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A Model-Based Computationally
Efficient Method for On-Line
Detection of Chatter in Milling
This paper presents a model-based computationally efficient method for detecting milling
chatter in its incipient stages and for chatter frequency estimation by monitoring the cut-
ting force signals. Based on a complex exponentials model for the dynamic chip thick-
ness, the chip regeneration effect is amplified and isolated from the cutting force signal
for early chatter detection. The proposed method is independent of the cutting conditions.
With the aid of a one tap adaptive filter, the method is shown to be capable of distinguish-
ing between chatter and the dynamic transients in the cutting forces arising from sudden
changes in workpiece geometry and tool entry/exit. To facilitate chatter suppression once
the onset of chatter is detected, a time domain algorithm is proposed so that the dominant
chatter frequency can be accurately determined without using computationally expensive
frequency domain transforms such as the Fourier transform. The proposed method is
experimentally validated. [DOI: 10.1115/1.4023716]

1 Introduction

Chatter imposes a major limitation on the productivity of mill-
ing processes and results in poor part quality, accelerated tool
wear, and shortened spindle life. Milling chatter has been theoreti-
cally studied by many researchers including Altintas and his co-
workers [1,2], Stepan and Insperger [3,4], and Davies et al. [5].
Given cutting conditions, tool/workpiece material models, and
structural dynamics model of the tool/workpiece/fixture/machine
tool system, the occurrence of chatter can be predicted with rea-
sonable accuracy. However, unstable cutting may still occur under
the “chatter-free” cutting conditions because process related
uncertainties such as material inhomogeneity, nonlinearity
between the cutting force and chip thickness [6], and tool wear are
usually ignored in milling chatter theory. The lack of reliable
structural dynamics models also limits the usefulness of milling
chatter theory in industrial applications. Therefore, on-line detec-
tion and suppression of chatter in milling via process monitoring
is still highly desirable, especially for high added value parts.

Prior work on chatter detection generally employs three types
of signal processing methods, including: (1) transform domain
analysis such as the Fourier transform, power spectrum, the short
time Fourier transform (STFT) [7–19], and wavelet transform
[20–27], (2) time domain modeling and analysis [28–46], and (3)
pattern recognition [47] and classification algorithms such as arti-
ficial neutral networks [25,48–54], fuzzy logic [55], the hidden
Markov model [56,57], support vector machine [22,57] and the
index based reasoner [58].

The classical Fourier transform and power spectrum are not
suited for on-line chatter detection. The Fourier transform of the
chatter signal can reveal the existence of chatter frequency but not
its “time of arrival” due to the infinite support of the eigenfunc-
tions used in the Fourier transform. Linear time-frequency analy-
sis methods such as the STFT and wavelet transform have been
extensively studied by researchers for chatter detection. The
STFT suffers from the inherent limitation that good time domain
and frequency domain resolution cannot be simultaneously
achieved. The frequency resolution of the STFT was identified as
the primary performance bottleneck of the classical audio signal
based chatter detection and suppression system developed in

Ref. [11]. Wavelet transform achieves a compromise between
time domain resolution and frequency domain resolution. How-
ever, the resolution in the high frequency band is inadequate.
When the chatter frequency is not known a priori, it is difficult to
determine the number of levels of decomposition needed and
which level(s) is(are) sensitive to the transition from chatter-free
cutting to unstable cutting. The choice of the mother wavelet
function can also have a major impact on the performance of the
algorithm, which further complicates the application of wavelet-
based methods. Finally, wavelet transform based algorithms for
chatter detection proposed in the literature [20–27] cannot accu-
rately pinpoint the dominant chatter frequency.

Chatter detection methods based on pattern recognition and
classification algorithms suffer from the drawback that extensive
training is needed before they can function. Also, decisions made
by the classification algorithms are not physically meaningful and
some of the methods are unable to identify the chatter frequency
[22,58].

Time series features such as coherence [45], coarse-grain en-
tropy rate [31], permutation entropy [59], singular values of the
Toeplitz matrix of the third order cumulants of acceleration meas-
urements [32], and statistical modeling [36] have been used to rec-
ognize chatter in turning. However, the existence of forced
vibrations at the tooth passing frequency and its harmonics in
milling limits the applicability of these methods.

Descriptive statistical analysis of the cutting force [34] and
audio signal [35] was used to detect chatter in milling. The
assumption made in Ref. [34] that the cutting force approaches a
Gaussian distribution when chatter occurs is questionable. The
once-per-revolution sampling method proposed in Ref. [35] is
computationally very efficient but sensitive to the measurement
errors and various transient events in the cutting process. Further-
more, most time series analysis methods [28,29,31,32,34–37,39,40]
cannot identify the chatter frequency.

In the early work by Braun [7] the phase information of the
complex demodulated acceleration signal acquired from turning
was found to be sensitive to the state transition of the cutting pro-
cess dynamics. The time domain method obviates the difficulties
associated with frequency domain methods when nonstationary
signals are concerned. However, the phase computed using a regu-
lar arctangent function is, in general, discontinuous and unwrap-
ping of the phase can be difficult [60].

Choi and Shin [20] proposed a cutting condition independent
and computationally inexpensive chatter index that is inversely
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related to the dimension of the cutting process dynamics. How-
ever, it is not clear whether the reduction in dimension occurs
before or after chatter is fully developed.

