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This article develops a two-factor real options model of the harvesting decision over infinite rotations
assuming a known stochastic price process and using a rigorous Hamilton–Jacobi–Bellman method-
ology. The harvesting problem is formulated as a linear complementarity problem that is solved nu-
merically using a fully implicit finite difference method. This approach is contrasted with the Markov
decision process models commonly used in the literature. The model is used to estimate the value of
a representative stand in Ontario’s boreal forest, both when there is complete flexibility regarding
harvesting time and when regulations dictate the harvesting date.
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The forest economics literature has long dealt
with the problem of optimal harvesting under
uncertainty. An overview is provided in re-
cent bibliographies by Newman, and Brazee
and Newman. A thirty-year-long strand of
this literature emphasizes the importance of
valuing managerial flexibility in the context
of irreversible harvesting decisions when for-
est product prices are volatile relative to har-
vesting costs (Hool; Lembersky and Johnson).
Failure to include the value of management
options where they exist will result in an in-
correct valuation of a forestry investment.
Because the formulation and modeling of tim-
ber harvesting problems to accurately incor-
porate the value of managerial flexibility is
unlikely to result in closed-form solutions, for-
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est economics models have used a number of
approaches to solve complex optimal harvest-
ing problems under stochastic prices, including
Markov decision process (MDP) models and
simulation. More recently, these approaches
have increasingly drawn from the burgeon-
ing finance literature on the valuation of fi-
nancial and real options (Dixit and Pindyck;
Trigeorgis). These approaches explicitly incor-
porate into the value of the resource any op-
portunities for managers to adjust harvesting
plans in response to stochastic events as they
unfold—opportunities that may be thought of
as embedded options.

The contributions of the real options litera-
ture are in the development of powerful deci-
sion models and solution techniques that can
offer improvements in accuracy over methods
based on MDP models, a standard in the forest
economics literature; and in the formulation
and interpretation of the decision problem by
explicitly recognizing the parallels between fi-
nancial options, such as call options on a stock,
and real options, which refer to the opportu-
nities to acquire real assets. We can view the
opportunity to harvest a stand of trees as a
real option, similar to an American call option,
which can be exercised at any time. The exer-
cise price is the cost of harvesting the trees and
transporting them to the point of sale. The op-
tion to choose the optimal harvest time, based
on wood volume and price, and the option to
abandon the investment if wood prices are too

Amer. J. Agr. Econ. 87(3) (August 2005): 735–755
Copyright 2005 American Agricultural Economics Association

 at Pennsylvania State U
niversity on Septem

ber 19, 2016
http://ajae.oxfordjournals.org/

D
ow

nloaded from
 

http://ajae.oxfordjournals.org/


736 August 2005 Amer. J. Agr. Econ.

low are embedded in the tree harvesting op-
portunity. A real options approach focuses on
the importance of options embedded in the
harvesting decision.1

In their 1999 review article, Brazee and New-
man refer to the rather slow development of
the options approach to forestry due to its
mathematically demanding nature. In this ar-
ticle, we make a methodological contribution
to implementing real options approaches by
demonstrating the numerical solution of the
multirotational optimal harvesting problem to
a specified degree of accuracy using a tech-
nique that can handle a fairly general class of
specifications for price uncertainty. The mul-
tirotational harvesting problem represents a
path-dependent option, which is significantly
more complex than the single rotation prob-
lem. Thus, this article extends the single rota-
tion analysis of Insley in a nontrivial manner.

An important benefit of the approach pre-
sented in this article is the assurance that the
solution obtained is accurate given the cho-
sen inputs. The particular numerical procedure
used in solving the option value problem can
have a large impact on the estimated value of
an uncertain investment—a point emphasized
in the finance literature (Wilmott; Wilmott,
Dewynne, and Howison). In instances when
accuracy is important, the approach presented
in this article will represent a significant im-
provement over other techniques in the liter-
ature for dealing with price uncertainty. In a
policy-making context, accuracy will be impor-
tant in decisions that involve tradeoffs—such
as in an evaluation of the benefits versus costs
of a regulation that will restrict forest owners’
ability to freely determine the optimal harvest
schedule, but that would provide environmen-
tal benefits.

We develop a model of the harvesting de-
cision at the stand level assuming stochastic
prices and deterministic volume. The objective
is to maximize the net present value of the in-
vestment over an infinite stream of future ro-
tations, where price, P, is assumed to follow an
Ito process,

d P = a(P, t) dt + b(P, t) dz.(1)

1 Another innovation in the finance literature relevant to forest
economics is contingent claims analysis, which allows one to avoid
the conceptual difficulties of specifying an exogenous discount rate.
However, for a storable commodity it is still necessary to estimate
a “convenience yield” or market price of risk (Trigeorgis, Dixit and
Pindyck). We do not use contingent claims analysis in this article.

In equation (1), a(P, t) and b(P, t) represent
known functions and dz is the increment of
a Wiener process. For this article, we assume
mean-reverting prices (first-order autoregres-
sive), but our technique could easily handle
geometric Brownian motion or some other
process with alternate specifications of a(P, t)
and b(P, t), such as a table of discrete param-
eter values.

The harvesting problem is specified as a lin-
ear complementarity problem (LCP), and is
solved numerically using a fully implicit fi-
nite difference approach (Wilmott, Dewynne,
and Howison; Tavella). This is a rigorous tech-
nique for which the existence and uniqueness
of solutions follow from a large mathemat-
ics literature. It has guaranteed convergence
with easily determined error bounds. Wilmott,
Dewynne, and Howison discusses American
options in terms of variational inequalities and
linear complementarity formulations. Proofs
of the existence and uniqueness of solutions
are available in the literature (Elliott and Ock-
endon; Friedman; Kinderlehrer and Stampac-
chia). To our knowledge this technique has
not been used previously to solve a multirota-
tion optimal harvesting problem with a general
stochastic price process (as in equation (1))
and when land value is determined endoge-
nously.

One of the purposes of this article is to dis-
tinguish among different approaches that can
be used to incorporate managerial flexibility
into optimal harvest decisions, and to describe
the contributions of real options approaches
to solving forestry economics problems. We
derive theoretically the relationship between
the MDP and LCP approaches used to solve
the stochastic, optimal harvesting problem. We
demonstrate that the numerical solution of the
LCP provides guaranteed error bounds and
permits the use of a finer level of resolution
than is typically used in solving MDP models.
We show that the improvement in accuracy of-
fered by this finer level of resolution can be
very significant. We apply the model to data
from Ontario, Canada to estimate the oppor-
tunity costs of harvest restrictions such as those
that are imposed to maintain an even annual
flow of timber from public forest lands.

In the next section we provide a fairly de-
tailed literature review that traces develop-
ments in forestry economics in dealing with
optimal harvesting with uncertain prices. We
situate our article within the literature and
specify in more detail its particular contribu-
tions.
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Literature Review and Modeling Approaches

Almost thirty years ago, Lembersky and John-
son illustrated that a simplistic Faustmann-
type approach to estimating stand value
ignores managerial flexibility and hence un-
dervalues the resource. Speaking in the con-
text of optimal actions for a forest manager
faced with uncertainty in product prices, these
authors point out that “it is not advisable to
predetermine the specific management action
to carry out at each of the future time points
at which a decision will be made. A predeter-
mined action can turn out to be inappropriate
for stand and market conditions at implemen-
tation” (Lembersky and Johnson, p. 109). The
decision maker who has the ability to make
decisions based on observed outcomes of ran-
dom variables such as price and growth over
time, instead of having to follow a prescribed
rule based on expected values, can decide to
harvest early to take advantage of an upswing
in prices or delay harvesting if prices are de-
pressed.2

Analytical Models and Closed-Form Solutions

A number of earlier studies focused on general
theoretical implications of the problem of un-
certainty in harvesting decisions, using stylized
analytical models with closed-form solutions.
These models necessarily greatly abstract from
the reality of most forest harvesting problems
in order to obtain analytical solutions.

For example, Brock, Rothschild, and
Stiglitz; Brock and Rothschild; and Miller
and Voltaire consider the harvesting problem
in the general context of stochastic capital
theory and optimal stopping problems. This
approach focuses on deriving analytical
solutions and comparative static results to
determine how the value of the asset varies
with the parameters that describe the stochas-
tic growth process of the state variables. The
majority of these is single rotation models,
while Miller and Voltaire extend the Brock,
Rothschild, and Stiglitz capital theory model
to the multirotation case and develop a barrier
rule for stochastic revenue. These models treat
revenue as the stochastic variable; the price
and quantity state variables are not separately
distinguished. Lohmander (1988a) derives

2 This is true if prices follow a stochastic process that reverts to
some mean over time. If prices follow geometric Brownian mo-
tion, then the value of flexibility comes from avoiding uneconomic
harvests.

comparative static results for continuous
harvesting under price and volume growth
uncertainty.

