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Abstract

Graph models are commonly used in studying solutions to internetworking prob-
lems. This paper considers several random graph models that have been used to
model internetworks, and considers ways to characterize the properties of these
graphs. By matching the characteristics of the random graphs to the characteris-
tics of real internetworks, more accurate modeling can be achieved.
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1 Introduction

Accompanying the rapidly increasing use of large networks and internetworks has been a
corresponding growth in research on internetworking. Researchers working in internetwork
communication generally adopt one of three methods to evaluate their ideas:

e They implement their ideas on a real internetwork. This approach has obvious difficul-
ties, including the problem of getting access to an internetwork of reasonable size that
can tolerate experimentation.

e They implement their ideas on a smaller network and either assume or address the issue
of scalability.

e They use a graph to model the internetwork and simulate their ideas on the graph.

The advantage of graph models over the other two methods is that, unlike real internet-
works, there is no issue of access and service disruption. Unlike small networks, they can be
made arbitrarily large. In addition, the creator of the graph can exercise control over a wider
variety of parameters than in the other two methods.

We surveyed the 1993 Infocom Conference Proceedings, the 1990 through 1993 SIGCOMM
Conference Proceedings and some other miscellaneous papers, looking at only those papers
wherein the authors used a graph or a real network to evaluate their results. Out of the
papers that fit our criteria (i.e. they looked at large networks, not just at the events in one
router; they simulated or implemented their algorithms; and they included information about
the simulation or implementation environment), one used the Internet [10], two used regular
graphs [12, 19], two used graphs that were copies of real internetworks [12, 22|, one simulated
a five node WAN [4], one used two real computers to be the entire internetwork [7], one used a
LAN to simulate a WAN [13], and ten, about half of the papers, used random graphs without
specifying how they were generated [1, 2, 3, 6, 8, 10, 14, 15, 16, 17]. Only five used clearly
specified random graphs [5, 9, 18, 20, 21].

The results of any simulation depend upon the model on which the simulation is carried
out. Researchers have been assuming that realistic simulation results can be attained when the
graphs used to get the results are far smaller than the real networks they represent (graphs of
fewer than fifteen nodes are not rare), and may or may not have the topological characteristics
of real networks. Further, there is no way to judge the accuracy of the graph model if the
method used to generate the graph and the characteristics of the graph are not specified.

The purpose of this paper is to present some of the random graph models already in use,
and to present some metrics for discerning the topological characteristics of graphs. Even-
tually, in future work, we hope to extend this to matching the characteristics of the random
models to those of real internetworks to achieve more accurate internetwork simulation.

The following sections present, first, some graph-related definitions. Then we present
random graph generation methods that have already been used for simulations. Next we give
results on topological characteristics of graphs generated within each model, and also illustrate
an example of random graph use in research. The last section covers areas of possible future
work.



2 Definitions

In this paper, unless otherwise stated, the term graph will refer to a connected graph with
undirected edges, no parallel or self-loops, and N nodes. Nodes in a network simulation
are generally used to represent routers and edges to represent the links between the routers.
Weights on the edges can be used to indicate bandwidth or some other property of the link.
The degree of a node is the number of edges incident to the node. The shortest path between
any two nodes, z and y, is the sequence of edges from node z to node y whose collective weight
sums up to a minimum. The depth of a node is the length of the longest of the shortest paths
from it to all the other nodes. The diameter of a graph is the length of the longest shortest
path in the entire graph. Equivalently, the diameter can be thought of as the largest depth
in the graph. A center of a graph is a node whose depth is minimum over all the nodes in the
graph.

3 Graph Models

In this section we present three models for generating random graphs that reflect some of the
structure of internetwork topologies. Each model is a variation on the basic random graph
generation process that distributes vertices in the plane then adds edges between pairs of
vertices based on some probability function.

3.1 Two-Level Graphs

Calvert et al. propose a two phase method to generate random graphs with a hierarchical
structure [5]. In the first phase, nodes are randomly placed in the x-y coordinate plane.
Let d be the Euclidean distance between vertices p and ¢. Let R be the radius of constant
probability of adding an edge. Let o be a number between zero and one, used to control the
edge probability. The probability P of the edge being added between p and ¢ is given by [5]:

P o ifd<R
] a(v2-d)/(vV2—-R) ifd>R

Because the graph generated may not be connected, the generation program iterates until the
resulting graph is connected.

