

making it difficult to reliably discern patterns of change or make comparisons between

groups, aggregates of the hazard over time are more frequently used. The cumulative

hazard H(t), or more commonly, functions of H(t) such as survival or cumulative in-

cidence functions, are used for summary and inference on failure risk. While useful

and easy to interpret for most purposes, these summaries can partially obscure im-

portant patterns in the hazard of failure over time. Alternatively, examination of the

hazard function itself in detail can reveal important properties of the failure process

(Aalen and Gjessing 2001). Generally, some type of smoothed estimate of the hazard

function is used to characterize its shape, which is indicative of how failure risk (in the

population) changes with respect to some time origin. While a variety of approaches

toward hazard estimation have been proposed, methodological challenges remain for

both estimation and associated statistical inferential procedures. In particular, flexi-

ble estimation and modeling approaches are needed, because in contrast to the hazard

functional form in most parametric survival models, the hazard may exhibit complex

non-unimodal shape with ‘change-points’ that may reveal important information about

the process under study.

In this article, we investigate the hazard of disease recurrence among women treated

for breast cancer and followed over several years. The data originate from large multi-

center randomized clinical trials evaluating the effect of hormonal or cytotoxic chemother-

apy treatment agents administered after surgery (referred to generally as adjuvant ther-

apy) in women with early stage breast cancer. As we describe in the next section,

there is considerable interest in the patterns of recurrence hazards after breast cancer

diagnosis and initial treatment, both to gain biological insights and to better manage

the disease in a clinical setting. We accommodate the biologically plausible situation

whereby different subgroups of women with specific disease features may have distinct

functional forms of failure hazard that are non-proportional to each other, by construct-

ing a joint model for all separate subgroup hazards, while keeping the effects of some

factors (such as age or tumor size) common across all strata and proportional within

each stratum.

To model the recurrence hazards, we apply the semiparametric multi-resolution haz-

ard (MRH) estimator recently presented in work by Bouman and colleagues

(Bouman et al. 2005, 2007). Employing a piece-wise constant prior for the hazard rate

which is constructed in a tree-based and self-consistent manner, the MRH approach

permits flexible modeling with the ability to incorporate a variety of a priori assump-

tions about the shape and smoothness of hazard functions in each of several defined

strata. Furthermore, Bayesian modeling allows us to easily address specific hypotheses

concerning the timing of peaks in the risk of failure and how these may differ with

respect to key biologic and clinical parameters in breast cancer.

In the next section, we describe some of the key questions of interest in modeling of

the breast cancer recurrence hazard, and the data source for this study. In Section 3 we

review the basics of the multiresolution hazard model, and present the extension to the
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hierarchical multiresolution (HMRH) setting. In Section 4 we provide technical details

of the Markov chain Monte Carlo (MCMC) model implementation. Section 5 presents

the analysis. We conclude with a discussion of the findings in relation to the broader

literature on breast cancer hazards as well as plans for future work on this problem.

2 Recurrence Risk after Surgery for Early Stage Breast

Cancer

Over the past few decades, there has been appreciable progress in therapeutic strategies

for early stage (i.e., localized and operable, as opposed to metastatic) breast cancer,

with a well-developed array of treatment options. Due to increased screening vigilance

and disease awareness, currently over 75% of women diagnosed have early stage tumors.

Despite this progress, the clinical course of breast cancer after diagnosis remains hetero-

geneous from patient to patient and thus highly unpredictable for individuals. Thus, a

significant clinical challenge is deciding which and how much adjuvant therapy is needed,

and determining the magnitude of recurrence risk over extended post-treatment follow-

up. Characteristics that prospectively identify which women are at greater or lesser

risk of treatment failure are needed to aid in individually tailoring therapy for optimal

disease management. Answers may also lie partly in gaining a better understanding of

the intermediate and long-term clinical course of the disease, identifying patterns that

can portend time periods of increased recurrence risk.

Apparent patterns in breast cancer recurrence hazard are readily observable from

large cohorts of patients systematically followed over time. It is well known that risk of

recurrence remains elevated for a long period of time after initial diagnosis and tumor

removal, and there is longstanding interest in the the prospect of “cure” after sufficient

time tumor-free has been achieved (Berg and Robbins 1966). Some long-term follow-up

studies have suggested that a finite but lengthy“dormancy period” exists (possibly over

20 years), whereby tumor recurrences may still appear (Gordon 1990; Demicheli et al.

1996; Karrison et al. 1999). Studies examining the shape of the recurrence hazard con-

sistently show a sharp peak 12-24 months after initial diagnosis and treatment, fol-

lowed by a decline over time, although the hazard remains persistently elevated relative

to individuals in the population never having had breast cancer (Saphner et al. 1996;

Hess et al. 2003). This pattern stands in sharp contrast to the recurrence hazard for

several other major cancers (e.g., colon, lung), where most recurrences appear within

the first five years after discovery and removal of the primary tumor, followed by a

period in which the hazard of recurrence and death from the disease resemble that of

the population at large.

2.1 Data: Randomized Clinical Trials for Early Stage Breast Cancer

The National Surgical Adjuvant Breast and Bowel Project (NSABP) is a U.S. National

Cancer Institute sponsored and funded multi-center cancer clinical trials group that

has investigated a spectrum of treatments for breast and colorectal cancers since the
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late 1950s. The group consists of more than 5,000 participating physicians, nurses,

and other research specialists located at over 1,000 medical centers, university and

community hospitals, oncology practice groups, and health maintenance organizations

in North America. The group has enrolled more than 60,000 women and men in clinical

trials for breast and colorectal cancer.

While use of systemic adjuvant therapy began in the mid 1970s for women with

tumors that had spread to the axillary lymph nodes, those with so-called lymph node

negative breast cancer continued to be treated by surgery only, as they were considered

at sufficiently favorable prognosis so as not to require further interventions. Because

a significant fraction of such women do suffer recurrence and eventually die from the

disease, beginning in the 1980’s the NSABP began a series of clinical trials among

patients with axillary lymph node negative breast cancer. These trials were serially

designed, beginning with comparisons surgery alone to post-surgical hormonal or cyto-

toxic adjuvant therapy regimens, and following benefits seen for the latter, subsequently

comparing different adjuvant therapy regimens. These studies provide a unique view to

the long-term prognosis of women with early stage breast cancer, and are an ideal data

source for examining factors influencing the hazard of disease recurrence.

A key determinant of both expected prognosis and potential choice of adjuvant

therapy type is the presence and quantity of estrogen receptors (ER) on the tumor. From

1982-1988, patients were accrued according to ER status into one of two trials conducted

in parallel: Protocol B-13 randomized 760 patients with ER-negative (ER-) tumors to

no further treatment after surgery (384) or to 12 cycles of cytotoxic chemotherapy

treatment with methotrexate and 5-fluorouracil (376). Protocol B-14 randomized 2,892

patients with ER-positive (ER+) tumors to placebo (1,453) or the estrogen antagonist

drug tamoxifen (1,439) after surgery. Primary findings were first obtained in 1989,

showing a significant reduction in breast cancer recurrence risk for patients receiving the

adjuvant therapy regimens (Fisher et al. 1989b,a). Longer follow-up eventually revealed

a survival advantage for those who received adjuvant therapy (Fisher et al. 1996b,a).

Further details of the trial designs and findings can be found in the published primary

reports. Follow-up continues to date, with mean follow-up of over 15 years and over 900

recurrence events observed.

Primary endpoints for the trial were overall survival, defined as time from surgery

to death from any cause, and disease-free survival, defined as time to first breast cancer

recurrence at any local, regional, or distant anatomic site, occurrence of a tumor in

the opposite breast, occurrence of other second primary cancers, or death prior to

these events (that is, time to first event of any kind). In this study, we model the

cause-specific hazard for breast recurrence, defined as time to breast cancer recurrence,

treating the other event types as censored observations. We do this because modeling

the cause-specific hazard for breast cancer events only may have more clinical relevance,

and furthermore, with the exception of endometrial cancer, which occurs in less than

1.5% of patients but is more frequent among women taking tamoxifen, hazard rates

for non-breast cancer events are essentially equal between the two treatment groups.

As in previous studies modeling these data (Fisher et al. 1989c; Bryant et al. 1997), we

examine tumor size, tumor progesterone receptor level, menopausal status, and age as



V. Dukić and J. Dignam 595

covariates potentially associated with the recurrence hazard.

3 The Multiresolution Hazard Model

In this section, we review the multiresolution approach to modeling hazard rate in a

semiparametric Bayesian context developed and described in more detail in Bouman et

al. (Bouman et al. 2005, 2007). As will be explained below, the method relies on the

clever tree-based construction of the prior for the hazard rate, that ultimately yields a

resolution-invariant and self-consistent prior for an arbitrarily fine piece-wise constant

approximation to the hazard rate. The parameterization of the prior tree uniquely

defines not only the prior expectations of the hazard rate in each of the intervals, but

it also determines the amount of correlation and smoothness in hazard between the

intervals.

3.1 Approaches to Hazard Modeling

One of the most common approaches to assessing the impact of factors on the hazard of

failure is the Cox proportional hazard model. In this model individual covariates X af-

fect baseline hazard hbase(t) via exp(X′β) (Cox 1972). This approach is readily adapted

to modeling the cause-specific hazard (Prentice et al. 1978). In the typical application

of the Cox model, covariate effects for the relative hazard are the primary focus, with

the baseline hazard function treated as a nuisance parameter. As we have indicated,

however, interest in our particular study here lies precisely in the estimation of the

hazard functions. Specifically, we are interested in the estimation of a separate hazard

rate function within certain strata based on treatment type and tumor characteristics,

so that we might compare the shape of the hazards, while simultaneously estimating

and performing inference about other covariate effects that are reasonably assumed to

be common over strata.

