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1 IntroductionAccompanying the rapidly increasing use of large networks and internetworks has been acorresponding growth in research on internetworking. Researchers working in internetworkcommunication generally adopt one of three methods to evaluate their ideas:� They implement their ideas on a real internetwork. This approach has obvious di�cul-ties, including the problem of getting access to an internetwork of reasonable size thatcan tolerate experimentation.� They implement their ideas on a smaller network and either assume or address the issueof scalability.� They use a graph to model the internetwork and simulate their ideas on the graph.The advantage of graph models over the other two methods is that, unlike real internet-works, there is no issue of access and service disruption. Unlike small networks, they can bemade arbitrarily large. In addition, the creator of the graph can exercise control over a widervariety of parameters than in the other two methods.We surveyed the 1993 Infocom Conference Proceedings, the 1990 through 1993 SIGCOMMConference Proceedings and some other miscellaneous papers, looking at only those paperswherein the authors used a graph or a real network to evaluate their results. Out of thepapers that �t our criteria (i.e. they looked at large networks, not just at the events in onerouter; they simulated or implemented their algorithms; and they included information aboutthe simulation or implementation environment), one used the Internet [10], two used regulargraphs [12, 19], two used graphs that were copies of real internetworks [12, 22], one simulateda �ve node WAN [4], one used two real computers to be the entire internetwork [7], one used aLAN to simulate a WAN [13], and ten, about half of the papers, used random graphs withoutspecifying how they were generated [1, 2, 3, 6, 8, 10, 14, 15, 16, 17]. Only �ve used clearlyspeci�ed random graphs [5, 9, 18, 20, 21].The results of any simulation depend upon the model on which the simulation is carriedout. Researchers have been assuming that realistic simulation results can be attained when thegraphs used to get the results are far smaller than the real networks they represent (graphs offewer than �fteen nodes are not rare), and may or may not have the topological characteristicsof real networks. Further, there is no way to judge the accuracy of the graph model if themethod used to generate the graph and the characteristics of the graph are not speci�ed.The purpose of this paper is to present some of the random graph models already in use,and to present some metrics for discerning the topological characteristics of graphs. Even-tually, in future work, we hope to extend this to matching the characteristics of the randommodels to those of real internetworks to achieve more accurate internetwork simulation.The following sections present, �rst, some graph-related de�nitions. Then we presentrandom graph generation methods that have already been used for simulations. Next we giveresults on topological characteristics of graphs generated within each model, and also illustratean example of random graph use in research. The last section covers areas of possible futurework. 1



2 De�nitionsIn this paper, unless otherwise stated, the term graph will refer to a connected graph withundirected edges, no parallel or self-loops, and N nodes. Nodes in a network simulationare generally used to represent routers and edges to represent the links between the routers.Weights on the edges can be used to indicate bandwidth or some other property of the link.The degree of a node is the number of edges incident to the node. The shortest path betweenany two nodes, x and y, is the sequence of edges from node x to node y whose collective weightsums up to a minimum. The depth of a node is the length of the longest of the shortest pathsfrom it to all the other nodes. The diameter of a graph is the length of the longest shortestpath in the entire graph. Equivalently, the diameter can be thought of as the largest depthin the graph. A center of a graph is a node whose depth is minimum over all the nodes in thegraph.3 Graph ModelsIn this section we present three models for generating random graphs that re
ect some of thestructure of internetwork topologies. Each model is a variation on the basic random graphgeneration process that distributes vertices in the plane then adds edges between pairs ofvertices based on some probability function.3.1 Two-Level GraphsCalvert et al. propose a two phase method to generate random graphs with a hierarchicalstructure [5]. In the �rst phase, nodes are randomly placed in the x-y coordinate plane.Let d be the Euclidean distance between vertices p and q. Let R be the radius of constantprobability of adding an edge. Let � be a number between zero and one, used to control theedge probability. The probability P of the edge being added between p and q is given by [5]:P = ( � if d � R�(p2� d)=(p2�R) if d > RBecause the graph generated may not be connected, the generation program iterates until theresulting graph is connected.After the initial graph has been completed the program enters the second phase. Hereprogram goes through every node in the top level graph and replaces it with a subgraphgenerated in the same fashion as the original. The edges incident to the top level nodes areconnected sequentially to the nodes in the subgraph with the lowest degree greater than one.In this way, the replacement process preserves leaves. The model allows an arbitrary numberof levels, but Calvert et al. [5] restricted consideration to two levels. Figure 1 contains asample Two-Level graph with 100 nodes. The hierarchical nature of its two level structure isquite evident.3.2 Waxman GraphsWaxman [20] proposed a random graph model that has become something of a de factostandard. After distributing N nodes in the x-y coordinate plane, each pair of nodes p and2