Willassen uses the theory of stochastic im-
pulse control to derive an explicit solution to
the stochastic multirotational optimal harvest-
ing problem with revenue as the state variable.
Drift and diffusion parameters of the stochas-
tic process are independent of time. Sødal also
derives the closed-form solution to the same
problem using a simplified approach based on
Dixit, Pindyck, and Sødal. While allowing for
closed-form solutions, these models are not
practicable for more applied problems where
price and quantity must be separately mod-
eled.

Recent research in this vein focuses on
adding different sources of uncertainty such
as stochastic forest growth (Alvarez) and a
stochastic interest rate (Alvarez and Koskela).

Models Where Prices Follow Geometric
Brownian Motion

Earlier articles to model price and volume
separately typically assumed price could be
characterized by geometric Brownian motion.
Clarke and Reed, and Reed and Clarke de-
rive an optimal harvesting rule when price and
volumetric growth are random variables. Price
follows geometric Brownian motion whereas
growth in volume is a function of stand age plus
random Brownian motion. Under their (my-
opic look-ahead) rule the age at which a stand
is harvested becomes a random variable that
is independent of the absolute level of timber
prices. This is a consequence of assuming geo-
metric Brownian motion and ignoring harvest-
ing costs. Insley, and Yin and Newman (1995)
demonstrate that incorporating harvesting and
management costs into the model would imply
that the optimal harvest time is no longer in-
dependent of price.

Using the Clarke and Reed results, but in-
corporating land rent costs as deterministic,
Yin and Newman (1997) compare the opti-
mal harvest time where growth and price are
stochastic to what would be proscribed by
Faustmann or maximum sustained yield rules.
In reality land rent should reflect the value
of the bare land, which would equal the ex-
pected discounted net benefit from optimally
managing the timber stand forever. Thus land
rent should be endogenous, determined jointly
with the value of the harvesting opportunity,
although this considerably complicates the
analysis.
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Thomson provides an example of one of
the earlier uses of a real options approach in
a forestry application. Thomson determines
land rent endogenously assuming stumpage
prices follow geometric Brownian motion. He
compares stand value and rotation ages (as a
function of price) with a fixed price Faustmann
model. Thomson solves his model using a lat-
tice method (a binomial tree), which is com-
monly used in finance and is in fact a simple
version of an explicit finite difference scheme.
Wilmott discusses the advantages of finite dif-
ference methods, such as the one used in this
article, over the binomial tree. In general, fi-
nite difference schemes offer more flexibility
than binomial trees to handle complex prob-
lems. For example, with mean-reverting prices
a trinomial tree with nonstandard branching
would be employed, as described in Hull. As
with other explicit methods, the binomial tree
approach suffers from stability constraints that
restrict the timestep size used in the numeri-
cal solution and can make solution very slow.
Finally, Coleman, Li, and Verma demonstrate
that the smooth pasting condition is only ap-
proximately satisfied with binomial trees.3

Morck, Schwartz, and Strangeland more
explicitly bring to their model insights from
financial real options methods. They use a
contingent claims approach to determine the
optimal harvesting rate for a firm with a ten-
year lease on a mature forest. This is a problem
of inventory management where growth in in-
ventory is assumed to follow Brownian motion
with a drift, and timber prices are assumed to
follow geometric Brownian motion.

Models That Incorporate Alternate Price
Processes

In general, the assumption of geometric Brow-
nian motion makes solution of the tree harvest-
ing problem more tractable. If management
and harvesting costs are ignored, the problem
can be solved analytically. However, the as-
sumption of geometric Brownian motion may
not be realistic for many commodities over the
long term because of the implication that the
expected price level and variance will rise over
time without bound. Alternatively, price may
be modeled as some sort of stationary process.
The precise specification of the price process

3 The smooth pasting condition must be satisfied at the early ex-
ercise of an American-type option—in our case when it is optimal
to harvest a stand of trees. Dixit and Pindyck explain the smooth
pasting condition.

can have a large effect on the estimated value
and optimal timing of a resource investment
(Insley, Sarkar).

Some researchers of the late 1980s and
early 1990s modeled price as an identically
distributed random variable. For example,
Lohmander (1988b) investigated the effect of
stochastic prices on optimal harvesting in a sin-
gle rotation problem assuming price could be
modeled as a random draw from a uniform
distribution. Brazee and Mendelsohn solved
a multirotation model with price represented
as a random draw from a normal distribution.
Under this assumption the timber price in any
given period is statistically independent of its
level in any other period. Haight (1990, 1991)
presents two other examples in this vein. Al-
though the assumption of serially uncorrelated
prices is not realistic, these articles provide use-
ful intuition of the impact of stochastic, sta-
tionary prices. More recently stationarity or
mean reversion is typically captured by as-
suming price follows an Ornstein–Uhlenbeck
sort of process (see Dixit and Pindyck). An
Ornstein–Uhlenbeck process (as specified in
Section 3, equation (2)) has independent in-
crements, meaning that the change in price be-
tween two consecutive periods is independent
of the change between any two other consec-
utive periods.

With mean-reverting prices, the optimal ro-
tation problem must be solved numerically.
Models based on MDPs represent one possible
approach. MDPs have become a standard in
the forest economics literature for incorporat-
ing ecological and market risks into harvest de-
cisions. This approach models stochastic state
variables in discrete time and computes matri-
ces of transition probabilities that reflect the
probability of moving from one state to an-
other, conditional on management decisions.
The transition matrix is typically estimated by
simulation, and various techniques are used
to determine optimal decisions based on the
possibilities offered by the transition matrix.
These techniques include the policy improve-
ment algorithm, linear programming, and suc-
cessive approximation, and are described in
the operations research literature (e.g., Hillier
and Lieberman).

The MDP approach is somewhat limited by
the use of the transition matrix, which expands
dramatically as the number of possible out-
comes of a stochastic variable increases. This is
typically handled by grouping stochastic out-
comes, such as prices, into a small number
of categories, such as “high,” “medium,” and
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“low.” As will be shown below, the LCP ap-
proach used in this article does not require
simulations to calculate transition probabili-
ties, and stochastic variables can be specified in
much finer detail. This allows for finer degrees
of resolution, and therefore greater accuracy
in the determination of decision criteria. How-
ever, it may be noted that if there are many
stochastic factors, MDP models (or simulation,
discussed below) may be the only computa-
tionally feasible method.

Examples of MDP models are numerous
(Lembersky and Johnson; Norstrom; Kao;
Teeter and Caulfield; Kaya and Buongiorno;
Lin and Buongiorno; Buongiorno). Lin and
Buongiorno incorporate natural catastrophes
as well as diversity of tree species and tree size.
Buongiorno provides useful insight by inter-
preting Faustmann’s formula as a special case
of a MDP model in which the probability of
moving from one state to another is equal to
unity.

Plantinga,4 Haight and Holmes, and Gong
solve the optimal harvesting problem with
mean-reverting prices using a Markov transi-
tion matrix and a discrete stochastic dynamic
programming algorithm. For simplicity, these
articles treat the value of the bare land as deter-
ministic. Brazee, Amacher, and Conway, in ex-
amining the benefits of adaptive management
when prices are mean reverting, note that the
gains vary directly with the level of mean re-
version.

Gong compares a stochastic dynamic pro-
gramming approach based on the use of a
MDP, with a simulation method for finding
the optimal harvest policy. He notes the diffi-
culty of determining accurate stand values with
simulation. Longstaff and Schwartz, and An-
dersen have recently proposed two methods
to adapt a simulation approach to valuing an
American option. Hull provides a useful sum-
mary of these methods. Wilmott discusses in
more detail the difficulties with using simula-
tion approaches to value an American type op-
tion, that is, one for which early exercise may
be optimal.

The real options literature provides an al-
ternative to MDP approaches and simulation
in formulating the problem in terms of a par-
tial differential equation, which can be solved
numerically using techniques from the large
literature on numerical analysis. Saphores,

4 Plantinga describes the conceptual relationship between the
notion of option value and the previous literature on harvesting
under uncertainty.