Non-parametric methods for extracting hazard function estimates have been pro-

posed for the Cox model (Gray 1990, 1992), primarily for the purpose of performing

model diagnostics (e.g., changes in the effects of covariates over time) and correct func-

tional forms for covariates in relation to failure hazard. A more general hazard regression

approach that involves partitioning the time axis more specifically focused on hazard

estimation within covariate strata (Gray 1996). There are many other approaches and

variations (see Andersen et al. (1993) for detailed review), many of which provide esti-

mates of functionals (S(t), etc.) after the model is fit, but most still focus on covariates

and model checking, rather than on efficient hazard function estimation per se. We

discuss the properties and justify the MRH approach to hazard modeling more in the

next section.
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3.2 Multiresolution Model for the Baseline Hazard

Multiscale models for estimation of a discretized intensity function were developed for

astrophysics applications by Kolaczyk (Kolaczyk 1999; Nowak and Kolaczyk 2000). De-

tails of how this methodology has been adapted to hazard estimation are summarized

in the following, while a more extensive discussion of its theoretical properties can be

found in Bouman et al. (2005, 2007).

In summary, the multiresolution hazard (MRH) approach yields an estimate of the

baseline (i.e., estimate from which covariate-specific curves can be generated) survival

function based on the multiresolution baseline hazard estimate. It consists of first choos-

ing the “time resolution” – a set of time points {t0, t1, ..., tJ} – and then estimating the

underlying baseline survival at those points, Sbase(tj), based on the the cumulative haz-

ard Hbase(t) and its discrete increments dj ≡ Hbase(tj)−Hbase(tj−1) =
∫ tj

tj−1

hbase(s)ds,

where hbase(t) represents the baseline hazard rate at time t. For those times t such that

tj−1 < t < tj , j = 1, . . . , J , a piecewise-constant hazard rate is assumed.

The MRH model is thus a semiparametric model which is able to estimate the

baseline hazard rate hbase(t) at the resolution times tj , along with covariate effects β.

For convenience, we set the number of time intervals J equal to 2M , where M > 0. In

general, these intervals need not be of equal length – one can choose any resolution,

though in practice we would recommend one such that there are multiple failure times

observed in almost all intervals. Furthermore, the resolution should be chosen so that the

average (or total) hazard rates within its intervals are clinically meaningful. However,

in cases when prior information and clinical input about the resolution are vague, the

optimal number of intervals could be chosen via model selection criteria, such as the DIC

(Spiegelhalter et al. 2002). Note that the failure times after tJ become right-censored

at tJ ; hence, J should also be chosen so that a relatively small fraction of failure times

is censored as a result.

After fixing the resolution, the discretized hazard is modeled in a way that allows

us to incorporate the prior belief about the shape and smoothness of the true under-

lying hazard function. Following the notation in Bouman et al. (Bouman et al. 2005,

2007), we denote the total cumulative baseline hazard H(tJ ) as H0,0, and the haz-

ard increments d1 as HM,0, d2 as HM,1, . . . , and dJ as HM,2M−1. We then build the

multiresolution hazard tree by recursively defining Hm−1,p = Hm,2p + Hm,2p+1, for

m = 1, . . . , M , and p = 0, . . . , 2m−1 − 1. We refer to m as the level of resolution

and p as the position within that level. Thus, at the top of this hazard tree we have

the total cumulative hazard H(tJ ), which we split into finer components with each

additional level of the tree, until we finally end at the the bottom of the tree (the

highest level of resolution) with the hazard increments d1, . . . , dJ . If we further de-

fine Rm,p ≡ Hm,2p/Hm−1,p, we can parametrize the hazard increments by H0,0 and

the “splits” R1,0, . . . , RM,2M−1−1 (denoted Rm,p). For example, when M = 3 (imply-

ing J = 8) we have: d1 = H0,0R1,0R2,0R3,0, d2 = H0,0R1,0R2,0(1 − R3,0), . . . , d8 =

H0,0(1 − R1,0)(1 − R2,1)(1 − R3,3).

It is important to note that the piecewise-constant hazard assumption has been em-
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ployed multiple times in the literature (for example, Walker and Mallick (1997). How-

ever, the uniqueness of the MRH model lies in its clever construction of the tree-based

prior for a piece-wise constant function, so that the prior essentially does not depend on

the final resolution level M (i.e., it is invariant to the height of the tree). More precisely,

integrating out higher-level parameters, one would obtain the exact same prior as if that

level and its parameters had simply not been considered in the first place. To aid with

the understanding of the MRH model, a simple diagram of the two-level multiresolution

prior is given in Figure 1.

Figure 1: Diagram illustrating the multiresolution prior for the hazard rate function,

with 2 levels (i.e., with resolution 2).

As in Nowak and Kolaczyk (Nowak and Kolaczyk 2000), we place a beta prior on

each Rm,p and a gamma prior on H . The shape parameters of each of these beta

priors and the hyperparameters for H determine the prior expectations of the hazard

increments, d∗
j , j = 1, . . . , J . Furthermore, to allow for extra smoothness in the mul-

tiresolution prior, Bouman et al. (2007) introduce a multiplier for the shape parameters

of the beta priors at each additional level of the hierarchy, denoted by k. Proceeding in

this fashion, the priors for H and each Rm,p when M = 3 and J = 8 are:

H ∼ Ga(a, λ),

R1,0 ∼ Be(2γ1,0ka, 2(1 − γ1,0)ka),

R2,p ∼ Be(2γ2,pk
2a, 2(1 − γ2,p)k

2a), p = 0, 1

R3,p ∼ Be(2γ3,pk
3a, 2(1 − γ3,p)k

3a), p = 0, 1, 2, 3.

Note that under this prior structure, E(Rm,p) = γm,p, which, because H and Rm,p

are independent a priori, easily allows one to choose γm,p, λ and a so that the prior

expectation of the baseline hazard in each time interval j is any value d∗
j desired. This
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particular formulation of the gamma-beta tree also determines the prior correlation of

the dj as a function (among other things) of k and a. Specifically, when k = 0.5,

the baseline hazard increments dj are a priori independent gamma random variables.

Choosing k less or greater than 0.5 yields, respectively, negative (rougher hazard) or

positive (smoother hazard) prior correlation among the dj ’s (Bouman et al. 2005, 2007).

Smoother hazard may in particular be employed in problems with much censoring.

It is also possible to treat k as a hyperparameter and estimate it jointly with other

parameters.

It is well known that MRH models, because they are based on a tree-like structure,

may have a blocky correlation pattern; for example, it is possible that two neighboring

hazard increments are less correlated than those further apart which happen to share

more ancestral split parameters. Bouman et al. (Bouman et al. 2005) propose placing a

hyperprior on the hazard H shape parameter a to even out the prior correlations among

hazard increments and bypass this rather counterintuitive property.

3.3 Hierarchical Multiresolution Hazard Model

It may sometimes be of interest or necessity to relax the proportional hazards assump-

tion, permitting different baseline hazards in particular groups. These strata-specific

hazards may be treated as fixed, or as random (infinite dimensional) strata-specific pa-

rameters. This could be desirable in particular when we have data from multiple centers

or multiple studies, when one needs to allow for differences in baseline hazards due to

unobserved covariate processes, or to account for correlation within subjects from the

same strata.

In breast cancer, it is well-known that women with ER- and ER+ tumors have differ-

ent expected prognosis due to association of ER with both tumor pathology and clinical

characteristics such as patient age (Hess et al. 2003). Because we are primarily inter-

ested in estimating the hazard shapes, we wish to avoid imposing any proportionality

constraint on ER in the model. In any case, Figure 2, showing recurrence-free survival

curves by ER and treatment, clearly illustrates deviation from proportional hazards

between ER- and ER+ patients. While proportionality appears to hold better between

treatment groups within ER categories (Fig. 2), we also wish to permit a different

hazard shape according to treatment type, as biologic hypotheses concerning the action

of adjuvant therapy would suggest the possibility of different shapes (Skipper 1971).

Thus, we define strata defined by the ER by treatment group combinations (i.e., ER-

surgery only, ER- chemotherapy, ER+ surgery only (placebo), ER+ tamoxifen).

More specifically, in this model we allow the hazard for each of the strata to be

a priori an independent and identically distributed random MRH variable. For each

stratum s, s ∈ {1, 2, 3, 4}, we draw the stratum cumulative hazard Hs from a Ga(as, λs),

and then draw the stratum set of splits Rm,p,s. For this reason we will call this model

the hierarchical MRH or the HMRH for short.

To complete the prior for the hazard rate, we place a zero-truncated Poisson (ZTP)

hyperprior with mean µa on each as: e−µaµa
a/[a!(1 − e−µa)], and we allow each scale
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Figure 2: Kaplan-Meier estimates of recurrence-free survival among early stage breast

cancer patients from NSABP clinical trials. Failures continue to occur in all groups

many years after initial diagnosis and surgery.

parameter λs, the parameter of the total cumulative hazards Hs(tJ ), to follow an ex-

ponential distribution with mean µλ. The parameters ks can be also given exponential

priors with mean µk, but they could also be fixed if specific smoothness (positive or

negative correlation) is desired a priori.

