
SPiDeR: P2P-Based Web Service Discovery ?

Ozgur D. Sahin1, Cagdas E. Gerede1, Divyakant Agrawal1,
Amr El Abbadi1, Oscar Ibarra1, and Jianwen Su1

Department of Computer Science
University of California at Santa Barbara

Santa Barbara, CA 93106
{odsahin, gerede, agrawal, amr, ibarra, su}@cs.ucsb.edu

Abstract. In this paper, we describe SPiDeR, a peer-to-peer (P2P)
based framework that supports a variety of Web service discovery oper-
ations. SPiDeR organizes the service providers into a structured P2P
overlay and allows them to advertise and lookup services in a com-
pletely decentralized and dynamic manner. It supports three different
kinds of search operations: For advertising and locating services, service
providers can use keywords extracted from service descriptions (keyword-
based search), categories from a global ontology (ontology-based search),
and/or paths from the service automaton (behavior-based search). The
users can also rate the quality of the services they use. The ratings are
accumulated within the system so that users can query for the quality
ratings of the discovered services. Finally, we present the performance of
SPiDeR in terms of routing using a simulator.

1 Introduction

The adoption and evolution of the Web services technology continue to hap-
pen in many different domains from business environments to scientific applica-
tions. This technology promises to enable dynamic integration and interaction
of heterogeneous software artifacts, and thereby, to facilitate fast and efficient
cooperation among the entities in cooperative environments. Lately, there has
been a lot of attention drawn to this promising technology from both industry
and academia and it has been supported with various emerging standards and
proposals such as SOAP[1], WSDL[2], BPEL[3], and OWL-S[4]; accompanying
technologies such as IBM’s Web Sphere, Microsoft’s .NET, and Sun’s J2EE; and
several research efforts (see recent conferences such as [5–8]).

Web services are “software applications identified by a URI, whose interfaces
and bindings are capable of being defined, described, and discovered as XML ar-
tifacts. A Web service supports direct interactions with other software agents us-
ing XML-based messages exchanged via Internet-based protocols”[9]. The main
research challenges services oriented computing poses include automated compo-
sition, discovery, invocation, monitoring, validation and verification[10]. Service
discovery, in particular, refers to the problem of how to search for and locate
? This research was supported in parts by NSF grants CNF 04-23336 and IIS 02-23022.

services, the descriptions of which are usually considered lying in well-defined
service repositories.

Recently, a substantial progress has been done in this area thanks to sev-
eral research and industrial efforts including UDDI registries [11, 12], similarity
search [13], the query languages and indexing efforts [14–16], peer-to-peer (P2P)
discovery techniques [17–21], semantic web approaches and ontological matching
[22, 23]. These solutions, however, are typically limited for 2 reasons:

1. They are usually centralized where there is a single central server (e.g.,
UDDI registry) that keeps track of all available services. Centralized ap-
proach has well-known limitations. It is not scalable since the server has to
keep information about all services and answer all queries. It is not fault
tolerant because the server is a single point of failure and if the server goes
down, the whole service discovery mechanism becomes unusable.

2. They usually offer limited search capabilities. There are different techniques
to increase the accuracy of service discovery including functional matching
(what a service does), behavioral matching (how a service performs), seman-
tic matching (the underlying semantics of a service) and ontological matching
(how a service relates to other services). Each of these provides a different
metric to measure the relevance among different services and therefore, each
one is important. Many existing approaches, on the other hand, concentrate
on a single one or a small subset of these techniques.

In this paper, we address above issues by introducing SPiDeR, a P2P based
Web service discovery framework that supports a rich set of search operations.
A subset of the participating service providers (those that have good resources)
are dynamically assigned as super peers and organized into a structured P2P
system. Due to its P2P based design, SPiDeR distributes the tasks of indexing
available services and resolving service lookups among the participants, thus pro-
viding decentralization, scalability, dynamicity, and fault tolerance. It supports
3 different types of search operations based on keywords, global service ontology,
and service behavior. It also has a reputation system component for assessing
the quality of the services based on the experiences of other services. The ratings
given to the services are stored in the system so that users can lookup for service
quality ratings when deciding which of the discovered services to use.