Khalaf, and Pelletier demonstrate the use of
Galerkin’s method (a finite-element method)
to solve the problem of whether to preserve
or harvest a stand of old growth forest when
lumber prices follow geometric Brownian mo-
tion with jumps. Insley formulates the harvest-
ing problem with mean-reverting prices for a
single rotation as an LCP, and demonstrates a
numerical solution using a fully implicit finite
difference scheme.

Characterizing the Price Process for Timber

There is a large literature examining the
time path of commodity prices, and this con-
tinues to be an area of active research. It
has been suggested that some sort of mean-
reverting process provides a better description
of the price path of many commodities (see
Lund, Bessembinder et al. Hassett and Met-
calf, Schwartz.) As noted by Schwartz, in an
equilibrium setting we would expect that when
prices are relatively high, supply will increase
since higher-cost producers of the commodity
will enter the market putting downward pres-
sure on prices. Conversely, when prices are rel-
atively low, the higher cost producers will exit
the market putting upward pressure on prices.
Schwartz examines the spot prices of oil, cop-
per, and gold. He finds strong mean reversion
for oil and copper. Bessembinder et al. use the
term structure of futures prices to test whether
investors anticipate mean reversion in spot as-
set prices. They find a large degree of mean re-
version in crude oil and agricultural commodi-
ties, and a lesser degree of mean reversion in
metals.

Unfortunately, it is difficult to conclude
definitively that the price of any particular
commodity exhibits mean reversion or pos-
sesses a unit root and hence is nonstationary.
Many different tests exist, none of which has
been shown analytically to be uniformly most
powerful (e.g., Ahrens and Sharma).

A number of studies have examined the sta-
tistical properties of stumpage prices in vari-
ous markets and have obtained mixed results.
Several researchers have examined pine saw-
timber stumpage prices in the southern United
States. Haight and Holmes, Hultkrantz (1993)
and Yin and Newman (1995, 1996, 1997) all
find evidence that supports stationary, autore-
gressive models. Prestemon extends the data
series used in Hultkrantz (1993), and Yin and
Newman (1996) and improves upon the sta-
tistical tests used. He finds that most of the
monthly series contain nonstationary as well as
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stationary components and that quarterly
prices are closer to pure nonstationary pro-
cesses. Brazee, Amacher, and Conway test
price series for pine and hardwood in Virginia
and finds the unit root hypothesis is rejected
for the former, but not the latter. Hultkrantz
(1995) examines the behavior of timber rents
in Sweden over a seventy-nine year time span
and accounts for a structural break in the price
level using a Perron test. He rejects the unit
root hypothesis for his data series.5 Saphores,
Khalaf, and Pelletier find evidence of both
jumps and ARCH effects in stumpage prices
in the U.S. Pacific Northwest.

One theoretical argument that has been
used in favor of a random walk process is that
it implies prices that are consistent with an in-
formationally efficient timber market. How-
ever, McGough, Plantinga, and Provencher
show that stationary serially correlated prices
can arise in an informationally efficient timber
market even when market shocks are indepen-
dent and identically distributed.

The choice of price process in modeling the
optimal harvesting decision will continue to be
the subject of ongoing research. A challenge
of resource economists is to develop models
and solution algorithms that handle various as-
sumptions regarding price, depending on the
circumstances of a particular market.

A Multirotational Real Options Model

This article extends the model of Insley to a
multirotation framework with the bare land
value determined endogenously. Much of the
previous cited literature may be thought of
in terms of different approaches to solving
the LCP. Unlike the single rotation prob-
lem, the multirotation case represents a “path-
dependent option.” A path-dependent option
is one whose value depends on the history of
an underlying state variable, not just on its fi-
nal value. For the multirotational optimal har-
vesting problem, the value of the stand today
depends on the quantity of lumber which it-
self depends on when the stand was last har-
vested. Path dependency significantly compli-
cates the solution of the valuation problem
(see Wilmott).

The importance of solving the complete mul-
tirotational problem will vary on a case-by-
case basis. In areas where trees are fast growing

5 Perron found that the exclusion of a break in trend can bias the
augmented Dickey–Fuller test and the Leybourne and McCabe
test toward acceptance of a unit root.

and rotations are fairly short, the harvest-
ing decision proscribed by the multirotational
problem will be expected to be quite differ-
ent from the single rotation case. As another
example, if recreational value of the stand-
ing forest depends on population growth, then
the value of the harvesting opportunity will be
time dependent, making the multirotational
specification important. We will examine the
empirical significance of solving the multi- ver-
sus single rotation problem in an empirical ex-
ample.

The solution of the LCP can be directly
linked to the transition probability matrix es-
timated in MDP models. We will show that the
MDP approach is, in fact, an indirect method
of solving the LCP and that it is unnecessary
to use simulation to calculate transition proba-
bilities. The transition probability densities are
the solutions of the forward Kolmogorov equa-
tions, which are embedded in the solution of
the LCP. The explicit connection between the
MDP model and the numerical solution of the
LCP is discussed in more detail in Appendix B.

Our empirical application examines the cost
of harvesting restrictions on the value of har-
vesting a stand in Ontario’s boreal forests. It
is only by correctly modeling the impact of
stochastic prices on the optimal harvesting de-
cision that the impact of regulatory restrictions
can be fully described.

Formulation of the Model

The tree harvesting decision applicable to a
publicly owned forest is modeled from the
point of view of a social planner. Hence, taxes
and stumpage payments are ignored. The price
of timber sold to the mill is assumed to follow
a known stochastic process. The value of the
stand of trees is estimated assuming the har-
vesting decision will be determined optimally
in the future whatever the price path turns out
to be. In a world without taxes and stumpage
payments, the estimated value at the beginning
of the first rotation is the maximum amount
that a private firm would be willing to pay for
the right to harvest the trees at some time in the
future, providing the firm has complete flexi-
bility to determine the harvest date and that
markets exist for the logs.

The mean-reverting price process is a special
case of the general Ito process (equation (1)).
We specify the process as follows:

d P = �(P̄ − P) dt + � P dz(2)
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where P is the price of saw logs, � is the mean
reversion parameter, � is the constant variance
rate, and dz is an increment of a Wiener pro-
cess. According to equation (2), price reverts
to a long-run average of P̄ . The variance rate
grows with P, so that the variance is zero if P
is zero.6

The age of the stand, or time since the last
harvest, � is given as

� = t − th(3)

where t is the current time and th is the time of
the last harvest. Wood volume is assumed to
be a deterministic function of age

Q = g(�).(4)

Age is used as a state variable, along with price,
P. It follows that

d� = dt.(5)

The decision to harvest the stand of trees can
be formulated as an optimal stopping problem
where the owner must decide in each period
whether it is better to harvest immediately or
delay until the next period. This decision pro-
cess can be expressed as a Hamilton–Jacobi–
Bellman equation,

V (t, P, �) = max{(P − C)Q

+ V (t, P, 0);

A�t + (1 + ��t)−1

× E[V (t + �t,

P + �P, � + ��)]}

(6)

where E is the expectation operator, V is the
value of the opportunity to harvest, C is the
per unit harvesting cost, A is the per period
amenity value of standing forest less any man-
agement costs, and � is the annual discount
rate.

The first expression in the braces ({ }) repre-
sents the return if harvesting occurs in the cur-
rent period, t. It includes the net revenue from
harvesting the trees plus the value of the land
after harvesting, V(t, P, 0). This is the value that
could be attained if the land were sold subse-
quent to the harvest, assuming that the land

6 This format is more appealing than the simple Ornstein–
Uhlenbeck process in which the variance rate is � dz. In the simple
Ornstein–Uhlenbeck process, as price becomes small, the constant
volatility could cause prices to become negative.

will remain in forestry. This value is ignored in
the single rotation problem.

The second expression in the braces is the
continuation region and represents the value
of delaying the decision to harvest for another
period. It includes any amenity value of the
standing forest, such as its value as a recreation
area, less any forest management costs, A. It
also includes the expected value of the option
to harvest in the next period, discounted to the
current period.

In the empirical application that follows,
amenity value is not considered. However, it
would be easy to include some expression for
amenity value as a function of stand age, pop-
ulation growth, or some other variable. Invest-
ment values and harvesting rules would be
changed accordingly. If A were expressed as
a function of population growth, then V would
be dependent on calendar time, as well as stand
age, and we would no longer be characterizing
a steady-state solution.

