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ABSTRACT OF THE DISSERTATIONEvolutionary Algorithms with Local Search for Combinatorial OptimizationbyMark William Shannon LandDoctor of Philosophy in Computer ScienceUniversity of California, San Diego, 1998Professor Richard K. Belew, ChairThe goal of global optimization is to minimize (or maximize) an objectivefunction over its entire domain. Heuristic methods such as evolutionary algorithmsand simulated annealing are often employed. Alternatively, it is sometimes accept-able to �nd a local optimum, which is as good as all solutions in its neighborhood.Local search methods are comparatively well-understood, and local optima can oftenbe found e�ciently even for problems in which global optimization is di�cult [66].Global/local hybrid algorithms combine aspects of both global and local optimizationto search more e�ectively than either global or local optimization by themselves.Evolutionary algorithms using local search have frequently been applied toproblems in continuous optimization with great success. Not only does the addition oflocal search substantially improve the performance of the evolutionary algorithm, butthe hybrid often outperforms other global optimization techniques such as simulatedannealing.In this dissertation we explore the e�ectiveness of evolutionary algorithmswith local search in the combinatorial domain. We show that the EA+LS hybridis more e�ective for graph bisection than either the EA or LS alone, and that it iscompetitive with simulated annealing. A new variant of the EA+LS is presentedwhich interleaves the global and local search operators. We �nd that while crossoveris valuable to an EA without LS in this problem, the addition of LS obviates the needxii



for crossover. We also show how appropriate mutation sizes in an EA+LS dependon the size of local basins. These insights point to the possibility of instance-speci�cheuristics, in which the search algorithm is tailored to speci�c features of the instancesunder consideration. We show that Darwinian evolution is as e�ective as Lamarckian,and is more robust under changes to the genetic operators. In addition, we explorethe e�ectiveness of steady-state vs. generational EAs, di�erent local search lengths,and various local/global ratios.
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Chapter IIntroductionGlobal optimization is concerned with �nding the best possible solutionto a given problem. As there are no e�cient algorithms to achieve this goal ingeneral, heuristic global optimization methods are often employed. Examples includesimulated annealing and evolutionary algorithms (EA).Alternatively, it is sometimes acceptable to �nd a local optimum, which isas good as all solutions in its neighborhood. Local search methods are comparativelywell-understood, and local optima can often be found e�ciently even for problems inwhich global optimization is di�cult [66]. Global/local hybrid algorithms combineaspects of both global and local optimization to search more e�ectively than eitherglobal or local optimization by themselves.Evolutionary algorithms using local search have frequently been applied toproblems in continuous optimization with great success [38, 71, 56, 43]. Not only doesthe addition of local search substantially improve the performance of the evolutionaryalgorithm, but the hybrid often outperforms other global optimization techniques suchas simulated annealing.In this dissertation we explore the e�ectiveness of evolutionary algorithmswith local search in the combinatorial domain. Building on work by Hart [38] regard-ing continuous optimization, we examine the role of local search and its interactionwith the standard evolutionary operators and features of the problem instances. A1



2new variant of the basic algorithm is developed which allows a more complete in-tegration of the local and global search aspects, in addition to greater 
exibility inexamining the e�ect of relevant algorithmic parameters. This algorithm is used inexperiments on various classes of graph bisection instances. Results are compared tothose for other global search techniques, and analyzed in terms of instance featuresand algorithmic parameters.I.A Global OptimizationThe goal of optimization is to �nd a solution to some problem which mini-mizes (or maximizes) some measure of \goodness." Formally, given a �tness functionf :X ! R over some closed domain X, the goal is to �nd a value x 2 X whichminimizes (or maximizes) f . Such a value of x is called a global optimum since it isthe optimal value over the entire search space. For many problems of interest it isbelieved that there is no algorithm which is guaranteed to �nd a global optimum inpolynomial time. In such cases, a heuristic is often used to hopefully �nd a \good"solution with high probability. Common global optimization heuristics include simu-lated annealing, tabu search, and evolutionary algorithms. This dissertation primar-ily examines the last of these, and relates it to simulated annealing and the recentGo-With-the-Winners algorithm.I.A.1 Evolutionary AlgorithmsEvolutionary algorithms (EAs) encompass a broad class of heuristic tech-niques, including genetic algorithms, evolution strategies, evolutionary programming,and genetic programming. What these methods have in common is their use ofpopulation-based sampling with successive populations biased towards regions where�t solutions have previously been found. A population of solutions is maintained,initially composed of randomly generated individuals. From this population, solu-tions are selected for reproduction. Solutions which are more �t (f(x) is lower) are



3more likely to be selected, so that the search tends towards regions of the space wheregood solutions have been observed previously. The reproduction includes some formof perturbation of the solution by a set of genetic operators, possibly a recombination(or crossover) with another selected individual. Finally, the new solution is placedinto the population, usually replacing a current solution.There is substantial literature devoted to each subclass of evolutionary algo-rithm, and each has many variants [22, 6]. Figure I.1 outlines the generic algorithm;we brie
y describe each of the major subclasses below.Randomly generate an initial population of size MRepeatEvaluate each genotype in the populationSelect genotypes for reproduction, based on fitnessPerform recombination on selected genotypesPerform mutation on selected genotypesReplace part or all of population with new genotypesUntil good enough solution found, or out of timeFigure I.1: Generic Evolutionary AlgorithmEvolutionary programming (EP) [23, 21] originated as a method to evolve�nite state machines to perform various tasks, though its use is now signi�cantlybroader. What distinguishes EP from GAs most starkly is the lack of recombination:the population evolves through selection and mutation only. Practitioners of EP ar-gue that for real-world problems, there usually are not composable building blocksfor crossover to exploit. The various parameters of a given problem are too interre-lated for there to be independently solvable subproblems. We explore this issue inSections IV.C.2 and IV.D.4.The evolution strategies (ES) [73, 5] are characterized primarily by their useof adaptive mutation sizes. Mutations are typically drawn from some distribution



4whose variance is itself encoded on the genotype. Hence, the size and shape of themutations evolve along with the solutions. Also distinguishing ES is the common useof the steady-state replacement method, in which a single solution at a time is gen-erated and placed into the population, as opposed to replacing the entire populationat once (the generational approach).Genetic algorithms (GAs) [41, 27, 17] are characterized by the importancethey place on recombination (or crossover) of solutions. In a well-designed GA,crossover is able to combine successful \subsolutions" from disparate parents to formnew solutions with the best of both. In other words, once a subsolution (known as abuilding block) is discovered by any member of the population, it can be propagatedto the rest of the population without needing to be rediscovered. This is consideredto be the primary source of novel solutions in a GA, though small mutations areusually used as well. Hence, designers of genetic algorithms are careful to design theproblem representation and crossover operator to work well together. Being in directcontrast to the approach taken by EP, this is the source of some controversy in theEA community and literature [46].Historically, GAs have generally used binary representations even for real-valued parameters, although this practice is not as universal as it once was. Thegenetic algorithm is perhaps the most commonly used type of EA, and it is the typeused throughout this dissertation.Finally, the genetic programming (GP) [54] class of algorithms is concernedwith the evolution of programs. Usually the representation is in terms of LISP-typeS-expressions, which are essentially trees having operators at all internal nodes andoperands at the leaves. Specialized types of mutation and crossover are used to handlethis tree data structure.Though EAs can generally be classi�ed according to the above types, thereare no absolute boundaries between them. Many EAs incorporate features of di�erentclasses; for example, \GAs" which are steady-state or which do not use crossover arenot uncommon. In fact, genetic programming is often considered to be a proper subset



5of genetic algorithms. We make no claims about one method being generally superiorto another, and will use the term EA unless the need arises to be more speci�c. Mostexperiments in this dissertation use crossover and constant mutation sizes, and sofall naturally into the GA class. We usually use a steady-state version, however,and occasionally do without crossover. The details of our variant are described inSection IV.D.I.A.2 Simulated AnnealingSimulated annealing [52, 15] is a di�erent type of global search technique.Instead of a population, a single solution is maintained. At each time step, a smallperturbation is made to the current solution, and the resulting new solution is com-pared to the current one. The new solution replaces the current solution if it isbetter, or with probability e�fit=Temp if it is worse. Here, �fit is the di�erence in�tness between the two solutions, and Temp is the current temperature. Therefore,the probability of moving to the new solution decreases exponentially as its �tnessgets worse, and also as the temperature gets lower. Usually the temperature is grad-ually decreased throughout the run, so that uphill moves (for minimization) becomeless and less likely as the run progresses. Our implementation of SA, which is fairlytypical, is described in more detail in Section II.A.4 and Figure II.4.Initially, SA explores globally, spending more time in regions which on av-erage have �tter solutions. In later stages the search is con�ned to a small area, andSA simply optimizes within that area. In these �nal stages it is very similar to localsearch, as described in Section I.B.I.A.3 Go-With-the-WinnersGo-With-the-Winners (GWW) [3] (and a variant by Dimitriou and Impagli-azzo [19, 20]) is a fairly recent search algorithm that attempts to continually maintaina uniform distribution over all solutions which are better than some explicit threshold



6�tness. The algorithm is outlined in Figure I.2. As in EAs, a population of solutions(or \particles") is maintained. The algorithm proceeds in distinct stages, analogousto an EA's generations. Unlike the EA, however, all members of the populationare required to be better than the threshold �tness, which gets incrementally morerestrictive as the search progresses. At each step, the particles are redistributed ac-cording to an estimate of their potential for future improvement. This is similar toselection and reproduction in an EA, although it is not based on �tness and thereis no recombination. Finally, each member of the population does a random walkof small mutations (starting from its current position), restricted to solutions whose�tness is within one of the current threshold.Crucial to understanding this method is the notion of the search graph. Thenodes of the search graph are simply the possible solutions to the problem. Twonodes are connected with an edge if the corresponding solutions are one \mutation"apart, where a mutation is typically a single bit 
ip. In GWW, parts of the searchgraphs corresponding to solutions which are worse than the current threshold arenot visited. As the threshold is decreased, therefore, more and more of the graphbecomes o�-limits. The accessible portion of the search graph eventually becomesdisconnected, resulting in separate components which cannot be reached from eachother without traveling through the forbidden portion. Through its redistributionand randomization steps, GWW attempts to maintain at least one particle in eachcomponent at all times, while maintaining a uniform distribution of solutions withineach component. The success of these goals depends on the number of particles used,the length of the random walks (both of which are algorithmic parameters), and thecharacteristics of the problem instance.With its focus on uniformly covering the entire search graph, GWW exem-pli�es exploration, as opposed to exploitation. Roughly, an exploitative algorithm isone which takes advantage of any quick improvements it �nds, possibly at the ex-pense of larger improvements which could be found by a more careful global search.In contrast, an explorative algorithm may forgo easy improvements in the interest



7
� Initialization Stage: Generate Pop random solutions. Set i to bea maximum possible value for a solution.� Until all particles are at local minima do:� Stage i:{ Pre-redistribution: De�ne the up degree of a particle as thenumber of neighbors with value at most i+ 1. Redistributeeach particle to one of the current solutions inversely pro-portional to the up degree.{ Post-redistribution: De�ne the down degree of a particle asthe number of neighbors with value at most i. Redistributeeach particle to one of the current solutions proportional tothe down degree.{ Randomization: For each particle, perform a 2w + 1 steprandom walk, restricting odd steps to neighbors with valueat most i, and even steps to neighbors with value at mosti� 1.� Go to stage i� 1.Figure I.2: Go-With-the-Winners Algorithm for minimization. The constants Popand w are algorithmic parameters. Figure adapted with permission from [14].



8of doing a complete search. For an EA, the degree to which selection favors �tterindividuals (the selection pressure) determines the tradeo� between exploration andexploitation. Note that local search is the ultimate exploitation algorithm, alwaysmoving downhill.While GWW can be used as an optimization algorithm, it has a uniquestrength in allowing the analysis of speci�c problems. If the number of particles andthe random walk length are su�ciently large, the algorithm can gather statistics suchas the number of connected components there are at each threshold. Such data can beuseful in tailoring speci�c optimization algorithms to speci�c applications of interest.This process is described for graph bisection of planted bisection graphs by Carsonand Impagliazzo in [14]. Due to the knowledge gained about these graphs from GWW,planted bisection is one of the classes of test problems for our experiments.I.B Local SearchIn contrast to global optimization, local optimization|hereafter referred toas local search (LS)|is concerned with �nding a solution which is as good as orbetter than all other solutions in its local \neighborhood." Such a solution is calleda local optimum. At the most basic level, all local search algorithms follow the samealgorithm: an initial solution is generated and is repeatedly improved by makingsmall changes. This continues until there are no neighbors which are better. Localsearch is often easier than global search in that local optima can be found e�ciently.Furthermore, a solution can be veri�ed as a local optimumquickly, whereas verifying aglobal optimummay require examining the entire search space. Though local optimaare generally more �t than random solutions, they may be substantially worse thanglobal optima.There are substantial di�erences between LS methods for continuous do-mains and those for combinatorial domains. Continuous LS algorithms make use ofexplicit step sizes and directions in the search space. The search progresses by making



9steps of various sizes in one direction after another until a local minimum is reached.Often, these methods make use of gradient information (either computed directly orestimated by a �nite-di�erence method) to determine the direction of the next move.Combinatorial problems, on the other hand, have no notion of gradientor even direction in the search space. If a particular move improves the solution,there is no way to \move further" in that direction. Combinatorial LS algorithmsgenerally di�er in how the next move is chosen, and in how the neighborhood isde�ned. The neighborhood of a solution x is de�ned to be the set of solutions whichcan be reached from x by a single \step" of the local search algorithm. Hence, di�erentLS algorithms may search over di�erent neighborhood structures, and what quali�esas a local optimum under one algorithm may not qualify in another.Section II.A.2 reviews the techniques used for both continuous and combi-natorial LS, and discusses the di�erences. We discuss various issues related to com-binatorial LS in Section II.A.2 and examine speci�c algorithms for graph bisection inSection IV.B.I.C Global-Local Hybrid AlgorithmsGlobal-Local hybrid algorithms combine aspects of both global and localsearch in order to improve the quality of the �nal solutions found and the e�ciencyof the algorithm. Global search techniques need to explore broad regions of the searchspace and determine where to focus further e�ort. In general they are less e�cientthan local search at �nding local optima. Hence, a natural synthesis is to rely ona global search method to choose solutions in promising regions of the domain, andthen use LS to re�ne these solutions to local optima.I.C.1 Evolutionary Algorithm with Local SearchFor evolutionary algorithms, the composition of global and local search canbe done explicitly: solutions in the population may undergo LS before being evaluated.



