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Abstract. In this article, we present a parallel geometric multigrid algorithm for solving ellip-
tic partial differential equations (PDEs) on octree based conforming finite element discretizations.
We describe an algorithm for constructing the coarser multigrid levels starting with an arbitrary
2:1 balanced fine-grid octree discretization. We also describe matrix-free implementations for the
discretized finite element operators and the intergrid transfer operations. The key component of our
scheme is an octree meshing algorithm, which handles “hanging” vertices in a manner that naturally
supports conforming trilinear shape functions. Our MPI-based implementation has scaled to billions
of elements on thousands of processors on the Cray XT3 MPP system “Bigben” at the Pittsburgh
Supercomputing Center (PSC) and the Intel 64 Linux Cluster “Abe” at the National Center for
Supercomputing Applications (NCSA). Although we do not discuss adaptive mesh refinement here,
the proposed method can be used efficiently in such problems since it has a low setup cost.
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1. Introduction. Various physical and biological processes are modelled using
elliptic operators, such as the Laplacian operator. They are often encountered in heat
and mass transfer theory [20], solid and fluid mechanics [20, 30], electromagnetism [27],
quantum mechanics [28], models for tumor growth [4], protein folding and binding [42]
and cardiac electrophysiology [44]. They are also used in non-physical applications
such as mesh generation [49], image segmentation [24] and image registration [41].

The finite element method is a popular technique for numerically solving such
partial differential equations over complex domains and/or domains with moving
boundaries and for adaptive applications. Structured grids are seldom suited for
these applications due to their limited flexibility. However, the flexibility of unstruc-
tured meshes comes at a price – they incur the overhead of explicitly constructing
element-to-node connectivity information, are unsuitable for matrix-free implemen-
tations and are generally cache inefficient because of random queries into this data
structure [5, 29, 58]. Octree meshes seem like a promising alternative, at least for
some problems [3, 9, 43]; they are more flexible than structured grids, the overhead of
constructing element-to-node connectivity information is lower than that of unstruc-
tured grids, they allow for matrix-free implementations and the cost of applying the
discretized Laplacian operator with octree discretizations is comparable to that of a
discretization on a regular grid with the same number of elements [50].

Multigrid methods for solving such partial differential equations (PDEs) have
been researched extensively in the last two decades [8, 13, 14, 21, 31, 32, 48, 59, 60,
61, 62] and continue to remain an active area of research [1, 2, 9, 10, 26, 31, 35].
There are numerous works on the theoretical and practical aspects of the different
multigrid schemes (V-cycle, W-cycle, FMV-cycle) for a variety of meshes ranging
from simple structured grids to non-nested unstructured meshes. A distinguishing
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feature of multigrid schemes is that their convergence rates do not deteriorate with
increasing problem size. Moreover, they have optimal complexity for solving certain
types of problems [17, 32, 54].

Multigrid algorithms can be classified into two categories: (a) Geometric and (b)
Algebraic; The primary difference being that the algorithms of the former type use
an underlying mesh for constructing coarser levels (“coarsening”) and the algorithms
of the latter type use the entries of the fine-grid matrix for coarsening. Algebraic
multigrid methods are gaining prominence due to their generality and the ability to
deal with unstructured meshes. In contrast, geometric multigrid methods are less
general. However, in situations where geometric multigrid methods work they have
low overhead, are quite fast and, when the grid is cartesian, are easy to parallelize. For
this reason, geometric multigrid methods have been quite popular for solving smooth
coefficient non-oscillatory elliptic PDEs on nearly structured meshes.

The major hurdles with implementing geometric multigrid methods on unstruc-
tured meshes are coarsening and the construction of appropriate intergrid transfer
operations. In this work, we show how the use of octrees instead of generic unstruc-
tured meshes can alleviate some of these issues. Our parallel geometric multigrid
implementation is built on top of the octree data structures developed in our recent
work [50, 51].

Related Work. There is a vast literature on multigrid methods for solving partial
differential equations (PDEs). Here, we only review some of the recent work on adap-
tive meshes. In [12], a sequential geometric multigrid algorithm was used to solve
two and three dimensional linear elastic problems using finite elements on non-nested
unstructured triangular and tetrahedral meshes, respectively. The implementation
of the intergrid transfer operations described in this work can be quite expensive
for large problems and is non-trivial to parallelize. A sequential full approximation
multigrid scheme for finite element simulations of non-linear problems on quadtree
meshes was described in [35]. In addition to the 2:1 balance1 constraint, a specified
number of “safety layers” of octants were added at each multigrid level to support
their intergrid transfer operations. Projections were also required at each multigrid
level to preserve the continuity of the solution, which is otherwise not guaranteed us-
ing their non-conforming discretizations. Projection schemes require two additional
tree-traversals per MatVec, which we avoid in our approach. A 3-D parallel algebraic
multigrid method for unstructured finite element problems was presented in [2]. In
this work, the authors used parallel maximal independent set algorithms for construct-
ing the coarser grids and constructed the Galerkin coarse-grid operators algebraically
using the restriction operators and the fine-grid operator. In [10], a calculation with
over 11 billion elements was reported. The authors proposed a scheme for conform-
ing discretizations and geometric multigrid solvers on semi-structured meshes. That
approach is highly scalable for nearly structured meshes and for constant coefficient
PDEs. However, it limits adaptivity because it is based on regular refinement. More-
over, its computational efficiency diminishes in the case of variable-coefficient oper-
ators. Additional examples of scalable approaches for unstructured meshes include
[1] and [40]. In those works, multigrid approaches for general elliptic operators were
proposed. The associated constants for constructing the mesh and performing the
calculations however, are quite large. A significant part of CPU time is related to
the multigrid scheme. The high-costs related to partitioning, setup, and accessing
generic unstructured grids, has motivated the design of octree-based data structures.

1A formal definition of the 2:1 balance constraint is given in Definition 1.
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Such constructions have been used in sequential and modestly parallel adaptive finite
element implementations [9, 25, 43]. A characteristic of octree meshes is that they
contain “hanging” vertices. In [50], we presented a strategy to tackle these hanging
vertices and build conforming, trilinear finite element discretizations on these meshes.
That algorithm scaled up to four billion octants on 4096 processors on a Cray XT3 at
the Pittsburgh Supercomputing Center. We also showed that the cost of applying the
Laplacian operator using this framework is comparable to that of applying it using a
direct indexing regular grid discretization with the same number of elements.

Contributions. Although several sequential and parallel implementations for both
geometric and algebraic multigrid methods are available [2, 7, 33], to our knowledge
there is no work on parallel, octree-based, geometric multigrid solvers for finite element
discretizations. In this work, we propose a parallel bottom-up geometric multigrid
algorithm on top of the 2:1 balancing and meshing algorithms [50, 51] that were
developed in our group. Also, we conducted numerical experiments that demonstrate
the effectiveness of the method. In designing the new algorithms, our goals have
been minimization of memory footprint, low setup costs, and end-to-end2 parallel
scalability:

• We propose a parallel global coarsening algorithm to construct a series of 2:1
balanced coarser octrees and corresponding meshes starting with an arbitrary
2:1 balanced fine octree. We do not impose any restrictions on the number
of multigrid levels or the size of the coarsest mesh. Global coarsening poses
difficulties with partitioning and load balancing due to the fact that even if
the input to the coarsening function is load balanced, the output may not be
so.

• Transferring information between succesive multigrid levels in parallel is a
challenging task because the coarse and fine grids may have been partitioned
across processors in a completely different way. In the present work, we
describe a scalable, matrix-free implementation of the intergrid transfer op-
erators.

• The MPI-based implementation of our multigrid method, DENDRO, has
scaled to billions of elements on thousands of processors even for problems
with large contrasts in the material properties. Dendro is an open source
code that can be downloaded from [46]. Dendro is tightly integrated with
PETSc [7].

Limitations. Some of the limitiations of the proposed methodology are listed
below:

• Our current implementation results in a second order accurate method. A
higher order method can be obtained either by extending [50] to support
higher order discretizations or by using an extrapolation technique such as
the one suggested in [36].

• Problems with complex geometries are not directly supported in our imple-
mentation; in principle, Dendro can be combined with fictitious domain meth-
ods [23, 45] to allow solution of such problems but the computational costs
will increase and the order of accuracy will be reduced.

• The method is not robust for problems with large jumps in the material
properties. However, we do observe good results for such problems in our
experiments.

2By end-to-end, we collectively refer to the construction of octree-based meshes for all multigrid
levels, restriction/prolongation, smoothing, coarse solve, and CG drivers.
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• We observe some problems with the load balancing across processors as we
move to a large number of processors.

Organization of the paper. In Section 2, we present a symmetric variational prob-
lem and describe a V-cycle multigrid algorithm to solve the corresponding discretized
system of equations. It is common to work with discrete, mesh-dependent, inner
products in these derivations so that inverting the Gram matrix3 can be avoided
[8, 14, 15, 16, 60, 61, 62]. However, we do not impose any such restrictions. Instead,
we show (Section 2.5) how to avoid inverting the Gram matrix for any choice of the
inner-product. In Section 3, we describe a matrix-free implementation for the multi-
grid method. In particular, we describe our framework for handling hanging vertices4

and how we use it to implement the MatVecs5 for the finite element matrices as well
as the restriction/prolongation matrices. In Section 4, we present the results from
fixed-size and iso-granular scalability experiments. We also compare our implementa-
tion with “BoomerAMG” [33], an algebraic multigrid implementation available in the
parallel linear algebra package “Hypre” [22]. In Section 5, we present the conclusions
from this study and also provide some suggestions for future work.