The continuous-time complete-data likelihood is based on the proportional-hazards

model: hs(t|X, β) = exp(X′β)hbase,s(t), where s denotes the stratum group. For a

patient i in stratum s, if the failure time Ti,s ∈ [0, tJ ] is observed without censoring, the

likelihood function is:

Li,s(β | Ti,s,Xi,s) = exp(X′
i,sβ)hbase,s(Ti,s)Sbase,s(Ti,s)

exp(X′

i,sβ). (1)

When an observation is right-censored, i.e., Ti,s > tcens for some tcens ≤ tJ , we have:

Li,s(β | Ti,s,Xi,s) = Ss(tcens|Xi,s, β) = Sbase,s(tcens)
exp(X′

i,sβ). (2)
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Here, each hs is a priori distributed as an MRH variable, with independent total

hazard and split parameters. The vector of covariates Xi,s contains patient and disease

characteristics (age, tumor size, tumor progesterone receptor level, etc.) for patient i in

stratum s.

4 Markov chain Monte Carlo

The Gibbs sampling algorithm used to simulate the parameter posterior and its sequence

of full conditional posterior distributions for parameters from all strata is outlined below.

The details of the simpler model are provided in Bouman et al. (2005, 2007).

The likelihood for patient i in stratum s, whose failure (or censoring) time is Ti,s,

the censoring indicator δi,s, and the covariates Xi,s, is

L(Ti,s | δi,s, β, Hs,Rm,p,s,Xi,s) =
[

exp(X′
i,sβ)hbase,s(Ti,s)

]δi,s
exp(− exp(X′

i,sβ)Hbase,s(min(Ti,s, tJ))). (3)

The log-likelihood for all N =
∑4

s=1 Ns patients is thus:

δ′
[

Xβ + FsΠR̃
]

−

4
∑

s=1

Ns
∑

i=1

exp(X′
i,sβ)Hbase,s(min(Ti,s, tJ)) (4)

where δ is the vector of censoring indicators for all patients, X is the N × L ma-

trix of covariates and Π is the 2M × (2M+1 − 1) multiresolution tree matrix. In

that matrix, the (i, j) element is 1 when j = 1 or i ∈ [1 + (j mod 2m), . . . , 2M−m +

(j mod 2m)], m = blog2(j)c, and 0 otherwise. R̃ is the multiresolution log-parameter

vector (log(H), log(R1,0), log(1 − R1,0), . . . , log(RM,2M−1), log(1 − RM,2M−1)). F is an

N × 2M matrix for which the (i, j) element is 1 if the ith patient (among all patients in

all strata put together) has Ti ∈ (tj−1, tj ], and 0 otherwise; patients with Ti > tJ have

Fi,j = 0, j = 1, . . . , J (see Bouman et al. (2005, 2007) for details).

The Gibbs sampler steps (Geman and Geman 1984) for the parameters Hs, Rm,p,s,

λs, as, and ks, for all strata s are the same:

1. Sample Hs from its full conditional density:

π(Hs|λs, as,Rm,p,s) = Ga
(

(as +
∑Ns

i=1 δi,s), 1/
[

(1/λs) +
∑Ns

i=1 F(Ti,s)
])

,

with mean µ = (as +
∑Ns

i=1 δi,s)/
[

(1/λs) +
∑Ns

i=1 F(Ti,s)
]

,

where F(Ti,s) = Hs(min(Ti,s, tJ))/Hs(tJ) is a function of the Ti,s and Rm,p,s.

2. Sample each Rm,p,s from the full conditional π(Rm,p,s|ks, as, Hs)

3. Sample k from π(ks|as,Rm,p,s, β), λs from π(λs|Hs, as, β), and

as from π(as|Hs,Rm,p,s, λs, β).

4. Sample β from π(β|Hs,Rm,p,s).
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Similarly as in Bouman et al. (2005, 2007), the full conditional posterior distributions

for Hs are gamma, while the full conditional distributions for each Rm,p,s and β are log-

concave and therefore easy to sample from (using Gilks and Wild (1992) algorithm, for

example). On the other hand, the full conditional distributions for hyperparameters λs,

as, and ks are in general more difficult to sample from as they are not log-concave. We

recommend following Bouman et al. (2005) who use the rejection Metropolis sampling

(see Gilks et al. (1995)).

5 Analysis of the Recurrence Hazard after Breast Cancer

5.1 Covariate Effect Estimation

The 16- and 32-bin multiresolution model with the “flat” prior hazard rate for each

stratum (with all γm,p,s and all ks set to 0.5), was fit using output from Gibbs sampler

chains with 12,000 iterations each, with the first 2,000 iterations of each chain discarded

as burn-in. Every 5th iteration was retained to reduce correlation between adjacent

draws. The Gelman-Rubin diagnostics, performed separately for each parameter, were

used to establish convergence.

Table 1: Posterior Credible Intervals for Predictor Effects, 16-bin model

Tumor Size Standardized PGR Standardized Age

2.5% 0.0148 −0.151 −0.281

50% 0.0199 −0.066 −0.217

97.5% 0.0251 0.007 −0.149

Table 1 gives marginal 95% posterior credible intervals for covariates considered.

Tumor size was measured in millimeters (mm), ranging from 0 to 60mm. Progesterone

receptor concentration (PGR) was standardized using the sample mean of 139.17 and

standard deviation of 294.59. Age was standardized using the sample mean of 53.27 and

standard deviation of 10.42 years. Larger tumor size and younger age at diagnosis were

found associated with increased recurrence hazard: within each stratum, an increase of

10.42 years (1 standard deviation) in age resulted approximately in 20% reduction, while

an increase of 1mm in tumor size resulted in approximately 2% increase in recurrence

hazard. A higher concentration of progesterone receptors on the tumor is weakly indica-

tive of lesser failure risk. While menopausal status is generally an important factor in

breast cancer prognosis, here it was only marginally associated with recurrence hazard

after stratification by estrogen receptor status and inclusion of age at diagnosis in the

model, and so was omitted from further consideration. The direction and magnitude of

these covariate effects are essentially consistent with other prognostic factor studies of

these patients.
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5.2 Hazard Function Estimation

Figure 3 displays by treatment/ER strata the median posterior estimates for the 16-

bin baseline hazard increments (corresponding to constant 11.3-month hazard function

values). This 16-dimensional vector is a discrete approximation to the baseline hazard

rate h(t), estimated via the hazard increments dj =
∫ tj

tj−1

h(s)ds. In Figure 4, we

show a smoothed version of the same hazard estimates. Smoothing was performed via

the median-spline method, with a hazard value of zero included at time zero for each

stratum, to reflect the fact that patients are considered cancer-free immediately after

surgery and essentially do not fail until some time has elapsed.
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Figure 3: Discrete recurrence hazard increments for the 16-bin HMRH model. Horizon-

tal sections represent the hazard value within the approximate 11-month increment in

time from surgery.

Several notable features are seen. First, all four groups have the distinctive hazard

peak around 12-24 months after surgery, with the ER- groups experiencing the peak a

bit earlier. This pattern is similar to that noted by Hess et al. (2003) in their study

of recurrence hazards by ER status. Second, the peak is greatest for the ER- patients
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Figure 4: Smoothed recurrence hazards for the 16-bin model.

receiving surgery only, and is substantially reduced by chemotherapy, being lower than

untreated patients from the more favorable ER+ group. The lowest peak is among ER+

patients randomized to tamoxifen. Interestingly however, at longer follow-up times the

hazard in this group is no lower than that of chemotherapy treated and even untreated

ER- patient groups, both of which have smaller hazard than untreated ER+ patients.

Ultimately, the ER- chemotherapy treated group has the lowest recurrence hazard.

Figure 5 shows pointwise posterior credible intervals, based on 2.5% and 97.5% es-

timated posterior percentiles, for the four strata. With the exception of time points

around the hazard peak, credible intervals for the four hazard estimates tend to over-

lap, particularly at longer follow-up times. Thus, we currently cannot reliably conclude

whether there is a crossover of failure hazard among the groups at later time points.

We should note that in other analyses collapsing across one or the other stratification

factors (ER or treatment) and treating ER or treatment as covariates in modeling, large

treatment effects within ER groups were apparent, while differences between ER groups

within treatment modalities (surgery, adjuvant) were large initially but attenuated over

time, substantively violating the proportional hazards assumption, as is evident in Fig-



604 Hierarchical Multiresolution Hazard Models

ure 2.

Figure 5: Credible intervals for the recurrence hazards from Figure 4 by ER and treat-

ment strata.

5.3 Sensitivity Analysis

We now turn to the question of robustness of our model results. An alternate model was

based on 32 time intervals of length just under 6 months each, instead of the 16 intervals

of approximate length of 1 year. The purpose of this sensitivity check was twofold: first,

to compare the estimates of the hazard rates for each of the four groups under these

alternative resolutions; and second, to assess the impact of additional resolution level

onto the estimates of the covariates (age, tumor progesterone receptor level, and tumor

size). Note that in this data set, we could not reasonably use a finer resolution than the

32-bin choice for two reasons: 1) although this is a large cohort of patients, prognosis is

relatively favorable and so failures are few if the intervals (bins) are very small, and 2)

follow-up visits do not happen more frequently than once every 3 to 6 months, and while

recurrence events can occur in continuous time, recurrence events that are not clinically

apparent will be detected at these visits, causing clustering of events (and consequently
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artificial periodicity in the hazard function estimate) if very small time bins are used.