Al-Regib and Ni [28] suggested using the ratio of the high-
frequency band energy to the total energy in a signal as an indica-
tor of chatter. While this normalized index is process and cutting
conditions independent, its usefulness in milling is questionable
because at the incipient stages of chatter, the energy around the
chatter frequencies is still smaller than the energy around the spin-
dle speed related frequencies. Additionally, it is hard to define
what a high frequency band is when the chatter frequencies are
unknown.

van Dijk et al. [46] proposed an interesting method which
decomposes the signal acquired from a spindle mounted acceler-
ometer into two parts: a periodic part due to rigid body rotation
and a perturbation part due to tool deflection and chip regenera-
tion. The former part was modeled as a moving average (MA)
process and the latter as an autoregressive (AR) process, which is
recursively estimated and used for chatter detection. However, the
assignment of an AR model to the chip regeneration part of the
signal is not supported by cutting force models. In addition, signif-
icant estimation errors may occur if the order of the AR model is
not chosen appropriately.

The multisensor and multi-index chatter detection approach
developed by Kuljanic et al. [8,50] effectively improves the reli-
ability of the chatter detection system and reduces the false alarm
rate. However, the method is computationally expensive and sig-
nificant instrumentation effort is needed.

Besides, since most of the aforementioned methods are only
validated in simple straight line cutting experiments, it is unclear
whether they would still work if the toolpath is curvilinear or if
the workpiece geometry has discontinuities (such as holes, slots,
pockets, etc.) that can cause transient dynamic behaviors during
cutting.

In this paper, we present a novel cutting-force-based time do-
main algorithm for incipient detection of milling chatter and for
estimating the dominant chatter frequency. The chatter detection
algorithm is an extension of the tool breakage detection algorithm
proposed by Altintas [61]. It is shown that the proposed algorithm
is capable of detecting the onset of chatter and distinguishing
between chatter and workpiece geometry induced transients in the
cutting force signal. The chatter frequency estimation algorithm
originates from the spectrum estimation of a complex exponen-
tials signal embedded in white noise and is shown to be as accu-
rate as and computationally more efficient than Fourier transform
based methods. In the following sections, the proposed methodol-
ogy is presented with experimental verification and discussion of
the computational complexity and conclusions.

2 Methodology

2.1 Complex Exponentials Cutting Force Model. The cut-
ting force is chosen as the source signal for chatter detection
because of the availability of well-established mechanistic models
for milling. As established in Ref. [1], with the absence of runout,
the instantaneous tangential force fj

t and the radial force fj
r acting

on tooth j in the cut are given by (see Fig. 1)

f t
j ¼ gð/jðtÞÞKsa½st sinð/jðtÞ � pÞ þ Ap

j sinðxctþ wp
j Þ

� Ac
j sinðxctþ wc

j Þ�
f r
j ¼ Krf

t
j

(1)

where Ks is the specific cutting force coefficient, a is the axial
depth of the cut, st is the feed per tooth, /jðtÞ is the instantaneous
angular position of tooth j, Kr is the ratio of the radial force to the
tangential force, Ap

j and Ac
j are the amplitudes of the chip regener-

ation waviness in the previous and current tooth passes, respec-
tively, and wp

j and wc
j denote the phases of the chip regeneration

waviness in the previous and current tooth pass, respectively, xc

is the chip regeneration frequency or chatter frequency, and g(/)
is a rectangular window function that simulates the interrupted
cutting behavior and is defined as

gð/Þ ¼
1 /st < / < /e

0 otherwise

�
(2)

where /st and /e are the angular positions of tooth entry and exit,
respectively. Resolving fj

t and fj
r into the workpiece coordinate

system (x-y), we have

f x
j ¼ f t

j cos /j þ f r
j sin /j

f y
j ¼ f t

j sin /j � f r
j cos /j

(3)

The total cutting force is simply the summation of the resolved
forces over all teeth engaged in cutting

FxðtÞ ¼
Xz

j¼1

f x
j ; FyðtÞ ¼

Xz

j¼1

f y
j (4)

It can be shown that with no chip regeneration, i.e., Ap
j ¼Ac

j ¼ 0,
Fx and Fy are periodic functions with a period of

sT ¼ 2p=zx (5)

where z is the number of cutter teeth, x is the angular speed of the
tool (also known as the spindle frequency), sT denotes the tooth
period, s ¼ zsT represents the spindle period, and xT ¼ 2p=sT is
the tooth passing frequency. Due to the periodic rectangular win-
dow functions g(/j), the Fourier series expansion of F(t) (which
can be Fx(t), Fy(t) or a functional combination of the two) consists
of an infinite number of higher order harmonics of the tooth pass-
ing frequency and the chip regeneration frequency [4]

FðtÞ ¼
X1

k¼�1
FkejkxT t þ

X1
k¼�1

½Cþk ejðxcþkxT Þt þ C�k ejð�xc�kxTÞt�

(6)

where xc is still the chip regeneration frequency and Fk, Ck
þ, and

C�k denote the complex amplitudes of the corresponding harmon-
ics. Since F(t) is a real signal, it follows

Fk ¼ ðF�kÞ�; Cþk ¼ ðC�k Þ
�

(7)

where * denotes the complex conjugate operator. Since the energy
contained in the cutting force signal is finite, only a limited

Fig. 1 Chip regeneration in milling
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number of the higher order harmonics are significant and the rest
of them can be safely dropped. If we consider a measured cutting
force signal F̂ðtÞ, a random disturbance needs to be added to
account for the various random processes also present in the
actual process, e.g., material inhomogeneities, noise in the mea-
surement system, etc. In light of the central limit theorem, the
aggregation of all of these random processes can be modeled as a
white Gaussian noise. Therefore, the Fourier series expansion of
F̂ðtÞ can be established as