2. A finite element multigrid formulation.

2.1. Variational problem. Given a domain Ω ⊂ R3 and a bounded, symmetric
bilinear form, a(u, v), that is coercive on H1(Ω) and f ∈ L2(Ω), we want to find
u ∈ H1(Ω) such that u satisfies

a(u, v) = (f, v)L2(Ω) ∀v ∈ H1(Ω) (2.1)

and the appropriate boundary conditions on the boundary of the domain, ∂Ω. This
problem has a unique solution [16].

2.1.1. Galerkin approximation. In this section, we derive a discrete set of
equations that need to be solved to find an approximate solution for Equation 2.1.
First, we define a sequence of nested finite dimensional spaces, V1 ⊂ V2 ⊂ · · · ⊂ H1(Ω),
all of which are subspaces of H1(Ω). Here, Vk corresponds to a fine mesh and Vk−1

corresponds to the immediately coarser mesh. The discretized problem is then to find
an approximation of u, uk ∈ Vk, such that

a(uk, v) = (f, v)L2(Ω) ∀v ∈ Vk. (2.2)

The discretized problem has a unique solution and the sequence {uk} converges to u
[16].

Let (·, ·)k be an inner-product defined on Vk. By using the linear operator Ak :
Vk → Vk defined by

(Akv, w)k = a(v, w) ∀v, w ∈ Vk, (2.3)

the discretized problem can be restated as follows: Find uk ∈ Vk, which satisifies

Akuk = fk (2.4)

3Given an inner-product and a set of vectors, the Gram matrix is defined as the matrix whose
entries are the inner-products of the vectors.

4This work first appeard in [50]; Here we present it in much greater detail.
5A MatVec is a function that takes a vector as input and returns another vector, the result of

applying the operator on the input vector.
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where fk ∈ Vk is defined by

(fk, v)k = (f, v)L2(Ω) ∀v ∈ Vk (2.5)

Appendix A shows that the operator Ak is a symmetric (self-adjoint) positive
operator w.r.t (·, ·)k. In the following sections, we use italics to represent an operator
(or vector) in the continuous form and use bold face to represent the matrix (or vector)
corresponding to its co-ordinate basis representation.

Let
{
φk

1 , φ
k
2 , . . . , φ

k
dim(Vk)

}
be a basis for Vk. Then, we can show the following:

Ak = (Mk
k)−1Ãk

fk = (Mk
k)−1f̃k

Mk
k(i, j) = (φk

i , φ
k
j )k

Ãk(i, j) = a(φk
i , φ

k
j ) ∀i, j = 1, 2, . . . , dim(Vk)

f̃k(j) = (f, φk
j )L2(Ω) ∀j = 1, 2, . . . , dim(Vk)

(2.6)

In Equation 2.6, Mk
k is the Gram or mass matrix.

2.2. Prolongation. The prolongation operator is a linear operator

P : Vk−1 → Vk (2.7)

defined by

Pv = v ∀v ∈ Vk−1 ⊂ Vk. (2.8)

This is a standard prolongation operator and has been used before [16, 17]. The
variational form of Equation 2.8 is given by

(Pv,w)k = (v, w)k ∀v ∈ Vk−1 , w ∈ Vk. (2.9)

In Appendix B, we show that

P(i, j) = φk−1
j (pi). (2.10)

In equation 2.10, pi is the fine-grid vertex associated with the fine-grid finite
element shape function, φk

i and φk−1
j is a coarse-grid finite element shape function.

2.3. Coarse-grid problem. The coarse-grid problem can be stated as follows:
Find vk−1 ∈ Vk−1 that satisfies

AG
k−1vk−1 = fG

k−1 (2.11)

where, AG
k−1 and fG

k−1 are defined by the “Galerkin” condition (Equation 2.12)
[17].
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AG
k−1 = P ∗AkP

fG
k−1 = P ∗(Akvk − fk),

∀vk−1 ∈ Vk−1, vk ∈ Vk

(2.12)

Here, P is the prolongation operator defined in Section 2.2 and P ∗ is the Hilbert
adjoint operator6 of P with respect to the inner-products (·, ·)k and (·, ·)k−1. The
derivation of the Galerkin condition is given in Appendix C.

2.4. Restriction. Since the restriction operator must be the Hilbert adjoint of
the prolongation operator, we define the restriction operator R : Vk → Vk−1 as follows:

(Rw, v)k−1 = (w,Pv)k = (w, v)k ∀v ∈ Vk−1, w ∈ Vk (2.13)

In Appendix D, we show that

R = (Mk−1
k−1)−1Mk−1

k (2.14)

where,

Mk−1
k (i, j) = (φk−1

i , φk
j )k = Mk

k−1(j, i). (2.15)

2.5. A note on implementing the operators. The fine-grid operator, Ak,
the coarse-grid operator, AG

k−1, and the restriction operator, R, are expensive to
implement using Equations 2.6, 2.12 and 2.14, respectively. In Appendix E, we show
that instead of using these operators, we can solve an equivalent problem using the
matrices Ãk, Ãk−1 and PT (Equations 2.6 and 2.10). We state the algorithm for the
two-level case in Algorithm 1. This scheme can be extended to construct the other
standard multigrid schemes, namely the V, W and FMV cycles [16, 17].

3. Implementation. Section 3.1 presents an overview of the octree data struc-
ture and its application in finite elements. We discretize the variational problem
presented in Section 2 using a sequence of such octree meshes. In Section 3.2, we
review the framework introduced in our previous work [50] in which we constructed
finite element spaces using conforming, trilinear, basis functions using a 2:1 balanced
octree data structure. In Section 3.3, we describe an algorithm for constructing coarse
octrees starting with an arbitrary 2:1 balanced fine-grid octree. This sequence of oc-
trees gives rise to a sequence of nested finite element spaces that can be used in the
multigrid algorithm presented in Section 2. In Section 3.4, we describe the matrix-
free implementation of the restriction and prolongation operators derived in Section
2. Finally, we end this section with a note on variable-coefficient operators.

6P is a bounded linear operator from one Hilbert space, Vk−1, to another, Vk, and hence it has
an unique, bounded, linear Hilbert adjoint operator with respect to the inner-products considered
[38].
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Algorithm 1. Two-Grid Correction Scheme

1. Relax ν1 times on Equation E.6 with an initial guess, u0
k.

(Pre-smoothing)

2. Compute the fine-grid residual using the solution vector, vk, at the

end of the pre-smoothing step: rk = f̃k − Ãkvk.

3. Compute: rk−1 = PT rk. (Restriction)

4. Solve for ek−1 in Equation E.7. (Coarse-grid correction)

5. Correct the fine-grid approximation: vnew
k = vk + Pek−1.

(Prolongation)

6. Relax ν2 times on Equation E.6 with the initial guess, vnew
k .

(Post-smoothing)

d’s anchor (4,2)

Binary Form (0100,0010)

Interleave Bits
0100 0010

00011000
Append d’s level (3)

011

00011000011

Fig. 3.1. Computing the Morton id of quadrant “d” in the quadtree shown in Figure 3.2(b).
The anchor for any quadrant is it’s lower left corner.

3.1. Review on octrees. An octree7 is a tree data structure that is used for
spatial decomposition (Figure 3.2(b)). Every node8 of an octree has a maximum of
eight children. An octant with no children is called a “leaf” and an octant with one
or more children is called an “interior octant”. Complete octrees are octrees in which
every interior octant has exactly eight children. The only octant with no parent is
the “root” and all other octants have exactly one parent. Octants that have the same
parent are called “siblings”. An octant’s children, grandchildren and so on and so
forth are collectively referred to as the octant’s “descendants” and this octant will
be an “ancestor” of its descendants. An octant along with all its descendants can be
viewed as a separate tree in itself with this octant as its root. Hence, this set is also
referred to as a “subtree” of the original tree. The depth of an octant from the root
is referred to as its “level”. As shown in Figure 3.2(a), the root of the tree is at level
0 and every interior octant is one level lower than its children.

There are many different ways to represent trees [19]. In this work, we will use a

7Sometimes, we use quadtrees for illustration purposes. Quadtrees are 2-D analogues of octrees.
8The term “node” is usually used to refer to the vertices of elements in a finite element mesh;

but, in the context of tree data structures, it refers to the octants themselves.
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linearized representation of octrees known as “linear octrees”. In this representation,
we discard the interior octants and only store the complete list of leaves. This is
possible only because we use a “locational code” to identify the octants. A locational
code is a code that contains information about the position and level of the octant in
the tree. There are many choices for locational codes [18]; we use the one known as
the “Morton encoding”.

In order to construct a Morton encoding, the maximum permissible depth, Lmax,
of the tree is specified “a priori”. Note that Lmax is different from L∗, the maximum
level attained by any octant. In general, L∗ can not be specified a priori. Lmax is
only an upper bound for L∗. Any octant in the domain can be uniquely identified
by specifying one of its vertices, also known as its “anchor”, and its level in the tree.
By convention, the front lower left corner (a0 in Figure 3.3) of an octant is chosen
as its anchor. The Morton encoding for any octant is then derived by interleaving
the binary representations of the three coordinates9 of the octant’s anchor, and then
appending the binary representation of the octant’s level to this sequence of bits
[11, 18, 50, 51, 53, 55].

In many applications involving octrees, it is desirable to impose a restriction
on the relative sizes of adjacent octants [34, 37, 50, 51, 55]. This is known as the
balance constraint. For the applications we’re interested in, we enforce a 2:1 “balance”
constraint:

Definition 1. A complete, linear d-tree10 with all its octants at levels ≤ L∗ is 2:1
balanced if and only if, for any l ∈ [1,L∗), no leaf at level l shares an m-dimensional
face11 (m ∈ [0, d)) with another leaf, at level greater than l + 1.