Table 2: Posterior Credible Intervals for Predictor Effects, 32-bin model

Tumor Size Standardized PGR Standardized Age

2.5% 0.0150 −0.147 −0.281

50% 0.0200 −0.066 −0.215

97.5% 0.0250 0.009 −0.147

Based on the invariance properties of the MRH prior, one can expect that some

of that invariance is preserved in the posterior as well; and we observe this to a large

degree. For example, a 16-bin hazard estimate obtained by fitting the 32-bin model and

then aggregating the neighboring hazard increments is almost indistinguishable from

the original 16-bin model hazard estimate. In addition, hazard rate plots using the

32-bin model and the 16-bin model are very similar as well; as expected, the 32-bin

estimates are slightly more variable, but all hazard shapes are very similar (not shown).

With respect to covariate effect estimates, the effects of increasing the resolution

is minimal. Compared to Table 1, the effects shown in Table 2 differ by a negligible

amount.

6 Discussion

We have illustrated the application of a flexible extension of the familiar Cox pro-

portional hazards model to jointly estimate covariate effects and separate hazard rate

functions for several patient strata. This approach allows us to incorporate covariate

effects and perform inference related to shapes and change-points in the hazard over

time, our primary interest in the problem of recurrence after early stage breast can-

cer. The estimation and examination of the hazard functions directly reveals important

patterns not readily apparent from quantities such as the survival functions. However,

the hazard function remains a difficult quantity to draw robust inference from, as even

in this large dataset, estimates suggest potentially important differences in shape, but

variability estimates preclude any definitive conclusions pending additional analyses, as

discussed below.

The observation that among those patients with initially higher risk disease (i.e.,

those with ER- tumors), the fraction escaping the early failure risk go on to have sub-

stantially lower long-term failure risk than those with initially more favorable prognosis

(ER+ tumors), has significant implications in both clinical management and consider-

ations regarding further developments of adjuvant therapies. In fact, there has been

much recent interest in the development of ‘switching’ strategies whereby women with

ER+ tumors discontinue tamoxifen and begin use of other hormonal treatments, in or-

der to extend and improve on the benefit of this treatment modality. Currently, little
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is known about what factors might be key to optimizing the switching strategy. For

ER- patients, newer chemotherapy and molecularly targeted agents that act on specific

tumor vulnerabilities may offer the best opportunity for a bona fide cure once early

failure is avoided.

In addition to the well-known initial wave of failures following surgery, in recent

years investigators have suggested that additional reproducible patterns are manifest in

the recurrence hazard in the intermediate to long-term follow-up period. The notion

of a bimodal or “double-peaked” recurrence hazard has been proposed, where after the

first period of increased failure risk at 1-5.3.0 years post-surgery, the decline in failure

hazard is followed by a second peak centered roughly around 8 years (Demicheli et al.

1996, 2001; Baum et al. 2005). A number of cancer biologic hypotheses have been

put forth regarding the meaning and cause of a possible double-peaked failure pattern.

For example, it has been conjectured that growth kinetics perturbed by surgery may

contribute to the first wave in failure hazard, while heterogeneous disseminated tumor

cells that require more time to become established may account for the latter peak in

failure (Demicheli et al. 2001; Baum et al. 2005). This idea may seem to harken back

to the naive concept that cancer surgery “spreads” cancer, but the influence of surgery

on growth kinetics does have foundation in substantive biologic theory (Fisher et al.

1983). However, before any such interpretations of the hazard shape can be made or

gain further credibility, more rigorous analytic methods such as those proposed here

must be applied. Furthermore, it may be difficult to uniquely ascribe such a pattern

to specific biologic phenomena, because other circumstances, such as the existence of

patient mixtures due to unrecognized factors present at diagnosis or apparent hazard

spikes caused by clustering of failures in time due to discovery of subclinical disease

around certain time landmarks (e.g., mandatory 5-year post-diagnosis screen) would

be expected to produce similar patterns. Nonetheless, this intriguing concept merits

further investigation.

Our future work on this problem will involve the inclusion of data from trials con-

ducted subsequent to those included here. As the trials are designed in a hierarchical

fashion, these studies share some treatment arms in common with the current data, but

also include newer treatment regimens. Extension of the model to more data sources will

involve incorporation of ‘trial’ effects to allow for heterogeneity among common treat-

ment arms. The inclusion of additional data will permit a more thorough exploration

of changes in the hazard over time and more robust inference (including “collapsibility”

of neighboring intervals in some regions), due to the considerably larger sample size

that will result in narrower bounds on estimated hazards. This analysis will also have

greater biologic and clinical relevance as we explore more recent drug regimens designed

to reduce recurrence risk in women with breast cancer.
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A Spatially-adjusted Bayesian Additive

Regression Tree Model to Merge Two Datasets

Song Zhang,∗ Ya-Chen Tina Shih† and Peter Müller‡

Abstract. Scientific hypotheses of interest often involve variables that are not
available in a single survey. This is a common problem for researchers working
with survey data. We propose a model-based approach to provide information
about the missing variable. We use a spatial extension of the BART (Bayesian
additive regression tree) model. The imputation of the missing variables and infer-
ence about the relationship between two variables are obtained simultaneously as
posterior inference under the proposed model. The uncertainty due to imputation
is automatically accounted for. A simulation analysis and an application to data
on self-perceived health status and income are presented.
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1 Introduction

We consider the problem of inference about the relationship of two variables reported in

two different datasets. This is a common problem for researchers working with survey

data. Scientific hypotheses of interest often involve variables that are not available in a

single survey. Specifically, we are interested in inference on how a variable z is affected

by another variable y, when there is no such dataset that collects z and y simultaneously.

Instead, z is only reported in dataset D1 and y is only collected in dataset D2.

Many model-based methods have been developed to deal with missing data prob-

lems, including maximum likelihood (ML) methods, multiple imputation (MI) methods,

weighted estimating equations (WEE), and fully Bayesian (FB) methods. See Little

(1992), Horton and Laird (1999), Schafer and Graham (2002), Ibrahim et al. (2005) and

the references therein for detailed discussions. There are some assumptions associated

with each of these methods. Many ML methods assume a large sample size so that

the ML estimates are approximately unbiased and normally distributed. The likelihood

function is assumed to arise from a parametric model of the complete data. Finally,

ML methods usually require the missing at random (MAR) assumption (Rubin 1976).

MI methods also rely on large-sample approximation and assume a parametric form

for the joint model of the observed and missing data. They require some assumption

about the distribution of missingness, although not limited to MAR. WEE methods are

extensions of generalized estimating equations (GEE). Two models need to be specifed:
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One regression model for the data, and the other describing the missingness mecha-

nism. WEE methods are considered to be doubly robust because the estimates of the

regression parameters remain consistent as long as one of the two models is correctly

specified. The MAR assumption and a large sample size are required. FB methods

do not require a large sample size. Specifying a joint probability model, however, they

require assumptions about the sampling model for the data and about the missingness

mechanism. In summary, all the above methods regard missingness as a probabilistic

phenomenon. In contrast, in the following discussion, missingness is not random. The

variable y is missing for all records in D1.

The most commonly applied method to borrow information from one dataset (i.e.,

y in D2) to provide information not collected in another dataset (i.e., D1) is the use of

census-based socioeconomic status (SES) characteristics to supplement individual-level

data, such as medical records, claims or registries

(Gornick et al. 1996; Geronimus and Bound 1998; Devesa and Diamond 1983). The

census-based approach obtains aggregate statistics of SES variables at certain geographic

levels (e.g., census track, county, or zip code) and uses these aggregate numbers as proxy

measures of SES in individual-level data. It has been used extensively in studies of health

disparities. For more examples, see Mandelblatt et al. (1991), Kraus et al. (1986) and

Byrne et al. (1994).

Geronimus and Bound (1998) cautioned that although the census-based approach

is easy to execute, these aggregate measures should not be interpreted as if they were

micro-level variables. The approach has several limitations. It requires detailed residen-

tial information to be collected in D1. If due to privacy concerns this information is not

collected or is not detailed enough (for example, only state code is available), then the

method breaks down. The method only makes use of geographic information. Other

individual-level covariates are ignored. For example, if we are interested in imputing

missing income in D1, then information such as age, gender, education, occupation

could be very informative. Finally, the true value of the missing variable in D1 may not

match the neighborhood profile. This uncertainty is usually ignored.

In this paper we propose to approach the problem in the framework of Bayesian

hierarchical modeling. A spatially adjusted Bayesian additive regression tree (SBART)

is defined to impute the missing variable in D1 based on individual-level covariates as

well as geographic information. SBART is an extension of the BART model. The idea

of BART is to model an unknown function as a mixture of tree models. Each tree is

a priori constrained to have a simple structure. It only contributes a small portion to

the overall model. Chipman, George and McCulloch (2006a) demonstrated that the

sum over all trees provides a sufficiently rich model to incorporate both direct effects

and interaction effects of different orders. SBART extends BART by incorporating

spatial random effects. Correlation among neighboring areas is utilized to improve

inference. Our method implements a full probability model with likelihood and priors.

The imputation of the missing variable and the inference about the relationship between

the two variables are obtained simultaneously as posterior inference under the model,

and the uncertainty due to imputation is accounted for automatically. Unrelated to the

problem of merging datasets that we consider here, a similar spatial extension of the
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BART model has been developed independently in current work by Chipman, George,

McCulloch and Musio (2006b).