Figure 1: Example Two-Level Graph
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q is considered. Let d be the Euclidean distance between p and q. The parameters � and �are numbers chosen by the user between zero and one that govern the probability of an edgebeing added. The parameter L is the maximum Euclidean distance between any two nodes.An edge is added between p and q with probability:P = � exp(�d=(L�))The procedure iterates until a connected graph is generated. An alternative to the abovemethod is to create a graph in exactly the same way, but with d chosen at random betweenzero and the maximum internodal distance L. As the two Waxman graph types are extremelysimilar, for the most part we will not di�erentiate between them. When we do di�erentiate,the Waxman graph that uses Euclidean distance will be Waxman 1 and the graphs that usea randomly chosen distance will be Waxman 2. Figure 2 presents a sample Waxman 2 graphwith 100 nodes, and Figure 3 presents a sample Waxman 1 graph with 100 nodes. Appearancesto the contrary notwithstanding, the Waxman 2 and the Two-Level graphs have nearly thesame number of edges (approximately 230), but the Two-Level edges are clearly concentratedwithin the subgraphs while the Waxman edges span the entire graph freely.3.3 DoarLeslie GraphsDoar and Leslie proposed a modi�ed version of the Waxman 1 random graph generationscheme [9]. Contending that as the number of nodes in the graph increased, so does theaverage node degree, Doar and Leslie added a scaling factor to Waxman's edge probabilityequation. (Note that Wei and Estrin further re�ned this model, suggested that coupling �values above one (which Waxman's original idea did not allow) with very small � valuesproduced graphs that \appeared to be of practical signi�cance" [21].)After distributing N nodes randomly over an x-y coordiate grid, this method goes throughevery pair of nodes and calculates the Euclidean distance between the nodes. In addition to�, � and N , the user of the program must give the desired average node degree, e, and aconstant, k, that must be experimentally �gured out for every �, � and e. To �gure out k, weran the program with our �, � and e values and varied k until we got an average node degreenear e. The average node degree of the �nal graph will only be close to e if the correct k isused. The �nal probability that the edge will be added is:P = �(ke=jN j) exp(�d=(L�))Figure 4 presents a sample DoarLeslie graph of 100 nodes. Qualitatively, it appears to bevery much like the Waxman graphs.4 Characterization of GraphsGiven several methods to generate graphs, the question arises as to what type of graphs aregenerated by each model. In this section, we propose metrics to help characterize randomgraphs. The focus here is upon three general graph characteristics.� the node degree distribution 4



Figure 2: Example Waxman 2 Graph
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Figure 3: Example Waxman 1 Graph
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Figure 4: Example DoarLeslie Graph
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Figure 5: ARPAnet� the diameter of the graph� the number of centers in the graphFor comparative purposes, the characteristics of the ARPAnet are included. The structureof the ARPAnet is shown in Figure 5 and its characteristics in Figure 6. As we will see, theARPAnet has a lower average node degree and far fewer nodes than any of the other graphsin this paper, however, its diameter is close to those of the Waxman and DoarLeslie graphsand its number of centers is within the range they encompass.4.1 Node Degree DistributionTable 1 gives average node degrees for ten graphs with 400 nodes each of the three graphtypes. The only di�erence between two graphs of the same type is the value of the seed forthe random number generator. We chose the �, �, e and k values such that the average8