An example of a 2:1 balanced quadtree is shown in Figure 3.2(c). In the present
work, we only work with complete, linear, 2:1 balanced octrees. In this paper, we use
the balancing algorithm described in [51].

3.2. Finite elements on octrees. In our previous works [51, 50], we developed
low-cost algorithms and efficient data structures for constructing conforming finite
element meshes using linear octrees. We use these data structures in the present work
too. The key features of this framework are listed below.

• Given a complete linear 2:1 balanced octree, we use the leaves of the octree
as the elements of a finite element mesh.

• A characteristic feature of such octree meshes is that they contain “hanging”
vertices; these are vertices of octants that coincide with the centers of faces
or mid-points of edges of other octants. The vertices of the former type are
called “face-hanging” vertices and those of the latter type are called “edge-
hanging” vertices. The 2:1 balance constraint ensures that there is at most
one hanging vertex on any edge or face.

• We do not store hanging vertices explicitly. They do not represent indepen-
dent degrees of freedom in a FEM solution. A method to eliminate hanging
vertices in locally refined quadrilateral meshes and yet ensure inter-element
continuity by the use of special bilinear quadrilateral elements was presented
in [57]. We extended that approach to three dimensions. If the i-th vertex
of an element/octant is hanging, then the index corresponding to this vertex

9We represent the coordinates using integers as shown in Figure 3.2(b).
10d-dimensional trees with a maximum of 2d children per octant are referred to as d-trees.
11A corner is a 0-dimensional face, an edge is a 1-dimensional face and a face is a 2-dimensional

face.
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Fig. 3.2. (a) Tree representation of a quadtree and (b) decomposition of a square domain
using the quadtree, superimposed over a uniform grid, and (c) a balanced linear quadtree: result of
balancing the quadtree.

z

x

y

p1

p4

p2

p3

p5

p6

a4 a5

a7

a6

a0

a1

a2 a3

Fig. 3.3. Illustration of nodal-connectivities required to perform conforming FEM calculations
using a single tree traversal. Every octant has at least 2 non-hanging vertices, one of which is
shared with the parent and the other is shared amongst all the siblings. The octant shown in blue
(a) is a child 0, since it shares its zero vertex (a0) with its parent (p). It shares vertex a7 with its
siblings. All other vertices, if hanging, point to the corresponding vertex of the parent octant instead.
Vertices, a3, a5, a6 are face hanging vertices and point to p3, p5, p6, respectively. Similarly a1, a2, a4

are edge hanging vertices and point to p1, p2, p4. All the vertices in this illustration are labelled in
the Morton ordering.
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will point to the i-th vertex of the parent12 of this element instead (Figure
3.3). Thus, if a hanging vertex is shared between 2 or more elements, then in
each element it might point to a different index.

• Since we eliminate hanging vertices in the meshing stage itself, we don’t
need to use projection schemes like those used in [3, 35, 37, 56] to enforce
conformity. Hence, we don’t need multiple tree traversals for performing
each MatVec; instead, we perform a single traversal by mapping each oc-
tant/element to one of the pre-computed element types, depending on the
configuration of hanging vertices for that element.

• To reduce the memory overhead, the linear octree is stored in a compressed
form that requires only one byte per octant (the level of the octant). Even
the element-to-vertex mappings can be compressed at a modest expense of
uncompressing this on the fly while looping over the elements to perform the
finite element MatVecs.

Below, we list some of the properties of the shape functions defined on octree
meshes.

• The shape functions are not rooted at the hanging vertices.
• The shape functions are trilinear.
• The shape functions assume a value of 1 at the vertex at which they are

rooted and a value of 0 at all other non-hanging vertices in the octree.
• The support of a shape function can spread over more than 8 elements.
• If a vertex of an element is hanging, then the shape functions rooted at the

other non-hanging vertices in that element do not vanish on this hanging
vertex. Instead, they will vanish at the non-hanging vertex that this hanging
vertex is mapped to. For example, in Figure 3.3 the shape function rooted
at vertex a0 will not vanish at vertices a1, a2, a3, a4, a5 or a6. It will vanish
at vertices p1, p2, p3, p4, p5, p6 and a7. It will assume a value equal to 1 at
vertex a0.

• A shape function assumes non-zero values within an octant if and only if it
is rooted at some non-hanging vertex of this octant or if some vertex of the
octant under consideration is hanging, say the i-th vertex, and the shape
function in question is rooted at the i-th non-hanging vertex of the parent
of this octant. Hence, for any octant there are exactly eight shape functions
that do not vanish within it and their indices will be stored in the vertices of
this octant.

• The finite element matrices constructed using these shape functions are math-
ematically equivalent to those obtained using projection schemes such as in
[37, 55, 56].

To implement finite element MatVecs using these shape functions, we need to
enumerate all the permissible hanging configurations for an octant. The following
properties of 2:1 balanced linear octrees helps reduce the total number of permissible
hanging configurations. Figure 3.3 illustrates these properties.

• Every octant has at least 2 non-hanging vertices and they are:
– The vertex that is common to both this octant and its parent.
– The vertex that is common to this octant and all its siblings.

• An octant can have a face hanging vertex only if the remaining vertices on
that face are one of the following:

– Edge hanging vertices.

12The 2:1 balance constraint ensures that the vertices of the parent can never be hanging.
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Algorithm 2. Finding the child number of an octant

Input: The anchor (x,y,z) and level (d) of the octant and the
maximum permissible depth of the tree (Lmax).
Output: c, the child number of the octant.

1. l← 2(Lmax−d)

2. lp ← 2(Lmax−d+1)

3. (i, j, k)← (x, y, z) mod lp
4. (i, j, k)← (i, j, k)/l
5. c← (4k + 2j + i)

– The vertex that is common to both this octant and its parent.
The “child number” of an octant is used to handle hanging vertices in this frame-

work. It is used in the implementation of the FEM MatVecs and the intergrid transfer
operations. If an octant shares its k-th vertex with its parent, then it is said to have a
child number equal to k. For convenience, we use the Morton ordering to number the
vertices of an octant. Thus, sorting the children of an octant in the Morton order is
equivalent to sorting the children according to their child numbers. The child number
of an octant is a function of the coordinates of its anchor and its level in the tree.
Algorithm 2 is used to compute the child number of an octant.

Any element in the mesh belongs to one of the 8 child number based configurations
(Figures 3.4(a) - 3.4(h)). In all configurations, v0 is the vertex that the element shares
with its parent and v7 is the vertex that the element shares with all its siblings. For
an element with child number k, v0 will be the k-th vertex and v7 will be the (7−k)-th
vertex. v0 and v7 can never be hanging. If v3, v5 or v6 are hanging, they will be face-
hanging and not edge-hanging. If v3 is hanging, then v1 and v2 must be edge-hanging.
If v5 is hanging, then v1 and v4 must be edge-hanging. If v6 is hanging, then v2 and v4

must be edge-hanging. After factoring in these constraints, there are only 18 potential
hanging-vertex configurations for each of the 8 ’child number’ configurations (Table
3.1).

3.2.1. Overlapping communication with computation. Every octant is
owned by a single processor. However, the values of unknowns associated with oc-
tants on inter-processor boundaries need to be shared among several processors. We
keep multiple copies of the information related to these octants and we term them
“ghost” octants. In our implementation of the finite element MatVec, each processor
iterates over all the octants it owns and also loops over a layer of ghost octants that
contribute to the vertices it owns. Within the loops, each octant is mapped to one of
the above described hanging configurations (Figures 3.4(a) - 3.4(h)). This is used to
select the appropriate element stencil from a list of pre-computed stencils. Although
a processor needs to read ghost values from other processors it only needs to write
data back to the vertices it owns and does not need to write to ghost vertices. Thus,
there is only one communication phase within each MatVec, which we can overlap
with a computation phase:

1. Initiate non-blocking MPI sends for information stored on ghost-vertices.
2. Loop over the elements in the interior of the processor domain. These el-

ements do not share any vertices with other processors. We identify these
elements during the meshing phase itself.

3. Receive ghost information from other processors.



12 R.S. SAMPATH AND G. BIROS

z

x

y

v0

v1

v2

v3

v4 v5

v6

v7

(a) Child 0

z

x

y

v2

v0

v3

v1

v6 v4

v7

v5

(b) Child 1

z

x

y

v1

v3

v0

v2

v5 v7

v4

v6

(c) Child 2

z

x

y

v3

v2

v1

v0

v7 v6

v5

v4

(d) Child 3

z

x

y

v2

v3

v6

v7

v0 v1

v4

v5

(e) Child 4

z

x

y

v6

v2

v7

v3

v4 v0

v5

v1

(f) Child 5

z

x

y

v3

v7

v2

v6

v1 v5

v0

v4

(g) Child 6

z

x

y

v7

v6

v3

v2

v5 v4

v1

v0

(h) Child 7

Fig. 3.4. Illustration of the 8 child number configurations. All the octants shown are oriented
in the global coordinate system.

4. Loop over remaining elements to update information.

3.3. Global coarsening. Starting with the finest octree, we iteratively con-
struct a hierarchy of complete, balanced, linear octrees such that every octant in the
k-th octree is either present in the k + 1-th octree as well or all its eight children are
present instead (Figures 3.5(a) - 3.5(c)).