10Note that the global and local aspects of the search inform each other; the EA providesstarting points in good regions of the search space, and LS returns information aboutlocal optima which may be used by the EA to bias future sampling. We refer to suchan algorithm as an evolutionary algorithm with local search (EA+LS). Previous workby several authors (for example [62, 1, 38, 71]) has shown that the EA+LS can be asubstantial improvement over the EA without LS on a wide variety of problems. Inparticular, Hart [38] examines several possible ways of using LS in an EA context forcontinuous optimization, including applying LS to only a fraction of the population,using only a �xed amount of LS per solution, and biasing the selection of solutionswhich will undergo LS. In this dissertation we extend Hart's analysis to the case ofcombinatorial problems, examining many of the same issues (including length of LSto use and how to allocate it) and several new issues (including the use of crossoverand the ratio of global to local search e�ort) in this context. Some of the lessons wedraw may have applications back to the continuous case.I.C.2 Simulated AnnealingSimulated annealing combines global and local search in a less explicit man-ner. When the temperature is high, it is able to explore many regions of the searchspace, while the lower probability of accepting inferior moves biases it towards spend-ing somewhat more time in regions where it �nds better solutions. As the temperatureis lowered, however, the search becomes increasingly localized. Eventually, when thetemperature is very low, the only moves which are accepted are improving moves.At this point the search is equivalent to a local search. Hence, SA transitions fromglobal to local search in a fairly continuous manner.I.C.3 Go-With-the-WinnersThe Go-With-the-Winners algorithm also blends aspects of global and localsearch. By maintaining a population and attempting to keep it uniformly distributed



11among the allowable solutions, it covers the overall space as well as an EA. On theother hand, by relentlessly forcing the entire population to have better �tness thanthe threshold, it is similar to local search, in which each move improves the solution.I.D Dissertation OverviewTechniques described in this chapter are examined in detail in the disser-tation. Experiments examine the EA, local search from random starting points (so-called Monte Carlo local search), simulated annealing, and especially the EA+LShybrid. Chapter II provides background information for local search, evolutionaryalgorithms (with and without local search), and simulated annealing. The di�erencebetween continuous and combinatorial optimization is explored in Section II.A.2.Someoutstanding issues relating to EA+LS are discussed, including the allocation of localsearch to members of the population and the methods of applying LS results.Chapter III lays out our intuitions about how an EA+LS search progresses,especially with regard to the e�ects that LS has on the global search. Also consideredare the ways in which the presence of LS modi�es the role of the usual genetic op-erators (recombination and mutation). These intuitions lead to several expectationsand recommendations, which are tested in the experiments of Chapter IV. Finally,some related complexity theory results are examined, especially the Polynomial-TimeLocal Search complexity class.Chapter IV presents the results of a series of experiments which explore allof the above themes. The experiments are carried out for graph bisection on instancesfrom a variety of classes. Graph characteristics that are likely to a�ect search (numberof local minima, basin sizes, and stability of local minima) are explored for eachclass. Baseline results are presented for Monte Carlo local search under various localsearch methods, with a focus on the tradeo� between solution quality and searchtime. The EA without local search is evaluated to examine the role of the genetic



12operators when LS in not used. Then, several EA+LS parameters are explored,including the mutation size, use of crossover, local/global search ratio, LS length, andwhether the partitions resulting from local search are used by the EA. We analyzethe results in terms of our expectations, as presented in Chapter III. We concludewith a performance comparison of EA+LS and simulated annealing.Chapter V presents a discussion of the major �ndings, open questions, anddirections for future research.



Chapter IIBackgroundII.A Prior KnowledgeII.A.1 Evolutionary AlgorithmsAlgorithm DescriptionEvolutionary algorithms (EAs) have become very popular as a method for\global" search or optimization. They do global sampling bymaintaining a populationof genotypes, initially uniformly distributed throughout the search space. Succeed-ing generations are produced from previous ones by means of selection (biasing thepopulation towards areas where the current generation shows greater promise) andgenetic operators, such as recombination and mutation.More speci�cally, feasible solutions to the optimization problem are repre-sented as a set of parameters, known as a genotype. The parameters may be real-valued or discrete, depending on whether the problem being solved is continuous ordiscrete. As an example, an evolutionary algorithm for the traveling salesman (TSP)problem might represent a solution as a list of integers specifying the nodes in theorder in which they are visited. Initially, the EA randomly generates many genotypes,and these are taken to be the initial population.During each generation, every genotype in the population is evaluated and13



14assigned a �tness value, based on how good a solution it is. Genotypes are selected toreproduce based on how good their �tness is. Better genotypes get to generate moreo�spring, and therefore their genes have a greater prevalence in the next generation.In this way succeeding generations are biased towards more promising regions of thesearch space based on the statistics that are collected earlier on.A new generation is produced by applying the genetic operators to on theselected genotypes from the previous population. In the case of the genetic algorithm,this is done by performing recombination, or crossover, Typically this involves takingtwo of the selected \parents", copying some of the parameters from one parent, andcopying the rest of the parameters from the other parent. Recombination of selectedgenotypes is the primarymeans of generating new solutions. Mutations, small randomchanges, are often done to the resulting genotypes. These are generally consideredto be helpful, if done in small enough quantities. An outline of the entire process isgiven in Figure II.1.Randomly generate an initial population of size MRepeatEvaluate each genotype in the populationSelect genotypes for reproduction, based on fitnessPerform recombination and mutation on selected genotypesReplace part or all of population with new genotypesUntil good enough solution found, or out of timeFigure II.1: Standard Evolutionary AlgorithmGenerational vs. Steady-StateThe description above left open the question of how many new individualsare generated at once, and how the individuals to be replaced are chosen. Mostcommonly, the entire population is replaced at once, so that P new individuals are



15generated in each generation, where P is the size of the population. An EA usingthis scheme is called a generational EA, to emphasize the fact that the population ismodi�ed in distinct generations. A frequently used variant on the generational EAis to keep the single best individual in the population for the next generation, sothat the search never loses the best solution seen. This technique is known as simpleelitism. In contrast to the generational method, a steady-state EA replaces only oneindividual at a time. The individual to be replaced is usually the worst individualin the population. A steady-state EA may be more stable, as the best solutions donot get replaced until the newly generated solutions become superior. Though it isless common than the generational technique, we will use steady-state EAs for mostof our experiments, as it allows the results of LS to be maintained in the population.We discuss this issue further in Section II.B.1.II.A.2 Local SearchGenerally stated, the goal of local search is to �nd a solution which is asgood as or better than all of its surrounding points. The meaning of this depends onthe problem at hand: for continuous problems we de�ne local minima in terms of opensubsets of Rn, while problems on a discrete domain employ a speci�ed neighborhoodstructure to de�ne local optima. We brie
y describe the major approaches for boththe continuous and combinatorial cases, and then discuss some of the fundamentalissues which make the cases di�erent.ContinuousLocal search techniques on continuous domains can generally be describedas falling into two classes, direct and indirect search, based on what information isavailable to the local searcher. Direct methods use no information other than the�tness values of the points they sample; in particular, no use is made of gradientsor second derivatives or approximations to them. Common direct search techniques



16include the downhill simplex method due to Nelder and Mead [63, 68] and the Solis-Wets algorithm (SW) [78]. The latter attempts moves of the current \step size" alongall axes until an improvement is found, with conditions for shrinking or expandingthe step size in response to the frequency with which improving moves are found.Pattern search methods [82, 18, 81] have also come into frequent use.Indirect search methods are often used when gradient information is e�-ciently computable. The simplest such method, gradient descent, repeatedly com-putes the gradient at the current location and moves in the opposite (for minimiza-tion) direction. Di�erent algorithms di�er in how much the step size is changed andunder what conditions. More sophisticated conjugate gradient methods use gradientinformation in an attempt to deduce the direction of the local minimum. At eachstage of the algorithm a line-search minimization is done along the current direction.For quadratic functions in n dimensions, the process converges on the minimum af-ter n such line-searches. Finally, the quasi-Newton methods attempt to estimate theHessian of the function through repeated line-minimizations. For a more completediscussion of the various methods see [68].CombinatorialLocal search methods on combinatorial domains all follow the same basicpattern: choose an initial point, then repeatedly move to a neighbor which is betterthan the current point. While this is simple enough, there are many details regardinghow the improving moves are chosen and what quali�es as a \neighbor" which dif-ferentiate various LS algorithms. Note that LS for combinatorial problems is alwaysa direct search method, since there is not a notion of gradient. Figure II.2 gives thecanonical discrete LS algorithm. The initial step (generate an initial solution) is gen-erally done uniformly at random over the search space. Alternatively, in an EA+LShybrid, the evolutionary algorithm is used to generate the initial starting points, asdiscussed in Section II.A.3.



17Generate an initial solution PRepeatMove to a neighbor P 0 with better costUntil P has no neighbors better than itselfFigure II.2: Canonical Local Search AlgorithmNeighborhood Structure Local search methods assume a neighborhood structure,which de�nes what moves are legal. Formally, a neighborhood structureN on a searchdomain S is a function N :S ! 2S which speci�es the set of neighbors for each point inthe search space. For local search to be feasible the size of each point's neighborhoodmust be small compared to the size of the search space. For problems which can berepresented as n-bit strings, for example, a typical neighborhood for a point is just thecollection of strings which are a single bit-
ip away; such a neighborhood has size n.Additionally, the neighborhood structure is usually symmetric (i.e. if y 2 N(x) thenx 2 N(y)), but this it not a requirement. In fact the well-known Kernighan-Lin LSmethod for graph partitioning [51] employs a nonsymmetric neighborhood structure.The success of the local search algorithm will depend on the neighborhoodstructure chosen. There are no general rules for how to choose neighborhoods, butin general larger neighborhoods may be expected to result in better local minima.To see this note that any local minimum under a given neighborhood structure Nwill also be a local minimum under any structure N 0 for which N 0(x) � N(x) forall x. The average quality of the local minima found under a given neighborhoodstructure is referred to as the structure's strength. Strong neighborhoods result inbetter solutions, though the time required to �nd the solutions may also be greater.Move Decision The second decision that must be made in de�ning a LS algorithmis the choice of move decision, i.e. among the neighbors which are better than thecurrent solution, how does the algorithm choose which one to move to? There are



18two standard decision rules, steepest descent and �rst-improve. The steepest descentmethod always chooses the very best neighbor. Note that this requires the entireneighborhood to be searched at each step.The �rst-improve method simply moves to the �rst neighbor it examineswhich is better. Hence, the algorithm may examine only a fraction of the neighbor-hood of each point it visits. For this reason �rst-improve is often faster than steepestdescent, though it may also result in di�erent local minima. An additional issue with�rst-improve is the order in which the neighbors are examined. Since it moves to the�rst improvement seen, di�erent orderings may result in di�erent local minima. Gen-erally the neighbors are examined in a random order. But it may be advantageous toused a �xed ordering if by so doing one can take advantage of knowledge about theproblem being searched. For a broader discussion on combinatorial LS issues see [66].Di�erences between Continuous and CombinatorialThere are many signi�cant di�erences between continuous optimization andcombinatorial optimization which a�ect how we do EA+LS. One di�erence has todo with the nature of global search. Combinatorial problems of interest are gener-ally NP-complete, whereas continuous problems are usually not analyzed in terms ofcomplexity. Being di�cult to solve, an NP-complete problem may be expected tohave higher-order dependencies between genes. This makes it harder for the EA toperform an e�ective search. Alternatively, it requires more intelligent design of thegenetic representation and operators.Aside from global concerns, the notion of local search is completely changedin the combinatorial domain. Continuous local searchers make explicit and repeateduse of the notion of direction. Typically moves are made in a given direction until nomore progress can be made. Then a new direction is chosen. The moves being mademay be of varying sizes, depending on the success of previous steps.In contrast, combinatorial problems do not have the same notion of direc-tion. Swapping a node from one side of a partition to the other or changing a variable



19from True to False are all-or-nothing events which cannot be extended. A success-ful LS step cannot be capitalized upon by doing more of the same. An immediateconsequence of this is that there is no notion of gradient. Gradients (analytic orapproximated) are commonly used in continuous optimization in so-called indirectsearch. All search in the combinatorial case must be direct, relying only on func-tions cost directly discovered during the search. Standard direct search techniquesfor continuous problems include the downhill simplex method due to Nelder andMead [63, 68] and the Solis-Wets algorithm (SW) [78]. But while both of these op-erate without a gradient, they still make use of direction, and so no direct analogueexists for combinatorial problems.Another consequence of there being no direction is that there is not thesame concept of step size. Hart has shown that issues regarding initial step size andhow it can be adapted during search can be critical to the success of an EA+LS forcontinuous optimization [32, 37]. The only notion of step size in our case is relatedto how many parameters can be changed in a step (e.g. swapping two nodes at atime instead of one). This does correspond to having neighbors which are varyingdistances away, but it is not the same. Increasing the step size here also increases(combinatorially) the number of neighbors, and hence changes the neighborhood moreradically than in the continuous case.One way in which Hart has found varying step size to be helpful is thatlarge step sizes allow local search to \jump over" smaller basins to �nd better solu-tions which would not necessarily be reachable by way of a continuous monotonicallyimproving path. In this way the \local search" can do a larger scale search. Thisis thought to be helpful mainly early in an EA+LS run, when the global search isstill in full swing. Later on, the step sizes are decreased, and LS assumes the role ofa re�nement operator, zeroing in on local optima. Such a dual role cannot occur inthe combinatorial case which has �xed step size. Single step moves will never be ableto jump out of basins (This does not mean that every solution is associated with asingle basin. Many solutions can reach multiple basins through paths of improving



20single steps). In a sense, this makes the role of LS in a combinatorial EA easier tounderstand, as it is restricted to do \pure LS".A related issue is that of the minimum scale of search. Continuous problemsare notable for not having a smallest scale. In practice, it is not usually known apriori what the minimum feature size of the search space is, or how close to optimalis close enough. The limiting factor is often decided by the 
oating point precisionof the machine being used. Combinatorial problems have an absolute minimum scalewhich is known in advance, namely the minimal move de�ned by the neighborhoodstructure. One important consequence of this is that it allows for well-de�ned stoppingcriterion for LS.Combinatorial search problems of interest generally have hundreds or thou-sands of dimensions. Continuous problems usually do not have this many dimensions,and can be interesting and di�cult even with ten or fewer dimensions. Accordingly,exhaustively searching the neighborhood requires more e�ort in the combinatorialcase. More solutions have to be considered per local search step, and this may a�ectthe relative value of LS.A �nal di�erence between continuous and combinatorial problems concernsthe existence of well-de�ned local basins and local optima. Basins are well-de�nedin the continuous case; speci�cally, the basin associated with a local optimum is theset of points from which a continuous monotonically improving path could not endup at any other local optimum. A local minimum (maximum) can be de�ned as apoint which has a neighborhood containing only less �t points. Formally, a pointx 2 Rn is a local minimum if there is an � > 0 such that f(x0) > f(x) for all x0 2 Rnwith kx0 � xk < �. Note that neither of these de�nitions refers to any particular localsearch method. The basin structure is implicit in the space Rn by way of commonanalytical notions.Combinatorial problems, in contrast, have basins and local optima only withrespect to particular LS methods or neighborhood structures. They are not implicitin the problem itself, and may be very di�erent under di�erent neighborhood struc-