Following standard arguments (Dixit and
Pindyck; Wilmott, Dewynne, and Howison) we
can derive a partial differential equation that
describes V in the continuation region

Vt + 1
2 �2 P2VP P + �(P̄ − P)VP

− � V + A + V� = 0.

(7)

In contrast to the single rotation problem, we
now have the term V� in the partial differential
equation.

The full optimal stopping problem can be
formulated as an LCP, which is equivalent to
the optimal stopping problem of equation (6)
(Wilmott, Dewynne, and Howison; Tavella). T
denotes the terminal time. Let � be defined
as time remaining in the option’s life, that is,
� ≡ T − t. Rearranging equation (7) and sub-
stituting � for t, we define an expression, HV,
as follows:

H V ≡ � V −
[

1
2

�2 P2VP P + �(P̄ − P)

× VP + A + V� − V�

]
.

(8)

In equation (8), �V represents the return re-
quired on the investment opportunity for the
rational investor to continue to hold the op-
tion. The expression within brackets ([ ]) rep-
resents the actual return over the infinitesimal
time interval dt. The actual return has terms re-
flecting how V changes with changes in P and
�. It also includes the flow of amenity value
less management costs, A.
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Then, the LCP is given as

(i) H V ≥ 0

(i i) V (�, P, �) − [(P − C)Q

+ V (�, P, 0)] ≥ 0

(i i i) H V [V (�, P, �) − [(P − C)Q

+ V (�, P, 0)]] = 0.

(9)

The LCP expresses the rational individual’s
strategy with regard to holding versus killing
the option to harvest the stand of trees. Part
(i) of equation (9) states that the required re-
turn for holding the option must be at least as
great as the actual return. We would not ex-
pect a situation in which the required return
is less than the actual return to persist in com-
petitive markets. Part (ii) states that the value
of the option, V, must be at least as great as
the return from harvesting immediately. The
return from harvesting immediately is the sum
of the net revenue from selling the logs (P −
C)Q plus the value of the land immediately af-
ter harvesting, V(t, P, 0). V would never drop
below the return from harvesting immediately
because the rational investor would harvest be-
fore that could happen. Finally, part (iii) states
that at least one of statements (i) or (ii) must
hold as a strict equality. If HV = 0, it is worth-
while to continue to hold the asset. If V − (P −
C)Q − V(t, P, 0) = 0, it is worthwhile harvest-
ing the asset. If both expressions hold as strict
equalities, then the investor is indifferent be-
tween harvesting and continuing to hold the
asset.

The LCP is solved numerically as is
described in Appendix A.7 This involves
discretizing the relevant partial differential
equation including a penalty term that en-
forces the American constraint (equation (9),
(ii)). We are left with a series of nonlinear
algebraic equations that must be solved iter-
atively. The implied Markov matrix can be
found through manipulation of the discretized
version of equation (9). Details are provided
in Appendix B.

We can contrast the LCP for the multirota-
tion case with that for the single rotation as in
Insley. There are two state variables: � and P,
as opposed to only P in the single rotation case.
In general, having more than one state variable
considerably complicates the estimation of V.
However, through the “method of character-

7 The pseudocode is available on request from the authors.

istics” described in Appendix A we are able
to simplify the solution. The other difference
of note with the multirotation problem is that
part (ii) of equation (9), the so-called Ameri-
can constraint, now contains the value of the
bare land after harvesting. Of course, it is the
value of the bare land that is being solved for
in the first place. Hence, solving the LCP will
require an iterative procedure that starts with
an initial guess for V(t, P, 0) and then updates
that guess through successive iterations. In the
single rotation case, V(t, P, 0) is set to zero,
ignoring the value of the land after harvesting.

Boundary conditions for the problem are
specified as follows:

1. As P → 0, we need no special boundary
condition to prevent negative prices. Re-
ferring back to equation (2), we see that as
P → 0, d P → �P̄ , which is positive.

2. As P → ∞, we follow Wilmott and set
VPP = 0.

3. As � → 0, we require no boundary condi-
tion since the partial differential equation
is first-order hyperbolic in the � direction,
with outgoing characteristic in the negative
� direction.

4. As � → ∞, we assume V�→ 0, and hence
no boundary condition is required. This
means that as stand age gets very large,
the value of the option to harvest, V, does
not change with �. In essence, we are pre-
suming the wood volume in the stand has
reached some sort of steady state.

5. Terminal condition. As T gets large, it is as-
sumed that V = 0. T is made large enough
that this assumption has a negligible effect
on V today.

We use this model to examine the opportu-
nity costs of harvesting restrictions in Ontario’s
provincially owned forests. Almost 90% of the
timber volume consumed by Ontario mills in
2000–2001 was from public land. Firms with li-
censes to harvest in Ontario’s public forests are
constrained by allowable cut regulations that
aim to maintain constant annual wood flows
within a region, and hence are limited in their
ability to manage for price risk.8 Such con-
straints reduce the return to the firm holding a

8 At one point in Ontario’s history, a firm risked forfeiting its
harvesting license if it failed to harvest the allowable cut. In recent
years it appears that firms are not penalized for harvesting less than
the allowable cut, and there is little documented evidence of firms
exceeding the allowable cut. There appears to be a trend toward
allowing firms holding forestry licenses more flexibility, within lim-
its. Firms are also affected by industry structure, developed over
years of forestry regulation, which tends to favor even wood flows.
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harvesting license and thus affect a firm’s will-
ingness to make investments in forest manage-
ment. The real options model developed here
is used to compare the value of a license to har-
vest a stand of trees with and without allowable
cut restrictions on harvesting time. The differ-
ence between the two gives some indication of
the cost of current allowable cut restrictions.

To fully address the efficiency and other
economic implications of allowable cut reg-
ulations would require consideration of all
benefits and costs of these policies, includ-
ing environmental impacts and possible effects
on employment in logging communities. This
would also require modeling the optimal har-
vesting decisions at the forest level, rather than
the stand level as is done in this article. Such a
complete analysis is beyond the scope of this
article. Using a stand-level model and a real
options approach, we estimate the value of the
commercial harvest and the opportunity cost
of policies to maintain annual sustained yields.

Data and Parameter Estimates

The case examined is for a stand of Jack Pine
(Site Class 1) in the Romeo Malette Forest
Unit, which is managed under a Sustainable
Forest License by Tembec, Inc. The Romeo
Malette forest consists of 477,109 hectares of
productive forestland and is located northeast
of the town of Timmins, Ontario. For this ar-
ticle we will examine the economics of a so-
called basic level of silvicultural investment
that represents the current level of spending
on many stands in Ontario’s boreal forest. Ba-
sic management involves assisted natural and
artificial regeneration, including site prepara-
tion and removal of competing species. The fo-
cus is on manipulating species composition and
achieving full site occupancy. Silvicultural costs
estimated by Tembec (in Canadian$/hectare)
are $200 for site preparation and $360 to pur-
chase nursery stock in year 1, $360 for planting
in year 2, $120 for tending in year 5, and finally
$10 for monitoring in year 35. Amenity value
is assumed to be zero, so that A in equation (8)
reflects only silvicultural costs.

Yield curves for Jack Pine saw logs and
pulp consistent with basic management in the
Romeo Malette Forest Unit were provided by
Tembec.9 Yield of the most valuable class of

9 The yield curves were estimated by M. Penner of Forest Anal-
ysis Ltd., Huntsville, Ontario, for Tembec. These yield curves are
available from the authors on request.

saw logs peaks at about 300 cubic meters per
hectare at around an age of 100 years.

We did not have a historical time se-
ries for mill gate lumber prices, and instead
used monthly data (1980–2003) for the price
of spruce-pine-fir random length 2 × 4’s in
Toronto.10 The data, converted to Canadian
dollars, deflated by the consumer price in-
dex, and seasonally adjusted, are shown in
figure 1. We performed an augmented Dickey–
Fuller (ADF) test on the price series to in-
vestigate whether the data-generating process
appears to be a random walk (and hence non-
stationary). As in Prestemon, the lag length
for the ADF test was chosen by minimizing
the Schwartz information criterion. The op-
timal lag length by this criterion is zero. The
Ljung–Box Q-statistic at twelve lags was 12.8,
which is not significant (p-value of 0.38), mean-
ing that we do not reject the null of no serial
correlation in the residuals. The results of the
Dickey–Fuller test, given in table 1, indicate
that we can reject the null hypothesis of a unit
root at the 1% significance level.