We construct the k-th octree from the k + 1-th octree by replacing every set of
eight siblings by their parent. This algorithm is based on the fact that in a sorted
linear octree, each of the 7 successive elements following a “Child-0” element is either
one of its siblings or a decendant of its siblings. Let i and j be the indices of any two
successive Child-0 elements in the k+ 1-th octree. We have the following 3 cases: (a)
j < (i + 8), (b) j = (i + 8) and (c) j > (i + 8). In the first case, the elements with
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Element Type Corresponding Hanging vertices

1 None

2 v2

3 v1

4 v1 and v2

5 v4

6 v4 and v2

7 v4 and v1

8 v4, v1 and v2

9 v3, v1 and v2

10 v3, v4, v1 and v2

11 v6, v4 and v2

12 v6, v4, v1 and v2

13 v6, v3, v4, v1 and v2

14 v5, v4 and v1

15 v5, v4, v1 and v2

16 v5, v3, v4, v1 and v2

17 v5, v6, v4, v1 and v2

18 v5, v6, v3, v4, v1 and v2

Table 3.1
The list of permissible hanging vertex configurations for any octant.

indices in the range [i, j) are not coarsened. In the second case, the elements with
indices in the range [i, j) are all siblings of each other and are replaced by their parent.
In the last case, the elements with indices in the range [i, (i+ 7)] are all siblings of
each other and are replaced by their parent. The elements with indices in the range
[(i+ 8), j) are not coarsened. The pseudocode for the sequential implementation of
the coarsening algorithm is given in Algorithm 3.

Coarsening is an operation with O(N) work complexity, where N is the number
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Algorithm 3. Sequential Coarsening

Input: A sorted, complete, linear fine octree (F).
Output: A sorted, complete linear coarse octree (C).
Note: This algorithm can also be used with a contiguous subset of F,
provided the first element of this subset is a Child-0 element and the
last element of this subset is either the last element of F or the
element that immediately precedes a Child-0 element. The output in
this case will be the corresponding contiguous subset of C.

1. C ← ∅
2. I1 ← 0
3. while (I1 < len(F ))
4. Find I2 such that Child−Number(F [I2]) = 0 and

Child−Number(F [k]) 6= 0 ∀ I1 < k < I2.
5. if no such I2 exists
6. I2 ← len(F )
7. end if
8. if I2 ≥ (I1 + 8)
9. C.push back(Parent(F [I1]))
10. if I2 > (I1 + 8)
11. C.push back(F [I1 + 8], F [I1 + 9], . . . , F [I2 − 1])
12. end if
13. else
14. C.push back(F [I1], F [I1 + 1], . . . , F [I2 − 1])
15. end if
16. I1 ← I2

17. end while

of leaves in the k+1-th octree. It is easy to parallelize and has an O( N
np

) parallel time
complexity, where np is the number of processors.13 The main parallel operations are
two circular shifts; one clockwise and another anti-clockwise. The message in each
case is just 1 integer: (a) the index of the first Child-0 element on each processor
and (b) the number of elements between the last Child-0 element on any processor
and the last element on that processor. While we communicate these messages in
the background, we simultaneously process the elements in between the first and last
Child-0 elements on each processor. The pseudocode for the parallel implementation
of the coarsening algorithm is given in Algorithm 4.

However, the operation described above may produce 4:1 balanced octrees14 in-
stead of 2:1 balanced octrees. Hence, we balance the result using the algorithm
described in [51]. This balancing algorithm has an O(N logN) work complexity and
O( N

np
log N

np
+ np log np) parallel time complexity. Although there is only one level of

imbalance that we need to correct, the imbalance can still affect octants that are not
in its immediate vicinity. This is known as the “ripple effect”. Even with just one
level of imbalance, a ripple can still propagate across many processors.

13When we discuss communication costs we assume a Hypercube network topology with θ(np)
bandwidth.

14The input is 2:1 balanced and we coarsen by at most one level in this operation. Hence, this
operation will only introduce one additional level of imbalance resulting in 4:1 balanced octrees.
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Algorithm 4. Parallel Coarsening
(As executed by processor P)

Input: A distributed, globally sorted, complete, linear fine octree
(F).
Output: A distributed, globally sorted, complete, linear coarse
octree (C).
Note: We assume that len(F ) > 8 on each processor.

1. C ← ∅
2. Find If such that Child−Number(F [If ]) = 0 and

Child−Number(F [k]) 6= 0 ∀ 0 ≤ k < If.
3. if no such If exists on P
4. Mf ← −1 ; Ml ← −1
5. else
6. Find Il such that Child−Number(F [Il]) = 0 and

Child−Number(F [k]) 6= 0 ∀ Il < k < len(F ).
7. Mf ← If ; Ml ← (len(F )− Il)
8. end if
9. if P is not the first processor
10. Send Mf to the previous processor (P-1)

using an non-blocking MPI send.
11. end if
12. if P is not the last processor
13. Send Ml to the next processor (P+1)

using an non-blocking MPI send.
14. else if Mf > −1
15. Il ← len(F )
16. end if
17. if Mf > −1
18. Coarsen the list {F [If ], F [If + 1], . . . , F [Il − 1]}

and store the result in C. (Algorithm 3)
19. end if
20. if P is not the first processor
21. Receive Ip from the previous processor (P-1).
22. Process octants with indices < If. (Algorithm 5)
23. end if
24. if P is not the last processor
25. Receive In from the next processor (P+1).
26. Process octants with indices ≥ Il. (Algorithm 6)
27. end if

The sequence of octrees constructed as described above has the property that
non-hanging vertices in any octree remain non-hanging in all the finer octrees as well.
Hanging vertices on any octree could either become non-hanging on a finer octree or
remain hanging on the finer octrees too. In addition, an octree can have new hanging
as well as non-hanging vertices that are not present in any of the coarser octrees.

3.4. Intergrid transfer operations. To implement the intergrid transfer op-
erations in Algorithm 1, we need to find all the non-hanging fine-grid vertices that
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Algorithm 5. Coarsening the first few octants on processor P
(Subcomponent of Algorithm 4)

1. if Ip ≥ 0 and Mf ≥ 0
2. if (Ip + If ) ≥ 8
3. Ic ← max(0, (8− Ip))
4. C.push front(F [Ic], F [Ic + 1], . . . , F [If − 1])
5. else
6. C.push front(F [0], F [1], . . . , F [If − 1])
7. end if
8. else
9. if Mf < 0
10. if Ip < 0 or Ip ≥ 8
11. C ← F
12. else
13. Ic ← (8− Ip)
14. C.push front(F [Ic], F [Ic + 1], . . . , F [If − 1])
15. end if
16. else
17. C.push front(F [0], F [1], . . . , F [If − 1])
18. end if
19. end if

(a) Multigrid Level k − 2 (b) Multigrid Level k − 1 (c) Multigrid Level k

Fig. 3.5. Quadtree meshes for three succesive multigrid levels.

lie within the support of each coarse-grid shape function. This is trivial on regular
grids. However, for unstructured grids this can be quite expensive; especially for par-
allel implementations. Fortunately, for a hierarchy of octree meshes constructed as
described in Section 3.3, these operations can be implemented quite efficiently.

As seen in Section 2.5, the restriction matrix is the transpose of the prolonga-
tion matrix. We do not construct these matrices explicity, instead we implement a
matrix-free scheme using MatVecs. The MatVecs for the restriction and prolongation
operators are very similar. In both cases, we loop over the coarse and fine grid octants
simultaneously. For each coarse-grid octant, the underlying fine-grid octant could ei-
ther be the same as itself or be one of its eight children (Section 3.3). We identify these
cases and handle them separately. The main operation within the loop is selecting the
coarse-grid shape functions that do not vanish within the current coarse-grid octant
(Section 3.2) and evaluating them at the non-hanging fine-grid vertices that lie within
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Algorithm 6. Coarsening the last few octants on processor P
(Subcomponent of Algorithm 4)

1. if In ≥ 0 and Ml ≥ 0
2. if (In +Ml) ≥ 8
3. C.push back(Parent(F [Il]))
4. if Ml > 8
5. C.push back(F [Il + 8], F [Il + 9], . . . , F [len(F )− 1])
6. end if
7. else
8. C.push back(F [Il], F [Il + 1], . . . , F [len(F )− 1])
9. end if
10. else
11. if Ml ≥ 0
12. C.push back(Parent(F [Il]))
13. if Ml > 8
14. C.push back(F [Il + 8], F [Il + 9], . . . , F [len(F )− 1])
15. end if
16. end if
17. end if

this coarse-grid octant. These form the entries of the restriction and prolongation
matrices (Equation 2.10).

To parallelize this operation, we need the coarse and fine grid partitions to be
“aligned”. By aligned we require the following two conditions to be satisfied:

• If an octant exists both in the coarse and fine grids, then the same processor
must “own” this octant on both the meshes.

• If an octant’s children exist in the fine-grid, then the same processor must
own this octant on the coarse mesh and all its 8 children on the fine mesh.

In order to satisfy these conditions, we first compute the partition on the coarse-grid
and then impose it on the finer grid. In general, it might not be possible or desirable
to use the same partition for all the multigrid levels. For example, the coarser levels
might be too sparse to be distributed across all the processors or using the same
partition for all the multigrid levels could lead to a large load imbalance across the
processors. Hence, we allow some multigrid levels to be partitioned differently than
others.15 When a transition in the partitions is required, we duplicate the octree
in question and let one of the duplicates share the same partition as that of its
immediate finer level and let the other one share the same partition as that of its
immediate coarser level. We refer to one of these duplicates as the “pseudo” mesh
(Figure 3.6(b)). The pseudo mesh is only used to support intergrid transfer operations
(Smoothing is not performed on this mesh). On these multigrid levels, the intergrid
transfer operations include an additional step referred to as “Scatter”, which just
involves re-distributing the values from one partition to another.