After the initial graph has been completed the program enters the second phase. Here
program goes through every node in the top level graph and replaces it with a subgraph
generated in the same fashion as the original. The edges incident to the top level nodes are
connected sequentially to the nodes in the subgraph with the lowest degree greater than one.
In this way, the replacement process preserves leaves. The model allows an arbitrary number
of levels, but Calvert et al. [5] restricted consideration to two levels. Figure 1 contains a
sample Two-Level graph with 100 nodes. The hierarchical nature of its two level structure is
quite evident.

3.2 Waxman Graphs

Waxman [20] proposed a random graph model that has become something of a de facto
standard. After distributing NV nodes in the x-y coordinate plane, each pair of nodes p and
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Figure 1: Example Two-Level Graph



¢ is considered. Let d be the Euclidean distance between p and ¢. The parameters a and 3
are numbers chosen by the user between zero and one that govern the probability of an edge
being added. The parameter L is the maximum FEuclidean distance between any two nodes.
An edge is added between p and ¢ with probability:

P = Bexp(—d/(La))

The procedure iterates until a connected graph is generated. An alternative to the above
method is to create a graph in exactly the same way, but with d chosen at random between
zero and the maximum internodal distance L. As the two Waxman graph types are extremely
similar, for the most part we will not differentiate between them. When we do differentiate,
the Waxman graph that uses Euclidean distance will be Waxman 1 and the graphs that use
a randomly chosen distance will be Waxman 2. Figure 2 presents a sample Waxman 2 graph
with 100 nodes, and Figure 3 presents a sample Waxman 1 graph with 100 nodes. Appearances
to the contrary notwithstanding, the Waxman 2 and the Two-Level graphs have nearly the
same number of edges (approximately 230), but the Two-Level edges are clearly concentrated
within the subgraphs while the Waxman edges span the entire graph freely.

3.3 DoarLeslie Graphs

Doar and Leslie proposed a modified version of the Waxman 1 random graph generation
scheme [9]. Contending that as the number of nodes in the graph increased, so does the
average node degree, Doar and Leslie added a scaling factor to Waxman’s edge probability
equation. (Note that Wei and Estrin further refined this model, suggested that coupling /3
values above one (which Waxman’s original idea did not allow) with very small « values
produced graphs that “appeared to be of practical significance” [21].)

After distributing N nodes randomly over an x-y coordiate grid, this method goes through
every pair of nodes and calculates the Euclidean distance between the nodes. In addition to
«, f and N, the user of the program must give the desired average node degree, e, and a
constant, k, that must be experimentally figured out for every o, 8 and e. To figure out k, we
ran the program with our «, § and e values and varied k until we got an average node degree
near e. The average node degree of the final graph will only be close to e if the correct £ is
used. The final probability that the edge will be added is:

P = f(ke/[N|) exp(=d/(La))

Figure 4 presents a sample DoarLeslie graph of 100 nodes. Qualitatively, it appears to be
very much like the Waxman graphs.

4 Characterization of Graphs

Given several methods to generate graphs, the question arises as to what type of graphs are
generated by each model. In this section, we propose metrics to help characterize random
graphs. The focus here is upon three general graph characteristics.

e the node degree distribution



Figure 2: Example Waxman 2 Graph




Figure 3: Example Waxman 1 Graph




Figure 4: Example DoarLeslie Graph




Figure 5: ARPAnet

e the diameter of the graph
e the number of centers in the graph

For comparative purposes, the characteristics of the ARPAnet are included. The structure
of the ARPAnet is shown in Figure 5 and its characteristics in Figure 6. As we will see, the
ARPAnet has a lower average node degree and far fewer nodes than any of the other graphs
in this paper, however, its diameter is close to those of the Waxman and DoarLeslie graphs
and its number of centers is within the range they encompass.