The outline of the paper is as follows. Section 2 introduces notation and presents

the Bayesian hierarchical model. A simulation study is conducted in Section 3. We

illustrate our method with a data analysis example in Section 4. Finally, Section 5

discusses some limitations of our method as well as some possible extension.

2 A Spatial BART Model

Let I be the number of spatial units at the finest level of detail recorded in both datasets.

This could be, for example, census tract, zip code area or county.

In dataset D1, let mi denote the number of subjects from area i (i = 1, · · · , I). The

sample size of D1 is m =
∑I

i=1 mi. For the jth subject from area i, we are interested

in the relationship between variables zij and yij , where zij but not yij is recorded in

dataset D1. We use vij to denote a vector of other individual-level covariates reported

in D1.

The variable yij that is missing in D1 is recorded on a different set of individuals

in dataset D2. For notational ease, we use the variable name xij rather than yij ,

to distinguish the fact that these variable values are recorded in D2 rather than D1.

Similarly, for the vector of variables vij , we use wij rather than vij for those variables

recorded in D2. We assume wij and vij to be consistent, i.e., they record the same

variables and use the same coding for the values. Because it would be unusual for all

covariates recorded in D1 and D2 to be consistent, we only assume that after suitable

pre-processing a subset of the covariates can be considered consistent across the two

datasets. Let ni be the number of subjects from area i, so j = 1, . . . , ni in D2. Then

n =
∑I

i=1 ni is the sample size of D2.

We define Z = {zij , i = 1, · · · , I, j = 1, · · · , mi}. Similarly we use Y , V , X and W

to denote the vector of all yij , vij , xij and wij , respectively.

We describe in words how the proposed approach facilitates learning about the

relationship between Z and Y with Y missing. We assume that (Y , V ) (in D1) and

(X, W ) (in D2) arise from the same model M . We use the posterior for the parameters

in M , obtained conditional on (X , W ) to impute the missing Y conditional on V .

Finally, the regression of Z on the imputed Y approximates the relationship between

Z and Y . By integrating with respect to Y , the marginal posterior distribution of the

regression parameter β accounts for the variability induced by the imputation. The

described learning process is complicated by the need to specify a joint probability

model for (Z, Y , X | V , W ). Details are described later.

For the learning process to work we make the key assumption that (X, W ) and

(Y , V ) are independent samples from the same model. This assumption ensures that we

can apply what we have learned from (X, W ) to (Y , V ). For example, this assumption

is satisfied if both D1 and D2 are representative samples from the U.S. population.
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2.1 The Sampling Model

The proposed approach is model-based. We start the model construction with assumed

sampling models for Z, X and Y . In the following description, we use N(m, s2) to

denote a normal distribution with moments m and s2. We assume that a sampling

model p(zij | yij , vij , Φ) is available for zij , conditional on vij and assumed values for

yij , and indexed by a set of parameters Φ. For example, if zij is continuous, we can

assume a linear regression model with zij being the dependent variable, yij and vij

defining the design matrix, and Φ including the regression coefficients and variance

parameter. If zij is ordinal, an ordinal probit model may be used. Specific examples of

p(zij | yij , vij , Φ) are used in the simulation study and the case study.

The model p(xij | wij , f, θ, σ2) describes the relationship between xij and wij .

Specifically, we assume

xij | wij , f, θ, σ2 ∼ N
(

f(wij) + θi, σ
2
)

, (1)

where θ = (θ1, · · · , θI)
′ is a vector of random spatial effects, f(wij) is an unknown

function associating xij with wij , and σ2 is the residual variance. We represent the

mean function f(wij) as a BART model. Since the additional random effects θi introduce

the desired spatial correlation among neighboring areas, we refer to model (1) as the

spatially-adjusted Bayesian additive regression tree (SBART) model.

For reference, and to introduce notation for later use, we give a brief review of the

BART model. See Chipman et al. (2006a) for details. We begin with the notation for

a single tree model. Let T denote a tree. Its nodes can be divided into two categories,

interior nodes and terminal nodes. A splitting rule is defined at each interior node. We

limit splitting rules to binary splits. Each rule consists of a splitting variable and a

splitting value. The splitting value is a threshold on the splitting variable that defines

the splitting rule. Starting from the root, an individual with covariates wij selects

branches in the tree according to the splitting rules until it is assigned to a terminal

node. Suppose that there are K terminal nodes. We define µ = (µ1, · · · , µK)′, with µk

being assigned to the kth terminal node. The tree maps each covariate vector wij into

one element of µ. A single tree model is denoted by the pair (T, µ), and the association

between µk and wij through a tree T is written as µk = g(wij , T, µ).

The BART model defines a summation of such tree models, as

f(wij) = g(wij , T1, µ1) + g(wij , T2, µ2) + · · · + g(wij , TL, µL),

where L is the total number of trees that form the BART. We usually assign a large

value for L (e.g., L = 200) to encourage flexibility. On the other hand, to avoid over-

fitting, the BART model includes a strong prior on each tree to keep its effect small,

effectively making each tree into a “weak learner”. But overall, the sum of trees pro-

vides a sufficiently rich model to fit a variety of functions. For example, µk represents

an interaction effect if its assignment involves more than one component of wij (i.e.,

more than one splitting variable). Furthermore, because f(wij) can be based on trees

of different sizes, the BART model can incorporate both direct effects and interaction
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effects of different orders. SBART extends BART by incorporating an additional spatial

effect into the conditional mean of xij given wij .

BART is closely related to ensemble methods that combine a set of tree models.

Examples of ensemble methods include boosting, bagging and random forests. Boost-

ing (Freund and Schapire 1997; Friedman 2001) fits a sequence of trees. Each tree is

fit conditional on data variation that is not explained by the other trees. Bagging

(Breiman 1996; Clyde and Lee 2001) and random forests (Breiman 2001) construct a

large number of independent trees through data randomization and stochastic search.

The methods then use an average of the trees to improve prediction. Ensemble methods

are not derived as coherent inference under a probability model. In contrast, BART is

a model-based approach that reports inference as the summary of a full probabilistic

description of all relevant uncertainties. Bayesian single tree models have been devel-

oped by Chipman et al. (1998) and Denison et al. (1998). Compared with single tree

models, the sum-of-trees models provide vastly more flexibility by easily incorporat-

ing additive effects. Chipman et al. (2006a) provided a posterior Markov chain Monte

Carlo (MCMC) simulation scheme for the BART model. They demonstrated that the

proposed MCMC simulation has good mixing properties.

The third part of the top-level sampling model is an assumed model for yij con-

ditional on the observed covariate vector vij . We assume the same model as for the

regression of xij on wij :

yij | vij , f, θ, σ2 ∼ N
(

f(vij) + θi, σ
2
)

,

with f(·) defined by the SBART model as before.

2.2 The Prior Model

We complete the Bayesian hierarchical model with priors p(Φ), p(f), p(θ) and p(σ2),

for Φ, f , θ and σ2, respectively. We assume a priori independence.

The choice of p(Φ) depends on the particular form of p(zij | yij , vij , Φ). For example,

in a linear regression model, conjugate priors are technically convenient choices. That

is, normal priors for the regression coefficients and an inverse Gamma prior for the

residual variance.

The BART model in (1) is indexed by {(Tl, µl), l = 1, · · · , L}. We use

p(f) =

L
∏

l=1

p(Tl, µl) =

L
∏

l=1

{

p(Tl) · p(µl | Tl)
}

.

Following Chipman et al. (2006a), we define p(Tl) by three factors, corresponding to a

node being non-terminal, the selection of the splitting variable for a non-terminal node,

and the choice of the splitting value conditional on a chosen splitting variable. The

probability that a node at depth d is nonterminal, is assumed to be

α(1 + d)−γ ,
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where α ∈ (0, 1) and γ ∈ [0,∞) are two hyper-parameters reflecting our prior belief

about the tree. For example, if we believe that the depth of the tree should be small, we

can assign a big value for γ, so that the probability decays fast with d. Chipman et al.

(2006a) proposed α = 0.95 and γ = 2 as default values, which implies that with prior

probability 0.05, 0.55, 0.28, 0.09 and 0.03, the tree has 1, 2, 3, 4, and ≥ 5 terminal nodes,

respectively. A natural choice for the selection of the splitting variable, conditional on

a node being non-terminal, is a uniform prior over all available variables. A default

choice for the distribution of the splitting value is a uniform distribution over the set of

available splitting values. Finally, we define a prior for µl. Let µlk be the kth element

of µl. Conditional on Tl, we assume i.i.d. normal priors for µlk . The mean and variance

of the normal prior are specified in such a way that each tree is constrained to be a

weak learner, and it plays a small role in the overall fit. More details can be found in

Chipman et al. (2006a), Section 3.2.

For the spatial random effects θ we use a conditionally autoregressive (CAR) prior.