One of the challenges with the MatVec for the intergrid transfer operations is that
as we loop over the octants we must keep track of the pairs of coarse and fine grid
vertices that were visited already. In order to implement this MatVec efficiently, we

15It is also possible that some processors are idle on the coarse-grids, while no processor is idle on
the finer grids.
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(a) Sequential V-cycle (b) Parallel V-cycle

Smoothing Pseudo Restriction Prolongation

Scatter

Fig. 3.6. (a) A V-cycle where the meshes at all multigrid levels share the same partition and
(b) A V-cycle where not all meshes share the same partition. Some meshes do share the same
partition and whenever the partition changes a pseudo mesh is added. The pseudo mesh is only used
to support intergrid transfer operations and smoothing is not performed on this mesh.

make use of the following observations.
• Every non-hanging fine-grid vertex is shared by at most eight fine-grid el-

ements, excluding the elements whose hanging vertices are mapped to this
vertex.

• Each of these eight fine-grid elements will be visited only once within the
Restriction and Prolongation MatVecs.

• Since we loop over the coarse and fine elements simultaneously, there is a
coarse octant associated with each of these eight fine octants. These coarse
octants (maximum of eight) overlap with the respective fine octants.

• The only coarse-grid shape functions that do not vanish at the non-hanging
fine-grid vertex under consideration are those whose indices are stored in
the vertices of each of these coarse octants. Some of these vertices may be
hanging, but they will be mapped to the corresponding non-hanging vertex.
So, the correct index is always stored immaterial of the hanging state of the
vertex.

We pre-compute and store a mask for each fine-grid vertex. Each of these masks
is a set of eight bytes, one for each of the eight fine-grid elements that surround this
fine-grid vertex. When we visit a fine-grid octant and the corresponding coarse-grid
octant within the loop, we read the eight bits corresponding to this fine-grid octant.
Each of these bits is a flag to determine whether or not the respective coarse-grid
shape function contributes to this fine-grid vertex. The overhead of using this mask
within the actual MatVecs is just the cost of a few bitwise operations for each fine-grid
octant. Algorithm 7 lists the sequence of operations performed by a processor for the
restriction MatVec. This MatVec is an operation with O(N) work complexity and
has an O( N

np
) parallel time complexity. For simplicity, we do not overlap communica-
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Algorithm 7. Parallel Restriction MatVec
(As executed by processor P)

Input: Fine vector (F), masks (M), pre-computed stencils (R1) and
(R2), fine octree (Of), coarse octree (Oc).
Output: Coarse vector (C).

1. Exchange ghost values for F and M with other processors.
2. C ← 0.
3. for each oc ∈ Oc

4. Let cc be the child number of oc.
5. Let hc be the hanging type of oc.
6. Step through Of until of ∈ Of is found s.t.

Anchor(of ) = Anchor(oc).
7. if Level(oc) = Level(of )
8. for each vertex, Vf, of of

9. Let Vf be the i-th vertex of of.
10. if Vf is not hanging
11. for each vertex, Vc, of oc

12. Let Vc be the j-th vertex of oc.
13. If Vc is hanging, use the corresponding

non-hanging vertex instead.
14. if the j-th bit of M(Vf , i) = 1
15. C(Vc) = C(Vc) +R1(cc, hc, i, j)F (Vf )
16. end if
17. end for
18. end if
19. end for
20. else
21. for each of the 8 children of oc

22. Let cf be the child number of of, the child of oc

that is processed in the current iteration.
23. Perform steps 8 to 19 by replacing R1(cc, hc, i, j)

with R2(cf , cc, hc, i, j) in step 15.
24. end for
25. end if
26. end for
27. Exchange ghost values for C with other processors.
28. Add the contributions recieved from other processors

to the local copy of C.

tion with computation in the pseudocode. In the actual implementation, we overlap
communication with computation as described in Section 3.4.2. The following section
describes how we compute these masks for any given pair of coarse and fine octrees.

3.4.1. Computing the “masks” for restriction and prolongation. Each
non-hanging fine-grid vertex has a maximum16 of 1758 unique locations at which
a coarse-grid shape function that contributes to this fine vertex could be rooted.

16This is a weak upper bound.
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Each of the vertices of the coarse-grid octants that overlap with the fine-grid octants
surrounding this fine-grid vertex, can be mapped to one of these 1758 possibilities. It
is also possible that some of these vertices are mapped to the same location. When
we pre-compute the masks described earlier, we want to identify these many-to-one
mappings and only one of them is selected to contribute to the fine-grid vertex under
consideration.

Now, we briefly describe how we identified these 1758 cases. We first choose
one of the eight fine-grid octants surrounding a given fine-grid vertex as a reference
element. Without loss of generality, we pick the octant whose anchor is located at
the given fine vertex. Now the remaining fine-grid octants could either be the same
size as the reference element, or be half the size or twice the size of the reference
element. This simply follows from the 2:1 balance constraint. Further, each of these
eight fine-grid octants could either be the same as the overlapping coarse-grid octant
or be any of its eight children. Moreover, each of these coarse-grid octants that
overlap the fine-grid octants under consideration could belong to any of the 8 child
number types, each of which could further be of any of the 18 hanging configurations.
Taking all these possible combinations into account, we can locate all the possible non-
hanging coarse-grid vertices around a fine-grid vertex. Note that the child numbers,
the hanging vertex configurations, and relative sizes of the eight fine-grid octants
described above are not mutually independent. Each choice of child number, hanging
vertex configuration and size for one of the eight fine-grid octants imposes numerous
constraints on the respective choices for the other elements. However, to list all
these possible constraints would be a complicated excercise and it is unnecessary for
our purposes. Instead, we simply assume that the choices for the eight elements
under consideration are mutually independent. This computation can be done offline
and results in a weak upper bound of 1758 unique non-hanging coarse-grid locations
around any fine-grid vertex.

We can not pre-compute the masks offline since this depends on the coarse and
fine octrees under consideration. To do this computation efficiently, we employ a
“PreMatVec” before we actually begin solving the problem; this is only performed
once for each multigrid level. In this PreMatVec, we use a set of 16 bytes per fine-grid
vertex; 2 bytes for each of the eight fine-grid octants surrounding the vertex. In these
16 bits, we store the flags for each of the possibilites described above. These flags
contain the following information.

• A flag to determine whether or not the coarse and fine grid octants are the
same (1 bit).

• The child number of the current fine-grid octant (3 bits).
• The child number of the corresponding coarse-grid octant (3 bits).
• The hanging configuration of the corresponding coarse-grid octant (5 bits).
• The relative size of the current fine-grid octant with respect to the reference

element (2 bits).
Using this information and some simple bitwise operations, we can compute and store
the masks for each fine-grid vertex. The PreMatVec is an operation with O(N) work
complexity and has an O( N

np
) parallel time complexity.

3.4.2. Overlapping communication with computation. Finally, we overlap
computation with communication for ghost values even within the Restriction and
Prolongation MatVecs. However, unlike the finite element MatVec the loop is split
into three parts because we can not loop over ghost octants since these octants need
not be aligned across grids. Hence, each processor loops only over the coarse and the
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underlying fine octants that it owns. As a result, we need to both read as well as
write to ghost values within the MatVec. The steps involved are listed below:

1. Initiate non-blocking MPI sends for ghost-values from the input vector.
2. Loop over some of the coarse and fine grid elements that are present in the

interior of the processor domains. These elements do not share any vertices
with other processors.

3. Recieve the ghost-values sent from other processors in step 1.
4. Loop over the coarse and fine grid elements that share at least one of its

vertices with a different processor.
5. Initiate non-blocking MPI sends for ghost-values in the output vector.
6. Loop over the remaining coarse and fine grid elements that are present in the

interior of the processor domains. Note in step 2, we only iterated over some
of these elements. In this step, we iterate over the remaining elements.

7. Recieve the ghost-values sent from other processors in step 5.
8. Add the values recieved in step 7 to the existing values in the output vector.

3.5. Handling variable-coefficient operators. One of the problems with ge-
ometric multigrid methods is that their performance deteriorates with increasing con-
trast in material properties [17, 21]. Section 2.5 shows that the direct coarse-grid
discretization can be used instead of the Galerkin coarse-grid operator provided the
same bilinear form, a(u, v), is used both on the coarse and fine levels. This poses
no difficulty for constant coefficient problems. For variable-coefficient problems, this
means that the coarser grid MatVecs must be performed by looping over the un-
derlying finest grid elements, using the material property defined on each fine-grid
element. This would make the coarse-grid MatVecs quite expensive. A cheaper alter-
native would be to define the material properties for the coarser grid elements as the
average of those for the underlying fine-grid elements. This process amounts to using
a different bilinear form for each multigrid level and hence is a clear deviation from the
theory. Hence, the convergence of the stand-alone multigrid solver deteriorates with
increasing contrast in material properties. The standard solution is to use multigrid
as a preconditioner to the Conjugate Gradient (CG) method [52]. We have conducted
numerical experiments that demonstrate this for the Poisson problem. The method
works well for smooth coefficients but it is not robust in the presence of discontinuous
coefficients.

3.6. Summary. The sequence of steps involved in solving the problem defined
in Section 2.1.1 is summarized below:

1. A “sufficiently” fine17 2:1 balanced complete linear octree is constructed using
the algorithms described in [51].

2. Starting with the finest octree, a sequence of 2:1 balanced coarse linear octrees
is constructed using the global coarsening algorithm (Section 3.3).

3. The maximum number of processors that can be used for each multigrid level
without violating the minimum grain size criteria (Appendix F) is computed.

4. Starting with the coarsest octree, the octree at each multigrid level is meshed
using the algorithm described in [50]. As long as the load imbalance across
the processors is acceptable and as long as the number of processors used for
the coarser grid is the same as the maximum number of processors that can be
used for the finer level without violating the minimum grain size criteria, the
partition of the coarser grid is imposed on to the finer grid during meshing.