The rest of the paper is organized as follows. The related work is surveyed
in Section 2. Section 3 introduces SPiDeR, a P2P based distributed Web service
discovery framework. Section 4 describes how the different types of discovery
operations (keyword-based search, ontology-based search, and behavior-based
search) are supported in the framework. The quality rating scheme that enables
the ranking of discovered Web services is also explained in that section. In Sec-
tion 5, dynamic peer operations are discussed in detail. Those include installing
and refreshing service advertisements, performing composite lookups, and in-
dexing at the super peers. Additionally, an evaluation of SPiDeR in terms of
routing performance using a simulator is presented in Section 5.4. Finally, the
last section concludes the paper and outlines the future work.

2 Related Work

P2P Systems: P2P systems are a popular paradigm for exchanging data in a
decentralized manner. They distribute the data and load among the peers and
thus appear as a good alternative to the centralized systems. Early P2P systems,
such as Napster [24] and Gnutella [25], are mainly used for file sharing. These
systems are referred to as unstructured P2P systems [26] since the overlay net-
work is constructed in a random manner and the data can be anywhere in the
system. As a result, search and routing in these systems tend to be inefficient.
Structured P2P systems, on the other hand, impose a certain structure on the
overlay network and control the placement of data. These systems provide de-
sirable properties such as scalability, fault tolerance, and dynamic peer insertion
and departure. For example, Distributed Hash Tables (DHTs) [27–30] partition
a logical space among the peers and assign each object to a peer dynamically by
hashing the object’s key onto the logical space. DHTs offer efficient routing and
exact key lookups, which are logarithmic or sublinear in the number of peers.
Web Service Discovery: There are several proposals to increase the accu-
racy and efficiency of service discovery mechanisms. [13] introduces Woogle, a
similarity search technique based on clustering the services according to the in-
formation gathered from their WSDL documents. It is a centralized approach
and do not allow behavioral search. In [17], the authors propose a behavioral
search mechanism on a P2P architecture where the service behaviors are repre-
sented as finite state automata and the services are indexed in the P2P system
with keys extracted from their service automata. It only provides behavior-based
search mechanism, but not the others.

SPiDeR shares similarities with [14–16]. In [14], services are represented as
finite state machines which are then transformed into a form that can be indexed
for efficient matching. [15] proposes an integrated directory system and a query
language. The matching and ranking of the services are done via matching and
ranking functions which can be customized by the users. In [16], the services
are represented as message-based guarded finite state machines and behavioral
signatures are used for discovering relevant services. The behavioral signatures
are represented using temporal logic statements. All three approaches mentioned
above consider a centralized index structure, whereas in our approach, the index
is distributed over a structured P2P system.

SPiDeR also has architectural similarities with [18–21]. [18] uses DAML-S
(previous version of OWL-S) for service representation and uses Gnutella P2P
protocol for service discovery. [19] proposes a federation of service registries
in a decentralized fashion where federations represent service groups of similar
interests. Similarly, [20] and [21] consider a P2P infrastructure. While [20] uses
ontologies for publishing and querying purposes, [21] describes each Web service
with a set of keywords and then map the corresponding index to a DHT using
Space Filling Curves. SPiDeR differs from these proposals as it can also consider
the functionality and process behavior of services during discovery and supports
quality rating lookups.

In terms of use of ontologies and semantic matching, we also would like to
mention [22] and [23]. In [22], the authors integrate semantics and ontological
matching via domain-independent and domain-specific ontologies, and propose
an indexing method, namely attribute hashing. In [23], a federated registry archi-
tecture is proposed where ontologies are to provide a domain-based classification
of the registries.

3 SPiDeR Overview

SPiDeR allows distributed Web service discovery over a P2P system and sup-
ports a variety of different lookup operations (those operations will be discussed
in Section 4). It organizes the participants into a super-peer based structured
P2P overlay and allows them to advertise their own services as well as search for
other available services.1 Chord [28] is used as the underlying P2P overlay due
to its simplicity and robustness [31], though any other DHT could have been
used instead. In this section we briefly introduce the Chord system and then
describe the super-peer based architecture of SPiDeR.