21tures. Somewhat paradoxically, the ability to �nd a local optimum and verify itsoptimality are trivial (conceptually, not necessarily computationally) in the combi-natorial case. In the continuous case, exact local optima are generally not attainable(due to precision limits and �nite search times), and verifying that a point is a localoptimum is not possible without the use of gradient information.II.A.3 Evolutionary Algorithm Plus Local Search HybridAlgorithm DescriptionAn often-used extension to the EA as described above is the addition ofa local searcher. A local searcher is an algorithm like gradient descent or randomhill-climbing which searches only for a local optimum. These methods are not meantto do any sort of global optimization, leaving this up to the population and geneticoperators. The local search algorithm is applied to members of the population afterrecombination and mutation, and the �tnesses at the local optima are used for theselection step. The pseudo-code for this algorithm is shown in Figure II.3.Randomly generate an initial population of size MRepeatEvaluate each genotype (or locally optimized genotype)Select genotypes for reproduction, based on fitnessPerform recombination and mutation on selected genotypesPerform local search on members of the populationUntil good enough solution found, or out of timeFigure II.3: Evolutionary Algorithm with Local SearchFor continuous optimization problems, there are good reasons to expect localsearch to be a bene�cial addition to the evolutionary algorithm. The view we takeis that the global population-based search is complemented by a local re�nement



22operator. Essentially, we expect the EA, with its (hopefully) diverse population andrecombination operators, to perform a \global" sampling over the entire search space.It gathers statistics about the various regions and then gradually focuses search onregions with better average solutions.Local search has a complementary role to the global searching of the EA. Itis not expected to search a large portion of the search space, as presumably the localsearch basins of attraction will be small compared to the size of the search space. Oneimmediate potential bene�t o�ered by local search is that it improves the quality ofthe statistics gathered during the EA's global sampling. The local optima provide aconsistent characterization of the various basins (namely, the lowest point). Hence,the EA is likely better served by the values at the local optima than it is by valuesat random points.Another reason that a local searcher can help is that EAs are not e�cienthill-climbers. On optimization problems that are solvable by local search methods(e.g. gradient descent, conjugate gradient, etc.), it is generally the case that thelocal search algorithm will �nd the optimum faster than an EA. This has been shownempirically many times [24, 86, 25] for continuous problems. This is partially becauseof their exploitation of gradient information. However, in Section IV.C.1, we will seeempirical evidence that this is also true of combinatorial problems, for which gradientinformation cannot be exploited.Given that we have a good local searcher, the hope is that the EA searchesover basins, rather than points. Ideally, new individuals generated by the geneticoperators would be in di�erent basins of attraction. If there are not too many localbasins, then the EA may be able to search all or almost all of them. More likely, therewill be many more local basins than members of the populations. In this case, theEA has to rely on there being regularities over the local optima that can be exploited.Of course, if there are very few local basins, then multiple runs of the local searcherfrom random initial positions may be best, eliminating the need for adaptive globalsearch.



23Lamarckian vs. Darwinian EvolutionThe algorithm description above does not specify what is done with theresults of local search, other than that the resulting �tnesses are used for selection.The resulting solution itself can be dealt with in one of two ways. Commonly, theresult of LS replaces the pre-optimized solution in the population, i.e. the results of LSare copied back onto the genotype. This strategy is known as Lamarckian evolution,as it allows \acquired traits" to be passed on genetically. For certain problems inwhich the genotype is not equivalent to the phenotype it may not be possible to usethis strategy. Section II.B.2 discusses under what situations it may be appropriate.The alternative to Lamarckian evolution is Darwinian evolution, in whichthe solution resulting from LS is discarded|only its �tness in
uences the search.This technique is used when Lamarckianism is not an option, and sometimes evenwhen it is. The bene�ts of both methods are discussed in Section II.B.2.Lessons from ContinuousIn his Ph.D. dissertation [38], Hart examined the role of local search whenused in conjunction with EAs. This work was concerned primarily with continuous op-timization problems, including molecular conformation, training of neural networks,and some complicated arti�cial test problems. The basic �nding was that EAs withlocal search were superior to EAs without local search. On every problem studied, asophisticated local searcher such as conjugate gradient was found to be bene�cial tothe EA. This means that the EA with local search was able to �nd better solutionsin the same amount of time.A common way to use local search in a EA is to apply it to every memberof each population. The resulting solutions replace the population members, and areused to generate the next population under selection and recombination (so-calledLamarckian evolution). Hart investigated several variations on this scheme which aregenerally applicable. The most important variant is the use of a small local searchprobability. Instead of applying local search to every member of the population, it



24is only applied to members with some (typically small) �xed probability. This wasvery often bene�cial over always using local search, and often remarkably so. Evenmore bene�t was obtained by allowing the local search probability to be adaptive,changing according the diversity of the population.Another possibility explored by Hart was the imposition of a maximumsearch length. Instead of allowing each local search to go to completion, they werecut o� after some �xed number of steps. This was usually seen to be bene�cial.Finally, a variant mentioned by Hart but not explored was the possibility of \non-Lamarckian" evolution. In this scheme, local search is performed only to obtain a�tness value, but otherwise does not a�ect the genetic material which is passed on.This has been explored by others [8, 48], but is generally not used for optimization.It is worth noting that the best results found in Hart's dissertation werefor gradient-based local search methods. This is not particularly informative fordiscrete optimization, since there isn't the notion of a gradient. Hart also examineda direct local search method (using no gradient information) developed by Solis andWets [78]. This was found to be quite bene�cial is some cases but not in others.More recent work by Hart has found that a di�erent kind of direct search, known aspattern search [82, 18, 81], is more e�ective than Solis-Wets as an addition to theEA [33, 32, 37].Thin Film Metrology Recently, we have applied an EA to the industrial problemof thin �lm metrology [56]. Various measurements are made of the physical propertiesat the surface of a processed semiconductor wafer. The task is to determine the actualstructure and materials present in the stack of �lms on the surface. This is of greatimportance to chip manufacturers as a veri�cation that their fabrication processesare working correctly.The physical measurements provide only indirect information about thestructure of the �lm stack; models must be found which match the data in orderto infer the structure. The parameters of these models include such things as the



25thickness, index of refraction, and extinction coe�cient of each of the layers. The EAhas been used successfully to search over model-space and provide good �ts to thedata. We have found that adding a sophisticated local search method (a Levenberg-Marquardt type nonlinear least-squares �tter) to the EA can result in signi�cantlybetter �ts, using the same amount of computational e�ort.II.A.4 Simulated AnnealingSimulated annealing (SA) [52, 15] provides an especially interesting contrastto an EA+LS, in part because it has proven itself to be an e�ective, robust methodin many applications. It can also be viewed as a global/local hybrid: at high temper-atures it explores more or less without restriction, or globally. As the temperatureis decreased, fewer and fewer uphill moves are made, and the search is more andmore local. EA+LS variants \factor" global and and local aspects into separate butinterleaved searches rather than randomly selecting between the two criteria at eachstep. The basic algorithm is presented in Figure II.4. SA can be thought of asa generalized version of local search: the algorithm maintains a single solution andrepeatedly examines neighbors of this solution. Whenever an improving neighbor isfound that neighbor becomes the new current solution. What di�erentiates SA fromlocal search is what happens when a worse neighbor is encountered. SA moves tothis neighbor with a probability depending on the di�erence in �tness between thecurrent solution and the neighbor, and also on the current \temperature." The worsethe neighbor is, the less likely SA is to move there. Furthermore, as the run progressesthe temperature decreases, which exponentially lowers the probability of moving toa worse neighbor. Eventually, this probability is so low that virtually no moves aremade to worse neighbors. At this point SA is equivalent to local search, as all movesare improving.There is well-regarded study by Johnson et al. of simulated annealing appliedto graph bisection [44]. We use this study as a baseline for our EA+LS experiments.



26Randomly generate a solution, currentRepeatRepeat for N stepsPerturb current to get newIf (new is better than current), current = newElse replace current with probability e(fnew�fcurrent)=TempTemp = Temp * RUntil no improvement or out of timeFigure II.4: Canonical Simulated Annealing AlgorithmFurthermore, where we perform SA experiments (see Section IV.E.1) we use thesame algorithmic choices used there. Speci�cally, we choose an initial temperaturewhich results in approximately 40% of moves being accepted. This temperature isdetermined empirically prior to the SA run. The temperature reduction factor (R)is 0.95. The maximum number of steps spent at a given temperature (N) is 16n,where n is the number of nodes in the graph. The temperature is decreased morequickly if the percentages of moves which are accepted is overly high. Speci�cally,whenever 9n moves have been accepted at a give temperature it is decreased. Finally,the run is terminated when the percentage of accepted moves falls below 2.0% for �veconsecutive temperature values.A �nal note about the details of the graph partitioning search space: asdiscussed in Section IV.A, the search is performed over \unbalanced partition space,"in which the partitions considered may not have equal-size subsets. An imbalancepenalty is applied, but nevertheless there may be unbalanced partitions which arelocal minima. Hence, we need a mechanism to \repair" unbalanced partitions at theend of the SA run. The method we use is greedy, bringing the partition into balanceone node at a time, where the node chosen at each step is that which results in thesmallest increase (or largest decrease) in cost.



27II.B Outstanding IssuesII.B.1 Generational vs. Steady-StateThe question of whether to use a generational or a steady-state EA is oftennot given much thought or is regarded as a matter of personal preference. However,there may be solid reasons to favor one over the other in most cases. As a generalobservation note that doing selection, creation, and evaluation one solution at a timepermits the information obtained with each new solution to be used in the creation ofthe next. Contrast this with the generational approach in which an entire populationof solutions is generated at once, without regard for the results of preceding newsolutions. An algorithm with the freedom to use preceding results to bias successivesolutions would have to be able to do at least as well as this; in the worst case it couldjust ignore all preceding solutions in the current generation. Direct comparisonsbetween generational and steady-state algorithms in the literature are sparse, butsee [29, 80, 26, 85, 47].II.B.2 Lamarckian vs. DarwinianA central issue in an EA+LS is how to use the results of LS. An algorithmdrawing inspiration from biological evolution might use the new �tness value for pur-poses of selection, but would not carry the new solution itself into the next generation.In other words, local search a�ects selection, but does not modify the genotype. Thisso-called Darwinian evolution respects the notion that changes which occur during alifetime (analogous to local search in our case) cannot be genetically propagated tofuture generations.As algorithmic engineers, we often are not bound by this restriction. Inmany EAs with LS, the new locally optimized solution replaces both the genotypeand the �tness of the old solution in the population. This so-called Lamarckianevolution does not occur in nature because of the di�culty of reverse transcription of



28phenotypic traits back onto the genotype.1 For directly encoded optimization tasks,this does not usually present a problem. Local search acts on the same representationas the genotype, and so the \reverse transcription" in this case is just copying thebitstring representation.The question of whether to be Lamarckian or Darwinian in practice hasgenerally received little attention in the literature. Sometimes the Darwinian choiceis forced; this might occur if the genotypic and phenotypic spaces are substantiallydi�erent. For example, there may be a developmental process during which a geno-type is \decoded" into a phenotype. The inverse of this mapping may be impracticalor impossible to compute, and hence changes which occur to the phenotype beforereproduction cannot be mapped back to the genotype. For a general discussion ofdevelopment and Lamarckian issues in evolutionary algorithms see [36] and [35]. Ex-amples of such developmental systems include developmental neural networks [30],grammar-based sorting networks [50], stochastic grammars [49], cellular automatarules [55], and virtual block creatures [76].Furthermore, it may be the case that LS produces solutions for which thereis no genetic encoding. As an example, in a protein folding application, Hart used agenetic representation which coded for discrete bond angles (60o increments), whereaslocal search was performed over the real domain [38, p. 107]. Another example is thatof evolving neural network weights as starting points for backpropagation [8]. Therange of weights which could be genetically encoded was only a restricted subset ofthe weights which backpropagation could lead to. The genetic representation in bothof these examples is not expressive enough to encode the results of local search, andso Darwinian evolution has to be used.Despite the above concerns, Lamarckianism is often an option for optimiza-tion applications. This is because current practice is usually to have a genetic rep-resentation which directly encodes solutions (no development, so genotype equals1But note that in recent years it has been observed that some simple bacteria seem to be able todirect mutations in response to the environment [11]. Though not quite Lamarckian (the bacteria donot individually adapt themselves to the environment, only their o�spring), it is one way in whichthe strict Darwinian view is violated.



29phenotype), and which allows all possible solutions to be encoded. There is no ob-stacle to using Lamarckian evolution, and the issue is simply whether this leads tobetter performance than Darwinian evolution. In such a case Lamarckian evolutionis generally used in practice. It makes more intuitive sense, as the Darwinian al-ternative constantly throws out much of the results of the expensive local searches.Also, Lamarckianism has been seen empirically to do better on some instances ofboth continuous problems [38, 56] and combinatorial problems [2]. However, Whitleyet al. [84] have shown that there do exist discrete optimization instances for whichDarwinian evolution is more likely to �nd the global optimum, though it is muchslower to converge.Go-With-the-Winners Darwinian?Another viewpoint on this issue can be had by considering the Go-With-the-Winners algorithm of Aldous and Vazirani [3]. In particular, a variant of this byCarson and Impagliazzo [14] is illustrative. In this search algorithm, a populationof solutions is maintained. At any point, all members of the population are betterthan some threshold �tness, which gets more restrictive as the search progresses (seeSection I.A.3). At each step, each solution does a random walk on the search graph,restricted by the current threshold. The length of this random walk is su�cientthat the solutions in each component of the search graph are e�ectively uniformlydistributed within that component. This uniformity is critical for �nding the globaloptimum. The relative \�tnesses" of the solutions don't matter as long as they arespread out evenly. This is more similar to Darwinian evolution than Lamarckian. Ifwe make the analogy that a local basin is like a connected component, with localsearch playing the role of the random walk, then Darwinian evolution is concernedwith keeping solutions which are \connected to" (in the same basin as) good solutions,but does not keep track of the good solutions themselves.