F̂ðtÞ�
XN1

k¼�N1

FkejkxT tþ
XN2

k¼�N2

½Cþk ejðxcþkxT ÞtþC�k ejð�xc�kxTÞt�þwðtÞ

(8)

where w(t) is the additive Gaussian white noise and N1 and N2

determine the number of significant harmonics of the tooth pass-
ing frequency and the chip regeneration frequency, respectively.
The insight provided by Eq. (8) is that F̂ðtÞ consists of three parts:
a periodic part due to the rigid body motion of the cutting tool and
interrupted cutting, an aperiodic chip regeneration part due to in-
stantaneous deflections of the tool/workpiece and an unknown sto-
chastic disturbance due to material inhomogeneity, measurement
system noise, etc. When the cutting process is stable, the cutting
force is dominated by the periodic part. During the transition from
chatter-free cutting to unstable cutting, the chip regeneration part
starts to grow and eventually dominates the cutting force signal
after chatter is fully developed.

2.2 Chatter Detection Algorithm. The proposed chatter
detection algorithm is based on the complex exponentials model
given in Eq. (8) and contains four steps aimed at isolating and
amplifying the chip regeneration part and compensating for the
transients introduced by tool entry/exit, workpiece geometry var-
iations, and other nonstationary events that may occur during mill-
ing. These four steps are described next.

2.2.1 Differentiation. Since the chip regeneration frequency
is usually higher than the tooth passing frequency, the force signal
is first differentiated with respect to time to amplify the high fre-
quency content in the force signal. It is clear from Eq. (8) that dif-
ferentiation usually causes the chip regeneration frequency
content to be amplified by a larger ratio than the tooth passing fre-
quency. Note that after differentiation, the periodic part still has
the same period as before. This step is summarized as follows:

df ðtÞ ¼ d

dt
F̂ðtÞ (9)

To prevent the ultrahigh frequency content in F̂ðtÞ from being
inappropriately amplified by the differentiation, the frequency
band above the highest possible chatter frequency is attenuated
before differentiation. As suggested in Ref. [9], chatter vibrations
range in frequencies from 200 Hz to as high as 4000 Hz. There-
fore, the cut-off frequency of the anti-aliasing filter was set to
5000 Hz in this work so that the ultrahigh frequencies in the
source signal will not present any problem during differentiation.

Since the cutting force signal is almost always discretized, the
differentiation operation is approximated by finite order differen-
ces. Three finite impulse response (FIR) filters (1st, 2nd, and and
3rd order) that approximate the ideal differentiator in the least
squares sense are designed and their frequency responses are
shown in Fig. 2. It can be seen that all three FIR filters are very
similar in performance in the 0 to 0.2 Hz range. Beyond 0.2 Hz,
the 1st order FIR filter outperforms the others. Therefore, the 1st
order FIR filter, which is essentially the first order difference, is
used in this study

df ðnÞ ¼ F̂ðnÞ � F̂ðn� 1Þ (10)

2.2.2 Spindle Period Averaging. Because the periodic part of
the cutting force signal is due to the tooth period, it can be isolated
from the chip regeneration content, which is due to the instantane-
ous deflection of the tool and/or the workpiece. In order to make
the chip regeneration part of the signal stand out, the tooth passing
frequency and its harmonics need to be removed. It is proposed in
Ref. [55] to remove each harmonic with a notch filter, which is
computationally very expensive. In addition, the number of notch fil-
ters needed is difficult to determine. In this work, the removal of the
periodic content in the measured force signal is achieved in the time
domain by integrating the measured cutting force signal over its
smallest period, which, in theory, is sT . However, due to cutter run-
out, the cutting force signal usually contains the spindle frequency
and its harmonics. Accordingly, the smallest period of the periodic
part in the cutting force signal is s. Therefore, df(t) is integrated over
the spindle period instead. To magnify the signal-to-noise ratio, the
integration is performed on the second power of df(t) as follows:

xk ¼
ðks

ðk�1Þs
df ðtÞ2dt (11)

Note that the outcome of this step is a time series xk corresponding
to the spindle period k. In this step, the periodic part in F̂ðtÞ results
in a global DC trend in xk, while the chip regeneration part and
the stochastic disturbance may vary slightly from one spindle pe-
riod to the next, leading to local variations around the DC trend.
During stable cutting, the amplitudes of the chip regeneration part
and the stochastic disturbance are much smaller than that of the
periodic part. Therefore, the local variation in xk around the DC
trend is small in stable cutting.

When dealing with discretized df(t), the integration in Eq. (11)
is approximated by summation over the spindle period and can be
recursively implemented in time. Per convention, xk is treated as a
time series sampled at the unit frequency.

2.2.3 One Tap Adaptive Filtering. In stable cutting, if the
chip load is exactly the same from one spindle period to the next,
we expect the DC trend in xk to be time invariant, or

xkþ1 ¼ xk þ ak (12)

where ak is a normally and independently distributed random pro-
cess that is attributed to the stochastic disturbance and the chip
regeneration part from one spindle period to the next. Equation
(12) describes a first order autoregressive (AR) process, which is
usually referred to as the random walk process. However, the AR
(1) model is not valid when the chip load varies with time; for
example, during tool entry/exit or when the tool passes through an
existing geometric feature in the workpiece, e.g., a hole [61].
Under these circumstances, the time varying AR (1) model in Eq.
(13) is more appropriate

ak ¼ xkþ1 � bkxk (13)

Fig. 2 Ideal differentiator and its finite order approximations
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where bk is the time varying AR (1) coefficient. In macro and
mesoscale milling, the tool feed is small compared to the tool
diameter and, in general, the size of the preexisting workpiece
geometric features. Therefore, the preexisting geometric features
cause the chip load to vary only slightly from one spindle period
to the next and the global DC trend in xk to vary slowly and
smoothly over the time. This global variation is different in behav-
ior from the small local variations in xk caused by the stochastic
disturbance w(t) and the chip regeneration content, as illustrated
in Fig. 3.