3.1 Chord

Chord [28] is a P2P system that implements a DHT. It uses an m-bit identifier
ring, [0, 2m−1], for routing and locating objects. Both the objects and the peers
in the system are assigned m-bit keys through a uniform hash function and
mapped to the identifier ring. An object is stored at the peer following it on
the ring, i.e., its successor. Figure 1 depicts a 4-bit Chord system with 5 peers.
It shows the peers that are responsible for a set of keys with different IDs. For
example, key 15 is assigned to its successor P0, which is the first peer after ID
15 on the Chord ring in clockwise direction.
Routing and Lookup: Each peer maintains a finger table for efficient routing.
The finger table of a peer contains the IP addresses and Chord identifiers of
O(logN) other peers, i.e., its neighbors, that are at exponentially increasing
distances from the peer on the identifier ring, where N is the number of peers in
the system. The finger table for peer P3 is shown in Figure 1. Peers periodically
exchange refresh messages with their neighbors to keep their finger tables up to
date. Chord is designed for very efficient exact-key lookups. A lookup request
is delivered to its destination via O(logN) hops. At each hop, the request is
forwarded to a peer from the finger table whose identifier most immediately
precedes the destination point. In Figure 1, peer P3’s request for key 15 is
routed through P13 to 15’s successor P0, by following the finger pointers.
Peer Join and Departure: Chord is a dynamic system where peers constantly
join and leave the system. When a new peer wants to join, it is assigned an
identifier and it sends a join request toward this identifier through an existing
peer. Thus the new peer locates its successor, from which it obtains the keys

1 In the rest of the paper, the terms participants and peers will be used interchangeably.

K 15

P6
P6
P10
P13

P3+1
P3+2
P3+4
P3+8

Finger Table
of Node P3

K 12

K 2

K 5

K 7

Q 15

P13

P0

P3

P6
P10

Fig. 1. 4-bit Chord System

SP1

SP3

SP2

CPA

Super Peers

Chord Ring

Client Peers

route m

msg m

Fig. 2. Architecture of SPiDeR

it is responsible for. The affected finger tables are then updated accordingly.
Similarly, upon departure of a peer, its keys are assigned to its successor and
the affected finger tables are updated.

3.2 SPiDeR Architecture

Chord supports efficient exact key lookups. However dynamic peer join and
departure might be costly due to finger table updates and key transfers. Ad-
ditionally, Chord does not consider the heterogeneity of the peers and treats
each peer equally. Thus SPiDeR uses a super peer based overlay built on top of
Chord. Instead of inserting all participants into the Chord ring, only a subset of
the participants are assigned as super peers and join the Chord ring. The super
peers are selected among the peers that have good resources such as high avail-
ability, high computing capacity, etc. In this architecture, the super peers do all
the indexing and query routing. The remaining peers are called the client peers
and they use the system by connecting to a super peer. Each client peer forwards
its requests to its super peer, which processes the requests on its behalf.

The super peer overlay can be maintained dynamically without any central
control [32]. Each new peer joins the system as a client peer (except the initial
peer starting the system). Whenever a new super peer is required (e.g., an ex-
isting super peer leaves or gets overloaded), a super peer assigns one of its client
peers with good resources as a new super peer. The super peer based architecture
of SPiDeR provides the following advantages:

– Peer capabilities vary widely in terms of computing/storage resources, band-
width and availability/reliability. Peers with lots of resources will be desig-
nated as super peers and will do all the message routing and indexing. Client
peers, on the other hand, just ask queries and answer service requests.

– With less peers on the Chord ring, both the routing cost and join/leave over-
head are less. Client peers can join (leave) the system by simply connecting
to (disconnecting from) their super peers. Thus the system is more resilient
to high churn (frequent peer joins and departures).

Figure 2 depicts the architecture of SPiDeR. Note that the central UDDI
registry is replaced with the Chord ring in SPiDeR. Any peer in Figure 2 (super
or client) can be offering services, which are indexed within Chord by super
peers. Similarly, the lookup requests are resolved in a decentralized manner by
routing them to the corresponding super peer.

4 Distributed Discovery

SPiDeR organizes service providers into a structured P2P overlay that efficiently
supports exact key lookups. In this section we will discuss how this overlay is
used to support different types of discovery operations.

4.1 Web Service Description

Web services are software artifacts that consist of a set of operations. There
are several competing and complementary languages to describe Web services
such as WSDL[2], BPEL[3], OWL-S[4], WSDL-S[33], SWSL[34], and WSML[35].
Among these, WSDL defines the service interface by specifying the following:

– Service Information: Contains the address, name and the textual descrip-
tion of the service.