30II.B.3 Local Search SelectionA key feature of the use of LS in an EA is that it need not be applied toevery solution in the population. In many cases, applying LS to as little of 5% of eachpopulation results in faster convergence to good solutions. This somewhat surprisinge�ect was �rst observed by Hart [38, Chapter V], and has since been con�rmed byothers in di�erent contexts [71]. See Section II.A.3 for more details.In light of this observation, the question naturally arises as to how best toselect the solutions which will undergo LS. Typically solutions are chosen uniformlyat random from the population, but this is not the only possibility. This issue oflocal search selection is distinct from reproduction selection, though they are similarin form: both involve choosing a subset of the population. The di�erence lies in whatthis subset will be used for, and therefore how it should be chosen.An obvious method for LS selection is to use the same procedure that re-productive selection uses, namely biasing towards the selection of '�t' solutions. Thisapproach has been used for the MAX-SAT problem by Grundy [31] and for contin-uous optimization by Hart [38, Chapter V], though it is usually not used for fear oflosing diversity too quickly. Another approach, investigated by Hart in [38, Chap-ter V] is to choose diverse solutions, hoping to use LS on a representative sample ofthe population and to avoid premature convergence. See Section III.C.3 for a morethorough discussion of these methods.II.B.4 Simulated Annealing vs. EA+LSGiven the widespread use of the simulated annealing algorithm, and thefact that it has both global and local search behaviors, it is natural to compare itwith EA+LS. What problems are best handled by SA and what problems are besthandled by EA+LS? Unfortunately, it is very di�cult to make informative empiricalcomparisons between the two algorithms. Each requires a fair amount of practitionerskill (for example setting the genetic operator probabilities for EA+LS, or choosing



31an annealing schedule for SA), and the two sets of practitioners are largely disjoint.An implementation of one of the algorithms by a non-expert will always be suspectfrom the point of view of an expert.Nonetheless, empirical comparisons have been made ([16, 42, 83]) with mixedresults. One of the aims of this dissertation is to make a strong, detailed comparison.A well-known and respected empirical study of SA on graph bipartitioning ([44]) istaken to be an \expertly done" SA baseline. The same problem instances are attackedby the EA+LS here; see Section IV.A for details.Theoretical comparisons are also di�cult to come by. One result by Hart [34]shows, given some conditions, that EAs have a higher probability of �nding a globaloptimum if both algorithms are run for long enough (measured by number of potentialsolutions considered). However, \long enough" may be impractically long, perhapslonger than the the time required to search the entire search space.It is possible to gain some insight by considering what is known about SA.Sorkin has shown [79] that SA can be expected to work well roughly when the heightof the barrier between any two adjacent basins is proportional to the di�erence in�tness between the basins' optima. This ensures that the temperature scale is al-ways appropriate. For example, two local optima whose �tnesses are nearly equalcannot be e�ectively distinguished by SA until the temperature gets low. But at lowtemperatures SA is unable to climb out of large basins. So in order to compare thetwo optima, the barrier between them must be correspondingly low. Note that theEA+LS does not su�er from this problem: if the global operators (recombination andmutation) are working as expected, they will make changes large enough to escapefrom local basins. This suggests at least one type of problem where EA+LS mightbe expected to outperform SA.



Chapter IIIIntuitions and ArgumentsIn this chapter we present our view of several issues relevant the EA+LShybrids. Section III.A makes a connection to the some complexity theory results,including the Polynomial-Time Local Search complexity class. In Section III.B welay out some assumptions about how search progresses in an EA+LS algorithm.Section III.C discusses how the role of standard EA operators changes in the contextof local search, and how these operators may be modify to complement LS.III.A LS Complexity Theory ArgumentsOne advantage of working on combinatorial problems is that we can po-tentially exploit knowledge gained from complexity theory. General results regardinglocal search (speci�cally work on the Polynomial-Time Local Search complexity class)imply that local search itself can be intractable. This obviously raises concerns aboutany global search algorithm which applies LS multiple times. We will review the the-ory below, and argue that it is not directly relevant for our purposes. Furthermore,for many problems of interest (including restricted versions of graph partitioning,TSP, and MAX-SAT) a simple complexity argument provides justi�cation for the useof a heuristic method such as an EA to provide starting points for LS.Consider any optimization algorithm which operates by applying a LS sub-32



33routine to a succession (or set) of generated starting points. To simplify this argumentassume that the LS method is deterministic, so that local basins are well-de�ned, i.e.every solution in the search space corresponds to exactly one local optimum underthe given LS method.How quickly can a starting point be found from which LS will produce anoptimal solution? Put another way, how hard is it to identify any single point in alocal basin corresponding to a global optimum? The answer obviously depends on thecharacteristics of the original problem, call it L. In some cases this question is easyto answer. If the original problem L can be solved in polynomial time, for example,then such a starting point can be found in polynomial time. The global optimum willsu�ce. More di�cult to analyze is the case where L is NP-complete. If we assumefor the moment that any given execution of the LS method is guaranteed to completein polynomial time, then no polynomial time algorithm can �nd an optimal startingpoint, unless P = NP; if there were such an algorithm we could solve L in polyno-mial time. So with a polynomial time LS method for an NP-complete problem, anypractical algorithm for choosing starting points must be heuristic.III.A.1 Cases where Local Search is EasyNote that the number of improving steps made by a LS is bounded by thenumber of distinct solution costs. If there are at most a polynomial number of suchcosts, and if the size of any neighborhood and the time to compute a solution costare also polynomially bounded, then the LS algorithm will complete in polynomialtime. In particular, binary graph bipartitioning, an NP-complete problem and amajor test domain for this dissertation, completes local search in polynomial timewhen using polynomial size neighborhoods. This follows from the fact that the mini-mum cost of a partition is 0 and the maximumcost is n2=4. To see this note that thereare n=2 nodes in each set of the partition. If every node in each set is connected to



34every node in the other set (the worst case) then the partition cuts (n=2)(n=2) edges.Furthermore, if LS explores unbalanced partitions (as some common neighborhoodsfor graph partitioning do), the maximum partition cost is no larger: if the two sets ofthe partition have n=2�k and n=2+k nodes, and if every node in each set is connectedto every node in the other set, then the partition cuts (n=2�k)(n=2+k) = n2=4�k2edges. Finally, note that computing the cost of a solution takes polynomial time, andwe have:Lemma 1 Any local search algorithm employing polynomial size neighborhoods onthe binary graph bipartitioning problem completes in polynomial time.Note that the standard neighborhoods for bipartitioning, including all neigh-borhoods examined in this dissertation, are polynomial size. These include swap-ping any two nodes, moving a single node across the partition (allowing unbalancedpartitions), and the somewhat more complicated neighborhood associated with theKernighan-Lin algorithm [51] (and see [45]).This is not all we can say about problems for which local search is easy. Otherexamples in which the number of distinct solution costs is polynomially bounded(and hence for which local search takes at most polynomial time) include weightedinteger graph partitioning where the edge weights are bounded by a polynomial in theinstance size, TSP with integer edge weights polynomially bounded, and MAX-kSAT.The proofs for each of these are simple, and are given in turn below.De�ne integer poly-weighted graph k-partitioning (IPWGPk) to be the prob-lem of graph k-partitioning (dividing a graph into k equal size subsets so as to min-imize the total weight of the edges between subsets) restricted to classes of graphswhich have nonnegative integer edge weights which are bounded from above by somepolynomial in the number of nodes. Note that this includes the binary graph bipar-titioning problem discussed above, and hence is still NP-complete.Lemma 2 Any local search algorithm employing polynomial size neighborhoods onIPWGPk completes in polynomial time.



35Proof: It su�ces to show that the number of distinct solution costs is polynomiallybounded. Since all edge weights are nonnegative integers, the cost of any partition willbe a nonnegative integer, and hence we need only show that the maximum possiblepartition cost is polynomially bounded.Let n be the number of nodes in the graph. For a given k-partition, each ofthe subsets contains n=k nodes. Hence the number of edges from nodes in a particularsubset to nodes not in that subset is (n=k)(n � n=k). Multiplying by k to accountfor the edges from each subset, and dividing by 2 to correct for duplicate countingof edges, there are a total of (k=2)(n=k)(n � n=k) = n2(1 � 1=k)=2 edges betweensubsets. Since each particular weight is bounded by a polynomial p(n), the total costof any partition is O(n2p(n)). 2Similar to the above, de�ne integer poly-weighted TSP (IPWTSP) to be TSPrestricted to classes of graphs which have nonnegative integer edge weights which arebounded from above by some polynomial in the number of nodes. Note that thisproblem is still NP-complete for non-trivial polynomials since TSP is strongly NP-complete.Lemma 3 Any local search algorithm employing polynomial size neighborhoods onIPWTSP integer poly-weighted TSP completes in polynomial time.Proof: As before, it su�ces to show that the maximum possible tour cost is polyno-mially bounded. Let n be the number of nodes in the graph. Then the cost of anytour is the sum of n edge weights. Since each weight is bounded by a polynomialp(n), the cost of a tour is O(np(n)). 2Lemma 4 Any local search algorithm employing polynomial size neighborhoods onMAX-kSAT completes in polynomial time.Proof: It su�ces to show that the number of distinct solution costs is polynomiallybounded. But given that the solution cost is the number of clauses satis�ed, this



36follows immediately from the fact that there are O(nk) possible k-clauses over nvariables. 2Lemmas 2-4 are not meant to be a complete characterization of the problemsfor which local search is easy. Rather they are quick results about some of the mostcommon problems in combinatorial optimization.III.A.2 Polynomial-Time Local Search Complexity ClassDespite the above results for various combinatorial optimization problems,local search methods cannot always be guaranteed to run in polynomial time. In fact,the subject of the computational complexity of local search has received much atten-tion in the literature since it is a general approach which has often been quite e�ec-tive empirically. The basic theoretical work involves the complexity class Polynomial-Time Local Search (PLS) and is described by Johnson, Papadimitriou and Yannakakisin [45]. In this paper the class PLS is de�ned to be the class of search problems asso-ciated with �nding a local optimum for a given problem and neighborhood structure.More formally, a problem L is a PLS-problem if the following conditions hold:� Each instance x of L has a �nite number of solutions of polynomial length.� There exists a cost function c(s; x) returning a nonnegative integer for eachsolution s of x.� There is a neighborhood function N(s; x) returning a set of solutions to x (calledthe neighborhood of s)� Finally, there exist three polynomial time algorithms A, B, and C, such that:1. Given an instance x of L, A(x) returns some solution s of x.2. Given an instance x and a solution s, B(s; x) determines if s is a solutionof x, and if so returns the cost of s, c(s; x).



373. Given an instance x and a solution s, C(s; x) returns another solution s0 2N(s; x) with a better cost (i.e. c(s0; x) < c(s; x) in the case of minimization)if such a solution exists. Otherwise it reports that no such solution exists.Roughly this de�nition includes any discrete problem with nonnegative inte-ger costs for which standard \nice" assumptions hold (polynomial size representationsand neighborhoods, polynomial time cost function, �nite search space). In particular,integer graph partitioning, integer TSP, and MAX-SAT are included given suitableneighborhood structures.It is important not to confuse the previous subsection about local searcheswhich complete in polynomial time with the current topic. The perhaps unfortunatelynamed PLS class is about problems in which a single step of local search takes poly-nomial time, and includes problems for which the number of such steps performedduring a local search is not necessarily polynomial.The main result about PLS problems is that simply �nding any local op-timum (as de�ned by the algorithm C) can take longer than polynomial time. Theclass of search problems for �nding any local optimum of a PLS problem is also knownas PLS. It is known that PLS contains PS, the class of search problems computablein polynomial time, but it is thought that PLS is not equal to PS [45].This fact does not directly address the issue of using LS in conjunction withan EA. In an EA setting, we would like to know how quickly LS (or some otheralgorithm) can �nd the particular local optimum associated with a given startingpoint (under the local search algorithm de�ned by C, for instance). The PLS resultdoes at least tell us that this cannot, in general, be done in polynomial time.In fact, it is known that for some problems, there are instances and startingpoints for which local search takes exponentially many steps. Such instances arise, forexample, in TSP under the 2-change neighborhood [58]. Hop�eld neural networks arealso subject to potentially exponential settling times ([65, Chapter 10] and [64]). Evenworse for practitioners, it turns out there exist PLS problems and starting points sfor which it is NP-hard to �nd the local optimum associated with s, given a function



38C. In other words, it's not just that the local search procedure is brain-dead; noalgorithm can perform its task in polynomial time (if P 6= NP). This is shown by aconstruction based on SATISFIABILITY in [45].These results appear to counter our complexity argument for why EAs aresuitable for choosing LS starting points. If LS itself can take more than polynomialtime, then even if the EA works perfectly (e.g. quickly �nds a starting point in anoptimal basin) we may not succeed. However, this does not necessarily argue againstthe EA, as no other method for choosing starting points will alleviate this problemeither. Furthermore, as noted in [45], these worst-case local searches seem only to arisefor perverse or contrived instances and starting points: for example, in TSP using the2-swap neighborhood, the only known examples of exponentially long LS sequencesare for complex contrived instances, and no such instances are known for the �-swapneighborhood with � > 2. Empirically observed LS lengths from random startingpoints on more natural instances typically grow as low-order polynomials [57, 66].Indeed, as we have shown in the previous subsection, under reasonable restrictions ofcommon problems local search can be guaranteed to take only polynomial time.III.B Operating Assumptions about EA+LSThis section will try to make explicit our assumptions about how EA+LSalgorithms operate. We will consider the ways in which LS interacts with the globalsearch, what roles it �lls, and what it should do for us. For the most part thesecomments will apply to both the continuous and combinatorial cases, but exceptionswill be noted.1. LS searches within basins, the EA searches over basins. As previously noted,Hart has observed that this is not always true or even desirable in the continuoussetting. It is a true statement, however, in the combinatorial case. The questionthen becomes how to ensure that the EA e�ectively chooses basins, while relyingon LS to do re�nement.