Equation (13) can be implemented as a one-step predictor with
a time varying tap weight bk, which can be adaptively updated in
each spindle period with the latest data xkþ1 using the recursive
least squares (RLS) algorithm [62]. One recursion of the RLS
algorithm is given here for completeness

ak ¼ xkþ1 � bkxk; K ¼ Pkxk=ðkþ xkPkxkÞ
bkþ1 ¼ bk þ Kak; Pkþ1 ¼ ð1� KxkÞPk=k

(14)

where k is the forgetting factor controlling how many past data
points to take into account for predicting the next sample, Pk is
the inverse of the autocorrelation matrix of xk, and K is the Kal-
man gain. Note that ak is known as the a priori error in adaptive
filtering literature and the innovation in the Kalman filter litera-
ture. Since a one tap adaptive filter is adopted here, Pk and K are
both scalars. For the sake of implementation, Eq. (14) can be rear-
ranged as follows:

ak ¼ xkþ1 � bkxk; K ¼ Pkxk=ðkþ ðPkxkÞxkÞ
bkþ1 ¼ bk þ Kak; Pkþ1 ¼ Pk=ðkþ ðPkxkÞxkÞ

(15)

When the cutting process is stable, the RLS filter enables the
slow and smooth variation in the global trend in xk due to the time
varying chip load to be effectively captured by the AR (1) model,
resulting in a stationary residual signal ak with small variance.
However, when chatter vibration starts to build up, the local varia-
tion caused by the chip regeneration content in xk is no longer neg-
ligible and the RLS algorithm can no longer adapt fast enough to
capture the rapid changes in xk, leading to an ak with increasing
variance. In this case, a standard univariate control chart can be
implemented to monitor ak for chatter detection. Chatter is sig-
naled when the amplitude of ak exceeds the predetermined control

limits. The upper control limit (UCL) and lower control limit
(LCL) of the control chart can be set as

UCL ¼ Lr; LCL ¼ �Lr (16)

where r is the standard deviation estimated from ak during stable
cutting and L is a real, positive number determined from the ac-
ceptable false alarm rate a (i.e., the probability of issuing an alarm
when chatter does not occur). If ak can be assumed to follow the
Gaussian distribution, L can be determined as

Zðz � LÞ ¼ 1� a
2

(17)

where Z(z) stands for the cumulative distribution function of the
standard Gaussian distribution. During stable cutting, the expected
number of successive samples that fall in the control limits before
a false alarm is activated, referred to as the average run length
(ARL0), is given by

ARL0 ¼
1

a
(18)

It is clear from the preceding discussion that setting up the con-
trol limits for the control chart is independent of any cutting con-
ditions; L is chosen based on the acceptable false alarm rate and r
is estimated from ak at the very beginning of each cut. Therefore,
the proposed chatter detection algorithm is expected to work inde-
pendently of cutting conditions and the tool/ workpiece materials.

2.2.4 Median Filter. The last step in the chatter detection
algorithm is to remove any singular peaks in ak so that the false
alarm rate is reduced. Singular peaks may result from a hard spot
in the workpiece, tool breakage or chipping, etc. In these cases, a
one tap adaptive filter cannot respond fast enough to the sudden
large variation in the force signal and a singular out-of-control
point may appear in ak. It is proposed to use a median filter with a
window size of three to remove such singular peaks. The opera-
tion of the median filter is described as

aM
k ¼ medianðak�1; ak; akþ1Þ (19)

where ak
M is the signal to be used for chatter detection. Note that

the median filter delays chatter detection by one spindle period
because ak

M cannot be determined until akþ1 becomes available.

2.3 Limitations and Discussion. It has been pointed out in
Ref. [3] that chatter frequencies can be integer multiples of the
spindle frequency x when chatter occurs in the form of a flip
bifurcation, where the chatter frequencies xc are given by

xc ¼
2k þ 1

2
xT ¼

2k þ 1

2
zx; k ¼ 0; 1; 2::: (20)

where z is the number of teeth on the cutting tool. Clearly, for an
even number of teeth, the chatter frequencies xc are integer multi-
ples of x, which will be completely removed during the spindle
period averaging and adaptive filtering steps. Noticing that xc can
never be an integer multiple of xT, it is proposed to use tooth pe-
riod averaging on df(t)2 instead of spindle period averaging

xk ¼
ððkþ1ÞsT

ksT

df ðtÞ2dt (21)

While the tooth period averaging approach can potentially detect
chatter earlier because a new xk becomes available every tooth pe-
riod and ak

M is checked against the control limits z times per spin-
dle period (instead of once per spindle period in the spindle period
averaging approach), tool runout can cause periodic fluctuationsFig. 3 Global trend and local variation in xk
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in xk and ak
M with a period of z (note that xk and ak

M are time se-
ries sampled at unit frequency). An additional notch filter at the
frequency of 1/z is then needed to remove the runout induced peri-
odic fluctuations from xk, thereby increasing the computational
cost. Since flip bifurcation usually occurs in high speed and highly
interrupted cutting, the spindle period averaging approach is
expected to be more frequently used.