Two other tests of stationarity were car-
ried out, and the results are also reported in
table 1. Using the Leybourne–McCabe test
(Leybourne and McCabe), we do not reject
the null hypothesis at the 5% level that the se-
ries is stationary. Using the variance ratio test
(Lo and MacKinlay), we are able to reject the
null of a unit root but only at the 10% level.

It may also be noted that an ARCH LM
test was done on the residuals of the regres-
sion: Pt − Pt−1 = c(1) + c(2)Pt−1 and there
was evidence of the ARCH effect. When we
move from discrete to continuous time, ARCH
and GARCH models translate into complex
stochastic volatility models, which are beyond
the scope of this article.11 However, the model
and solution algorithm presented in this arti-
cle could easily be adapted to time-dependent
volatility.

Based on these test results it seems reason-
able to adopt a mean-reverting stochastic pro-
cess for lumber price in our optimal harvesting
model. Of course, as noted above, none of the
tests for a unit root is considered definitive.
However, the purpose of this article is not to
examine in detail the price path of timber, but
rather to demonstrate a methodology that can

10 Data were purchased from Madison’s Canadian Lumber Re-
porter Ltd., P.O. Box 2486, Vancouver, British Columbia V6B 3W7
Canada, Phone: 604-984-6838.

11 Chuan Duan derives the diffusion limit for a class of
GARCH(1,1) models and also extends to the GARCH(p,q) spec-
ification.
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Figure 1. Real price of softwood lumber, Toronto, Ontario, 1993 Canadian dollars per cubic
meter (Data source: Madison’s Canadian Lumber Reporter, Monthly data from January 1980
to December 2003, First Friday of each month, Eastern Spruce-Pine-Fir Std #2& Better, Kiln-
dried, Random Length = 2 × 4, Deflated by the Canadian consumer price index, converted to
Canadian dollars, and seasonally adjusted.)

solve the optimal harvesting problem under an
autoregressive or other chosen stochastic price
path.

We assume lumber prices follow a mean-
reverting process as is described in equation
(2). A discrete time approximation is

Pt − Pt−1 = �P̄�t − ��t Pt−1

+ � Pt−1
√

�t�t

(10)

where �t is N(0, 1). Dividing through by Pt−1
and using the notation

c(1) ≡ −��t ; c(2) ≡ ��t P̄ ;

et ≡ �
√

�t�t ,

(11)

the relevant parameters can be estimated by
ordinary least squares on the following equa-
tion:

Pt − Pt−1

Pt−1
= c(1) + c(2)

1
Pt−1

+ et .(12)

Regression estimates are shown in table 2.
From the definitions of c(1), c(2), and et in

Table 1. Tests for Stationarity of the Ontario Softwood Lumber Price Series

Test Statistic Critical Value (Signif. Level) Conclusion

Dickey–Fuller −3.88 −3.45 (1%) Reject H0 of unit root
Leybourne–McCabe 0.075 0.148 (5%) Do not reject H0 of stationarity
Variance ratio (6 lags) 1.77 1.645 (10%) Reject H0 of unit root

equation (11) and given that �t is one month,
the parameter estimates are � = 0.8, P̄ =
$230/m3, and � = 0.27.

Harvesting costs and product prices were
provided to the authors on a confidential basis.
Representative harvesting costs for Ontario
are reported in Rollins et al. as $31/m3. The
price of saw logs at the millgate is approxi-
mately $50/m3. The P̄ estimate given above
refers to the real price at Toronto. This had
to be translated into the price of raw logs pur-
chased by the mill. The value of spruce-pine-fir
lumber in Toronto in 2003 is close to this value
for P̄ . Hence, the 2003 price going into the mill
reported (in confidence) by Tembec was cho-
sen as P̄ for the analysis. We use 3% and 5%
real discount rates for the analysis.

Empirical Results

Flexible Harvesting Time

This section presents the estimated value of
the option to harvest the representative stand
of trees on public forest land (V in equation
(9)) given that the goal is to maximize the net
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Table 2. Parameter Estimates of Equation (12)

Variable Coefficient t-statistic

c(1) −.069 −2.95 Sample: 1980:02 to 2003:12
c(2) 15.9 3.10 Number of observations: 287

R2 = 0.03 SE of regression: 0.077

present value of the commercial value of the
timber. Consumer surplus is ignored, implying
the wood harvested is destined for the export
market. We assume that adequate log markets
exist, and ignore any values other than com-
mercial timber value. The decision variable is
whether to harvest the stand given the mar-
ket price for any given time period. This im-
plies that there are no restrictions (regulatory
or otherwise) on firms as to when a stand could
be harvested. This is called the social perspec-
tive to distinguish it from the perspective of a
regulated firm, which is constrained as to har-
vesting times.

Solving equation (9) using the prices, costs,
and discount rates given in the previous sec-
tion, we estimate, for any given stand age, the
threshold price above which it is optimal to
harvest the stand. Appendix A provides de-
tails about the solution of the numerical model.
Figure 2 illustrates these results for a real dis-
count rate of 3%. Each individual graph in the
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Figure 2. Value of the opportunity to harvest a stand at different stand ages, discount rate =
3% (Heavy solid line: value of the option to harvest. Heavy dashed line: payout from harvest-
ing immediately. P∗: critical price at which harvesting is worthwhile. NMV: net merchantable
volume, m3/ha.)

figure represents a different stand age, and in-
dicates the net merchantable volume in cubic
meters per hectare (NMV) achieved by that
age, as well as the critical price, P∗, at which
it is worthwhile harvesting. The solid curve
in each of the graphs represents the value of
the opportunity to harvest the stand of trees,
V, after the silvicultural treatments are com-
pleted. The dashed line represents the payout
from harvesting immediately. When the value
of the opportunity to harvest, V, is above the
payout line, the value of delaying the harvest
exceeds the value of harvesting immediately,
and it is worthwhile waiting. Once V touches
the payout line, it is worthwhile harvesting im-
mediately. The point of tangency determines
the critical price (and demonstrates the smooth
pasting condition.)

Figure 2 indicates that it would be worth har-
vesting a thirty-six-year-old stand if the price of
SPF1 reached $90/m3. Although this is a fairly
young age by boreal forest standards, with a
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Figure 3. Critical price versus stand age, discount rate = 3%

mean-reverting price, it makes sense to harvest
early to take advantage of a temporarily high
price. By the age of forty years the critical price
has dropped to $86. As the stand ages, the crit-
ical price continues to drop as the opportunity
cost of delaying the harvest is reduced.

Figure 3 depicts the whole spectrum of criti-
cal prices for stand ages from zero to 130 years.
Critical prices begin at the age of thirty-five
years; harvesting is not allowed in the model
prior to that date, by which time all silvicultural
expenditures have been incurred. The critical
price drops rapidly to about the age of eighty-
five years and then reaches a steady state of
$77.

Of significant interest is the value of the
opportunity to harvest the stand of trees at
the beginning of the first rotation shown in
table 3 (second column). This value represents
the maximum amount that a firm would be will-
ing to pay for harvesting rights to the stand,
ignoring taxes and other charges, and assum-
ing the firm has complete flexibility as to the
timing of the harvest and that markets exist
for the logs. For comparison the value using a
single rotation analysis is also shown, as well
the value calculated using the simple Faust-
mann formula, assuming a constant price equal
to the long-run mean-reverting level used in
the stochastic model. The magnitude by which
valuation estimates from the real options ap-
proach exceed those from the Faustmann anal-
ysis reflects the value of having the flexibility
to optimally manage in the face of price volatil-

ity. The analysis is very sensitive to the discount
rate chosen, since the silvicultural costs occur
in the first thirty-five years, and the benefits, in
terms of higher volumes, occur after thirty-five
years.

In table 3, we show a single amount for land
value that is unrelated to price. This contrasts
with stands of the age of thirty-six years and
above, shown in figure 2, for which value in-
creases with the current price. Given our mean-
reverting price process, no matter what the
price is at the beginning of a rotation, by the
time the stand achieves harvestable volumes,
we expect the price to have reverted toward
the long-run mean. Thus, land values at the
beginning of a rotation are insensitive to to-
day’s product prices given the parameters we
have chosen for our mean-reverting process. If
we had assumed that price follows a process of
geometric Brownian motion, then the value of
the bare land would be dependent on today’s
price.