17Here the term sufficiently is used to mean that the discretization error introduced is acceptable.



22 R.S. SAMPATH AND G. BIROS

Algorithmic Parallel
Component Time Complexity

Octree Construction O( N
np

log( N
np

) + np log np)

2:1 Balancing O( N
np

log( N
np

) + np log np)

Partition O( N
np

+ np)

Meshing O( N
np

log( N
np

) + np log np)

Coarsening (without balancing) 1 Level O( N
np

)

Matvecs O( N
np

)

Table 3.2
Complexity estimates for the various algorithmic components assuming a Hypercube network

topology with θ(np) bandwidth. N is the size of the linear octree and np is the number of processors.

If either of the above two conditions is violated then the octree for the finer
grid is duplicated; One of them is meshed using the partition of the coarser
grid and the other is meshed using a fresh partition. The process is repeated
until the finest octree has been meshed.

5. A restriction PreMatVec (Section 3.4) is performed at each multigrid level
(except the coarsest) and the masks that will be used in the actual restriction
and prolongation MatVecs are computed and stored.

6. For the case of variable-coefficient operators, vectors that store the material
properties at each multigrid level are created.

7. The discrete system of equations is then solved using the conjugate gradient
algorithm preconditioned with the multigrid scheme.

Table 3.2 gives the parallel time complexity of the various algorithmic components
as a function of the problem size, N , and the number of processors, np.

4. Numerical experiments. We consider the following 3-dimensional, scalar,
linear elliptic problems with homogeneous Neumann boundary conditions:

−∆u+ u = f in Ω
n̂ · ∇u = 0 in ∂Ω

Ω = [0, 1]× [0, 1]× [0, 1] (4.1)

−∇ · (ε∇u) + u = f in Ω
n̂ · ∇u = 0 in ∂Ω

Ω = [0, 1]× [0, 1]× [0, 1]
ε(x, y, z) =

(
1 + 106

(
cos2(2πx) + cos2(2πy) + cos2(2πz)

))
(4.2)
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(a) (b)

Fig. 4.1. Samples of the point distributions used for the numerical experiments: (a) A Guassian
point distribution with mean at the center of the unit cube and (b) A log-normal point distribution
with mean near one corner of the unit cube and it’s mirror image about the main diagonal.

−∇ · (ε∇u) + u = f in Ω
n̂ · ∇u = 0 in ∂Ω

Ω = [0, 1]× [0, 1]× [0, 1]

ε(x, y, z) =
{

107 if 0.3 ≤ x, y, z ≤ 0.6
1.0 otherwise (4.3)

We discretized these problems on various octree meshes generated using Gaussian
and log-normal distributions.18 Figures 4.1(a) and 4.1(b) respectively show samples of
the Gaussian and log-normal distributions that were used in all our experiments. The
number of elements in these meshes range from about 25 thousand to over 1 billion
and were solved on up to 4096 processors on Pittsburgh Supercomputing center’s Cray
XT3 MPP system Bigben and Teragrid’s NCSA Intel 64 Linux Cluster Abe. Bigben
is equipped with 2068 compute nodes; each node has two 2.6 GHz AMD Opteron
processors (1 MB cache for each CPU) and the two processors on a node share 2 GB
RAM. The peak performance is approximately 20 Tflops. The nodes are connected
using a custom-designed interconnect. Abe comprises of 1200 nodes with a total of
9600 CPUs. Each node is equipped with an Intel 64 (Clovertown) 2.33 GHz dual
socket quad core processor, which has 2 MB L2 cache per core and 8 GB/16 GB
RAM per node. The peak performance is approximately 89.47 Tflops. The nodes
are connected by an InfiniBand interconnect. Our C++ implementation uses MPI,
PETSc [7] and SuperLU Dist [39]. The runs were profiled using PETSc.

In this section, we present the results from 4 sets of experiments: (A) A conver-
gence test, (B) Isogranular scalability, (C) Fixed size scalability and (D) Comparison
with an off-the-shelf algebraic multigrid implementation. The parameters used in the
experiments are listed below:

18In the following experiments, the octrees were not generated based on the underlying material
properties. In [47], we give some examples for constructing octrees based on user-supplied data such
as material properties and source terms.
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Maximum Element Size (hmax) L2 norm of the error

1
16 3.98 ×10−3

1
32 9.62 ×10−4

1
64 2.46 ×10−4

1
128 6.18 ×10−5

1
256 1.56 ×10−5

Table 4.1
L2 norm of the error between the true solution and its finite element approximation for the

variable coefficient problem (Equation 4.2). The sequence of meshes used in this experiment were
constructed by using a base discretization of ≈ 0.25M elements generated using a gaussian point
distribution followed by successive uniform refinements of the coarse elements of this mesh.

• For experiment (A), we set u = cos(2πx) cos(2πy) cos(2πz) and constructed
the corresponding force (f).

• For experiments (B), (C) and (D), we used a random solution (u) to construct
the force (f).

• A zero initial guess was used in all experiments.
• One multigrid V-cycle was used as a preconditioner to the Conjugate Gradient

(CG) method in all experiments. This is known to be more robust than the
stand alone multigrid algorithm for variable-coefficient problems [52].

• The damped Jacobi method was used as the smoother at each multigrid level.
• SuperLU Dist was used to solve the coarsest grid problem in all cases.
• In order to minimize communication costs, the coarsest multigrid level used

fewer processors than the finer levels. This keeps the setup cost for Su-
perLU Dist low.

4.1. Convergence Test. In the first experiment, a base discretization of ap-
proximately ≈ 0.25M elements generated using the Gaussian distribution was used
to solve the variable-coefficient problem (Equation 4.2). We measured the L2 norm
of the error as a function of the maximum element size (hmax) by uniformly refining
the coarse elements19 in this base mesh. In Table 4.1, we report the L2 norm of the
error between the true solution and its finite element approximation for the sequence
of meshes constructed as described above. A second order convergence is observed
just as predicted by the theory.

4.2. Scalability Results. The fixed size and iso-granular scalability experi-
ments were performed on Bigben. In all the fixed-size and iso-granular scalability
plots, the first column reports the total setup time, the second column gives the
component-wise split-up of the total setup time. The third column represents the
total solve time and the last column gives the component-wise split-up for the solve
phase. Note, the reported times for each component are the maximum values for that
component across all the processors. Hence, in some cases the total time is lower than

19Any element whose length is greater than hmax.
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the sum of the individual components.

4.2.1. Isogranular (Weak) scalability. Isogranular scalability analysis was
performed by tracking the execution time while increasing the problem size and the
number of processors proportionately. The results from isogranular scalability experi-
ments on the octrees generated from Gaussian point distributions are reported in Fig-
ures 4.2 and 4.3. Figure 4.2 reports the results for the constant coefficient (Equation
4.1) problem and Figure 4.3 reports the results for the variable-coefficient problem
(Equation 4.2). The results from an isogranular scalability experiment for solving
the variable-coefficient problem (Equation 4.2) on octrees generated from log-normal
point distributions are reported in Figure 4.4. There is little variation between the
Gaussian distribution case and the log-normal distribution case. It is quite promising
that the setup costs are smaller than the solution costs, suggesting that the method
is suitable for problems that require the construction and solution of linear systems of
equations numerous times. The increase in running times for the large processor cases
can be primarily attributed to poor load balancing. Load balancing is a challenging
problem due to the following reasons:

• We need to make an accurate a-priori estimate of the computation and com-
munication loads. It is difficult to make such estimates for arbitrary distri-
butions.

• For the intergrid transfer operations, the coarse and fine grids need to be
aligned. It is difficult to get good load balance for both the grids, especially
for non-uniform distributions.

• Partitioning each multigrid level independently to get good load balance for
the smoothing operations at each multigrid level would require the creation
of an auxillary mesh for each multigrid level and a scatter operation for each
intergrid transfer operation at each multigrid level. This would increase the
setup costs and the communication costs.

4.2.2. Fixed-size (Strong) scalability. Fixed-size scalability was performed
on the octrees generated from Gaussian and log-normal point distributions to compute
the speedup when the problem size is kept constant and the number of processors is in-
creased. The results from fixed size scalability experiments for the constant coefficient
problem (Equation 4.1) solved on an octree with 32M (approx) elements generated
from Gaussian point distribution are reported in Figure 4.5. The corresponding re-
sults for solving the variable-coefficient problem (Equation 4.2) on the same octree
are reported in Figure 4.6. This experiment was repeated on octrees with 6M and
22M (approx) elements generated from log-normal point distributions and the corre-
sponding results are reported in Figures 4.8 and 4.7, respectively. The results for the
Gaussian and log-normal distributions are similar. We observe nearly ideal speed-ups
for the setup phase on up to 256 processors and the speed-ups begin to deteriorate
beyond that. We believe that the surface computation (e.g. meshing for ghost ele-
ments) begins to dominate beyond 256 processors. Note that the number of meshes
also grow with the number of processors. This is another reason why we don’t observe
ideal speed-ups for the setup phase. The speed-ups for the solve phase, although not
ideal, seem to be quite good. Poor load balancing, which affects isogranular scalability
on large processor counts, could be another factor that affects the speed-ups for the
setup and solve phases in the fixed-size scalability experiments.