The key idea of the CAR model is simple. It formalizes the notion that each area is

similar to its neighbors. Specifically, we define p(θ) by the set of conditional distributions

p(θi | θ(−i), ρ, δ2) = N
( ρ

hi

∑

j 6=i

cijθj ,
1

hi

δ2
)

, i = 1, · · · , I, (2)

where θ(−i) denotes all the elements of θ except θi; ρ is a parameter with range (−1, 1);

δ2 is the variance component; cij = 1 (i 6= j) if area i and area j are neighbors, and

cij = 0 otherwise, including cii = 0; and hi =
∑I

j=1 cij is the total number of neighbors

for area i. The joint distribution p(θ) implied by (2) is

p(θ | ρ, δ2) = N
(

0, δ2(H − ρC)−1
)

, (3)

where C = (cij) is an I × I adjacency matrix, and H is an I × I diagonal matrix with

hi being the diagonal elements. Model (2) specifies that given random effects from all

the other areas, the distribution of θi only depends on its neighbors. When ρ = 0, the

variance matrix in (3) is diagonal, implying that θi are independent. When ρ = 1, the

conditional mean of θi in (2) equals the average of its neighbors. However, ρ = 1 implies

that H − ρC is singular. That is, the covariance matrix of θ does not exist. Sun et al.

(1999) specified −1 < ρ < 1 as a smoothing or spatial correlation parameter. It can be

thought of as a measure of spatial association. For more discussion of CAR models, see

Cressie (1993) page 407, Besag et al. (1991), Clayton and Kaldor (1987) and Whittle

(1954).

We complete the prior model with probability models for the hyper-parameters σ2, ρ
and δ2. Chipman et al. (2006a) assumed p(σ2) to be an inverse chi-square distribution

σ2 ∼ νλ/χ2
ν , where ν is the degree of freedom. This is a special case of the inverse

Gamma distribution. The key idea to specify the hyper-parameters ν and λ is to first

obtain a preliminary estimate σ̂2 by exploratory data analysis (for example, through

linear regression of xij and wij), and then specify ν and λ such that σ̂2 matches the

qth quantile of p(σ2). The default setting recommended by Chipman et al. (2006a) is

(ν, q) = (3, 0.90). Finally, we define prior distributions for the parameters ρ and δ2 in
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the CAR model. It is natural to assume that the spatial effects are positively correlated.

We therefore assume ρ to be uniform between 0 and 1, i.e., U(0, 1). We assume p(δ2)

to be an inverse Gamma distribution, denoted by IG(aδ , bδ), with density function

p(δ2) ∝
1

(δ2)aδ+1
exp(−

bδ

δ2
).

Here aδ and bδ are fixed hyperparameters.

For reference, we state the joint probability model on the data Z, Y , X and the

parameters:

p(Z | Y , V , Φ) · p(X | W , f, θ, σ2) · p(Y | V , f, θ, σ2)

· p(Φ) · p(f) · p(θ | ρ, δ2) · p(σ2) · p(ρ) · p(δ2), (4)

where

p(Z | Y , V , Φ) =

I
∏

i=1

mi
∏

j=1

p(zij | yij , vij , Φ),

p(X | W , f, θ, σ2) =

I
∏

i=1

ni
∏

j=1

p(xij | wij , f, θ, σ2),

p(Y | V , f, θ, σ2) =

I
∏

i=1

mi
∏

j=1

p(yij | vij , f, θ, σ2).

We are interested in the inference on Φ given all observations, namely p(Φ | Z, X, V , W ).

Carrying out the desired inference requires integration with respect to Y and the other

parameters. This integration does not have a closed form solution. We set up MCMC

simulation and obtain inference based on random samples from the posterior distribu-

tion of Φ. Details of the sampling scheme can be found in the Appendix. By integrating

out Y , p(Φ | Z, X, V , W ) automatically accounts for the variability induced by the im-

putation. A byproduct of this process is the imputation of the missing variable Y , which

can be obtained as random samples from p(Y | Z, X, V , W ).

3 A Simulation Study

We conduct a simulation study to examine the performance of the proposed approach.

We define I = 99 spatial areas, with an assumed spatial structure (adjacency matrix

C) equal to that of the 99 counties in the state of Iowa. We also assume ni = 4 and

mi = 2 for i = 1, · · · , I . Thus we have sample size n = 396 and m = 198.

The simulated data are generated as follows. We assume covariate vectors wij and

vij to be of dimension 10. Each of the 10 elements is generated from independent U(0, 1)

distribution. We generate the simulation truth for the spatial random effects θ from a
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N(0, δ2(H − ρC)−1) distribution, using ρ = 0.3 and δ = 1. The mean function f(u) is

evaluated as

f(u) = 10 sin(πu1u2) + 20(u3 − 0.5)2 + 10u4 + 5u5, (5)

where ui is the ith element of u = (u1, · · · , u10)
′. The same function was used in sim-

ulation in Friedman (1991) and Chipman et al. (2006a). The added variables together

with the interactions and nonlinearities make it difficult to fit the model by standard

parametric methods. Conditional on the covariates wij , we generate xij by

xij | wij , f, θ, σ2 ∼ N(f(wij) + θi, σ
2),

using σ = 0.2. Similarly, we generate yij conditional on vij ,

yij | vij , f, θ, σ2 ∼ N(f(vij) + θi, σ
2).

Thus xij and yij only depend on the first 5 elements of wij and vij , respectively.

Finally, zij is generated by

zij | yij , vij , β, τ2 ∼ N(h(vij , yij , β), τ2), (6)

where we assume τ = 0.2, β = (β0, · · · , β6)
′ = (3,−3,−2.5,−1, 1.5, 2, 1)′, and

h(vij , yij , β) = β0 + vij4β1 + vij5β2 + vij6β3 + vij7β4 + vij8β5 + yijβ6.

Here vijk denotes the kth element of vij . The simulation model for zij is a linear

regression model. We assume that part of the covariates (vij4, vij5) are involved in

the generation of yij and others (vij6, vij7, vij8) are not. Matching the earlier notation

p(zij | yij , vij , Φ), we have Φ = (β, τ2), where β is the vector of regression coefficients

and τ2 is the variance parameter.

Conditional on the simulated data (Z, X, W , V ), but pretending that Y is missing,

we generate a Monte Carlo sample from the posterior distribution p(β | Z, X, V , W )

under model (4). See the Appendix for details of the posterior simulation.

We repeat the described simulation K = 100 times. For the kth simulation, we

save the simulation truth Y (k) and β, the imputed values Ŷ
(k)

, and the estimated

effects β̂
(k)

. We obtain Ŷ
(k)

and β̂
(k)

as marginal posterior expectations under p(Y |
Z, X, V , W ) and p(β | Z, X, V , W ), respectively. The mean squared error (MSE) for

Y is defined as

MSEY =
1

Km

K
∑

k=1







∑

i,j

(ŷ
(k)
ij − y

(k)
ij )2







.

Similarly, for β we define

MSEβp
=

1

K

K
∑

k=1

{

(β̂(k)
p − βp)

2
}

, p = 0, 1, · · · , 6.

For comparison we record results under two different models.
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Table 1: MSE from Simulation to Compare SBART and BART

(a) (b)

β0 0.0055 0.0062

β1 0.0078 0.0154

β2 0.0017 0.0045

β3 0.0029 0.0030

β4 0.0048 0.0048

β5 0.0079 0.0090

β6 0.0136 0.0321

Y 0.596 3.864

Column (a) under SBART; Column (b) under BART.

M1: Model (4) with a U(0, 1) prior for ρ, an IG(0.001, 0.001) prior for δ2, and a CAR

prior for θ. This is the proposed SBART model.

M0: Model (4) with θ = 0. This is a BART model without spatial adjustment. Under

the BART model, the priors p(θ | ρ, δ2), p(ρ) and p(δ2) are not needed.

The remaining prior choices include a normal prior for β, p(β) = N(0, 100I6), and an

inverse Gamma prior for τ2, p(τ2) = IG(0.001, 0.001). Here 0 is a vector of 0′s and I6

is an identity matrix of dimension 6. For the hyper-parameters in p(f) and p(σ2), we

use the default setting recommended by Chipman et al. (2006a).

Table 1 compares the MSE from models M1 and M0. The results suggest that

when spatial correlation is present, incorporating spatial effects improves the estimation

of regression coefficients. This is particularly true for β6, the coefficient of the missing

variable, which is of primary interest. In the simulation, the MSE of β6 is reduced

from 0.0321 to 0.0136. A byproduct of the proposed approach is the inference about

the missing variable, which might be of interest to researchers by itself. Monte Carlo

sample averages evaluate posterior means and provide point estimates of the missing

variables. Other summaries characterize the uncertainty of the imputation. Table 1

shows that incorporating spatial effects greatly improves the imputation of the missing

variable. The MSE for Y is reduced from 3.864 to 0.596. This improvement can also

be seen in Figure 1, where we plot Y (k) versus Ŷ
(k)

from one simulation.

The estimated spatial correlation parameter ρ̂(k) has a mean 0.414 and a standard

deviation 0.091, suggesting a slight overestimation of ρ. The histogram of ρ̂(k) is plot-

ted in Figure 2. We also plot θ(k) against θ̂
(k)

, the true and estimated values of θ,

respectively, from one simulation in Figure 3. The fact that the points fall around the

45 degree line suggests that the method successfully recovers the spatial pattern.
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Figure 1: Simulation example. The imputation of Y under M1 and M0 (under one

simulation). M1 uses the SBART model. M0 uses the BART model without spatial

random-effects.
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Figure 2: Simulation example. Histogram of p(ρ̂(k) | data).
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Figure 3: Simulation example. Simulation truth and imputed values of θ.
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4 Joint Inference with the CPS and SIPP Surveys

We evaluate the proposed approach with real survey data. In this evaluation, we ap-

ply our method to explore the relationship between self-perceived health status and

income using two different surveys. One survey includes data on health status, income,

and other variables (Z, Y , V ). The second survey reports income and other variables

(X, W ).