2.4 Dominant Chatter Frequency Estimation. To facilitate
chatter suppression, the dominant chatter frequency needs to be
estimated from the cutting force signal once the onset of chatter
has been recognized by the control chart. The spindle frequency
or one of its harmonics is then matched with the estimated domi-
nant chatter frequency to suppress chatter [10]. Transform based
methods such as the fast Fourier transform (FFT) may be applied
to the cutting force signal collected near the chatter onset point,
and the dominant chatter frequency can be identified as the high-
est peak in the spectrum. However, a tradeoff has to be made
between the stationarity assumption (i.e., the signal is approxi-
mately stationary near the chatter onset point) and the frequency
resolution: the greater the number of data samples, the better the
frequency resolution, but the less reasonable the stationarity
assumption. Here, a computationally more efficient algorithm that
obviates the aforementioned difficulty is proposed.

In the incipient stages of chatter development, the chip regener-
ation part in the cutting force is still small in magnitude compared
to the periodic part. Therefore, the period part needs to be
removed from the cutting force signal by applying a first order dif-
ference [63]

f ðtÞ ¼ F̂ðtÞ � F̂ðt� sÞ (22)

Note that if flip bifurcation is expected to occur, sT instead of s
will show up in Eq. (22) and a notch filter at 1/z will be needed to
preprocess f(t). After the first order difference, only the chip
regeneration content and the stochastic disturbance remain and
the Fourier series expansion of f(t) has the following form:

f ðtÞ �
XN2

k¼�N2

½Cþk ejðxcþkxT Þt þ C�k ejð�xc�kxTÞt� þ vðtÞ (23)

where v(t) is the white noise in f(t). Note that v(t) is different from
w(t) in Eq. (8) because of the first order difference in Eq. (22). Let
f(n) and v(n) be the discretized versions of f(t) and v(t), respec-
tively, and perform a change of notation on Eq. (23) as follows:

f ðnÞ ¼
Xp

k¼1

Akejxkn þ vðnÞ (24)

where p¼ 4N2þ 2 and Ak and xk denote the complex amplitude
and frequency of the corresponding harmonic, respectively. The
estimation of xc from f(n) is based on the eigendecomposition of
the autocorrelation matrix of f(n), which is defined as

Rf ¼

Rf ð0Þ Rf ð�1Þ Rf ð�2Þ ::: Rf ð�Mþ1Þ

Rf ð1Þ Rf ð0Þ Rf ð�1Þ ::: Rf ð�Mþ2Þ

Rf ð2Þ Rf ð1Þ Rf ð0Þ ::: Rf ð�Mþ3Þ

::: ::: ::: :::

Rf ðM�1Þ Rf ðM�2Þ Rf ðM�3Þ ::: Rf ð0Þ

2
666666664

3
777777775

where Rf ðkÞ¼E½f ðnÞf �ðn�kÞ�Rf ð�kÞ¼R�f ðkÞ

(25)

It can be shown that if the phases of each harmonic (contained in
Ak) are statistically independent from each other, Rf can be
decomposed into two parts [62]

Rf ¼
Xp

k¼1

Akj j2ekeH
k þ r2

vIM�M (26)

where

ek ¼ ½ 1 e�jxk e�j2xk ::: e�jðM�1Þxk �H (27)

is known as the signal vector, rv
2 is the variance of v(t), and H

denotes the Hermitian transpose. The first part in Eq. (26),
denoted as Rs, is an M�M matrix of rank p, while the second
part, denoted as Rn, is an identity matrix. Performing an eigende-
composition on each part, we obtain

Rf ¼
Xp

i¼1

ks
i viv

H
i þ

XM

i¼1

r2
vviv

H
i (28)

where v1,v2,…,vM is a set of orthonormal eigenvectors for Rs and
k1

s, k2
s,…,kp

s are the first p nonzero eigenvalues of Rs. The rest of
the eigenvalues are zero. Rearranging Eq. (28), we obtain

Rf ¼
Xp

i¼1

ðks
i þ r2

vÞviv
H
i þ

XM

i¼pþ1

r2
vviv

H
i (29)

The first p eigenvectors in Eq. (29) v1,v2,…,vp, are referred to as
the signal eigenvectors and the last (M� p) eigenvectors
vpþ1,vpþ2,…,vM are referred to as the noise eigenvectors. Since Rf

is a Hermitian matrix and the eigenvectors corresponding to dif-
ferent eigenvalues are orthogonal to each other [62], the signal
eigenvectors corresponding to eigenvalues (ki

sþ rv
2) are orthogo-

nal to the noise eigenvectors corresponding to eigenvalues rv
2.

Accordingly, the space spanned by the signal eigenvectors (known
as the signal subspace) is orthogonal to the space spanned by the
noise eigenvectors (known as the noise subspace). Since signal
vectors ek also lie in the signal subspace [64], they are orthogonal
to any vector v that lies in the noise subspace, or

eH
k v ¼

XM�1

m¼0

vðmÞe�jmxk ¼ 0; k ¼ 1; 2; :::p (30)

Equation (30) essentially means that the discrete time Fourier
transform of v has p zeros at x1,x2,…,xp. Or, equivalently, V(z),
the z-transform of v, has p zeros on the unit circle in the z-plane,
with the phase angle of each zero given by xk/2p.