– Operation Information: Contains the name and the description of each
operation.

– Input/Output Information: Defines the names and the types of the op-
eration parameters.

The interface of a service describes how to access and invoke a service. WSDL-
S extends WSDL by supporting inline semantic annotation. The service behavior
(choreography), on the other hand, defines how to interact with the service, i.e.,
the possible interaction sequences the service can go through during a communi-
cation with other parties. BPEL, OWL-S, SWSL, and WSML are some examples
of complimentary languages to capture service behavior.

4.2 Keyword-based Search

The first discovery method supported by SPiDeR is keyword search. In this
method, each service is advertised in the system with a set of keywords. Inter-
ested parties can then locate the services they are looking for by querying the
system with keywords. When keyword-based search is used, all services that are
advertised for the specified keyword will be returned.
Extracting Keywords: The keywords associated with a service can be ex-
tracted from its description, e.g., its WSDL document. Popular information re-
trieval tools such as Smart [36] can be used to automatically extract the tokens
from the description file. These tools can also be configured to remove stop words
and do stemming. The tokens that appear in name and description fields can
then be used as keywords. For more accuracy during keyword extraction from

P2

P1 P3

SPA

SP1 SP3

SP2

P , P , P1 2 3

PA

Associated services
rental W11, W12, W13, ...
museum
.

Keyword

W21, W22, ..., WA

Keyword List

Associated services

.

W51, W52, ..., WA
W61, W46, W63, ...,

Sequence
Behavior List

?reserveRequest−!checkAvailability−...
?searchRequest−!searchResponse

.

Associated services

W41, W42, W43, ...,
W31, W32, ..., WA

/TravelService/TransportationService/FlightService/...
/TravelService/AttractionService/MuseumService

Path
Ontology List

.
P2: ontologyAdvertise("/TravelService/AttractionService/MuseumService", WA)
P1: keywordAdvertise("museum", WA)

P3: behaviorAdvertise("?searchRequest−!searchResponse", WA)

(offers museum service WA)

Fig. 3. Advertising Services

tokens, a thesaurus can be used or common naming conventions can be consid-
ered. A detailed discussion of extracting keywords from service description files
can be found in [22].
Advertising Services: Once the keywords for advertising a service are deter-
mined, the peer offering the service sends a keywordAdvertise message into the
system for each keyword. This message contains the keyword and the necessary
information to contact the service (i.e., the address of the service). The key-
word string is used as the key, so that the super peer processing the message
hashes the keyword to determine its location on the Chord ring. The message is
then routed and the corresponding super peer stores the service in its keyword
list. For example, in Figure 3, peer PA advertises its service WA for keyword
museum by sending keywordAdvertise(‘museum’,WA) message P1 to its su-
per peer SPA. The message is then routed to SP1, which is responsible for the
key “museum”. SP1 stores the association (museum, WA) in its keyword list.
Locating Services: When the system is queried for a keyword, the message
is routed to the corresponding super peer PS by hashing the keyword. PS then
searches its keyword list and returns all matching services to the querying peer.

4.3 Ontology-based Search

Another important search operation is category search, where the user wants to
find all services within a certain category.
Common Ontology: SPiDeR assumes that there is a common domain ontology
that is known by all peers in the system. This can be achieved by having each new
peer download the ontology from the peer it contacts during join. This ontology
identifies all possible categories for which the services can be advertised in the
system. Figure 4 shows an example domain ontology for a system composed of
travel related services.

TravelService

AttractionService

TransportationService

LogdingService

RailService

RentalVehicleService

FlightService

TruckRentalService

CarRentalService

MotorbikeRentalService

…

…

…

…

…

…

…

…

Fig. 4. Example Domain Ontology

Advertising Services: Service providers can advertise their services for each
related category from the domain ontology. For each selected category, an ontol-
ogyAdvertise message is sent to the system. In this case, the path from the root to
the corresponding node in the domain ontology is used as the key to determine
the message destination. The message is routed to the super peer responsible
for the path string. That peer then stores the corresponding information in its
ontology list (see advertise message P2 in Figure 3 for an example).
Locating Services: When ontology-based search is used, the path string is
hashed and the corresponding super peer returns all matching services from its
ontology list to the querying peer.