392. The EA should not generate multiple solutions in the same local basin. Anytime LS is done from multiple points in the same basin there is the potentialfor wasted e�ort. For instance, in the case of complete LS and Lamarckianevolution we will end up with two population members which are exactly thesame, and this is unlikely to help the global search. It will not be practicalto entirely prevent such an event from ever occurring, but this principle canin
uence the design of the EA.3. The minimum scale of the evolutionary operators should be the same as the sizeof local basins. This means that the genetic operators (especially mutation)should modify solutions at least enough to move them out of their currentbasins. This is related to the above point. Mutations which move solutionsaround within a basin have little e�ect, as LS can take any point in the basinback to the local optimum. In EAs without LS, mutation can serve the role ofa re�nement operator, but this is entirely inappropriate when LS is being usedexplicitly. In this case, mutation is probably best used to search one step higherin the scale hierarchy, exploring nearby local basins.III.C Designing Complementary OperatorsWhen LS is added to an EA, it interacts with the genetic operators andalters the dynamics of the search. The presence of LS also modi�es the role that theother operators play, and allows these roles to be rede�ned to some extent. The roleof LS, its interactions with the EA, and the implications of these issues are the topicof this subsection.III.C.1 Role of LSTo understand how LS interacts with the EA, we must understand whatit does. We also have some freedom in implementing LS to re
ect what it is wewant it to do. The �rst very important observation about LS is that it is often quite



40powerful in its own right. Frequently an e�ective method for global optimization issimply to do some sophisticated LS from a succession of randomly chosen startingpoints. This method has been used, for example, to do graph partitioning with theKernighan-Lin algorithm [51], MAX-SAT with the GSAT algorithm [74, 53], and thin�lm metrology using a Levenberg-Marquardt least-squares �tter [56]. Even very sim-ple LS algorithms can often be powerful. In graph bipartitioning on random graphs,for example, random local optima under the 2-swap neighborhood are virtually guar-anteed to be substantially better than random non-optimized partitions.First and foremost, LS is a re�nement operator. It takes solutions andquickly re�nes them until no further (local) improvement is possible. Compared withthe EA itself, LS is quite e�cient at �nding the local optimum of a basin. An EAwill eventually get there, but it will take longer, as it proceeds through fortuitousmutations and occasionally selects less �t individuals for reproduction (thus movingin the wrong direction). EAs have long been known to be poor local searchers (cf.Section II.A.3).Since an EA+LS algorithm will make use of the LS algorithm many times,it is important that the LS method be relatively quick. Generally this means using asmall neighborhood. While this means the local optima found are likely to be inferiorto those found under a large neighborhood, this is more than compensated for bythe fact that many more local searches can be done (they may be used to have moregenerations or a larger population, for instance). Note that seemingly small changesin the neighborhood de�nition can result in dramatic changes in neighborhood size,and hence LS e�ciency. For and n-bit string, there are n 1-bit neighbors but O(n2)2-bit neighbors.The speed of LS is also a�ected by the method used to decide which neighborto move to. In general the �rst-improve method will be quicker than the steepest-descent method, which must always examine the entire neighborhood. To bring theseissues into focus, consider some data gathered on a 1000-node geometric graph. Anaverage 2-swap steepest descent LS examines over 62 million solutions before termi-



41nating, whereas an average �rst-improve 1-swap LS sees less than 20 thousand. Thisdi�erence is so great that an entire EA+LS run using the quick method can completebefore a single LS using the slower method. See Section IV.B.2 for a more completedescription of this data.How can we be sure the extra quality gained by a long-running LS isn'tworth the extra e�ort? It may well be worth it if we are simply going to do LS fromrandom starting points. But in our context, we are relying on the genetic operatorsto search over basins and LS to do re�nement within basins. Large neighborhoodsresult in larger local basins, and hence make the LS more global. If the price of thisis a vastly more expensive LS method, then we are better o� relying on the EA forthis global search. Even if the larger neighborhood is not more expensive, it is notclear that it o�ers a bene�t in the face of an EA search which presumably will be ableto examine nearby neighborhoods if the region looks promising. Note that this canbe taken too far: the smallest non-empty neighborhood structure is for each solutionto have exactly one neighbor. This would likely result in very small basins, and LSwould be unlikely to o�er substantial gains.Another way to view this issue is to consider the tradeo� between LS ef-fort and population size. A quicker LS allows a larger population, while using thesame total search e�ort per generation. A larger population allows a better statisti-cal sample of the search space and slows convergence of the population. These areboth potentially substantial bene�ts to the global search. A larger population alsobetter allows the EA to assume the role that a larger LS neighborhood would serve.Speci�cally, the EA is better able to explore nearby neighborhoods which would becoalesced under a larger neighborhood structure.III.C.2 Mechanisms of Global-Local InteractionThere are a number of ways in which LS can alter the dynamics of anEA search, aside from its nominal role as a re�nement operator. By returning theoptimum of each basin it examines, LS allows a better characterization of the search



42domain. If the EA is searching over basins, then its ultimate goal is to �nd thebasin whose local optimum is also the global optimum. Towards this end, it is theoptima of the basins that would seem most important for informing the EA search.On a related note, consider the sampling that an EA does in each generation. Inorder to compare basins, it would desirable if population members in di�erent basinswere somehow similarly representative of those respective basins. Figure III.1 showsa situation where an unfortunate sample is misleading with regards to which basinsare best. The local optima, of course, de�ne the value of basins, and so cannot bemisleading. In this way, LS allows a more reliable sample than random samplingwithout LS.
Figure III.1: Misleading sample of local basins: The solid dots mark the localoptima of the basins. Sampling randomly allows the possibility of being misled aboutthe relative goodness of the basins: the X's in the diagram indicate sample pointswhich are anticorrelated with the local optima.Another way LS can a�ect the global search has to do with commonalitiesacross local optima. For combinatorial problems local optima can be expected tohave many features in common [9]. As an example consider a MAX-SAT formula thathas (among others) several variables which occur exactly once. Under any standardneighborhood structure, these variables will always be set the same way by LS no



43matter what the initial assignment is. In a sense there is wasted e�ort in having LSdiscover these settings over and over throughout the course of an evolutionary run.But note that with Lamarckian evolution, these common settings will quickly cometo dominate the population and then �xate. In this sense the dimensionality of theglobal search will be reduced to the non-trivial variables. We believe that this isgenerally a bene�cial e�ect.The power of LS can sometimes disrupt the genetic search by leading to anunwarranted loss of diversity. In the case of infrequent LS (only a fraction of thepopulation gets LS in any given generation), the solutions which do get LS will likelyend up with much better �tness than the others. The �tness can be so much betterthat these solutions come to dominate the population. They may or may not actuallyrepresent better basins, but they \drag" the population in their direction nonetheless.Competing with this tendency is the notion of \delayed commitment" whichcan occur with Darwinian evolution. Consider a solution which is in a good basinbut which is not the local optimum. Its �tness will remain the same (equal to thelocal optimum) even if it gets modi�ed by genetic operators, as long as it remainswithin the basin. In e�ect, this allows it to explore the entire basin without su�eringfrom reduced �tness. Why might this be helpful? This solution can bump into all theadjacent basins, in e�ect giving it an expanded neighborhood. It can survive while itexplores a large area. This is sometimes referred to as the Baldwin e�ect.III.C.3 Biasing LS SelectionWhen doing LS on only a fraction of each population, somemethod is neededto choose those solutions which will undergo LS. Usually they are chosen uniformly atrandom, but there are more sophisticated possibilities. We will examine three othermethods of biasing LS selection: based on �tness, diversity, and \LS potential."Fitness An obvious method for local search selection is to use the same procedurethat reproductive selection uses, namely biasing towards the selection of '�t' solutions.



44Upon �rst inspection this seems to make good sense. A strawman argument in favorof this approach might go as follows: \This approach focuses LS on the best solutions,which are most likely to be in the best local basins. Also, the EA will be generatingthe next population from these good solutions anyway, so it doesn't make sense touse LS on the weak solutions which are less likely to in
uence the next generation."This argument fails because it ignores the dynamics of the EA, and theinteraction between LS and the global search. The argument might hold if LS wereto be applied during a single generation only, but the cumulative e�ect of using LSon successive generations makes the analysis more complicated. Consider, the bestsolutions in the population are likely to be those which have already had LS, or whoseparents bene�ted from LS.1 They may be good simply by virtue of previous LS, anddo not necessarily represent a better region of the search space. Biasing additionalLS towards these solutions reinforces their dominance.In this way, search focuses on the portion of the search space which happenedto get LS early on. The result is a reduced chance of exploring novel regions of thesearch space. This can be expected to lead to quick convergence to a �nal solution,but at the expense of solution quality. Additionally, if the best solutions have indeedbene�ted from LS then they are more likely to be near local optima.2 This impliesthat these solutions are the ones which will get the least bene�t from LS, and will alsobe the least \e�cient" to optimize. This is because LS generally needs to examinemore neighbors to �nd an improving solution when it is near an optimum.The above discussion can be summarized by a set of predictions about theperformance of an EA+LS using this method of local search selection. In compari-son to the random local search selection method, �tness-based local search selectionshould result in faster convergence but worse solutions, on average. Furthermore,since the course of the EA is more heavily in
uenced by the initial allocation of LS,1For example, in bipartitioning the e�ect of LS is so great that random solutions are almostcertainly substantially less �t than randomly selected local optima.2These solutions are not necessarily exactly at local optima already. They may have been gener-ated through mutation or recombination of locally optimal solutions, or they may have undergonepartial LS.



45we can predict a greater variance in solution quality from one run to the next.An interesting alternative to consider is to select less �t solutions for LS.This will likely have the e�ect of allocating LS to solutions which have not bene�tedfrom it before, and hence spreading LS to di�erent regions of the space. In contrast tothe above situation it would allow a 'fairer' comparison between diverse solutions andresult in greater exploration. However, it is hard to see how this could be superiorto random LS selection, which also allocates LS to diverse regions of the space, andwithout 'rewarding' bad solutions.Diversity In light of the above discussion of how solutions which get LS can come todominate the population, it is desirable to explore ways to prevent this. In particular,we would like to ensure that solutions from di�erent regions of the search space allget LS, otherwise the EA may bias succeeding generations towards a particular regionsimply because the solutions in other regions did not get LS. One way to approach thisis to use an explicit diversity-based LS selection method: selected solutions will be faraway from each other, and ideally span as much of the search space as the populationitself. This helps ensure locally optimized solutions cover the search space, and tendsto prevent premature convergence.Stated another way, the proper scale for the global search is the current spanof the population, and for this reason doing LS on two relatively nearby solutions maybe inappropriate. During any given generation, the EA needs to be able to compareregions as diverse as its population, and is less concerned with distinctions betweenrelatively local variants. Furthermore, selecting diverse solutions reduces the chancethat two points from the same local basin will undergo LS. This would be somethingof a waste of e�ort, especially in the Lamarckian case, as we would have two copiesof the same local optimum in the population.There are several possible ways to select a diverse set from the population.This is very similar to the diversity enforcement [60, 59] and �tness sharing [28, 61, 77]schemes which are often used for reproductive selection in EA practice. This case is



46di�erent, however, in that we are selecting a small subset of the population (withoutreplacement). In contrast, selection for reproduction typically chooses a set as largeas or larger than the population, with replacement.One approach explored by Hart [38] is the use of a generalized F-statistic.In biology, the F-statistic is used to measure the degree of inbreeding in a population.Hart adapted this notion to the case of haploid genotypes and used it to identify di-verse solutions which would become more likely to receive LS. More recent discussionswith Hart [32] have resulted in various other possible approaches.To describe these approaches formally, we introduce some notation. Let Pbe the current population. Let L be the set of solutions to be selected, on which LSwill be performed. Let jP j = n, jLj = k, and dij be the distance (according to somemetric on the search space) between solutions i and j. Consider the following threemethods to select L.1. One of our goals is to choose points which are as far away from each other aspossible, so that no two selection points are near to each other. Formally, wewant choose the set which maximizes the minimum distance between points inL: L = arg maxL�P (mini;j2L dij)2. An alternative priority is to ensure that every point in the population is nearsome solution which will get LS. For instance, if the population consists ofdistinct but tight clusters, we would ideally choose one solution from each clus-ter. This goal is not quite the same as the above, as it takes into account thedistances between selected points and nonselected points.This goal can be formalized as follows: Let L be the set which minizes themaximum distance between any nonselected solution and its nearest selectedsolution. L = arg minL�P (maxi62L minj2L dij)



473. The above two methods exactly specify L, but may not be e�cient to compute.The straightforward algorithms require O(nkk2) and O(nk+1k) time. A lineartime heuristic method is to iteratively select k points from P , making sure eachnew point is at least a distance d from any previously selected point. Theparameter d would need to be set carefully at each generation, based on thecurrent population. Setting it too high would cause the above procedure tofail, whereas setting it too low would allow choices of L which do not span thepopulation.Whichever of these methods is used, a basic prediction can be made aboutthe behavior of an EA+LS using a diversity-based LS selection scheme (in comparisonto random LS selection). Because diverse solutions are explored, it should take longerfor the population to converge, and the �nal solution can be expected to be of betterquality, on average.LS Potential Ultimately, the motivation for biasing LS selection is to choose so-lutions for which LS will be most \useful.". Roughly, the usefulness of LS on aparticular solution is based on how much information we gain about that solutionand what this tells us about the global search. The latter is usually the more impor-tant consideration in an EA context, especially during the early stages of a run. Asan example, performing a full LS on one solution is not as useful in characterizingthe global landscape as performing half-completed LS on two distinct solutions. Theformer tells us about a single point only, and does not allow a meaningful comparisonof that locally optimal point with other nonoptimized points. The latter at leastallows a fairer comparison of two points from di�erent regions.Along with usefulness, the e�ciency of LS must also be considered; solutionsthat are near their local optimum likely require more computational e�ort per unitgain in �tness than solutions which still have many improving neighbors. These issuesmotivate the use of a \LS-potential" LS selection technique, in which solutions arechosen according to their expected gain in �tness per unit of computational e�ort.



48This makes most sense in the context of partial LS, where only a given (small) amountof computational e�ort is expended for any one application of LS. The continuousanalog of this technique would be to choose the solutions with largest gradient. Inthe discrete case, we mean the expected gain in �tness over a small �xed amount ofLS (for example, 20 function evaluations), what we term LS potential.The idea is that if it can be accurately determined which solutions canbe most e�ciently improved, then these solutions will make the most e�ective useof LS. There are several complementary reasons why this should be so. The moststraightforward is that allocates LS to the solutions on which it can be of most directbene�t. In terms of simply improving average population �tness, these are the optimalsolutions to choose. Conversely, the least easily improved solutions are likely to bethose which are at or near local optima.3 Such solutions have few improving neighborsand so LS must examine many neighbors at each step.Indeed, applying LS to these nearly optimal solutions is not likely to be veryhelpful. The small gain in �tness which may be achieved is probably dominated bythe di�erence in �tness values of the various solutions in other local basins. As longas there are large di�erences between populations members which have not all beenoptimized, it is inappropriate to expend e�ort on minimal re�nement. The proposedmethod will apply LS to less optimized solutions until such time as all members of thepopulation are nearly optimal. More generally, it allows all solutions to progress toroughly the same stage of LS in their respective basins, thus facilitating comparisonsbetween them. As the population becomes more stable and the solutions get closerto the optima, this scheme automatically allows LS to progress to the next level ofre�nement, in a sense adaptively adjusting the �tness scale of re�nement.The above discussion assumes some way of determining LS potential. Howcan we estimate this in practice? A simple method would be to invert the �tnesses,assuming that the most �t solutions are most di�cult to improve, and the least �tare easiest to improve. This assumption may be roughly true in an average sense,3Obviously we should not apply LS to a known local optimum.