4.1 Node Degree Distribution

Table 1 gives average node degrees for ten graphs with 400 nodes each of the three graph
types. The only difference between two graphs of the same type is the value of the seed for
the random number generator. We chose the «, 3, e and k values such that the average



No. of Centers | Diameter | Avg. Node Deg. | No. Nodes
ARPA 9 9 2.89 49
Figure 6: Characteristics of ARPAnet
0 1 2 3 4 5 6 7 8 9
Two-Level || 3.28 | 3.23 | 3.42 | 3.42 | 3.25 | 3.33 | 3.39 | 3.41 | 3.30 | 3.47
Waxman 2 || 4.09 | 4.09 | 4.24 | 4.04 | 4.56 | 4.18 | 4.22 | 4.12 | 4.22 | 3.99
Waxman 1 || 4.12 | 4.38 | 3.94 | 4.20 | 4.08 | 4.12 | 4.07 | 4.05 | 4.22 | 4.11
DoarLeslie || 4.345 | 4.005 | 4.220 | 3.900 | 4.050 | 4.105 | 4.275 | 4.215 | 4.205 | 4.090
Table 1: Average Node Degrees For Various Graphs
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Node Degree Distribution: Waxman Graphs
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Node Degree Distribution: DoarLeslie Graphs
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Figure 10: DoarLeslie Graph Node Degree Distribution

o1 2|34 |5 |6 |7|8]9
Two-Level || 291929 |26 |25 |20 (2229|3224
Waxman 2 || 9 8 110 9 | 10| 9 8 | 11
Waxman 1 || 9 12110 (10|10 | 10 | 10| 9
DoarLeslie || 10 11101010 9 | 8 | 10

NejiNej iNo]
NejiNej iNo]

Table 2: Diameters of Various Graphs

node degree would be similar in order to provide a point of comparison between the three
graph types in regards to the other characteristics. Figures 7, 8, 9 and 10 show node degree
distributions for five graphs of each type. As you can see, Doarleslie and Waxman graphs
look quite similar, but Two-Level graphs have a spike at nodes of degree one, which are leaves.
That is due to the fact that the process of replacing top level nodes with subgraphs preserves
leaves.

4.2 Diameter

Note in Table 2 that the diameters of the Two-Level graphs are much higher than the
diameters of the Waxman and DoarLeslie graphs. That is caused by the scarcity of edges
between subgraphs in a Two-Level graph, which is a result of the fact that edges only exist
between two nodes if the nodes are in the same subgraph, or if they are the two nodes

11



0 1 2 4 1516 7 8
Two-Level 2 1 7 1 1 3 1 3 1 1
Waxman 2 || 53 |45 | 119 |33 | 5 |22 | 1 1 5 | 74

Waxman 1 || 55 | 1 24 152135128 |19 | 16 | 37| 50
DoarLeslie || 11 | 38 | 18 4 1 |11 |55 | 138 | 34 | 67

Table 3: Number of Centers in Graphs

connecting one subgraph to another. Given that the Two-Level graphs probably model the
heirarchical nature of large networks better than the Waxman or DoarLeslie graphs, the
discrepancy in diameters could indicate that Waxman-like graphs are not very realistic when
it comes to the number of nodes a packet must, on average, traverse in a real network to get
from source to destination.

4.3 Centers

Table 3 shows that there are far fewer centers in the Two-Level graphs, on average, than
in the other graph types. This is related to Two-Level graphs’ greater diameter, and the
scarcity of edges between subgraphs. Due to their nature, small subgraphs with few edges
between subgraphs (unless o was large), nodes in Two-Level graphs tend to be further from
the “edge” of the graph. In Waxman and DoarLeslie graphs, an edge can be from any node
to any other node — not confined to a particular subgraph, as the Two-Level graph nodes are
— s0 they are more likely to span the graph and put many nodes in the position of a center.
Unfortunately, they do not do so in a predictable fashion, which leads to the extreme variance
in numbers of centers in the Waxman and DoarLeslie graphs. The unpredictable number of
centers to these two graph types is a potential drawback to their use in modeling networks,
since the exact same parameters could generate vastly different numbers of centers with a
change in the seed for the random number generator.