No. of Centers Diameter Avg. Node Deg. No. NodesARPA 9 9 2.89 49Figure 6: Characteristics of ARPAnet0 1 2 3 4 5 6 7 8 9Two-Level 3.28 3.23 3.42 3.42 3.25 3.33 3.39 3.41 3.30 3.47Waxman 2 4.09 4.09 4.24 4.04 4.56 4.18 4.22 4.12 4.22 3.99Waxman 1 4.12 4.38 3.94 4.20 4.08 4.12 4.07 4.05 4.22 4.11DoarLeslie 4.345 4.005 4.220 3.900 4.050 4.105 4.275 4.215 4.205 4.090Table 1: Average Node Degrees For Various Graphs
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Figure 7: Two-Level Graph Node Degree Distribution9



0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25

N
um

be
r 

of
 N

od
es

Degree

Node Degree Distribution: Waxman Graphs

"r0.deg"
"r2.deg"
"r4.deg"
"r6.deg"
"r8.deg"

Figure 8: Waxman 2 Graph Node Degree Distribution
0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30

N
um

be
r 

of
 N

od
es

Degree

Node Degree Distribution: Waxman RG1 Graphs

"r1.deg"
"r3.deg"
"r5.deg"
"r7.deg"
"r9.deg"

Figure 9: Waxman 1 Graph Node Degree Distribution10
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Figure 10: DoarLeslie Graph Node Degree Distribution0 1 2 3 4 5 6 7 8 9Two-Level 29 19 29 26 25 20 22 29 32 24Waxman 2 9 9 8 10 9 10 9 8 11 9Waxman 1 9 9 12 10 10 10 10 10 9 9DoarLeslie 10 9 11 10 10 10 9 8 10 9Table 2: Diameters of Various Graphsnode degree would be similar in order to provide a point of comparison between the threegraph types in regards to the other characteristics. Figures 7, 8, 9 and 10 show node degreedistributions for �ve graphs of each type. As you can see, DoarLeslie and Waxman graphslook quite similar, but Two-Level graphs have a spike at nodes of degree one, which are leaves.That is due to the fact that the process of replacing top level nodes with subgraphs preservesleaves.4.2 DiameterNote in Table 2 that the diameters of the Two-Level graphs are much higher than thediameters of the Waxman and DoarLeslie graphs. That is caused by the scarcity of edgesbetween subgraphs in a Two-Level graph, which is a result of the fact that edges only existbetween two nodes if the nodes are in the same subgraph, or if they are the two nodes11