49but it is very crude. In reality, there are certain to be local optima which have poor�tness, and good solutions which nevertheless have can be much improved. Note thatthis method is the same as the inverse-�tness LS selection method discussed above.A more sophisticated method involves \sni�ng" the potential of each solu-tion as it is produced (though mutation or recombination). Each solution undergoesa small amount of LS (e.g. 20 function evaluations) and its �tness improvement isrecorded. This gain per unit of e�ort is taken to be its potential. In other words, weuse a measure of past LS e�ectiveness as an estimate for future e�ectiveness. Thee�ect of any future LS is recorded, and the LS potential is always taken to be the LSe�ectiveness over the most recent k function evaluations for that solution. In this wayevery population member has a LS potential associated with it which can be used toallocate future LS.This method has a couple of drawbacks. The �rst is that is may be necessaryto do a fair amount of LS to get a reliable estimate of future potential. The secondis that it may deal poorly with \saddle points," solutions which have few improvingimmediate neighbors, but which have much room for improvement a few steps away.The initial estimate may label such solutions as having very low potential, whichwould be inaccurate.III.C.4 Reconsidering Standard EA OperatorsIn light of the e�ect of LS, the standard EA may need to be reconsidered.Most obviously, small mutations don't make sense if each population member willbe locally optimized each generation. Any changes caused by mutation away from alocal optimum will be undone by LS. In this case mutation can have no e�ect withina basin. This suggests using larger mutations, at least large enough to move fromone basin to another. Such an operator has exploratory value, and in fact is similarto (small) mutation's original role, only on a larger scale.



Chapter IVExperimentsThis chapter describes a collection of experiments and discusses the results.The test problem for nearly all experiments is binary graph bipartitioning (or bisec-tion), which is described in Section IV.A along with the instance distributions usedand other details related to our experiments. In the remaining sections we comparethe EA+LS algorithm to Monte Carlo local search, simulated annealing, and theEA without local search. In Section IV.D we describe a variant of the steady-stateEA which allows �ne control over various EA parameters that are relevant to localsearch. We then present a comprehensive examination of these parameters and howthey impact the e�ectiveness of the EA+LS.Most experiments in this chapter are performed on a small (eight instances)collection of graphs of various types. We will generally be concerned with trendsacross the graphs (e.g. method A works best on all graphs, or works best only ongeometric graphs, etc.). After describing the instance classes we use (Section IV.A.1)and investigating some general properties of the graph bisection search space (Sec-tion IV.A.2), we describe the details of our experiments and data presentation inSection IV.A.3. This sets the stage for the rest of the chapter.
50



51IV.A Binary Graph BipartitioningThe main test bed for this dissertation is the problem of binary graph bi-partitioning. This is a well-studied problem in combinatorial optimization which isdi�cult enough to be of interest, yet allows a simple representation for evolutionaryalgorithms. It is an important problem in the �eld of load balancing for parallelcomputer systems, as well as for the placement of circuit components. There is alsoa well-known and comprehensive study by Johnson et al. [44] regarding the e�ective-ness of simulated annealing on various instances of this problem. In Section IV.E.1we compare the performance of the EA+LS with simulated annealing as describedby Johnson et al.The general graph k-partitioning problem is de�ned for an undirected graphG with weights edges E and nodes V . The goal is to �nd a partition of the nodesinto equal-size subsets so as to minimize the sum of the weights of all edges whichconnect nodes from di�erent subsets. More formally, de�ne a k-partition of V to bea set of k subsets, Vi � V , for i = 1 : : : k, such that Si=1:::k Vi = V , Vi TVj = ; fori 6= j, and jVij = jV j=k for i = 1 : : : k. Then the problem is to �nd a k-partition of Vwhich minimizes Xv2Vi;w2Vj;i6=jw(v;w):We will be looking a subclass of this, namely binary graph bipartitioning.In this case, partitions contain only two subsets (k = 2), and all edge weights areeither zero or one. We will sometimes say a graph has or doesn't have a particularedge to mean the edge has a weight of one or zero, respectively.Both general graph partitioning and the binary bipartitioning version areNP-complete, but there are positive results concerning how good an approximation ispossible with polynomial-time algorithms. Saran and Vazirani show that the generalproblem is approximable to within a factor of jV j=2 [72]. A more encouraging resultdue to Arora, Karger and Karpinski [4] is that for binary graphs in which every vertexhas degree �(jV j), bipartitioning has a polynomial-time approximation scheme. An



52interesting question is what happens to the complexity of the problem when a penaltyterm is added for unbalanced partitions. Note that if the weight on the penalty islow enough (e.g. zero) then the problem is equivalent to MIN-CUT, which is in P.Methods for solving graph bisection can be classi�ed according to howquickly they run and the quality of the solutions produced. The quickest meth-ods which produce high-quality solutions simply apply local search from randomlychosen starting points. Section IV.B explores this technique in some detail. Somefairly recent techniques which quickly produce very good solutions are hierarchicalclustering [40] and spectral methods [75, 67, 10, 39]. When speed is not crucial andit is important to �nd the best partition possible, simulated annealing is generallyused. Like simulated annealing, the EA+LS is a long-running method which aims toexplores to entire domain. Hence, we consider simulated annealing to be the mostappropriate method to compare against. This comparison is made in Section IV.E.1.Go-With-the-Winners is an even slower technique which may be able to �nd evenbetter solutions. We compare this to the EA+LS in Section IV.E.2.There is a natural representation for graph bipartitioning in the context ofan evolutionary algorithm. The genotype is simply an array of jV j bits, each bit in-dicating which subset that node is a member of. There are a couple of issues arisingfrom this simple scheme. The �rst is that there are two equivalent representationsof any partition; 
ipping all bits gives the same partition but results in a bitstringwhich is maximally far away in terms of Hamming distance. Where we discuss suchdistances, we will often \normalize" partitions so that they are closer together. Thesecond issue regards the fact that the representation of a valid partition must havean equal number of ones and zeros. Generic genetic operators such as single-pointcrossover or bit-
ipping mutation do not preserve this property, and so produce in-valid partitions. We will have to use more specialized operators to avoid this. SeeSection IV.C.2 for details.When doing local search, we will usually be searching over the unbalancedsearch space, which includes invalid partitions (unequal subset sizes) as well as valid



53ones. In order to bias search towards the balanced partitions, a penalty is added tothe �tness which increases with the degree of imbalanced. Following Johnson et al.,the penalty we use is 0:05(jV1j � jV2j)2. The leading constant 0.05 was found to allowfor good good solutions to be quickly found in the context of simulated annealing [44].IV.A.1 Graph Instance DistributionsWe examine partitioning on three classes of binary graphs, random, randomgeometric, and planted bisection graphs. Several instances of the �rst two were studiedin [44]. All of those instances are among those we examine with local search (cf.Section IV.B), and several of them are used for the comprehensive examination ofEA+LS in Section IV.D. Planted bisection graphs are more easily understood, andhave been analyzed by Carson and Impagliazzo [13].Random A random graph of size n is generated by considering all pairs of nodes,and including an edge for each pair with some �xed probability p. The expecteddegree for each node is then (n� 1)p. Johnson et al. use graphs of size 124, 250, 500,and 1000, with expected degree 2.5, 5.0 10.0, and 20.0 for each size.Geometric To generate a random geometric graph of size n, n points are generateduniformly at random over the unit square. Each point corresponds to a node in thegraph. Any two nodes which are within Euclidean distance d of each other areconnected by an edge. The expected average degree is related to the parameter d.Note that a circle of radius d inside the square is expected to enclose n�d2 points, sothis is a rough approximation of the average degree for relatively small values of d.Points nearer to the edge of the square will obviously have smaller expected degree.Johnson et al. use graphs of size 500 and 1000, with expected average degree 5.0,10.0, 20.0, and 40.0 for each size.Planted Bisection A planted bisection graph is one in which a desired bisectionis purposefully embedded in an otherwise random graph. Speci�cally, each pair of



54nodes is connected by an edge with probability q if the nodes are on opposite sides ofthe partition, and probability p if on the same side. By following this procedure withp > q, we can generate graphs which are biased towards the desired partition havingminimal cost. If p is su�ciently large in comparison to q, then with high probabilitythe desired partition is the actual global minimum [13]. Such graphs have a verysimple global structure, and the global optimum can often be found by performinglocal search from random initial partitions. Carson and Impagliazzo have describedranges of p and q for which this is least likely [14]. We examine two graphs, of size250 and 500, with p = 32=n and q = 18=n for each. Hence, these graphs have averageexpected degree 25, (16 edges on the same side of the partition, 9 going across thepartition).In preliminary experiments using local search (Section IV.B), we examineall 24 graphs from the Johnson study, the two planted bisection graphs mentioned,plus one additional random geometric graph with size 250 and expected degree 20.0.For the more comprehensive EA+LS experiments (Section IV.D), we examine thesmall (500 nodes or fewer) random and geometric graphs with degree 20 as well asthe two planted bisection graphs.From this point on, the following notation will be used to refer to the variousgraphs: a single letter denoting the type of the graph (r for random, g for geometric,or p for planted bisection), followed by the number of nodes in the graphs, followed bythe expected average degree. For example, the geometric graph with 500 nodes anddegree 20.0 is referred to as \g0500.20."1 The planted bisection graphs are designated\p0250.9+16" and \p0500.9+16," to emphasize the distinction between edges goingacross the partition and those on the same side.1Note that this notation is somewhat di�erent from that used by Johnson et al. In particular,they use g and u for the random graphs and geometric graphs, respectively. Furthermore, for therandom graphs, their label speci�es the value of p used instead of the expected degree. Hence, theirg0500.04 is our r0500.20.



55IV.A.2 Free Nodes and Node A�nitiesAn important feature of all the graphs we examined is that their searchspaces possess plateaus of same-�tness partitions. When considering the unbalancedsearch space with �tness penalty, these plateaus translate to regions with many bal-anced local minima of equal �tness separated by small barriers. These regions areproblematic for local search, as it quickly gets stuck in one of these tiny \artifac-tual" local basins, as opposed to exploring the real structure of the search space.Section IV.D.3 illustrates how this leads to di�culty in de�ning local basins anddetermining their characteristic sizes.Free Nodes Consider the case of free nodes, or nodes of degree zero. Several ofthe low-degree random graphs used by Johnson et al. have many free nodes. In anypartition in which the set of free nodes is split among the subsets of the partition,the free nodes can be moved about or interchanged without a�ecting the cost of thepartition. Furthermore, the resulting partitions are not di�erent in any way that isrelevant to the global search. Figure IV.1 displays part of a graph with free nodes, anda corresponding �tness landscape. Free nodes a and b can be placed on either side ofthe partition without a�ecting the cost, other than perhaps incurring the imbalancepenalty. If there are k free nodes to split evenly by the partition, there will be equiv-alence classes of partitions, each with �k2� partitions having the same cost. Theseequivalent partitions are adjacent to each other in balanced search space, and are twomoves apart in unbalanced space. In unbalanced space, the immediate neighbors ofany balanced partition include equivalent partitions with the same cost, except thatthey are penalized by the imbalance penalty. Hence, there may be a \plateau" withmany equivalent size one local basins, artifacts of the unbalanced space and penalty.The bottom half of Figure IV.1 shows such a situation. Unfortunately, local searchwill settle into one of these and stop instead of exploring the structure of the actual(balanced) partition space.
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LS step rebalancing
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Penalty for imbalance

Figure IV.1: Part of a graph and �tness landscape: Nodes a and b are freenodes, while node c has a�nity zero. The bottom half of the �gure displays a �tnesslandscape, with unbalanced partitions represented with bold lines.



57This e�ect also complicates the analysis of graphs and certain algorithmssuch as simulated annealing. In Section IV.E.1 we examine the \basin-�nding be-havior" of simulated annealing, how frequently it switches basins and discovers newones as temperature decreases. The proliferation of equivalent basins makes it moredi�cult to interpret the results there. Alternatively, in Section IV.D.3 we attemptto measure the average basin size of various graphs in order to better design geneticoperators. This endeavor is also complicated by the same e�ect.Node A�nity Besides nodes of degree zero, there may be other \pseudo-free"nodes in a graph which can move between sets without a�ecting the partition cost,depending on the current partition. These nodes lead to a similar e�ect as thatdescribed above. Signi�cantly, however, moving these nodes around may a�ect thepossibilities of future improvement, and so the resulting partitions are not truly equiv-alent in terms of the global search. We will de�ne a node a�nity, where nodes witha�nity zero play a similar role to the degree zero nodes above. These nodes arise bothfor the low-degree graphs and also the higher-degree graphs, which have no nodes ofdegree zero.In the context of a given partition of a graph, a node's a�nity is the numberof edges it has to nodes on the same side of the partition, minus the number of edgesto nodes on the the opposite side:a�n(v) = jv;w 2 E;w 2 V1j � jv;w 2 E;w 2 V2j;where v 2 V1. Alternatively, it is the change in cost associated with moving the nodeto the other side of the partition. Intuitively, this describes the a�nity a node has forthe side of the partition it is currently in. Degree zero nodes always have a�nity zero,whereas the a�nity of all other nodes will depend on the current partition. Localsearch will only move nodes with a�n � 0. In this sense, a�nity also describes howmuch about the current partition has to change before a given node can be moved.The concept also plays a role in simulated annealing, where the probability of movinga node is inversely correlated with its a�nity. In Section IV.E.1 we present results



58con�rming these intuitions.Nodes with a�n = 0 are interchangeable just as nodes of degree zero are,subject to the possible change in a�nities once nodes start moving (for example,two nodes with zero a�nity can each be moved independently without a�ecting thecost, but if they are connected, then moving one will a�ect the a�nity of the other).Therefore, they lead to similar regions of degenerate local basins containing roughlyequivalent partitions. In this case, the di�erent partitions may actually be di�erentwith regards to the global search. Nevertheless, the same problem of local searchgetting stuck quickly results. A couple of examples of common situations where nodewith zeros a�nity arise are shown in �gures IV.2 and IV.3.
A

BC

A

C BFigure IV.2: Node with a�nity zero: Node (A) has degree two, and is connectedto neighbors (B and C) in opposite sets. Node A switches sets without changing thecost. The partition cuts vertically, so that nodes to the left and right of the dashedline are in opposite sides of the partition. B and C may be connected to other nodesnot shown, but A is not. A therefore has a�nity zero.
A BA

C C

B BA

D C D DFigure IV.3: Pair of nodes with a�nity zero: Pair of nodes (A and B) connectedto each other, and to nodes (C and D) on opposite sides of the partition. Nodes Aand B switch sets without changing the cost. A and B both have a�nity zero in theleftmost diagram. Note that longer chains of degree two nodes would allow even morepartitions with equal cost.