4.3. Comparison with BoomerAMG. Finally, the results from the compari-
son between the geometric multigrid and algebraic multigrid (BoomerAMG) schemes
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Fig. 4.2. Isogranular scalability for solving constant coefficient Poisson problems (Equation
4.1) on a set of octrees with a grain size of 0.25M elements (approx.) per processor (np) generated
using a Gaussian distribution of points. In each case, the coarsest octant at the finest multigrid level
was at level 3; the level of the finest octant at the finest multigrid level is reported in the figure. The
iterations were terminated when the 2-norm of the residual was reduced by a factor of 10−14. The
number of outer CG iterations required are reported. The number of multigrid levels used in each
case is also reported. For the single processor case, only 4 multigrid levels were used because the
grain size on the coarsest grid would have fallen below 1000 elements (the minimum grain size) had
we used more multigrid levels. The total number of meshes generated for each case is also reported.
Note that due to the addition of auxillary meshes, the total number of meshes is greater than the
number of multigrid levels.

for the variable-coefficient problem (Equation 4.3) are reported in Figure 4.9. This
experiment was performed on Abe. For BoomerAMG, we experimented with two dif-
ferent coarsening schemes: Falgout coarsening and CLJP coarsening. The results from
both experiments are reported. [33] reports that Falgout coarsening works best for
structured grids and CLJP coarsening is better suited for unstructured grids. Since
octree meshes lie in between both structured and generic unstructured grids, we com-
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Fig. 4.3. Isogranular scalability for solving the variable-coefficient Poisson problem (Equation
4.2) on the set of octrees used in Figure 4.2. The iterations were terminated when the 2-norm of
the residual was reduced by a factor of 10−10. 5 iterations were required in each case. The number
of multigrid levels and meshes used in each case are the same as in Figure 4.2.

pare our results using both the schemes. While the convergence rate of the geometric
multigrid method deteriorates with increasing contrast in the material properties, the
convergence rate of BoomerAMG is not affected by contrasts in the material proper-
ties. Hence, the variable-coefficient problem is more interesting for this experiment.
This experiment shows that GMG has a much lower setup cost compared to AMG; the
solution costs are comparable. The AMG scheme seems to have a higher convergence
rate since it takes fewer iterations as compared to GMG.

5. Conclusions. We have described a parallel geometric multigrid method for
solving elliptic partial differential equations using finite elements on octree based
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Fig. 4.4. Isogranular scalability for solving the variable-coefficient Poisson problem (Equation
4.2) on a set of octrees with a grain size of 25K elements (approx.) per processor (np) generated
using a log-normal distributions of points located on two diagonally opposite corners of the unit cube.
The iterations were terminated when the 2-norm of the residual was reduced by a factor of 10−10.
The levels of the coarsest and finest octants at the finest multigrid level are reported in the figure.

discretizations. The features of the described method are summarized below:
• We automatically generate a sequence of coarse meshes from an arbitrary 2:1

balanced fine octree. We do not impose any restrictions on the number of
meshes in this sequence or the size of the coarsest mesh. We do not require
the meshes to be aligned and hence the different meshes can be partitioned
independently to satisfy any user-defined constraint such as a limit on the



DISTRIBUTED OCTREE GEOMETRIC MULTIGRID ALGORITHM 29

np

seconds

32 64 128 256 512 1024

0

50

100

150

200

250

300

350

400

450

500

550

600

650

Coarsening

Balancing

Meshing

R-setup

Total Setup

LU

R + P

Scatter

FE Matvecs

Total Solve

Meshes

0.594

20.53

53.35

8.27

84.21

1.68

106.92

0.057

521.08

569.4

9

0.299

12.58

24.66

4.03

42.24

1.67

82.76

1.733

357.0

390.97

10

0.167

8.08

13.27

1.87

24.12

1.67

63.45

2.67

268.65

291.66

11

0.107

5.29

10.23

1.19

17.78

1.65

21.91

49.31

96.41

106.63

12

0.092

3.27

5.62

0.506

10.64

1.66

8.45

3.27

38.09

45.46

12

0.135

2.75

5.87

0.242

10.24

1.65

3.09

4.74

14.78

21.62

14

Fig. 4.5. Fixed-size scalability for solving the constant coefficient Poisson problem (Equation
4.1) on an octree with 31.9M elements generated from a gaussian distribution of points. On the
finest multigrid level, the coarsest octant was at level 3 and the finest octant was at level 17. 8
Multigrid levels were used. 8 iterations were required to reduce the 2-norm of the residual by a
factor of 10−14. 702 Matvecs, 108 of which are on the finest level, were required. The total number
of meshes generated for each case is also reported. Note that due to the addition of auxillary meshes,
the total number of meshes is greater than the number of multigrid levels.

load imbalance. Although, the process of constructing coarser meshes from
a fine mesh is harder than iterative global refinements of a coarse mesh to
generate a sequence of fine meshes; this is more practical since the fine mesh
can be defined naturally depending on modeling restrictions, and/or physics
of the problem as opposed to the coarse mesh, which is purely an artifact of
the numerical method. It is also natural and more desirable to be able to
control the fine mesh in an adaptive algorithm rather than controlling the
coarse mesh.

• We have demonstrated good scalability of our implementation and can solve
problems with billions of elements on thousands of processors in less than 10
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Fig. 4.6. Fixed-size scalability for solving the variable-coefficient Poisson problem (Equation
4.2) on the meshes used in Figure 4.5. 8 Multigrid levels were used. 5 iterations were required to
reduce the 2-norm of the residual by a factor of 10−10. 468 Matvecs, 72 of which are on the finest
level, were required.

minutes. However, load balancing remains an open problem and this begins
to affect our iso-granular scalability beyond a thousand processors. This
is a difficult problem to tackle because there are many competing factors:
Restriction, prologation, scatters and MatVecs.

• We have demonstrated that our implementation works well even on problems
with variable coefficients.

• We have compared our geometric multigrid implementation with the alge-
braic multigrid scheme (BoomerAMG) implemented in a standard off-the-
shelf package (HYPRE) and show that the proposed algorithm is quite com-
petent. The setup cost for the matrix-free geometric multigrid algorithm
is much lower than its algebraic multigrid counterpart. This makes it better
suited for problems in which the linear system of equations is constructed and
solved numerous times. Examples of such problems include time-dependent
problems, non-linear problems and applications with adaptive mesh refine-
ment proceedures.

• Our MPI-based implementation, DENDRO, is built on top of PETSc [6, 7].
Dendro is an open source code that can be downloaded from [46].
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Fig. 4.7. Fixed-size scalability for solving the variable-coefficient Poisson problem (Equation
4.2) on an octree with 22.4M elements generated using a log-normal distribution of points located
on two diagonally opposite corners of the unit cube. 8 Multigrid levels and 15 meshes were used. 5
iterations were required to reduce the 2-norm of the residual by a factor of 10−10.

There are two important extensions for the present work: higher-order discretizations
and integration with domain-decomposition methods such as the Heirarchical Hybrid
Grids (HHG) scheme described in [10]. The former will result in improved accuracy
with fewer elements and the latter will help solve problems involving complicated
geometries with fewer elements. The last point stems from the fact that using a
single octree to mesh a domain is more restrictive than allowing the use of multiple
octrees, each of which is only responsible for a part of the entire domain.
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Fig. 4.9. The variable-coefficient (contrast of 107) Poisson problem (Equation 4.3) was solved
on meshes constructed on Gaussian distributions. A 7-level multiplicative-multigrid cycle was used
as a preconditioner to CG for the GMG scheme. SuperLU Dist was used to solve the coarsest grid
problem in the GMG scheme. The coarsest multigrid level was distributed on a maximum of 32
processors in all experiments. For BoomerAMG, we experimented with two different coarsening
schemes: Falgout coarsening and CLJP coarsening. The results from both experiments are reported.
[33] reports that Falgout coarsening works best for structured grids and CLJP coarsening is better
suited for unstructured grids. Since octree meshes lie in between both structured and generic un-
structured grids, we compare our results using both the schemes. Both GMG and AMG schemes
used 4 pre-smoothing steps and 4 post-smoothing steps per multigrid level with the damped Jacobi
smoother. A relative tolerance of 10−10 in the 2-norm of the residual was used in all the experi-
ments. The GMG scheme took about 12 CG iterations, the Falgout scheme took about 7 iterations
and the CLJP scheme also took about 7 iterations. This experiment was performed on Abe. Each
node of the cluster has 8 processors, which share an 8GB RAM. However, only 1 processor per node
was utilized in the above experiments. This is because the AMG scheme required a lot of memory
and this allowed the entire memory on any node to be available for a single process. The setup
time reported for the AMG schemes includes the time for meshing the finest grid and constructing
the finest grid FE matrix, both of which are quite small (≈ 1.35 seconds for meshing and ≈ 22.93
seconds for building the fine-grid matrix even on 256 processors) compared to the time to setup the
rest of the AMG scheme. The setup cost for the GMG scheme includes the time for constructing
the mesh for all the multigrid levels (including the finest), constructing and balancing all the coarser
multigrid levels, setting up the intergrid transfer operators by performing one restriction PreMatVec
at each multigrid level and LU decomposition for the FE matrix at the coarsest grid. Note that
the GMG scheme uses a matrix-free implementation and only the FE matrix for the coarsest grid
is constructed explicitly. The time to construct and balance the finest octree is not included since
it is a small overhead (≈ 2 seconds even on 256 processors) present in both the GMG and AMG
schemes. The total time includes the setup time and the time required to solve the problem.
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Appendix A. Proof showing that Ak is a symmetric positive operator
w.r.t. (·, ·)k. Since Vk is a finite-dimensional normed space, every linear operator on
Vk is bounded, in particular Ak is bounded. Since Vk is a finite-dimensional space,
it is complete with respect to any norm defined on that space and in particular with
respect to the norm induced by the inner-product under consideration. Hence, the
space Vk along with the respective inner-product (·, ·)k forms a Hilbert space [38].
Hence, Ak has a unique Hilbert-adjoint operator; in fact, as Equation A.1 shows Ak

is also self-adjoint.
Equation 2.3, the coercivity of a(u, v) and the symmetricity of a(u, v) and (·, ·)k

together lead to Equation A.1.