Table 3. Value of the Land at the Beginning
of the First Rotation, $/Hectare

Real
Real Options:

Discount Options: Single
Rate Multirotation Rotation Faustmann

3% $1,978 $1,520 $305
5% $61 $54 −$512
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Figure 4. Value of the opportunity to harvest when harvesting must occur between ages 50
and 55, 3% discount rate (Heavy solid line: value of the option to harvest. Heavy dashed line:
Payout from harvesting immediately. P∗: critical price at which harvesting is worthwhile. NMV:
net merchantable volume, m3/ha.)

Harvesting Restrictions

Wood flow in Ontario’s public forests is typ-
ically determined over an entire region (for-
est unit) consisting of many individual stands.
With our stand-level model we cannot fully
describe the impact of harvesting restrictions;
however, we can mimic their impact to some
extent. In particular we consider the effect
of minimum harvesting requirements, which
would force a firm to harvest a certain quantity
of wood even in times of depressed markets. In
the stand-level model we mimic this restriction
by requiring harvesting at a particular stand
age.

Figure 4 shows the value of the option to
harvest when the restriction is imposed that
harvesting must occur when the stand is be-
tween the ages of fifty and fifty-five years. If
harvesting does not occur within that period it
is assumed the firm loses its rights to harvest.
Comparing figure 4 with figure 2, we note that
in the restricted case, value is now fairly insen-
sitive to price at the age of forty years, since it is
still ten years before harvesting can occur. We
also note that at the ages of fifty and fifty-five
years the critical prices are lower than for the
unrestricted case. By the age of fifty-five years
the critical price has dropped to $64 (compared
to $80 for the unrestricted case), reflecting the
fact that if harvesting does not occur in that

year the land will be worthless to the firm as it
will have to give up its license. Under this re-
striction, the value of the land at the beginning
of the rotation is $960/ha, significantly lower
than in the unrestricted case of $1,978/ha.

It is already well known in the forestry liter-
ature that the pursuit of an even flow of timber
can significantly change the economics of com-
mercial forestry due to the impact on the abil-
ity of the forest manager to respond to price
volatility. Our modeling approach offers an im-
proved ability to estimate the magnitude of the
costs of these types of restrictions.

Accuracy of Results and MDP Approaches

The value estimates reported above are com-
puted using a numerical solution methodol-
ogy. As with any numerical method, we must
be concerned with truncation error in the dis-
cretizations of time, age, and price (Tavella and
Randall). The finer the grid used in the numer-
ical solution, the more accurate will be our es-
timated value for V. In Appendix C, we show
that the grid size with which we have computed
the results of table 3 gives us results to an ac-
ceptable degree of accuracy. Refining the grid
further changes the solution by only 0.4%.

We do not do a direct comparison with MDP
models. However, we do show that we can get
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Table 4. Comparing Solutions for Very Coarse
Grid and Medium Grid. Value of the Land at
the Beginning of the First Rotation, $/Hectare,
3% Discount Rate

Very Medium
Coarse Grid Grid

Price $/m3 11 nodes 73 nodes
P = [0, . . . , 277]

Quantity $/ha 13 nodes 107 nodes
� = [0, . . . , 125]

Timestep size 0.25 years 0.125 years
Value at t = 0 $4,123 $ 1,978

a very large change in our answer when we use
a grid size that is much coarser than that used
to compute our base case results. This is an im-
portant point when comparing with the MDP
models. We demonstrate in Appendix B that
in theory the MDP model and the numerical
solution of the LCP are equivalent. However,
a numerical solution of the LCP using a finite
difference approach permits use of a finer grid
scheme. In an effort to handle more stochastic
variables and keep the solution tractable, MDP
models are often solved with a very coarse grid.
In addition, convergence studies are typically
not reported with MDP models.

In table 4 we demonstrate how our value es-
timate changes when we significantly reduce
the number of nodes at which a solution is es-
timated. We observe a huge change in our es-
timated V values as we move from a medium
to a very coarse grid. In any given example, it
is clearly important to determine whether lim-
iting the number of nodes has resulted in large
inaccuracies.

Conclusion

This article has presented a two-factor mul-
tirotation model of the tree harvesting de-
cision. The problem is specified as an LCP,
which is solved using a fully implicit fi-
nite difference approach—an approach that is
commonly used in the finance literature for
valuing real and financial options. We con-
trast our methodology with other approaches
used in the forestry literature to handle op-
timal rotation with stochastic prices, such as
MDP models. We note that the LCP and the
MDP models are in theory equivalent. An im-
portant benefit of the LCP approach is that we
are assured that the solution will converge to

the correct answer (based on a large numerical
analysis literature), and we can easily check the
accuracy by solving for successively finer grids.
We demonstrated that the value of the harvest-
ing option varies widely when a coarser solu-
tion grid is used. We have not solved an MDP
model for comparison. However, our analysis
does suggest that care should be taken when
reporting results without carrying out numer-
ical convergence studies, since the value of
the option to harvest can be very sensitive to
the number of discrete levels of the stochastic
variables.

We used our model to address a policy is-
sue in the Ontario boreal forest. This article
has shown that the value of an investment
in forestry can be significantly affected when
a firm’s ability to react to volatile prices is
constrained. Constraints may be due to gov-
ernment regulations, such as allowable cut
requirements, or may reflect the structural re-
alities of an industry in which vertically inte-
grated firms having invested in mill capacity
want to maintain a reasonable capacity utiliza-
tion. There are, no doubt, costs to a mill if in-
put is highly variable, but these costs should be
balanced with the benefits of being able to re-
act optimally to price swings. The value of the
option to harvest a stand of trees should be
an important consideration in any review of
forest management regulations, with the goal
of designing regulations that continue to meet
environmental constraints, but offer firms the
maximum flexibility to manage license areas
in the face of price risk. The true costs of reg-
ulations that limit flexibility can only be fully
understood using a model that correctly values
the option to harvest under uncertainty.

A direction for future research is to ex-
tend the methodologies from the finance lit-
erature to consider harvesting and other con-
straints at a regional forest unit level under
stochastic prices. This would involve a mul-
tistand approach, as well as consideration of
incremental mill costs with swings in capacity
utilization. Biological and catastrophic risk are
other avenues of research using a real options
approach.

[Received February 2004;
accepted November 2004.]
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Appendix A: Numerical Solution of the
Linear Complementarity Problem

Method of Characteristics

The solution of equation (9) is accomplished by dis-
cretizing the term V� − V� in HV by the method of
characteristics (Morton and Mayers).

Consider some function U(X, �). � refers to time
to expiry of the option, or T − t. Then, we can write

dU

d�
= UX X� + U� .(A.1)

If U satisfies the equation

U� + a(X, �)UX = 0(A.2)

then, from equation (A.1), if we let a(X, �) = X� ,
then dU = 0 along the characteristic curves defined
by

d X

d�
= a(X, �).(A.3)

If we consider the simple case where a(X, �) =
constant = â, then the solution to equation (A.2)
is

U(X, �) = U(X − â�, 0).(A.4)

This can be verified by taking the total derivative of
U(X − â�, �) and observing that dU = 0 when X� =
â and � = 0. In the case when a(X, �) �= constant,
we can still approximate equation (A.4) in discrete
time by

U(Xi , � n+1) − U(Xi − a(Xi , � n+1)��, � n)
��

+ O(��) = 0.

(A.5)

The basic PDE in the continuation regions for
the tree harvesting problem, equation (7), can be
written in terms of � as follows:

V� − V� = 1
2

�2 P2VP P

+ �(P̄ − P)VP − � V + A

(A.6)

where the left-hand side is a function of � and � for
a fixed P, and the right-hand side is a function of P
for a fixed � and � .

The left hand side of equation (A.6) looks like
the left-hand side of equation (A.2), if a(X, ��) =
− 1, recalling that d�/dt = 1, and replacing X with
� and U with V. As will be shown below, this ob-
servation allows us to approximate the two-factor
problem by solving a set of one-dimensional PDEs
and employing an interpolation operation at each
time step to exchange information between the one-
dimensional PDEs.

We now consider the numerical solution of the
LCP, equation (9), using the characteristic approach
and a fully implicit differencing scheme. Define
nodes on the axes for P, �, and � by

P = [P1, P2, . . . , Pi , . . . , PM ]

� = [�1, �2, . . . , � j , . . . , �J ]

� = [�1, �2, . . . , �n, . . . �N ].