59IV.A.3 Experimental Details and Data PresentationMost experiments in this chapter are performed on a small (eight instances)collection of graphs of various types. We will generally be concerned with trendsacross the graphs (e.g. method A works best on all graphs, or works best only ongeometric graphs, etc.). Hence, data for all eight graphs will be plotted side-by-sidein a single �gure (see Figure IV.4 for an example). The plots are arranged so that thethree plots on the upper left side are for the random graphs, with graph size increasingdown the page. The three plots on the upper right side are for the geometric graphs,with graph size and/or degree increasing down the page. Finally, the bottom twoplots are for the planted bisection graphs. These classes of graph instances, as wellas the particular instances used, are discussed in Section IV.A.1.The data displayed in the eight-plot �gures is usually the performance ofEA+LS as a function of time. Unless otherwise stated, the data shown will be the�tness of the best solution in the population, averaged over ten runs. For a givenalgorithm and graph instance the ten runs will di�er only in the initial random seedused, but the same group of ten seeds is used for all groups of runs. When present,error bars will always represent the standard error over the ten runs (note that errorbars are almost always used if not otherwise stated, though they are often too small tobe seen). Wherever we report signi�cance results for comparisons on a single graph,we use a one-way analysis of variance (two-tailed Student's t-test) with con�dencethreshold 0.05.Each �gure also displays the best known solution and the average solu-tion found by simulated annealing, when these are available. Speci�cally, simulatedannealing data is available for the three random graphs (r0124.20, r0250.20, andr0500.20) and the two larger geometric graphs (g0500.20 and g0500.40). The aver-age SA solution is displayed with a dashed horizontal line for these graphs. For thegeometric graphs, Johnson et al. [44] have developed specialized bisection techniqueswhich �nd substantially better solutions than simulated annealing. The �tness ofthese solutions is displayed with a solid horizontal line for g0500.20 and g0500.40.



60Finally, we can calculate the expected �tness of the best solution for the planted bi-section graphs. This value is displayed by a solid horizontal line for two p0250.9+16and p0500.9+16.When considering performance as a function of time, our metric of time isthe number of function evaluations used. Here, we consider every solution exam-ined to be a function evaluation. Note that for many problems (including graphpartitioning) there are e�cient ways to incrementally update solutions when smallchanges are made (as in local search or simulated annealing, for example), so that thecomputational e�ort required to evaluate solutions may vary greatly depending onhow the solution is created. Nevertheless, we stick with function evaluations as ourmetric, as we hope for our conclusions to speak generally about global/local searchissues rather than about graph partitioning in particular. The number of solutionsconsidered is a concrete metric which can be applied to any problem in a straightfor-ward manner. Furthermore, even for comparisons within graph partitioning, we caneasily compare general methods without regard for the implementation details of thealgorithms employed.IV.B Monte Carlo Local SearchIn order to determine the properties of the graph instances, as well as thevarious local search methods, a series of \Monte Carlo local search" experimentswas performed. For several graph instances, six local search methods are applied to1,000 randomly generated partitions. Measurements gathered about each local searchinclude the number of partitions considered and the decrease in partition cost.IV.B.1 Local Search MethodsThree neighborhood structures are examined, and both steepest descent and�rst-improve search techniques (described in Section II.A.2) are examined for each,giving a total of six LS algorithms. The three neighborhood structures used are



61balanced, unbalanced, and half-balanced.Balanced Under the balanced neighborhood structure, the neighbors of a partitionare simply all partitions which can be reached by swapping any two nodes fromopposite sides of the partition. In this case, all neighbors of a balanced partition arealso balanced, and the search is conducted over balanced partitions only. Since eachside of the partition has n=2 nodes, the neighborhood size is (n=2)2, where n is thesize of the graph.Unbalanced The unbalanced neighborhood structure allows as neighbors all par-titions (balanced or unbalanced) which can be obtained by moving a single node tothe opposite side of the partition. A penalty term is added to the cost of unbalancedpartitions (with penalty increasing quadratically with respect to degree of imbalance;see Section IV.A for details) to focus the search on \nearly balanced" partitions.In practice, however, the search can proceed for many steps without examining anybalanced solutions. Note that this neighborhood structure has much smaller neigh-borhoods than the balanced structure (size n vs. (n=2)2), and hence can be expectedto allow for quicker local search.A few important subtleties arise from allowing unbalanced partitions. First,there is no guarantee that the �nal local minimum found under this structure willbe a legal (i.e. balanced) partition. In order to get a legal solution, then, the �nalunbalanced partition is brought back into balance one node at a time. This is donegreedily, so that at each step, the node from the larger side of the partition whichresults in the best partition cost is moved. It sometimes happens that the balancedsolution obtained in this way is inferior to a balanced partition which was seen earlierduring the local search (this can happen because the search through unbalancedsolutions reached a portion of the search space with inferior balanced solutions, orsimply due to the imperfect nature of the greedy rebalancing). For this reason thebest balanced partition seen during the local search is retained, and returned if it isbetter than the �nal (rebalanced) partition.



62In this sense the �nal solution returned by local search may not actuallybe a local minimum. The �tness landscape of Figure IV.1 is illustrative. If the localminimum found has to be rebalanced, the resulting balanced partition will likely haveworse cost than the unbalanced local minimum. Moreover, it will likely not be a localminimum in the unbalanced neighborhood structure. It may even be the case thatperforming an additional local search from this �nal partition would result in a betterbalanced partition. In the �gure this is labeled as a \false minimum." However, sinceLS is nondeterministic, it would not be possible to check for false minima withoutperforming all possible local searches, of which there could be combinatorially many.For this reason, no attempt is made to reoptimize or verify the �nal result of a localsearch.Half-balanced The third neighborhood structure examined, the half-balanced struc-ture, is a compromise between the balanced and unbalanced structures. For a bal-anced partition the neighbors are the same as for the unbalanced structure, namelyall partitions which can be obtained by moving a single node to the opposite side ofthe partition. For partitions which are a single node out of balance, the neighbor-hood consists only of those balanced partitions which can be obtained by moving asingle node. In other words, as the local search proceeds, the current solution will bealternate between being balanced and being one node out of balance.The half-balanced structure has the same quickness advantage as the un-balanced structure, due to its small neighborhood size: balanced partitions have thesame neighborhood under both structures (size n), but unbalanced partitions have aneven smaller neighborhood under the half-balanced structure (size n=2). It also hasthe advantage of keeping the search tightly focused on balanced partitions, avoidingsome of the problems mentioned for the unbalanced structure. It should be noted,however, that even this structure allows for the possibility of the �nal partition notbeing an actual local minimum.The six local search methods are described by the three neighborhood struc-



63tures balanced (B), unbalanced (U), and half-balanced (H), under either steepestdescent (S) or �rst-improve (F). Henceforth, the six methods will be labeled BS,BF, US, UF, HS, and HF.IV.B.2 ResultsThe experiments were performed on 27 separate graphs. These include the24 graphs used in [44] plus three more generated for purposes of this study. For eachgraph instance, the six local search methods described were applied to 1,000 randomlychosen initial partitions.Properties of graphsTables IV.1-IV.18 show the partition cost (average and best), average num-ber of evaluations, and the number of distinct local minima found (out of 1,000 localsearches) for each graph and local search method. These tables allow an easy com-parison of the characteristics of the graphs as their size and degree vary.The �rst thing to notice is that the number of evaluations used (equivalently,the number of partitions considered) per local search increases with both the size andaverage degree of the graph. With one exception, this is true for random, geometric,and planted bisection graphs. The number of evaluations used can be taken as ameasure of the di�culty of the graph for local search. That more evaluations arerequired as the number of nodes increases is to be expected, as the neighborhoodsize scales (linearly or quadratically depending on the LS method being used) withnumber of nodes.What is more surprising is that increasing the expected degree also increasesthe number of evaluations. For a given graph size, the neighborhood size is the sameno matter what the average degree, so this e�ect must be due to an increasing numberof improving moves made during local search. This implies that the local basins arelarger as the average degree increases, and therefore that there are fewer of them.The one exception to this trend occurs with the half-balanced �rst-improve LS on



64Table IV.1: Average number of evaluations for HF: The average, over 1,000initial starting points, of the number of evaluations used (i.e. partitions considered)for the half-balanced �rst-improve LS method. The three groups of �gures are forrandom graphs, geometric graphs, and planted bisection graphs. In each group, rowsrepresent graphs with the same number of nodes, and columns represent graphs withthe same expected degree.jV j average degree2.5 5.0 10.0 20.0random 124 577 721 806 782250 1364 1748 2083 2231500 3199 3962 4935 59981000 7418 9500 12099 150665 10 20 40uniform 250 1542geometric 500 3885 3917 3509 33091000 9335 10436 9430 91579+16planted 250 2259bisection 500 6234Table IV.2: Number of local minima for HF: The number of distinct local minimaresulting from half-balanced �rst-improve LS applied to 1,000 random initial parti-tions. For the case in which fewer than 1,000 distinct local minima were found, thenumber of occurrences of the most common local minima is given in parentheses.jV j average degree2.5 5.0 10.0 20.0random 124 1000 1000 999(2) 997(2)250 1000 1000 1000 1000500 1000 1000 1000 10001000 1000 1000 1000 10005 10 20 40uniform 250 896(27)geometric 500 1000 1000 1000 958(13)1000 1000 1000 1000 999(2)9+16planted 250 1000bisection 500 1000



65Table IV.3: Average/best partition cost for HF: The average and best partitioncost, over 1,000 initial starting points, resulting from half-balanced �rst-improve LS.jV j average degree2.5 5.0 10.0 20.0random 124 24.4/ 15 77.8/ 64 196.0/ 180 479.1/ 452250 58.8/ 42 144.4/124 397.0/ 369 875.9/ 835500 105.1/ 86 291.5/260 705.2/ 658 1844.6/17781000 210.6/182 590.2/543 1536.2/1469 3602.6/35005 10 20 40uniform 250 304.5/140geometric 500 69.2/34 180.4/ 70 466.2/192 1018.9/4741000 149.9/96 366.0/203 910.1/455 1860.2/7379+16planted 250 1183.8/1141bisection 500 2332.1/2260
Table IV.4: Average number of evaluations for HSjV j average degree2.5 5.0 10.0 20.0random 124 3284 3759 4140 4273250 11783 14578 16384 17612500 46287 54443 60840 696691000 185793 212728 242092 2728685 10 20 40uniform 250 21353geometric 500 67931 78774 85276 882851000 261602 311360 342417 3597769+16planted 250 17996bisection 500 72015



66Table IV.5: Number of local minima for HSjV j average degree2.5 5.0 10.0 20.0random 124 1000 1000 1000 997(2)250 1000 1000 1000 1000500 1000 1000 1000 10001000 1000 1000 1000 10005 10 20 40uniform 250 658(60)geometric 500 1000 1000 987(3) 760(34)1000 1000 1000 1000 954(10)9+16planted 250 1000bisection 500 1000
Table IV.6: Average/best partition cost for HSjV j average degree2.5 5.0 10.0 20.0random 124 24.2/ 15 79.2/ 66 196.6/ 179 478.6/ 449250 59.3/ 45 146.9/126 400.9/ 370 878.0/ 836500 106.2/ 86 297.9/258 717.4/ 677 1856.0/17931000 214.4/188 610.0/566 1567.2/1506 3636.4/35365 10 20 40uniform 250 237.7/140geometric 500 68.7/ 25 154.6/ 49 341.3/178 659.4/4121000 158.3/111 324.7/180 661.3/293 1226.9/7379+16planted 250 1186.4/1148bisection 500 2343.3/2278



67Table IV.7: Average number of evaluations for UFjV j average degree2.5 5.0 10.0 20.0random 124 609 773 905 1160250 1426 1828 2247 2665500 3269 4066 5073 65911000 7518 9454 12294 159295 10 20 40uniform 250 2619geometric 500 4164 4964 6010 71031000 9503 11804 14470 194179+16planted 250 2788bisection 500 6956
Table IV.8: Number of local minima for UFjV j average degree2.5 5.0 10.0 20.0random 124 1000 1000 999(2) 964(19)250 1000 1000 1000 1000500 1000 1000 1000 10001000 1000 1000 1000 10005 10 20 40uniform 250 498(52)geometric 500 1000 1000 996(2) 409(106)1000 1000 1000 1000 941(5)9+16planted 250 1000bisection 500 1000



68Table IV.9: Average/best partition cost for UFjV j average degree2.5 5.0 10.0 20.0random 124 24.4/ 15 77.6/ 64 195.1/ 179 474.2/ 449250 58.5/ 42 144.3/117 395.8/ 364 872.1/ 836500 105.2/ 85 290.8/259 705.9/ 666 1843.5/17821000 210.4/177 591.0/540 1536.6/1469 3599.8/35105 10 20 40uniform 250 249.7/140geometric 500 68.0/35 166.1/ 60 386.5/178 758.6/4171000 148.3/89 355.2/203 821.1/400 1479.1/7379+16planted 250 1179.3/1128bisection 500 2330.8/2258
Table IV.10: Average number of evaluations for USjV j average degree2.5 5.0 10.0 20.0random 124 4331 5009 5464 6015250 15640 19307 21768 23501500 61481 72486 80809 931741000 247324 283284 322700 3650775 10 20 40uniform 250 29970geometric 500 90358 105168 117637 1254871000 348438 415185 462597 4975229+16planted 250 24029bisection 500 96218



69Table IV.11: Number of local minima for USjV j average degree2.5 5.0 10.0 20.0random 124 1000 1000 999(2) 962(18)250 1000 1000 1000 1000500 1000 1000 1000 10001000 1000 1000 1000 10005 10 20 40uniform 250 309(112)geometric 500 1000 1000 922(9) 182(317)1000 1000 1000 1000 739(29)9+16planted 250 1000bisection 500 1000
Table IV.12: Average/best partition cost for USjV j average degree2.5 5.0 10.0 20.0random 124 24.1/ 15 78.7/ 65 196.4/ 180 475.0/ 449250 59.1/ 45 146.7/125 400.1/ 374 876.9/ 833500 106.1/ 85 297.5/258 717.2/ 672 1854.5/17941000 214.4/187 609.5/567 1566.4/1494 3634.2/35455 10 20 40uniform 250 215.0/140geometric 500 68.4/ 25 152.5/ 49 318.4/178 584.1/4121000 157.9/102 323.0/179 641.1/289 1151.6/7379+16planted 250 1184.6/1126bisection 500 2341.7/2275