(Akv, v)k = a(v, v) > 0 ∀v 6= 0 ∈ Vk

(Akw, v)k = a(v, w)
= (Akv, w)k

= (w,Akv)k ∀v, w ∈ Vk (A.1)

Appendix B. The prolongation matrix. Since the coarse-grid vector space
is a subspace of the fine-grid vector space, any coarse-grid vector, v, can be expanded
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independently in terms of the fine and coarse-grid basis vectors.

v =
dim(Vk−1)∑

n=1

vn,k−1φ
k−1
n

=
dim(Vk)∑

m=1

vm,kφ
k
m (B.1)

In Equation B.1, vn,k and vn,k−1 are the coefficients in the basis expansions for v on
the fine and coarse grids, respectively. If we choose the standard finite element shape
functions, then for each φk

i there exists a unique pi ∈ Ω such that

φk
j (pi) = δij ∀i, j = 1, 2, . . . , dim(Vk) (B.2)

In Equation B.2, δij is the Kronecker delta function and pi is the fine-grid vertex
associated with φk

i . Equations B.1 and B.2 lead to

vi,k =
dim(Vk−1)∑

j=1

vj,k−1φ
k−1
j (pi) (B.3)

We can view the prolongation operator as a MatVec with the input vector as the
coarse-grid nodal values (co-efficients in the basis expansion using the finite element
shape functions as the basis vectors) and the output vector as the fine-grid nodal
values. The matrix entries are then just the coarse-grid shape functions evaluated at
the fine-grid vertices (Equation B.4).

P1(i, j) = φk−1
j (pi). (B.4)

An equivalent formulation is to satisfy Equation 2.8 in the variational sense by
taking an inner-product with an arbitrary fine-grid test function. This formulation
also produces the vector of fine-grid nodal values as a result of a MatVec with the
vector of coarse-grid nodal values and the matrix is defined by Equation B.5.

P2 = (Mk
k)−1Mk

k−1 (B.5)

where,

Mk
k−1(i, j) = (φk

i , φ
k−1
j )k. (B.6)

Since the two formulations are equivalent, we have

P1 = P2. (B.7)

Appendix C. Derivation of the Galerkin condition. Define the functional

F k(vk) =
1
2

(Akvk, vk)k − (fk, vk)k ∀vk ∈ Vk (C.1)
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Since Ak is a symmetric positive operator w.r.t (·, ·)k, the solution uk to the Equation
2.4 satisfies

uk = arg min
∀vk∈Vk

F k(vk) (C.2)

This is simply the Ritz FEM formulation. In the multigrid scheme, we want to find

vk−1 = arg min
wk−1∈Vk−1

F k(vk + Pwk−1) (C.3)

Here, P is the prolongation operator defined in Section 2.2.

F k(vk + Pwk−1) =
1
2

((Akvk +AkPwk−1), (vk + Pwk−1))k − (fk, vk + Pwk−1)k

=
1
2

(Akvk, vk)k +
1
2

(AkPwk−1, vk)k +
1
2

(Akvk, Pwk−1)k

+
1
2

(AkPwk−1, Pwk−1)k − (fk, vk)k

− 1
2

(fk, Pwk−1)k −
1
2

(fk, Pwk−1)k

= F k(vk) +
1
2

(AkPwk−1, vk)k +
1
2

((Akvk − fk), Pwk−1)k

− 1
2

(fk, Pwk−1)k +
1
2

(P ∗AkPwk−1, wk−1)k−1 (C.4)

Here, P ∗ is the Hilbert adjoint operator of P with respect to the inner-products
considered. Since, Ak is symmetric with respect to (·, ·)k and since the vector spaces
are real we have,

1
2

(AkPwk−1, vk)k =
1
2

(Pwk−1, Akvk)k =
1
2

(Akvk, Pwk−1)k (C.5)

Hence, we have

F k(vk + Pwk−1) = F k(vk) + F k−1
G (wk−1) (C.6)

with F k−1
G defined by

F k−1
G (vk−1) =

1
2

(AG
k−1vk−1, vk−1)k−1 − (fG

k−1, vk−1)k−1. (C.7)

AG
k−1 and fG

k−1 are defined by Equation 2.12 (The “Galerkin” condition). Equations
C.3 and C.6 together lead to

vk−1 = arg min
wk−1∈Vk−1

F k−1
G (wk−1) (C.8)

Equation C.9 shows that AG
k−1 is symmetric with respect to (·, ·)k−1 and Equation

C.10 shows that it is also positive.

(AG
k−1u, v)k−1 = (AkPu, Pv)k

= (Pu,AkPv)k

= (u,AG
k−1v)k−1 ∀u, v ∈ Vk−1 (C.9)
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(AG
k−1u, u)k−1 = (AkPu, Pu)k ∀u ∈ Vk−1

∀u ∈ Vk−1, ∃ wu ∈ Vk | Pu = wu

⇒ (AG
k−1u, u)k−1 = (Akwu, wu)k ≥ 0 ∀u ∈ Vk−1 (C.10)

Hence, the solution vk−1 to Equation 2.11 satisfies Equation C.8.

Appendix D. Restriction Matrix. Any fine-grid vector, w, and coarse-grid
vector, v can be expanded in terms of the fine and coarse grid basis vectors respectively

w =
dim(Vk)∑

m=1

wmφ
k
m

v =
dim(Vk−1)∑

n=1

vnφ
k−1
n (D.1)

Now, let

Rφk
m =

dim(Vk−1)∑
l=1

R(l,m)φk−1
l ∀m = 1, 2, . . . , dim(Vk) (D.2)

Using the definition of the restriction operator (Equation 2.13), we have

(Rφk
m, φ

k−1
n )k−1 =

dim(Vk−1)∑
l=1

R(l,m)(φk−1
l , φk−1

n )k−1

= (φk
m, φ

k−1
n )k,

∀m = 1, 2, . . . , dim(Vk)
∀n = 1, 2, . . . , dim(Vk−1) (D.3)

Thus,

R = (Mk−1
k−1)−1Mk−1

k (D.4)

where,

Mk−1
k (i, j) = (φk−1

i , φk
j )k = Mk

k−1(j, i) (D.5)

Appendix E. An equivalent formulation for the multigrid scheme. The
coarse-grid operator defined in Equation 2.12 is expensive to build. Here, we will show
that this operator is equivalent to the coarse-grid version of the operator defined
in Equation 2.3. This operator can be implemented efficiently using a matrix-free
scheme.

Using Equations 2.6, B.5, 2.12, and 2.14 we have

AG
k−1 = (Mk−1

k−1)−1ÃG
k−1

ÃG
k−1 = Mk−1

k (Mk
k)−1Ãk(Mk

k)−1Mk
k−1 (E.1)
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Since Vk−1 ⊂ Vk, we can expand the coarse-grid basis vectors in terms of the
fine-grid basis vectors as follows:

φk−1
j =

dim(Vk)∑
i=1

c(i, j)φk
i ∀j = 1, 2, . . . , dim(Vk−1) (E.2)

By taking inner-products with arbitrary fine-grid test functions on either side of
Equation E.2, we have

(φk
l , φ

k−1
j )k =

dim(Vk)∑
i=1

c(i, j)(φk
l , φ

k
i )k

∀j = 1, 2, . . . , dim(Vk−1)
∀l = 1, 2, . . . , dim(Vk) (E.3)

This leads to

ck−1
k = (Mk

k)−1Mk
k−1 (E.4)

Using Equations 2.15, E.1, E.2, and E.4 we can show that

Ãk−1 = ÃG
k−1 ; Ak−1 = AG

k−1 (E.5)

Note that the fine-grid problem defined in Equation 2.4, the corresponding coarse-
grid problem (Equation 2.11) and the restriction operator (Equation 2.14) all require
inverting a mass-matrix. This could be quite expensive. Instead, we solve the follow-
ing problem on the fine-grid

Ãkuk = f̃k (E.6)

and solve the following corresponding coarse-grid problem

Ãk−1ek−1 = Mk−1
k−1fG

k−1 = R̃rk = rk−1 (E.7)

for the coarse-grid representation of the error, ek−1, using the fine-grid residual, rk,
after a few smoothing iterations. Here, R̃ is the modified restriction operator, which
can be expressed as

R̃ = Mk−1
k−1R(Mk

k)−1 (E.8)

Note, that this operator is the matrix-transpose of the prolongation operator derived
using the variational formulation.

R̃ = P2
T (E.9)

Since, P1 = P2, we can use P1
T instead of R̃.

Appendix F. Minimum grain size required for good scalability. For good
scalability of our algorithms, the number of elements in the interior of the processor
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domains must be significantly greater than the number of elements on the inter-
processor boundaries. This is because our communication costs are proportional to
the number of elements on the inter-processor boundaries and by keeping the number
of such elements small we can keep our communication costs low. Here we attempt
to estimate the minimum grain size necessary to ensure that the number of elements
in the interior of a processor is greater than those on its surface. In order to do this,
we assume the octree to be a regular grid. Consider a cube which is divided into N3

equal parts. There are (N − 2)3 small cubes in the interior of the large cube and
N3 − (N − 2)3 small cubes touching the internal surface of the large cube. In order
for the number of cubes in the interior to be more than the number of cubes on the
surface, N must be >= 10 . Hence, the minimum grain size per processor is estimated
to be 1000 elements.