4.4 Behavior-based Search

Considering Web services as simple method invocations might not be sufficient
in some cases. Web services can interact with other services, send and receive
messages, and perform a set of activities. Such service behaviors can be defined
by means of, for instance, process flow languages like BPEL. When this infor-
mation is available, it can be used to improve the accuracy of service discovery
by allowing users to specify the desired service behavior. For instance, Figure
5 illustrates a travel service. The automaton describes the message exchanges
between the service and a user. If we examine the service behavior, we can see
that the service allows its users to cancel their reservations and purchases until
it finalizes the transaction. Some users may look for such specific behaviors. A
behavior-based analysis can facilitate the system to differentiate among services
based on their behaviors and perform the service discovery more accurately.
Advertising Services: For a given finite state automaton representing the
service behavior of a Web service (such a finite automaton can be automatically
extracted from the service’s BPEL document[37]), we extract all the accepting
paths from the automaton. An accepting path starts from the initial state of
the automaton and ends in an accepting state without any loops (semantically
the path implies a sequence of activities successfully performed by the service).
Each accepting path is then advertised in the system using the path as a key. The
entire service automaton of the service is included in the advertise message and
stored in the behavior-list. For the service automaton given in Figure 5, two of the
accepting paths are <?searchRequest - !searchResponse> and <?reserveRequest -
!checkAvailability - !notAvailable>. The advertise message P3 in Figure 3 shows

� �
� �

� � � �

� � � 	 �
 � � 	 � � 	 � �
� � � 	 �
 � � 	 � � � � � 	
� �
 	 � 	
 � 	 	 � � 	 � �
� � � � 	 � � � � � � � � � � � � � �
	 � � � � � � � � � 	
� �
 	 � 	
 � 	 	 � � � � � 	
� � � � � � � � � � � � � 	
� � � � � � 	 � 	 � � 	 � �
� � � � � � 	 � 	 � � � � � 	
� � � � � 	 � � 	 � �
� � � � � � � � � 	 � � 	 � � 	 � �
� � � � � 	 � � ! "
 � � � � 	 � � # � � � 	 �
� � � � � 	 � � � � � 	

� $

� % � &

� '� (

�)

� * � +

� ,

� -

� '

� (

. / 021 3 4 3 5 6 3 7 / 3 7 7 8 9 3 :
; / 0<7 3 = > 7 / 3 7 7 8 9 3 :

? @ ? A ? B C D A B A E

B F F E G A ? @ H A B A E

I J K J L M

NOJ P P Q K J P

Fig. 5. Example Service Automaton

how service WA is advertised for the first accepting path above. A detailed
discussion of the behavior-based search can be found in [17].
Locating Services: Users can ask behavior-based lookup queries for accepting
paths they are looking for. In this case, the super peer that is responsible for
that path will search through its behavior-list to find the service automata that
matches with the query path and return them.

Overview

SPiDeR allows peers to search for Web services in 3 different ways: keyword-
based, ontology-based, and behavior-based. All three of these techniques leverage
the basic exact key lookup functionality provided by the super-peer overlay, but
they incorporate different semantic meanings and thus enable SPiDeR to provide
a richer set of querying capabilities. For example, a user Px looking for services
related to museums might not be able to find a relevant service Sm using keyword
search just because the service is not advertised for the keyword(s) provided by
Px. However, if Sm is advertised based on ontology, Px can locate it by issuing
an ontology-based search on /TravelService/AttractionService/MuseumService.
Similarly, consider a user Py looking for flight booking services with express de-
livery option. If keyword-based or ontology-based search is used, Py will have
to investigate the set of returned services to determine the ones that have ex-
press delivery option. Instead, Py can use behavior-based search so that only the
services with express delivery option are returned.

4.5 Ranking Services

In addition to the above search methods, SPiDeR provides a rating discovery
mechanism. After using a Web service, a user can rate the quality of the service.
The user (PU) sends a message containing its own address, the address of the
service being rated (WS), and the corresponding score (a real value between 0
and 1, where 1 is the highest score). The message is then routed in the system
by hashing the address of the service being rated. The corresponding super peer
stores all ratings given to WS in its rating list.

The rating of a Web service then can be retrieved by querying for its address.
This query will return the average of all the scores the service had been given.
The quality ratings are useful for selecting the service to use once a list of
matching services are obtained.