Although v can be an arbitrary vector in the noise space, it has
been suggested in Ref. [65] to always use the minimum norm vec-
tor in the noise subspace, which is given by

vmin ¼
VnVH

n u1

uH
1 VnVH

n u1

(31)

where Vn¼ [vpþ1 vpþ2… vM] and u1¼ [1 0…0]T.
The algorithm for determining the dominant chatter frequency

among all p complex exponentials in Eq. (24) can now be estab-
lished as follows:

1. Compute the M�M autocorrelation matrix Rf, according to
Eq. (25). Since Rf is both Hermitian and Toeplitz, only the M
independent elements in Rf need to be computed. In practice, the
expectation operator E is approximated by the sample average.
Note that since f(n) is a time-varying signal, its autocorrelation
matrix is also time varying. Therefore, at any time instant the
autocorrelation matrix is computed using only the latest N data
points. At time n, the estimated time dependent autocorrelation
coefficient at lag k, R̂n

f ðkÞ is computed as

R̂n
f ðkÞ ¼

1

N

Xn

i¼n�Nþ1

f ðiÞf �ði� kÞ k ¼ 0; 1; :::M � 1 (32)
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Since only the noise eigenvectors of Rf are of interest, the normal-
ization by N is unnecessary and can be dropped for all elements in
Rf

R̂n
f ðkÞ ¼

Xn

i¼n�Nþ1

f ðiÞf �ði� kÞ (33)

It is straightforward to show that

R̂n
f ðkÞ ¼ R̂n�1

f ðkÞ þ f ðnÞf �ðn� kÞ � f ðn� NÞf �ðn� N � kÞ (34)

which provides a way to evaluate the autocorrelation matrix recur-
sively in time.

2. Perform the eigendecomposition on Rf, find its (M� p) noise
eigenvectors: vpþ1,vpþ2.…,vM and the minimum norm vector vmin,
according to Eq. (31). Since we are dealing with a real signal f(n),
Rf is always real and symmetric, which can significantly reduce
the computation complexity when computing its eigenvalues and
eigenvectors [64].

3. Compute the roots of the (M� 1)th order polynomial Vmin(z),
which is the z-transform of vmin. The roots are found by comput-
ing the eigenvalues of the companion matrix which is
(M� 1)� (M� 1) in size.

4. Sort all (M� 1) roots obtained in Step 3 to determine the
root that is closest to the unit circle in the z-plane (i.e., the root
whose magnitude is closest to unity), calculate its phase angle h
(in radians), and determine the dominant chatter frequency xc (in
rad/s) from it

xc ¼ hFs (35)

where Fs is the sampling frequency (in Hz).
An example illustrating the relationship between the pole loca-

tions in the z-plane and the spectrum of the signal is given in
Fig. 4. In the z-plane, the phase angle h is simply the angle made
between the positive direction of the horizontal axis and the line
connecting the pole and the center of the unit circle. In this exam-
ple, (M� 1)¼ 8. Note that the pair of poles (p2, p2*) closest to the
unit circle corresponds to the strongest harmonics in the signal,
i.e., the dominant chatter frequency, while the pair of poles close
to the center of the unit circle (p4, p4*) has little impact on the
spectrum.

Since, in most cases, only the dominant chatter frequency is of
interest, it is reasonable to set p¼ 2, i.e., it is assumed that there
exist only two complex exponentials in f(n): xc and –xc. The
dimension of Rf, M needs to be larger than p.

The chatter detection and chatter frequency estimation algo-
rithm is summarized block-diagrammatically in Fig. 5.

3 Experiments and Results

A set of end milling experiments was performed in order to ver-
ify the proposed methodology. The tests were designed such that
the tool encounters different types of geometric features (holes
with different diameters, slots, curvilinear tool paths, etc.) along
the tool path. Cutting force signals were collected using a table-
type force dynamometer (Kistler 9257B) at 10 KHz. Since the
direction of the tool motion with respect to the workpiece coordi-
nate system may change along the tool path, the source signal is
defined as follows to make it as directionally independent as
possible:

df ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dFxðtÞ

dt

� �2

þ dFyðtÞ
dt

� �2
s

(36)

3.1 Chatter Detection. The first two tests we examine the
capability of the chatter detection algorithm to recognize chatter

Fig. 4 Relationship between the pole location and the spec-
trum of the signal

Fig. 5 Flow chart of the chatter detection and chatter frequency estimation
method
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when chatter is actually occurring, while the following three tests
investigate if the proposed algorithm can distinguish between
chatter and workpiece geometry-induced transients in the cutting
forces. The control limits in all control charts are set as L¼ 6,
which corresponds to a false alarm rate (a) of 2� 10�9 and an
ARL0 of 5� 108. In other words, only one false alarm is expected
after 5� 108 spindle revolutions, according to the univariate con-
trol chart theory.

3.1.1 Test 1. In this test, chatter developed during a linear cut
where the axial depth of the cut increased linearly from 2.54 mm.
The inputs (the two in-plane cutting forces) and outputs of the
four-step chatter detection algorithm are shown in Figs. 6 and 7.
A gentle linear trend is observed in Fx and Fy due to the increasing
axial immersion. At the beginning of the cut, xk is characterized
by small local variations superimposed on a time varying global
trend. The one tap adaptive filter then successfully removes the
global trend and leads to the zero-mean residuals ak and ak

M. As
the chip regeneration part in the cutting force signal gradually
builds up, the amplitude of the local variations in xk also grows,
resulting in residuals with increased variance. Eventually, chatter
was detected around the 1322th spindle period, about 130 spindle
periods earlier than the appearance of chatter marks on the
workpiece.

3.1.2 Test 2. In this test, chatter developed during a linear cut
with constant axial and radial depths of the cut. The inputs and
outcomes of the individual steps in the algorithm are shown in
Figs. 8 and 9. It can be seen that in the first 100 spindle revolu-
tions after the start of cutting (�350th spindle revolution), the cut-
ting forces are stable, xk has a constant DC trend with small local
variations and the residuals have very small variance. When chat-
ter starts to build up, large variations appear in xk, ak, and ak

M.
Chatter is detected around the 460th spindle period, about 30 spin-
dle periods ahead of the appearance of chatter marks on the
workpiece.