(A.7)

We concern ourselves with the value of the op-
tion to harvest at points defined by the three-
dimensional grid (P, �, �) = (Pi, �j, � n). At any point
on the grid the value of the option is V = V(Pi, �j,
� n) ≡ Vn

ij.
To impose the conditions of the LCP we define a

function �(V) to be a penalty term that will prevent
the value of the option V from ever falling below the
payout from harvesting immediately, (P − C)Q +
V(� , P, 0). Zvan, Forsyth, and Vetzal discuss the
penalty method. The penalty term, �, equals 0 in the
continuation region (i.e., when HV = 0 and V > (P −
C)Q + V(� , P, 0)) and � > 0 when it is optimal to
harvest (i.e., when HV > 0 and V = (P − C)Q + V(� ,
P, 0)). If we include the penalty term in equation
(A.6), equation (9), the LCP, can be approximated
by

V� − V� = 1
2 �2 P2VP P + �(P̄ − P)VP

− � V + A + �(V ).

(A.8)

Using equation (A.5), our difference scheme for
equation (A.8) can be written as
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V (Pi , � j , � n+1) − V (Pi , � j + ��, � n)
��

=
[

1
2

�2 P2VP P + �(P̄ − P)VP

− � V + A + �(V )

]n+1

i j

.

(A.9)

Let

V ∗(Pi , � j )n ≡ V (Pi , � j + ��, � n) .(A.10)

Then equation (A.9) can be written as (Bermejo)

V (Pi , � j )n+1 − V ∗(Pi , � j )n

��

=
[

1
2

�2 P2VP P + �(P̄ − P)VP

− � V + A + �(V )

]n+1

i j

.

(A.11)

Note that the right-hand side of equation (A.11)
has derivatives with respect to P only. Therefore,
equation (A.11) defines a set of discretized one-
dimensional partial differential equations, one for
each �j. These can be solved independently within
each time step. After a time step is completed,
these one-dimensional PDEs exchange information
through the interpolation operation,

V ∗(Pi , � j )n = V (Pi , � j + ��, � n) .(A.12)

We used linear interpolation.
Within each time step the LCP, equation (9), is

solved for fixed �j using a fully implicit finite differ-
ence method and the penalty method, as described
in Insley. The right-hand side of equation (A.11)
is discretized using a central, forward, or backward
difference scheme as appropriate. Note that if we
solve first for V(Pi, � = 0)n+1 at each time step, then
we have the information required to determine the
value of the penalty term implicitly. Hence, we do
not need to iterate within each time step to deter-
mine the value of the bare land.

Discretization for i = [2, . . . , M − 1]

We now concern ourselves with the discretization
of the RHS of equation (A.11) and make use of the
following definitions:

�i ≡ �2 P2
i

�Pi+1/2 + �Pi−1/2
;

�i ≡ �(P̄ − Pi )
�Pi+1/2 + �Pi−1/2

(A.13)

where �Pi+1/2 ≡ Pi+1 − Pi and �Pi−1/2 ≡ Pi − Pi−1.
Using a fully implicit approach and central differ-
encing along the P axis, our difference scheme when
i = 2, . . . , M − 1 for Pi and j = 1, . . . , J for �j is

V
(
Pi , � j , � n+1

) − V (Pi , � j + ��, � n)
��

=

�2 P2

2


 Vi+1, j −Vi j

�Pi+1/2
− Vi j −Vi−1, j

�Pi−1/2

�Pi+1/2−�Pi−1/2
2




+ �(P̄ − P)

[
Vi+1, j − Vi−1, j

�Pi+1/2 + �Pi−1/2

]

− � Vi j + A + �i j

��
[(Pi − C)Q j

+ Vi0 − Vi j ]




n+1

.

(A.14)

The superscript n + 1 on the right-hand side means
that all variables within the braces are evaluated at
� = n + 1.

Extensive manipulation of the right-hand side of
equation (A.14) results in

RHS ≡
[

ai Vi−1, j + bi Vi+1, j − (ai + bi + 	)Vi j + A

+ �i j

��
[(Pi − C)Q j + Vi0 − Vi j ]

]n+1

(A.15)

where

ai ≡ �i

�Pi−1/2
− �i ; bi ≡ �i

�Pi+1/2
+ �i .(A.16)

The last term on the right-hand side of equa-
tion (A.15) is the discretized penalty function �(V),
where

�n+1
i j = 0 if V n+1

i j ≥ (Pi − C)Q j + Vi0

�n+1
i j = L if V n+1

i j < (Pi − C)Q j + Vi0

(A.17)

where L is a suitably large number. In this article, L
is set to 106.

To avoid an oscillatory solution it is necessary that
a and b from equation (A.16) both be nonnegative.
Since � can be either positive or negative, a and b
can be either positive or negative, but if one is pos-
itive then the other is negative. If a < 0, a forward
difference scheme for P is used to avoid oscillations
rather than the central scheme shown in equation
(A.14). If b is negative, then a backward difference
scheme must be used for P (Zvan, Forsyth, and Vet-
zal).

Using a forward difference scheme a and b in
equation (A.15) are defined as
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ai ≡ �i

�Pi−1/2
; ≡ �i

�Pi+1/2
+ 
i

where 
i = �(P̄ − P)
�Pi+1/2

.

(A.18)

Using a backward difference scheme a and b in
equation (A.15) are defined as

ai ≡ �i

�Pi−1/2
− �i ; bi ≡ �i

�Pi+1/2

where �i = �(P̄ − P)
�Pi−1/2

.

(A.19)

Central differencing is used as much as possible
to ensure the most accurate solution. Forward or
backward differencing is used only at nodes where
negative values of a or b are obtained using central
differencing.

Discretization of Boundary Conditions for P

When i = 1 no special boundary condition is re-
quired for P, and a forward discretization scheme
can be used. As P → 0, equation (A.11) becomes

V (Pi , � j )n+1 − V ∗(Pi , � j )n

��

= [�P̄VP − � V + A + �(V )]n+1
i=1, j .

(A.20)

A forward discretization is then

V (Pi , � j )n+1 − V ∗(Pi , � j )n

��

=
[

bi Vi+1 − (bi + �)Vi + A + �i j

��

× [(Pi − C)Q j + Vi0 − Vi j ]
]n+1

1, j

(A.21)

with b defined as in equation (A.18). In equation
(A.18) as P → 0 we see that � = 0 and hence a = 0
and also, b = 
 .

When i = M we set VPP = 0 in equation (A.11)
and use a backward difference scheme that gives

V (Pi , � j )n+1 − V ∗(Pi , � j )n

��

=
[

�(P̄ − P)
�Pi−1/2

Vi−1 + (
�(P̄ − P)
�Pi−1/2

− �)Vi + A

+ �i j

��
[(Pi − C)Q j + Vi0 − Vi j ]

]n+1

M, j

.

(A.22)

Iterative Solution

Equations (A.14), (A.17), (A.21), and (A.24) repre-
sent a system of nonlinear algebraic equations, due
to the penalty term and hence, must be solved it-
eratively. A description of the iterative solution for
a single rotation problem is given in Insley. The it-
erative solution can best be understood if we write
the system of equations in matrix form. To this end,
define the vectors

Vn+1 ≡




V n+1
1

V n+1
2
...

V n+1
M


 ; V∗n ≡




V ∗n
1

V ∗n
2
...

V ∗n
M


 ;

Pn ≡




Pn
1

Pn
2

...
Pn

M


 ; An ≡




An
1

An
2

...
An

M


 .

(A.23)

Also, define a diagonal matrix as

[Q̄(Vn+1)]i i = L if V n+1
i <

(
Pn+1

i − C
)

Q j − V n+1
i0

= 0 otherwise

[Q̄(Vn+1)]i j = 0 if i �= j.

(A.24)

Let B be an M × M matrix. Multiplying B by the
vector Vn+1 gives a vector BVn+1 with the following
elements:

(A.25)




[
���P̄

�Pi+1/2
+ �

]
V n+1

1 −
[

���P̄
�Pi+1/2

]
V n+1

2

−��b2V n+1
1 + ��(a2 + b2 + �)V n+1

2 − ��a2V n+1
3

...

−��bi V
n+1

i−1 + ��(ai + bi + �)V n+1
i − ��ai V

n+1
i+1

...