5 Peer Operations in SPiDeR

In this section, we provide a more detailed discussion of some peer operations
such as advertising services, composite lookups, and indexing services. We also
show the routing performance of SPiDeR.

5.1 Advertising Services

After joining the system, each peer P periodically advertises the services it
provides. For advertising a service, Pn sends the necessary information to its
super peer (if it is not a super peer). This message specifies the address of the
service, advertisement type(keyword-based, ontology-based or behavior-based),
and the additional information (keyword, ontology path, service automaton).
The super peer then routes the corresponding message within the Chord so that
the responsible super peer stores the index information.

Peers periodically refresh their service advertisements to avoid stale index
entries (super peers remove the index entries that are not refreshed) and to
recover lost index information (if a super peer leaves without transferring its
index information to another super peer).

5.2 Composite Lookups

Peers can use any of the supported search methods to locate the services they
are looking for. The query message contains the address of the querying peer,
query type (keyword/ontology/behavior/rating), and the corresponding argu-
ments (keyword/ontology path/request automaton/service address, respectively).
The super peer responsible for the argument receives the message and searches
through the corresponding index. It then returns the list of matching services
to the querying peer. SPiDeR can also be used for composite lookups such as
searching for multiple keywords or for services with a keyword within a cate-
gory. In this case, the user can retrieve the result of each elementary lookup and
locally compute the intersection.

5.3 Indexing at Super Peers

In SPiDeR, super peers index the information about Web services they are as-
signed through Chord hashing. Each super peer keeps 4 different lists for support-
ing the corresponding discovery operations: keyword list, ontology list, behavior
list, and rating list. SPiDeR is flexible in the sense that each super peer can
individually choose the indexing methods it uses. For example, a peer might
choose to keep each list as a sequential file, which might not be very efficient.
More efficient index lookups can be achieved by using more efficient indexing
schemes. For keyword, ontology, and rating lists, hashtable-like indexing meth-
ods are desirable since these lists only require exact key lookups. For behavior
list, the matching regular expressions should be identified, so an RE-tree (Reg-
ular Expression tree) [38] might be suitable.

5.4 Routing Cost

We measured the performance of SPiDeR in terms of routing using a simulator
implemented in Java. To measure the routing cost, we measured the average
number of peers visited for routing a message in the super peer ring for different
number of peers. For each message, the initiating peer is selected uniformly at
random from the existing super peers and the message destination is set to a
random Chord identifier. Figure 6 shows the results, where each data point is
the average over 1000 runs. The routing cost is low and also increases gracefully
with increasing number of peers. For example, routing a message takes 3.7 overlay
hops on the average in a 50 peer system, whereas it takes 5.4 hops when the peer
number increases to 500. Note that the peer numbers shown on the graph are the
number of super peers and do not include the client peers. The actual number
of peers in the system can be much more than the number shown in the graph.
Thus we conclude that SPiDeR is both scalable and efficient in terms of routing.
Compared to a centralized service discovery system, SPiDeR is more robust and
scalable, and supports a richer set of discovery operations at the expense of a
little routing overhead.

6 Conclusion

With the proliferation of Web services technology and the increase in the number
of Web services, the service discovery problem gets more challenging. There are
different dimensions like functionality, behavior and semantics each describing a
service from a different perspective. In this paper, we proposed a structured P2P
framework which unifies these perspectives by means of providing different search
methods in a distributed environment without a central component. We believe
our results will contribute to the efforts towards comprehensive service discovery
systems. As future work, we plan to look into other possible perspectives that
users may be interested in and improve our system with the addition of new
search methods.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600 700 800 900 1000

R
ou

tin
g

C
os

t

Number of Super Peers

Fig. 6. Routing Performance of SPiDeR

References

1. Simple Object Access Protocol (SOAP) 1.2: http://www.w3.org/TR/SOAP/
(2003)

2. Web Services Description Language (WSDL) 2.0: http://www.w3.org/tr/ (2001)
3. Business Process Execution Language (BPEL) 2.0: http://www.oasis-

open.org/committees/download.php/10347/wsbpel-specification-draft-
120204.htm (2004)

4. OWL-S 1.1: http://www.daml.org/services/owl-s/1.1/ (2004)
5. Aiello, M., Aoyama, M., Curbera, F., Papazoglou, M., eds.: Proceedings of the