5 An Illustration of Graph Use

The main reason this work on analyzing the characteristics of graphs and the differences in
characteristics between different types of graphs was done was as part of a larger project
studying the properties of different multicast routing algorithms [5]. Figures 11 and 12 depict
the ratios of bandwidth and delay between two different routing schemes for two different
types of graph, spanning multicast groups of varying sizes. One routing scheme finds its
routing trees through the use of the Steiner tree approximation algorithm proposed by Kou,
Markowsky, and Berman [11]. The other scheme picks one of the nodes to be the root of
a shortest path tree. The bandwidths and delays generated by the two routing schemes are
calculated for randomly chosen multicast groups of size ranging from five to 50. Group size is
on the x-axis. The y-axis shows the ratios of the KMB approximation routing trees’ values to
the shortest path routing trees’ values. The two lines in each graph represent the bandwidths
and delays from the exact same method of multicast group choices and the same size multicast
groups run over ten network-modelling graphs with 400 nodes each. The only difference is the
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Figure 11: Differences in Bandwidth Between Different Graph Types

type of graph - the lines labeled D represent the results from Two-Level graphs and the lines
labeled R represent the results from Waxman 2 graphs. The simulation results are significantly
different for the different types of random graphs.

6 Additional Comments

One of the problems with using realistically large random graphs to model internetworks is
that it is quite difficult to display pictures of the graphs on one page legibly. Nodes and edges
may overlap and figuring out whether an edge is connecting two nodes or merely overlapping
one of them on its way to a third node may require actually looking into the file the graph
is stored in - not a pleasant prospect, as the files may contain hundreds or even thousands of
nodes and edges. However, nice pictures of the graphs can be extremely useful in assisting
the researcher to get a better handle on what, exactly, the model looks like or the simulation
is doing. This is especially true if the nodes in the picture are numbered. AT&T has an
experimental service where, if one sends graphs in a certain file format to a certain address,
they will send back a PostScript picture of the graph with nice layout '. Unfortunately, AT&T
limits the graphs they will process to only twenty-five nodes.

One way to get around the problem of not being able to tell if an edge is going to or through
a particular node is to have two versions of the program that generates graph pictures. One
version can lay out the nodes in the positions they were randomly placed in at the time of

! For more information, ftp to research.att.com and look in dist/drawdag. “mail_server” contains further instruc-
tions and “dotdoc.ps.Z” is a user’s guide.
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Figure 12: Differences in Delay Between Different Graph Types

graph generation and the other can perturb each node slightly, up or down or side to side. In
this way, even if both pictures have places where discerning the crossing and meeting points
of nodes and edges is difficult, by comparing the two versions of the graph the structure may
be easier to perceive. For graphs of greater than 100 nodes, or especially high average node
degree, it still may be difficult to tell what goes where on one piece of paper, but one can at
least get an idea.

7 Future Work

Another possible random graph model for internetwork simulation is based upon the common
use of spines, or backbones. One could develop a library of network backbones - graphs of the
major nodes in the ARPAnet, NSFnet, and other real internetworks - and input to a program
one of these backbones. The program would generate random subgraphs and attach them to
the nodes in the backbone. One could specify the number of subgraphs to attach to each node
in the backbone, or a range of numbers of subgraphs to attach. Also, one could specify the
number of nodes in each subgraph, or a range of numbers of nodes. The subgraphs could, in
fact, have subgraphs of their own.

It is all very well to use random graphs to model internetworks, but are these models
realistic? We ought to figure out the rough characteristics of additional real networks, their
average node degree, diameters, number of centers (or number of centers per z number of
nodes), and use these characteristics to make the random graphs more closely model the real
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networks. The random graphs could be tailored to match a real network - for example, a
program could generate a random graph of the Two-Level type where the top level has an
average node degree of five, the second level has an average node degree of three, the diameter
of the top level graph is « and the diameters of the subgraphs fall in the range from y to z,
and so on. Methods could be developed to add and delete nodes from the graphs in a random
manner in order to more closely model the dynamic nature of real internetworks.
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