We implement inference through the proposed approach without using the observed

values of income Y in the first survey. That is, we carry out the analysis pretending

that we did not have income (Y ) information in the first survey.

For comparison, we also implement inference with the observed Y values. Using

data from the first survey only, we implement posterior simulation in the model

p(Z | Y , V , Φ) · p(Φ), (7)

and summmarize p(Φ | Z, Y , V ). By comparing the inference with Y missing versus

inference conditional on Y , we will validate the proposed model.

4.1 The Datasets

We let D1 be a dataset extracted from the 2001 Current Population Survey (CPS),

March Supplement. The variable Z is self-perceived health status with values 1 to

5, where 1 denotes the best health status and 5 denotes the poorest health status.

The variable Y is defined to be total personal income. We are interested in the rela-

tionship between Z and Y . The set of individual-level covariates are denoted by V ,

which include age, race, gender, education, health insurance coverage, marital status,

employment, industry and occupation. The dataset D2 comes from the 2001 Survey

of Income and Program Participation(SIPP), where total personal income X and the

other covariates W are collected. Both CPS and SIPP report income, denoted as Y in

CPS and X in SIPP. We pretend, however that Y is missing in D1 to illustrate and

validate the proposed method. CPS and SIPP are two independent surveys that each

collects information from a representative sample of the U.S. civilian noninstitutional

population. It is therefore reasonable to assume that (Y , V ) and (X, W ) arise from

the same model.

CPS reports annual income while SIPP collects the information of monthly income.

To make the income variables consistent between two datasets, we scale them to a

common range of 0 to 1. Furthermore, personal income is known to be heavily skewed

to the right, which makes the normal assumption in (1) inappropriate. We carry out a

square root transformation to mitigate the problem. Thus eventually Y and X denote

the square root of the scaled personal income.

The finest available spatial area in both datasets is metropolitan statistical area

(MSA), which is defined as a core area that contains a substantial population nucleus,

together with adjacent communities having a high degree of social and economic inte-

gration with that core. MSAs comprise one or more entire counties. In D1 and D2 there
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are altogether I = 239 MSAs. The original datasets from CPS and SIPP have more

than 90,000 and 260,000 records, respectively. For this illustrative analysis, we obtain

D1 and D2 by randomly sampling 10,000 observations from each of the two original

datasets.

4.2 Model Specification

Health status Z is an ordinal categorical variable. We construct an ordinal probit model

p(Z | Y , V , Φ). We define the probit model by introducing a latent normal random

variable

ηij | β, τ2 ∼ N(β0 + vij1β1 + vij2β2 + vij3β3 + yijβ4, τ
2).

For given values of ηij and a set of cut points c1, · · · , c4, we set

zij | ηij =











1, if ηij ≤ c1,

r, if cr−1 < ηij ≤ cr for r = 2, 3, 4,

5, if ηij > c4,

(8)

where β = (β0, · · · , β4)
′. See, for example, Johnson and Albert (1999) for a discussion

of Bayesian inference in ordinal regression models, including the latent variable con-

struction used here. The latent variable ηij is assumed to arise from a linear regression

model with covariates being personal income yij , health insurance coverage vij1, gender

vij2, and age vij3, and β is the corresponding coefficient vector. Income and age are

continuous; age ranges from 18 to 84; gender is binary with 0 indicating male and 1

indicating female; health insurance coverage is binary with 0 indicating covered and 1

indicating not covered. We define η to be the collection of ηij , and Φ = (η, β, τ2).

The cutpoints (c1, · · · , c4) are specified as fixed. Random cutpoints would provide more

flexibility. For example, Johnson and Albert (1999) jointly update the cutpoints and

the latent probit variable. However, the choice of the sampling model for Z | Y is not

directly related to the missing data problem. We assume fixed cutpoints to keep the

model simple and keep the discussion focused.

The models p(yij | vij , f, θ, σ2) and p(xij | wij , f, θ, σ2) are defined in (1). We

complete the model with priors for (ρ, δ2, β, τ2). We assume diffuse priors, a uniform

prior for ρ, p(ρ) = U(0, 1), an inverse Gamma prior for δ2, p(δ2) = IG(0.001, 0.001),

independent normal priors for βp, p(βp) = N(0, 100), p = 0, · · · , 4, and an inverse

Gamma prior for τ2, p(τ2) = IG(0.001, 0.001). We use default values recommended in

Chipman et al. (2006a) for the hyper-parameters of p(f) and p(σ2).

4.3 Implementation Details

Some practical issues arise in the application to real data. First, in fitting the model

p(yij | vij , f, θ, σ2), we can use the entire vector of vij . There is no need for formal

variable selection. As pointed out by Chipman et al. (2006a), the BART model is a

nonparametric Bayesian regression approach which uses dynamic random basis elements
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that are dimensionally adaptive. Variable selection is already part of the model. In

contrast, p(zij | yij , vij , Φ) is a generalized linear model and inference can be sensitive

to correlation among the covariates (yij , vij). Like any other regression analysis, the

specification of p(zij | yij , vij , Φ) requires a good understanding of the research questions

to identify the relevant covariates. Importantly, high linear correlation among (yij , vij)

complicates interpretation and should be avoided. With yij missing, we use (xij , wij)

instead to check for linear correlation among the covariates.

Another issue concerns a bias in the inference on Φ induced by the imputation

of yij . Figure 4 clearly shows a shrinkage effect. An ideal imputation would have a

scatter plot falling around the 45 degree line. In Figure 4 the range of the imputed

values is much narrower compared with that of the true values. Chipman et al. (2006a)

observed similar shrinkage in a simulation study, which they attributed to extreme

extrapolation. That is, when we make prediction outside the observed data, because

of lack of information, the prior takes over and the imputed values are shrunk towards

the center. We believe, however, that the cause of shrinkage in Figure 4 is more than

extreme extrapolation. If the shrinkage arises from extrapolation alone, then it should

have equal effect on both extremes. In Figure 4, we see more shrinkage on the higher

incomes than on the lower incomes. From this observation, we hypothesize that the

shrinkage is caused by a violation of the normality assumption in model (1). If personal

income is heavily skewed to the right, then the square root transformation does not

suffice to achieve normality, and extremely high incomes are not correctly imputed.

We propose to address the issue of shrinkage through the following two steps. First

we carry out a preliminary analysis using model (4). We compare the distribution of

imputed income Ŷ based on p(Y | Z, X, V , W ) with the observed income distribution

from D2. We use a deterministic adjustment to match some features of these two

distributions. For example, in this study we construct a linear transformation of the

imputed values, t(ŷij) = aŷij + b, such that some selected quantiles (for example, the

10th and 90th quantiles) of t(ŷij) match those of X, the incomes observed in D2. In

the second step, we replace p(zij | yij , vij , Φ) in model (4) by

p∗(zij | yij , vij , Φ) ≡ p(zij | t(yij), vij , Φ), (9)

and proceed with the final analysis. Because t(yij) is a one-to-one transformation of

yij , p(zij | yij , vij , Φ) and p∗(zij | yij , vij , Φ) define the same conditional distribution.

But the latter provides a better calibrated estimation of Φ by adjusting for the effect of

shrinkage. See Foster and Stine (2004) for more discussion about calibration.

Effectively, the proposed two steps use the SBART model to impute the rank of the

missing income variable, and use an observed distribution to set specific values. This

approach is valid because both CPS and SIPP are conducted by the US Census Bureau

to collect information from representative samples of the US population.

This adjustment can be automated in each MCMC iteration, where we readjust the

values of a and b such that the selected quantiles of t(y
(k)
ij ) match the corresponding

quantiles in the empirical distribution of X. We conducted a simple simulation study

to assess the performance of the automated adjustment. Because the shrinkage effect
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Figure 4: CPS survey: True and imputed income. Income is scaled between 0 and 1.

Note the severe shrinkage in the imputed income.
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Table 2: MSE from Simulation to Check Adjustment

(a) (b)

β6 0.0078 0.0106

Y 0.0238 0.0240

Column (a) with automated adjustment; Column (b) without adjustment.

is more obvious when the sample size is large, we set n = m = 2000. The simulation

truth is similar to the model assumed in Section 3, except that we drop the spatial

component θ to facilitate computation, and the residual effects in X and Y are assumed

to have Student t distribution with 3 degree of freedom. The MSE of the estimated

regression coefficients and imputed Y are presented in Table 2. Because Table 2 is

based on simulations with a larger sample size and a simpler model, the MSE are much

smaller than those in Table 1. Our primary interest is in β6, the regression coefficient

of Y . Without adjustment, the shrinkage effect leads to overestimation of β6. With the

automated adjustment, the MSE of β6 is reduced from 0.0106 to 0.0078.

The simulation indicates that the adjustment can provide better calibrated estimates

when there is some shrinkage effect induced by imputation of the missing variable.

However, we caution that such an adjustment for shrinkage is ad hoc, and it relies

heavily on the assumption that D1 and D2 are representative samples of the same

population. Researchers should carefully check this assumptions before implementing

the approach.

4.4 Results

Table 3 lists the posterior means and standard deviations of the regression coefficients

β under three inference approaches, which are implemented by MCMC simulation.