In the previous two tests, chatter was successfully recognized
by the proposed algorithm ahead of fully developed chatter, i.e.,
before chatter marks are observed on the workpiece. The work-
piece is not damaged when the chatter alarm is issued, which
means that corrective measures can still be taken to suppress chat-
ter. The following three cutting tests examine the capability of the
proposed algorithm to distinguish between chatter and various
types of transients (e.g., tool entry/exit, sudden changes in work-
piece geometry). Due to these transients, the cutting force signals
become nonstationary and cannot be directly used in chatter
detection.

3.1.3 Test 3. The workpiece geometry for this test is illus-
trated in Fig. 10. The beginning of the tool path is indicated with a
black dot. The tool intersects an existing hole on the first leg of
the tool path, makes two 90 deg turns, crosses a slot, and tempo-
rarily jumps out of cut on the second leg. The cutting force signals
shown in Fig. 11 are clearly nonstationary, which leads to a time

Fig. 6 Inputs and outputs of the chatter detection algorithms
for Test 1 (a) (four flute 6.35 mm carbide tool, 1018 steel work-
piece, 3400 rpm, 0.0254 mm feed/tooth, 50% radial immersion,
2.54 mm depth of cut at beginning)

Fig. 7 Inputs and outputs of the chatter detection algorithms
for Test 1 (b)

Fig. 8 Inputs and outputs of the chatter detection algorithms
for Test 2 (a) (two flute 25.4 mm carbide tool, 1018 steel work-
piece, 1200 rpm, 0.0381 mm feed/tooth, 25% radial immersion,
2.54 mm axial depth of cut)

Fig. 9 Inputs and outputs of the chatter detection algorithms
for Test 2 (b)

Fig. 10 Workpiece geometries and toolpaths for cutting Tests
3 and 4
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varying global trend in xk. The one tap adaptive filter removes the
trend in xk and produces a zero-mean residual ak

M to be used for
chatter detection. No chatter was observed in this test (i.e., no
chatter marks), and ak

M lies within the control limits throughout
the cutting test, as shown in Fig. 12.

3.1.4 Test 4. The workpiece geometry for this test is also
shown in Fig. 10 and the beginning of the tool path is indicated
with a black dot. In this test, the tool intersects a series of existing
holes and slots along a curvilinear toolpath. Similar to Test 3, the
time-varying trend in xk due to nonstationary cutting forces are
removed by the adaptive filter, resulting in a zero-mean residual
signal to be used for chatter prediction (see Fig. 13). No violation
of the control limits is observed in Fig. 14, which suggests that no
chatter occurred during the cutting operation. This is consistent
with observing the workpiece surface.

3.1.5 Test 5. The workpiece geometry for this test is shown
in Fig. 15, where the axial depth of the cut increases in five steps
along a straight line. The steps in the axial depth of the cut are
also evident in the cutting force signals (see Fig. 16). Again, the
time varying trend in xk due to the time varying chip load is effec-
tively removed, resulting in a zero-mean stationary residual signal

Fig. 11 Inputs and outputs of the chatter detection algorithms
for Test 3 (a) (two flute 12.7 mm carbide tool, aluminum 7050
workpiece, 2400 rpm, 50%–100% radial immersion, 2.54 mm
axial depth of cut, 0.016 mm feed/tooth)

Fig. 12 Inputs and outputs of the chatter detection algorithms
for Test 3 (b)

Fig. 14 Inputs and outputs of the chatter detection algorithms
for Test 4 (b)

Fig. 15 Workpiece geometry and toolpath for cutting Test 5

Fig. 16 Inputs and outputs of the chatter detection algorithms
for Test 5 (a) (four flute 6.35 mm high speed steel tool, alumi-
num 7050 workpiece, 2400 rpm, 50% radial immersion,
3.81 mm–11.43 mm axial depth of cut, 0.0381 mm feed/tooth)

Fig. 13 Inputs and outputs of the chatter detection algorithms
for Test 4 (a) (two flute 12.7 mm carbide tool, aluminum 7050
workpiece, 2400 rpm, 50%–100% radial immersion, 1.905 mm
axial depth of cut, 0.0254 mm feed/tooth)

Fig. 17 Inputs and outputs of the chatter detection algorithms
for Test 5 (b)
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that lies in the 6r control limits. No chatter alarm is signaled by
the control chart in Fig. 17, which is in agreement with actual
observations during the test.

In Tests 3–5, the proposed algorithm successfully reduces the
nonstationary cutting force signals into zero-mean residual signals
for chatter detection. No false chatter alarm is issued due to
geometry-induced transients in the cutting force, which proves
that the proposed algorithm is capable of distinguishing between
chatter vibrations and transient dynamics due to changing work-
piece geometry.

3.2 Chatter Frequency Estimation. The performance of the
proposed chatter frequency estimation algorithm is investigated in
this section and compared with the FFT. The data used for estima-
tion are the force signals collected during the three spindle revolu-
tions immediately before chatter is signaled by the control chart.
It is assumed that during these three spindle periods the cutting
force signal is stationary so that the FFT can be computed. For the
proposed chatter estimation algorithm M¼ 8, p¼ 2.