0 1 2 3 4 5 6 7 8 9Two-Level 2 1 7 1 1 3 1 3 1 1Waxman 2 53 45 119 33 5 22 1 1 5 74Waxman 1 55 1 24 52 35 28 19 16 37 50DoarLeslie 11 38 18 4 1 11 55 138 34 67Table 3: Number of Centers in Graphsconnecting one subgraph to another. Given that the Two-Level graphs probably model theheirarchical nature of large networks better than the Waxman or DoarLeslie graphs, thediscrepancy in diameters could indicate that Waxman-like graphs are not very realistic whenit comes to the number of nodes a packet must, on average, traverse in a real network to getfrom source to destination.4.3 CentersTable 3 shows that there are far fewer centers in the Two-Level graphs, on average, thanin the other graph types. This is related to Two-Level graphs' greater diameter, and thescarcity of edges between subgraphs. Due to their nature, small subgraphs with few edgesbetween subgraphs (unless � was large), nodes in Two-Level graphs tend to be further fromthe \edge" of the graph. In Waxman and DoarLeslie graphs, an edge can be from any nodeto any other node | not con�ned to a particular subgraph, as the Two-Level graph nodes are| so they are more likely to span the graph and put many nodes in the position of a center.Unfortunately, they do not do so in a predictable fashion, which leads to the extreme variancein numbers of centers in the Waxman and DoarLeslie graphs. The unpredictable number ofcenters to these two graph types is a potential drawback to their use in modeling networks,since the exact same parameters could generate vastly di�erent numbers of centers with achange in the seed for the random number generator.5 An Illustration of Graph UseThe main reason this work on analyzing the characteristics of graphs and the di�erences incharacteristics between di�erent types of graphs was done was as part of a larger projectstudying the properties of di�erent multicast routing algorithms [5]. Figures 11 and 12 depictthe ratios of bandwidth and delay between two di�erent routing schemes for two di�erenttypes of graph, spanning multicast groups of varying sizes. One routing scheme �nds itsrouting trees through the use of the Steiner tree approximation algorithm proposed by Kou,Markowsky, and Berman [11]. The other scheme picks one of the nodes to be the root ofa shortest path tree. The bandwidths and delays generated by the two routing schemes arecalculated for randomly chosen multicast groups of size ranging from �ve to 50. Group size ison the x-axis. The y-axis shows the ratios of the KMB approximation routing trees' values tothe shortest path routing trees' values. The two lines in each graph represent the bandwidthsand delays from the exact same method of multicast group choices and the same size multicastgroups run over ten network-modelling graphs with 400 nodes each. The only di�erence is the12
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Figure 11: Di�erences in Bandwidth Between Di�erent Graph Typestype of graph - the lines labeled D represent the results from Two-Level graphs and the lineslabeled R represent the results fromWaxman 2 graphs. The simulation results are signi�cantlydi�erent for the di�erent types of random graphs.6 Additional CommentsOne of the problems with using realistically large random graphs to model internetworks isthat it is quite di�cult to display pictures of the graphs on one page legibly. Nodes and edgesmay overlap and �guring out whether an edge is connecting two nodes or merely overlappingone of them on its way to a third node may require actually looking into the �le the graphis stored in - not a pleasant prospect, as the �les may contain hundreds or even thousands ofnodes and edges. However, nice pictures of the graphs can be extremely useful in assistingthe researcher to get a better handle on what, exactly, the model looks like or the simulationis doing. This is especially true if the nodes in the picture are numbered. AT&T has anexperimental service where, if one sends graphs in a certain �le format to a certain address,they will send back a PostScript picture of the graph with nice layout 1. Unfortunately, AT&Tlimits the graphs they will process to only twenty-�ve nodes.One way to get around the problem of not being able to tell if an edge is going to or througha particular node is to have two versions of the program that generates graph pictures. Oneversion can lay out the nodes in the positions they were randomly placed in at the time of1For more information, ftp to research.att.com and look in dist/drawdag. \mail server" contains further instruc-tions and \dotdoc.ps.Z" is a user's guide. 13
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Figure 12: Di�erences in Delay Between Di�erent Graph Typesgraph generation and the other can perturb each node slightly, up or down or side to side. Inthis way, even if both pictures have places where discerning the crossing and meeting pointsof nodes and edges is di�cult, by comparing the two versions of the graph the structure maybe easier to perceive. For graphs of greater than 100 nodes, or especially high average nodedegree, it still may be di�cult to tell what goes where on one piece of paper, but one can atleast get an idea.7 Future WorkAnother possible random graph model for internetwork simulation is based upon the commonuse of spines, or backbones. One could develop a library of network backbones - graphs of themajor nodes in the ARPAnet, NSFnet, and other real internetworks - and input to a programone of these backbones. The program would generate random subgraphs and attach them tothe nodes in the backbone. One could specify the number of subgraphs to attach to each nodein the backbone, or a range of numbers of subgraphs to attach. Also, one could specify thenumber of nodes in each subgraph, or a range of numbers of nodes. The subgraphs could, infact, have subgraphs of their own.It is all very well to use random graphs to model internetworks, but are these modelsrealistic? We ought to �gure out the rough characteristics of additional real networks, theiraverage node degree, diameters, number of centers (or number of centers per x number ofnodes), and use these characteristics to make the random graphs more closely model the real14
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