−��bM−1V n+1
M−2 + ��(aM−1 + bM−1 + �M−1)V n+1

M−1 − ��aM−1V n+1
M[

�� �(P̄−PM )
�PM−1/2

]
V n+1

M−1 −
[
�� �(P̄−P)

�PM−1/2
− �

]
V n+1

M




.
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Equations (A.14), (A.17), (A.21), and (A.24) can
be written as

BVn+1 + [I + Q̄(Vn+1)]Vn+1

= V∗n + �� An + Q̄(Vn+1)

(A.26)

where I is the identity matrix. We can express V∗n

as V∗n = FVn where F is an interpolation matrix.
For linear interpolation, F has the properties that
its entries are nonnegative and all row sums are 1.
Equation (A.26) is solved iteratively as described in
Insley.

Appendix B: Markov Decision Process
Models and the Linear Complementarity
Problem

The key to a Markov decision model is the Markov
matrix, or transition probability matrix of the
model. (Karlin and Taylor, and Hillier and Lieber-
man discuss Markov transition probability matri-
ces.) Consider a random variable X. We refer to
Xn as the outcome of the nth trial. The state space
is labeled by nonnegative integers (0, 1, 2, 3, . . .).
The probability of Xn+1 being in state j, given that
Xn is in state i (a one-step transition probability) is
denoted by Gn,n+1

ij , that is

Gn,n+1
i j = Pr{Xn+1 = j | Xn = i}.(B.1)

When the one-step transition probabilities are in-
dependent of time, the Markov process is said to
have stationary transition probabilities. In this case
Gn,n+1

ij =Gij. Gij is the probability that the state value
goes from state i to j in one trial. All the Gij can be ar-
ranged in a matrix referred to as the Markov matrix
or the transition probability matrix of the process,
denoted by P. An example of G for four different
states is

G =




G00 G01 G02 G03

G10 G11 G12 G13

G20 G21 G22 G23

G30 G31 G32 G33


 .(B.2)

The (i + 1)st row of G is the probability distribu-
tion of the values of Xn+1 under the condition Xn =

i. The order of the matrix (number of rows) is equal
to the number of states. Given four different states
the quantities Gij satisfy

Gi j ≥ 0, i, j = 0, 1, 2, 3
3∑

j=0

Gi j = 1, i = 0, 1, 2, 3.

(B.3)

We can show how a matrix with all the properties
of the Markov matrix is derived in the solution of
the LCP. For convenience we define a variable W
such that V = e−�� W. Thus,

V� = −e−�� � W + e−�� W� .(B.4)

Substituting these expressions into equation
(A.8) and setting A = 0, we get

W� − W� = 1
2 �2 P2WPP

+ �(P̄ − P)WP + e�� �(e−�� W ).

(B.5)

We can discretize equation (B.5) as shown in Ap-
pendix A. We end up with an equation similar to
equation (A.26). We are ignoring the penalty term
here for simplicity.

[B̂ + I]Wn+1 = W∗n(B.6)

The matrix [B̂] has the following elements:

(B.7) B̂ =




���P̄
�Pi+1/2

−���P̄
�Pi+1/2

0 0 0 . . . 0 0

−��b2 ��(a2 + b2) −��a2 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 −��bM−1 ��(aM−1 + bM−1) −��aM−1

0 0 0 . . . 0 0 ���(P̄−PM )
�PM−1/2

−���(P̄−PM )
�PM−1/2




.

It follows that

Wn+1 = [B̂ + I]−1W∗n .(B.8)

We know that Vn+1 = e−��� Wn+1. It follows that

Vn+1 = e−��� [B̂ + I]−1V∗n .(B.9)

Recall that V∗n = FVn where F is the interpolation
matrix. We note that [B̂ + I] will have positive diag-
onals, nonpositive off-diagonals, and rows that sum
to 1.

LEMMA 1. The row sums of [B̂ + I]−1 F are unity.

Proof : Let e be an [ I × 1] column vector of 1’s.
We can observe that [B̂ + I]Fe = Fe (since B̂e = 0
and Fe = e). This implies that Fe = [B̂ + I]−1 Fe.
The lemma follows since
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rowsumi [B̂ + I]−1 F = [[B̂ + I]−1 Fe]i

= [Fe]i = 1. �
(B.10)

LEMMA 2. All elements of [B̂ + I]−1 F are
nonnegative.

Proof : [B̂ + I] has positive diagonals, nonposi-
tive off-diagonals, and is diagonally dominant. It
may therefore be classified as an M-matrix, which
has the property that all elements of its inverse are
nonnegative (Varga). We stated previously that the
elements of F are all nonnegative. �
THEOREM 1: [B̂ + I]−1 F satisfies (B.4) and hence
is a Markov matrix.

Proof : By Lemma 2, all elements of [B̂ + I]−1 F
are nonnegative. By Lemma 1, the row sums of [B̂ +
I]−1 F are all unity. Hence, all elements must be less
than or equal to 1. �

We can see that [B̂ + I]−1 F is equivalent to a
Markov transition matrix showing the probability of
moving from one state at � n to another at � n+1. From
equation (B.9), the value of the option at period n
+ 1 is equal to the value in period n multiplied by
the Markov transition matrix and a discount factor.

Solving the Markov chain decision model is an
alternative method to solving the partial differen-
tial equation, equation (A.8). The Markov matrix
is frequently estimated through simulation. This is
unnecessary with the approach used in this article.
Instead, we discretize the PDE and solve the re-
sulting system of equations iteratively using well-
established numerical techniques. There is no need
to directly estimate the Markov matrix. Note that
the elements of (B + I)−1 F are to O(�� 2) equal to
the discretized Green’s function that must solve the
PDE,

V� − V� = 1
2 �2 P2VPP + �(P̄ − P)VP − � V

+ A + 	(P − P ′)	(� − � ′)

(B.11)

where 	(� − � ′) represents the delta function (see
Wilmott, Dewynne, and Howison). The Green’s
function of this PDE is simply the transition prob-
ability density function, P(P, t, P′, t′) relating the
probability of a transition from state (P, t) → (P′, t′).
This is also the solution of the forward Kolmogorov
equation.

Although the Green’s function (hence the tran-
sition density function) can be determined in some
simple cases, it is not in general possible to obtain

Table C.1. Convergence of Solution as Grid Is Refined for the Basic Regime, 3% Discount Rate

Grid No. of � Nodes No. of P Nodes Time Step Size (Years) V ($/ha) Change in V Ratio

Coarse 55 37 0.25 1,967.5
Medium 110 73 0.125 1,978.6 11.1
Fine 220 145 0.0625 1,986.1 7.5 1.5

an analytic solution. However, we can always dis-
cretize the PDE directly and hence obtain an ap-
proximate transition matrix to O(�� 2). Note that
since we solve the LCP at each time step we are
directly enforcing the optimal control, which en-
sures that the solution satisfies the smooth pasting
condition. The usual stochastic dynamic program-
ming approach applies a control in explicit fashion,
hence the solution is in an inconsistent state after
each timestep. This will be an issue only in nonau-
tonomous problems, but will not matter when we
are solving for a steady state, as in this article.

Note that we do not compute (B̂ + I)−1, which
is a dense matrix, but solve (B̂ + I)Vn+1 = V∗n ,
which is considerably more efficient, since (B + I)
is tridiagonal.

Appendix C: Convergence of the Finite
Difference Scheme

The accuracy of the numerical solution to the
PDE depends critically on the number of nodes
used for each factor: price (P), age (�), and time
(�) (Wilmott, Tavella and Randall). The more the
nodes, the more accurate the solution, but the longer
the solution time. An upper limit on the number of
nodes will eventually be reached based on the mem-
ory limits of the computer. It is important to check
whether an acceptable number of nodes has been
included by noting how much the solution changes
as the grid is refined. Specifically, we observe the
change in the answer as we double the total number
of nodes.

More formally, let �� = c1h, �P = c2h, �� =
c3h, where c1, c2, c3 are constants independent of
h. Since first-order timestepping is being used, and
the cumulative effect of linear interpolation in the
� direction will be O( ��2

��
) = O(h), we expect that

the computed solution Vcomp is related to the exact
solution Vexact by

V comp
h = V exact + c4h, h → 0(C.1)

where c4 is a constant independent of h. This implies
that

Vh − Vh/2

Vh/2 − Vh/4
∼ 2, h → 0.(C.2)

In table C.1 we see that this ratio is about 1.5, indi-
cating that we are near the asymptotic convergence
range. In particular, we can be confident that the
solution on the finest grid is 1,986 ± 7.5 or accurate
to within about 0.4%.
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