First, the spectra of F(t) and f(t) are compared in Fig. 18. For
illustration purposes, all of the FFTs and spectra shown are nor-
malized by their maximum amplitude. In Fig. 18 it can be seen
that when chatter is just indicated by the control chart, the ampli-
tude of the chip regeneration content is still small compared to the
spindle rotation frequencies in F(t). After a first order difference
is performed (as described in Eq. (22)), the spindle rotation fre-
quencies vanish, which facilitates the estimation of the dominant
chatter frequency.

The dominant chatter frequencies estimated by the proposed
algorithm are compared with the ones estimated using the FFT in
Figs. 19 and 20. Note that for the sake of illustration, the spectrum
of f(t) estimated using the proposed algorithm is presented and the
dominant chatter frequency is identified as a singular peak in the
spectrum. In practice, since only the dominant chatter frequency
is of interest, it is unnecessary to compute the whole spectrum. In
both cases, the chatter frequency estimated using the complex
exponentials model agree very well with the highest peak in the
corresponding FFTs, which validates the proposed algorithm. It
will be shown in the next section that the proposed algorithm is
computationally more efficient.

4 Computational Complexity Analysis

The computational cost of the proposed chatter detection algo-
rithm and the dominant chatter frequency estimation algorithm
are detailed in Table 1. It is clear that the number of computations
needed for the proposed chatter detection algorithm is linear with
the number of data available in a spindle period (i.e., the sampling
rate). This is comparable with the computational cost of the wave-
let transform (O(N)) and more efficient than the FFT, which is
O(N log(N)).

It is interesting to note that the computational cost of the pro-
posed chatter frequency estimation algorithm is a function of only

Fig. 18 Comparison of the FFT of f(t) (top) and F(t) (bottom)

Fig. 19 Dominant chatter frequency estimated by the pro-
posed algorithm (top) and the FFT (bottom) (data is from Test 1)

Fig. 20 Dominant chatter frequency estimated by the pro-
posed algorithm (top) and the FFT (bottom) (data is from Test 2)

Table 1 Computational complexity analysis of the proposed algorithm

Operations Computational costs

Chatter detection Differentiation (Eq. (10)) 1 additiona per F(t) sample
Spindle period averaging (Eq. (11)) 1 multiplication and addition per F(t) sample
One tap adaptive filtering (Eq. (15)) 6 multiplications, 3 additions and 1 division Per spindle period [62]
Median filter (Eq. (19)) 3 comparisons per spindle period

Chatter frequency
estimation

First order difference (Eq. (22)) 1 addition per F(t) sample
Computation of Rf (Eq. (34)) 2M additions and multiplications per F(t) sample when implemented

recursively in time
Eigendecomposition of Rf �M3 additions and multiplications
Computation of vmin (Eq. (31)) M(M� p) multiplications, M(M� p � 1) additions, and 1 division
Rooting an (M� 1) order polynomial (Eq. (30)) �(M� 1)3 additions and multiplications
Determine the dominant chatter frequency (Eq. (35)) (M� 2) comparisons, one multiplication

aAll computations are real.
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M, the size of the autocorrelation matrix Rf, and is independent of
the data size N. On the contrary, the computational cost of the
FFT is a function of the data size N. After chatter is signaled by
the control chart, the number of real multiplications needed to
arrive at the dominant chatter frequency using the proposed algo-
rithm is approximately M3þ (M� 1)3þ M(M� p)þ 1. On the
contrary, if a radix-2 FFT is adopted, the number of multiplica-
tions needed is approximately N log2(N). As long as the following
holds:

M3 þ ðM � 1Þ3 þ ðM � pÞ þ 1 < Nlog2ðNÞ (37)

the proposed algorithm will have an advantage in computational
cost. Since N is typically chosen to be a large number to achieve
adequate frequency resolution in the FFT, Eq. (37) is usually true.
In addition, if the FFT is used, (N� 1) comparisons are needed to
locate the peak frequency in the spectrum, while for the proposed
algorithm only (M� 2) comparisons are needed to sort all the
roots. If we select p¼ 2, M¼ 8 and the number of data to be used
for chatter frequency estimation is N¼ 1024, the proposed method
saves approximately 9336 in the number of multiplications and
1017 in the number of comparisons. The savings in computation
buys more time for taking corrective actions to suppress chatter.

Another advantage of the proposed chatter frequency estima-
tion algorithm is the savings in memory usage. For the proposed
algorithm, only the F̂ðtÞ sampled in the latest spindle period needs
to be stored in memory for computing f(t) and all of the past f(t)
are compressed into the M independent elements in Rf. For the
FFT, however, not only the F̂ðtÞ in the latest spindle period needs
to be saved for computing f(t), but a buffer needs to be allocated
in the memory to hold the latest N number of f(t) for chatter fre-
quency estimation.

5 Conclusions

A novel model-based and computationally efficient algorithm
for incipient detection of milling chatter and estimation of the
dominant chatter frequency based on the cutting force signal is
presented and experimentally validated. The proposed method is
shown to be capable of detecting chatter and accurately estimating
the chatter frequency before chatter is fully developed. It was also
found to be capable of distinguishing between chatter and transi-
ents in the cutting force caused by changes in workpiece geometry
and/or tool entry/exit. The algorithm is cheaper in terms of the
computational cost and memory usage than frequency domain
transform based methods such as the FFT and can be implemented
in low cost microcontrollers for on-line detection and suppression
of chatter. Although the method is derived based on cutting force
models, the intimate relationship between force and other types of
signals suggests that it may also be applied to cutting torque and
acceleration signals. The cutting torque signal is of special interest
because of its directional independence with respect to tool move-
ment. Future work will include evaluating the performance of the
algorithm with tool direction-independent signals and under dif-
ferent cutting conditions.
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