One set of inference summaries is based on true income and model (7). This serves

as the gold standard. The second set of inferences is based on missing income and

model (4). The third set is based on missing income and model (9). Both model (4)

and model (9) are SBART models, the difference being that model (9) adjusts for the

shrinkage effect while model (4) does not. Table 3 shows that if we ignore the shrinkage

effect, model (4) will lead to a conclusion that overstates the effect of income. The

posterior means based on model (7) and (9) are similar, suggesting that our method

successfully merges information from two datasets and provides a good estimate of the

relationship between self-perceived health status and income. Due to the uncertainty

induced by imputing the missing income, the standard deviations under model (9) are

slightly larger. The estimated regression coefficients suggest that subjects with higher

income tend to have a better self-perceived health status. Women generally report

better self-perceived health. Additionally, younger age and health insurance coverage

are associated with better self-perceived health status. We plot the imputed income

based on samples from p(Y | Z, X, V , W ) versus the true income in Figure 4. The

spatial correlation parameter ρ has a posterior mean 0.362 and standard deviation 0.242,
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indicating a moderate spatial correlation. A histogram of the samples from its posterior

distribution is plotted in Figure 5.

Table 3: Real Data, Posterior Mean (Standard deviation) of β

model (7) model (4) model (9)

Intercept -4.157(0.073) -3.982(0.075) -4.019(0.075)

Health insurance 0.865(0.059) 0.624(0.069) 0.619(0.069)

Sex -0.194(0.047) -0.316(0.054) -0.320(0.055)

Age 0.057(0.001) 0.052(0.001) 0.052(0.001)

Income -2.513(0.126) -3.392(0.216) -2.677(0.167)

Model (7) uses true income; Model (4) uses SBART to impute “missing” income without

adjusting for shrinkage; Model (10) uses SBART to impute “missing” income and adjusts

for shrinkage.
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Figure 5: CPS and SIPP surveys. Histogram of p(ρ | data).

Besides comparing our results with those based on the complete data, we also com-

pare with results from a census-based approach, which supplements missing individual-

level variables with aggregate information based on the neighborhood socioeconomic

profile. With MSA being the finest available spatial area, we could supplement missing

yij with average personal income from MSAi. However, compared with the average by

census block or census track, the average by MSA is much coarser and would result

in a large imputation error. To achieve a fairer comparison with the proposed method

we instead proceed as follows. In the CPS dataset, about 41.5% of the records contain

county codes. To investigate the performance of census-based methods with finer area



628 Spatial BART to Merge Datasets

units, we create D∗
1 by randomly sampling 10,000 observations from those that have

county code in the original CPS dataset. We then replace the missing income with

county median income (denoted by ˜Y ) from the US census. Conditioning on (Z, ˜Y , V )

we report inference on Φ under model (7). This is the result from the census-based

method. Table 4 lists the posterior means (standard deviations) of β from three pro-

cedures: (a) based on model (7) and true income; (b) the proposed method, based on

model (9) with missing income; (c) census-based method, based on model (7) and me-

dian income at county level. Because Table 3 is based on D1 while Table 4 is based

on D∗
1 , the estimates in the two tables do not match exactly. The estimates from the

proposed method are close to those based on true incomes. This is not the case for the

estimates based on imputation by county median income. The estimated coefficients

of health insurance coverage and income are quite different from those based on true

incomes. Most strikingly, the estimated coefficient of sex switches the sign. This could

lead to very misleading conclusions. In summary, Table 4 shows that our model pro-

vides an improvement of the census-based method. This is true even though we have

improved the latter by using county median income while keeping our proposed method

at the MSA-level, a coarser spatial area.

Table 4: Comparing with Census-Based Method

(a) (b) (c)

Intercept -4.220(0.073) -4.129(0.075) -4.380(0.076)

Health insurance 0.841(0.059) 0.734(0.066) 1.116(0.057)

Sex -0.088(0.047) -0.165(0.056) 0.148(0.046)

Age 0.054(0.001) 0.052(0.002) 0.052(0.001)

Income -2.230(0.127) -2.335(0.164) -1.673(0.248)

Column (a) uses true income; column (b) uses SBART to impute missing income and

adjusts for shrinkage; column (c) uses county median income as imputation.

5 Discussion

We have developed an approach that allows researchers to borrow information across

surveys and investigate hypotheses that cannot be considered using only one dataset

alone. The proposed method is flexible and fully model-based. The key assumption is

that (Y , V ) and (X, W ) are independent samples from the same model. This assump-

tion allows researchers to apply the knowledge learned from (X, W ) to (Y , V ). This

facilitates imputation of the missing Y . By specifying a flexible SBART model, the

proposed method does not make restrictive assumptions about the specific model for

(X, W ).

In the simulation study and the data analysis example we have assumed parametric

models for the regression of Z and Y . This parametric form, however, is not a require-

ment for the proposed approach. It is unrelated to the missingness of Y . Alternatively,

a non-parametric regression model could be used. The only caveat is that the increased
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uncertainty induced by the imputation of Y might make meaningful data analysis with

a non-parametric model difficult.

The proposed imputation of the missing variable is a data-driven procedure. That

is, in each MCMC iteration, we have a large number of trees such that each contributes

a small portion of the conditional mean. Therefore it is difficult to evaluate the re-

lationship between the missing variable and individual covariates. It is not a critical

issue if the primary interest is to explore the relationship between Z and Y , instead

of Y and V . If the researchers are interested in the the marginal effect of a single

predictor, partial dependence plots might be a useful tool. See Friedman (2001) and

Chipman et al. (2006a) for details.

Appendix: MCMC Sampling Schemes

We use MCMC posterior simulation to implement inference in model (4). See, for

example, Gamerman (1997) for a review of MCMC methods. In the following discussion

we use [U | · · · ] to indicate that the random variable U is updated conditional on the

currently imputed values of all other parameters. The transition probability for the

implemented MCMC is defined by the following steps.

Step 1. Updating Φ.

[Φ | · · · ] ∝ p(Z | Y , V , Φ) · p(Φ).

The updating of Φ depends on the specific form of p(Z | Y , V , Φ), which in our

example is either a linear regression model or an ordinal probit model. There are

well established methods to update parameters in such models. For example, see

Gelman et al. (2003) and Albert and Chib (1993).

Step 2. Updating f and σ2.

[f, σ2 | · · · ] ∝ p(X | W , f, θ, σ2)p(Y | V , f, θ, σ2)p(f)p(σ2). (10)

If we define x∗
ij = xij − θi and y∗

ij = yij − θi, then (10) is equivalent to

[f, σ2 | · · · ] ∝
∏

{

p(x∗
ij | wij , f, σ2)

}

∏

{

p(y∗
ij | vij , f, σ2)

}

p(f)p(σ2), (11)

with

p(x∗
ij | wij , f, σ2) = N(f(wij), σ

2),

p(y∗
ij | vij , f, σ2) = N(f(vij), σ

2).

Note that (11) is exactly a BART model with x∗
ij and y∗

ij being the dependent

variable, and the updating algorithm can be found in Chipman et al. (2006a)

Section 4.
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Step 3. Updating θ.

[θ | · · · ] ∝ p(X | W , f, θ, σ2)p(Y | V , f, θ, σ2)p(θ | ρ, δ2).

Define eij = xij − f(wij) and sij = yij − f(vij), and use e and s to denote the

collection of eij and sij , respectively. We find

[θ | · · · ] ∝ exp
{

−
(e − Uxθ)′(e − Uxθ) + (s − U yθ)′(s − U yθ)

2σ2

}

· exp
{

−
1

2δ2
θ′(H − ρC)θ

}

,

where Ux and Uy are the design matrix of θ corresponding to X and Y , re-

spectively. We can show that [θ | · · · ] is a normal distribution with variance

[(U ′
xUx + U ′

yUy)/σ2 + (H − ρC)/δ2]−1 and mean [(U ′
xUx + U ′

yUy)/σ2 + (H −

ρC)/δ2]−1(U ′
xe + U ′

ys)/σ2.

Step 4. Updating ρ and δ2.

[ρ, δ2 | · · · ] ∝ p(θ | ρ, δ2)p(ρ)p(δ2).

CAR is a widely used spatial model and the posterior sampling of ρ and δ2 has

been discussed extensively in literature. For example, see He and Sun (2000).

Step 5. Updating Y . We update Y one element at a time, i.e.,

[yij | · · · ] ∝ p(zij | yij , vij , Φ)p(yij | vij , f, θ, σ2).

Under model (6), a linear regression model, we have

[yij | · · · ] ∝ exp
{

−
1

2τ2
(zij − h∗

ij − yijβ6)
2
}

exp
{

−
1

2σ2
(yij − f(vij) − θi)

2
}

,

where h∗
ij = β0 + vij4β1 + vij5β2 + vij6β3 + vij7β4 + vij8β5. We can show that

[yij | · · · ] is normal with variance (β2
6/τ2 + 1/σ2)−1 and mean

(β2
6

τ2
+

1

σ2

)−1( 1

τ2
β6(zij − h∗

ij) +
1

σ2
(f(vij) + θi)

)

.

Under model (8), an ordinal probit model, we have

[yij | · · · ] ∝ exp
{

−
1

2τ2
(ηij − h4

ij − yijβ4)
2
}

exp
{

−
1

2σ2
(yij − f(vij) − θi)

2
}

,

where h4
ij = β0 + vij1β1 + vij2β2 + vij3β3. Thus [yij | · · · ] is normal with variance

(β2
4/τ2 + 1/σ2)−1 and mean

(β2
4

τ2
+

1

σ2

)−1( 1

τ2
β6(zij − h4

ij ) +
1

σ2
(f(vij) + θi)

)

.
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