International Conference of Service Oriented Computing (ICSOC’04), November
15-19, 2004, New York City, NY, USA,. In Aiello, M., Aoyama, M., Curbera, F.,
Papazoglou, M., eds.: ICSOC, ACM Press (2004)

6. Proceedings of the IEEE International Conference on Web Services (ICWS), San
Diego, California, USA. (2004)

7. Proceedings of the IEEE International Conference on Services Computing (SCC),
Shanghai, China. (2004)

8. Ellis, A., Hagino, T., eds.: Proceedings of the 14th international conference on
World Wide Web, Chiba, Japan, May 10-14, 2005. In Ellis, A., Hagino, T., eds.:
WWW, ACM (2005)

9. Web Services Architecture Requirements: http://www.w3.org/tr/wsa-reqs (2004)
10. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-

tectures and Applications. Springer (2004)
11. Binding Point: http://www.bindingpoint.com/ (2005)
12. Web Service List: http://www.webservicelist.com/ (2005)
13. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for

web services. In: VLDB. (2004)
14. Mahleko, B., Wombacher, A., Frankhauser, P.: A grammar-based index for match-

ing business processes. In: ICWS. (2005)

15. Constantinescu, I., Binder, W., Faltings, B.: Flexible and efficient matchmaking
and ranking in service directories. In: ICWS. (2005)

16. Shen, Z., Su, J.: Web service discovery based on behavior signatures. In: Proceed-
ings of International Conference on Services Computing. (2005)

17. Emekci, F., Sahin, O.D., Agrawal, D., El Abbadi, A.: A peer-to-peer framework
for web service discovery with ranking. In: ICWS. (2004) 192–199

18. Paolucci, M., Sycara, K., Nishimura, T., Srinivasan, N.: Using daml-s for p2p
discovery. In: ICWS. (2003) 203–207

19. Papazoglou, M.P., Kramer, B., Yang, J.: Leveraging web-services and peer-to-peer
networks. In: CAISE. (2003) 485–501

20. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: A scalable and ontology-based
p2p infrastructure for semantic web services. In: P2P. (2002) 104–111

21. Schmidt, C., Parashar, M.: A peer-to-peer approach to web service discovery. In:
WWW. (2004) 211–229

22. Syeda-Mahmood, T., Shah, G., Akkiraju, R., Ivan, A., Goodwin, R.: Searching
service repositories by combining semantic and ontological matching. In: ICWS.
(2005)

23. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.:
Meteor-s wsdi: A scalable p2p infrastructure of registries for semantic publication
and discovery of web services. Inf. Tech. and Management 6 (2005) 17–39

24. Napster: (http://www.napster.com/)
25. Gnutella: (http://www.gnutella.com/)
26. Lv, Q., Ratnasamy, S., Shenker, S.: Can heterogeneity make gnutella scalable? In:

IPTPS. (2002) 94–103
27. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-

addressable network. In: SIGCOMM. (2001) 161–172
28. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scal-

able peer-to-peer lookup service for internet applications. In: SIGCOMM. (2001)
149–160

29. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: Middleware. (2001)

30. Zhao, Y.B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141,
University of California at Berkeley (2001)

31. Gummadi, P.K., Gummadi, R., Gribble, S.D., Ratnasamy, S., Shenker, S., Stoica,
I.: The impact of dht routing geometry on resilience and proximity. In: SIGCOMM.
(2003) 381–394

32. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: ICDE. (2003)
49–60

33. Web Service Semantics - WSDL-S:
http://www.w3.org/2005/04/fsws/submissions/17/wsdl-s.htm (2005)

34. Semantic Web Services Language - SWSL: http://www.daml.org/services/swsl/
(2005)

35. Web Service Modeling Language - WSML: http://www.wsmo.org/wsml/ (2005)
36. Buckley, C.: Implementation of the SMART information retrieval system. Techni-

cal Report 85-686, Cornell University (1985)
37. Fu, X., Bultan, T., Su, J.: Wsat: A tool for formal analysis of web services. In:

International Conference on Computer Aided Verification. (2004)
38. Chan, C.Y., Garofalakis, M.N., Rastogi, R.: Re-tree: An efficient index structure

for regular expressions. In: VLDB. (2002) 263–274