70Table IV.13: Average number of evaluations for BFjV j average degree2.5 5.0 10.0 20.0random 124 5179 6578 7740 9516250 18495 23861 31064 35939500 69634 78388 95227 1380001000 268784 289657 342934 4618235 10 20 40uniform 250 40918geometric 500 98626 125650 153553 1615101000 330966 448410 578481 6838459+16planted 250 38598bisection 500 144486
Table IV.14: Number of local minima for BFjV j average degree2.5 5.0 10.0 20.0random 124 1000 1000 999(2) 978(7)250 1000 1000 1000 1000500 1000 1000 1000 10001000 1000 1000 1000 10005 10 20 40uniform 250 315(89)geometric 500 1000 1000 966(4) 313(60)1000 1000 1000 1000 885(7)9+16planted 250 1000bisection 500 1000



71Table IV.15: Average/best partition cost for BFjV j average degree2.5 5.0 10.0 20.0random 124 24.0/ 15 76.6/ 64 193.5/ 179 472.4/ 449250 57.0/ 40 142.3/121 392.7/ 364 868.1/ 831500 102.8/ 80 285.9/249 699.8/ 653 1833.6/17701000 202.7/170 580.5/532 1523.1/1461 3581.2/34855 10 20 40uniform 250 221.8/140geometric 500 61.1/28 147.3/ 52 347.3/178 694.7/4121000 136.3/88 312.8/170 689.2/333 1333.7/7379+16planted 250 1174.4/1133bisection 500 2319.1/2261
Table IV.16: Average number of evaluations for BSjV j average degree2.5 5.0 10.0 20.0random 124 68108 77710 86236 94708250 492094 607047 687000 747141500 3861125 4547625 5069500 58260631000 30974000 35498750 40399750 456760005 10 20 40uniform 250 941547geometric 500 5672875 6608188 7427313 78632501000 43618250 52001750 58177000 626112509+16planted 250 772516bisection 500 6033000



72Table IV.17: Number of local minima for BSjV j average degree2.5 5.0 10.0 20.0random 124 1000 1000 1000 992(3)250 1000 1000 1000 1000500 1000 1000 1000 10001000 1000 1000 1000 10005 10 20 40uniform 250 355(65)geometric 500 1000 1000 938(5) 213(138)1000 1000 1000 1000 782(13)9+16planted 250 1000bisection 500 1000
Table IV.18: Average/best partition cost for BSjV j average degree2.5 5.0 10.0 20.0random 124 24.3/ 15 79.5/ 65 196.7/ 179 475.9/ 449250 59.4/ 45 147.1/122 400.8/ 369 876.7/ 840500 106.2/ 85 298.0/258 717.8/ 672 1856.1/17921000 214.6/188 610.0/570 1567.1/1498 3634.8/35305 10 20 40uniform 250 222.7/140geometric 500 68.6/ 25 153.5/ 49 320.4/178 599.4/4121000 158.5/110 323.8/172 641.9/287 1163.1/7379+16planted 250 1184.2/1125bisection 500 2341.9/2269



73the geometric graphs, for which the longest searches are observed for the degree tengraphs. This e�ect appears to be robust for this LS method, holding for graphs ofsize 500 and 1,000, but it is not observed for any other LS method.More direct evidence regarding the number of local basins can also be seenin the tables. We see that for almost every graph, no two local minima (out of the1,000 found) were the same. This implies a very large number of local basins, asnot even a chance occurrence resulted in seeing the same basin more than once.2 Itis not clear to what extent this re
ects complex structure of the search space. Asdiscussed in Section IV.A.2, there can be large equivalence classes of distinct localminima which are not di�erent in any meaningful way (for example nodes of degreezero can be swapped with no e�ect on partition cost).For �ve of the graphs, several duplicate local minima were found by at leastone of the LS methods. This implies either that these graphs have fewer basins, orthat they have some much larger basins. All of these graphs have high average degree,which is consistent with the inference drawn above about high degree leading to largerand fewer basins.A �nal observation to make about the graphs is that the average cost of thelocal minima increases with the number of nodes and the average degree. This is tobe expected, as larger and more connected graphs will require more edges to be cutby any partition.Comparison of Local Search MethodsTables IV.19 and IV.20 redisplay some of the information in Section IV.B.2to facilitate comparison of the local search methods. Table IV.19 shows the averagepartition cost of the local minima found by LS and Table IV.20 shows the averagenumber of evaluations per LS.The data shown are for a subset of the graphs examined in Section IV.B.2.This subset is used for the comprehensive empirical study of EA+LS in Section IV.D.2A quick calculation shows that if there are 700,000 equal size basins, the chance that there willbe no duplicates after choosing 1,000 at random is approximately 50%.



74The subset provides instances of various sizes (124, 250, and 500 nodes) and types(random, uniform geometric, and planted bisection graphs) for a given average degree.All but one of the graphs has expected degree between 20 and 25. We believe these tobe more di�cult than the smaller degree graphs as there are fewer free nodes (recallSection IV.A.2). Finally, one graph is included which has expected degree 40, togauge the e�ect that this has on algorithm performance.Table IV.19: Average partition costBS BF US UF HS HFr0124.20 475.9 472.3 475.2 474.1 478.9 479.0r0250.20 876.7 868.1 875.9 872.1 878.0 875.9r0500.20 1856.1 1833.6 1854.1 1843.5 1856.1 1844.6g0250.20 320.3 347.3 320.1 386.5 343.1 466.1g0500.20 641.9 689.2 642.1 821.0 663.5 910.0g0500.40 1163.0 1333.6 1146.7 1479.0 1222.1 1860.2p0250.9+16 1184.2 1174.4 1184.5 1179.3 1186.3 1183.8p0500.9+16 2341.8 2319.1 2341.6 2330.7 2343.2 2332.1There are several observations to make from Table IV.19. First, the relativee�ectiveness of the LS methods depends on the type of graph being searched. Foralmost all random and planted bisection graphs, and all neighborhood structures,�rst-improve LS �nds slightly better solutions than steepest descent. The di�erencesare small but consistent. That steepest descent often does worse may seen coun-terintuitive. The explanation is that this greedy method can quickly get \stuck" ina nearby basin, whereas the �rst-improve method has more freedom to roam overmultiple basins, due to its stochasticity.For the geometric graphs, in contrast to the above, steepest descent �ndsmarkedly better solutions. For these highly structured graphs, there is a real bene�tto making as much progress as possible with each step. As we will see below, however,these greatly superior solutions come at the expense of speed.Comparing neighborhood structures, the results again depend on the typeof graph being searched. For the random and planted bisection graphs, there islittle di�erence between the three neighborhoods. The best average solutions are



75found with the balanced �rst-improve method, but these are at most 1% better thanthe solutions found with the other neighborhoods using �rst-improve. Neighborhoodstructure makes more of a di�erence on the geometric graphs. On these graphs, usingsteepest descent, the balanced and unbalanced neighborhoods have similar solutionquality, with half-balanced somewhat worse (up to 7%). Using the �rst-improvemethod, there is a much bigger di�erence between the neighborhoods, with balancedbeing the best and half-balanced by far the worst.Table IV.20: Average LS length: For comparison, a single step of LS using thebalanced neighborhood requires 3844, 15,625, or 62,500 evaluations for a graph of size124, 250, or 500, respectively.BS BF US UF HS HFr0124.20 95k 9516 6101 1213 4264 824r0250.20 747k 35939 23833 2726 17654 2283r0500.20 5826k 138000 93570 6646 69762 6057g0250.20 7427k 153553 117875 6221 85197 3736g0500.20 58177k 578481 463704 14796 342511 9826g0500.40 62611k 683845 498826 19866 360123 9636p0250.9+16 773k 38598 24029 2788 17996 2259p0500.9+16 1738k 144486 96218 6956 72015 6234Two important trends regarding LS length can be seen in Table IV.20. The�rst is that for any neighborhood structure, the �rst-improve method is much quickerthan steepest descent. Depending on the graph and neighborhood, steepest descentuses anywhere from �ve to 90 times as many evaluations as �rst-improve. This pointsto how much time is saved by consistently �nding quick improvements in the earlyand middle stages of local search. In the �nal stages of LS, when the search is neara local minimum, improving neighbors are hard to �nd and there is not as muchdi�erence between steepest descent and �rst-improve.The other trend to notice is the enormous amount of time spent when usingthe balanced neighborhood. With its quadratic neighborhood size, it is necessarilymuch slower than the other methods. Even when using the �rst-improve method, inwhich the full neighborhood does not have to be searched every time, the balancedneighborhoods still su�er. This has an easy explanation. Even with �rst-improve, the



76entire neighborhood has to be searched at least once, namely on the last step of LSbefore returning. This full search is necessary to verify that the search has reached alocal minimum. Even this one search of the complete neighborhood takes roughly asmany evaluations as an entire local search using one of the other neighborhoods.The balanced neighborhood's slowness has obvious consequences for ourintended use of LS as part of an EA. On the geometric graphs, the only graphsfor which the balanced neighborhood gives substantially better solutions, the runningtime ranges from 40 to over 100 times as slow as the half-balanced method, dependingon the graph and whether steepest descent or �rst-improve is used. This means thatan EA could sample many regions of the global search space and do half-balanced LSon these samples in the time it would take to do balanced LS on a single partition.If our intuitions about EA+LS are correct, it is much more important to gathermany samples and quickly re�ne them than to spend enormous e�ort re�ning a singlepoint. For example, in the most extreme case, comparing balanced steepest descentwith half-balanced �rst-improve on the graph g0500.40, the latter is almost 6,500times faster, and would allow a complete EA+LS run to �nish before one LS of theformer. The comparison between the unbalanced and half-balanced neighborhoodsis more interesting. For all graphs and for both steepest descent and �rst-improve, thehalf-balanced neighborhood is quicker. The unbalanced neighborhood uses from 10to 106% more evaluations. This di�erence is substantial, but the tradeo� is solutionquality. The unbalanced neighborhood always gives better solutions, particularly onthe geometric graphs. The biggest disparity between unbalanced and half-balanced,both in terms of solution quality and running time, occurs on the geometric graphsusing �rst-improve. This interesting tradeo� is explored in Section IV.D.2 in thecontext of an EA.In summary, there is little di�erence in solution quality between the variousLS methods for random and planted bisection graphs, so the speed of LS alone maybe expected to determine its usefulness. On the geometric graphs, the LS method



77makes a big di�erence in solution quality, with steepest descent clearly superior, andwith the half-balanced neighborhood somewhat worse than the other neighborhoods.For all graphs, the balanced neighborhood is too slow to be useful in comparisonto the other methods, and the half-balanced is substantially faster than unbalanced.Also in all cases, �rst-improve is quicker than steepest descent. For the random andplanted bisection graphs, these observations suggest that half-balanced �rst-improvewill be most successful as part of an EA+LS algorithm. For the geometric graphs,there are tradeo�s between speed and quality, and there is no clear recommendation.IV.C Evolutionary AlgorithmAs a baseline for evaluating the usefulness of local search, we �rst examine anEA without LS. In this section the EA is compared to random sampling, Monte Carlolocal search, and �nally the EA+LS. We also examine the e�ectiveness of crossover, asa prelude to Section IV.D.4, in which a corresponding set of experiments is performedin the context of LS.IV.C.1 Baseline ResultsAs a �rst check of the EA's e�ectiveness, we compare it toMonte Carlo (MC)search, which is simply unbiased random sampling (note that this is not the same asMonte Carlo local search, discussed in the previous section, as no local search is done).The EA used in the experiments is fairly typical. It is generational, with an expectedmutation size of �ve node swaps per solution. All other algorithmic parameters areset to their standard values (see Section IV.D).Figure IV.4 includes a comparison of the EA and Monte Carlo search. Thecurves shown for MC are simply plots of the best solution found as a function ofthe number of solutions considered. In other words, we repeatedly generate solutionsuniformly at random over the search space, and keep a record of each time a solutionis found which is better than any found previously. Note that each solution is drawn



78independently, so the curves simply re
ect the probability of �nding solutions ofvarious �tness. Nevertheless, this presentation allows a direct comparison with theEA in terms of the speed and quality of search. Note that the MC curve has no errorbars, as only a single \run" is done.We see that on all graphs the EA does substantially better than MC, begin-ning with the earliest stages. Even when MC is allowed ten times as many evaluationsas the EA, its solutions are substantially worse. The EA is clearly e�ective at biasingits sampling towards good regions of the space.The EA is also compared to Monte Carlo local search using half-balanced�rst-improve LS. The MCLS plots are generated in a similar fashion to those forMC; local search is run to completion on a sequence of randomly generated startingsolutions. A record is kept of each time a solution is encountered which is better thanany seen previously. Note that the local searches are done in series: one LS runs tocompletion before the next one begins.We see from the �gure that MCLS �nds much better solutions than the EA,and that it �nds them very quickly. In fact, the average local minimum has bettercost (recall Table IV.3) than the �nal EA solutions, even though the average localsearch length is less than 1% of the time spent by the EA. This illustrates the powerof LS for graph bisection; even though the EA's global search is very e�ective whencompared to random search, it is completely inadequate in comparison to simplydoing local search from a few random starting points.Since local search itself it so powerful, the use of a population-based sam-pling algorithm (EA) needs to be justi�ed. We compare MCLS to the generationalEA+LS described in Section IV.D.1, which �nds the best solutions of all the EA+LSvariants considered in this dissertation. Figure IV.5 displays the performance of thisalgorithm against MCLS. We see that on the random and planted bisection graphs,there is indeed a bene�t to having the EA choose the starting points for LS. Thedi�erence between MCLS and EA+LS is signi�cant on each of these graphs. Thereis no signi�cant di�erence on the geometric graphs, though on average the EA+LS
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Figure IV.4: Comparison of Monte Carlo, EA, and Monte Carlo LS



80performed as well as or better than MCLS on all three.In summary, the EA e�ectively biases its sampling towards good regionsof the search space, as compared to random sampling. Local search, however, is sopowerful that doing even a single LS from a random starting point will probablyresult in a superior solution, in a fraction of the time used by the EA. Nevertheless,the EA's population-based global search is superior to random sampling in choosingfavorable starting points for LS.A note about MCLS plots The data for the MCLS plots in this section aretaken from the experiments described in Section IV.B.2, in which local search wasperformed on 1000 random initial starting points. In order to generate the curves,these independent local searches are grouped to form several \runs" of the same lengthas the EA+LS. For example, on r0124.20 the EA+LS is allowed to run for 400,000evaluations. A single HF local search on this graph uses 824 evaluation on average.Hence, 485 (400; 000=824) complete local searches are equivalent to an EA+LS run.Therefore, we consider the �rst 485 local searches to be a single MCLS run, the next485 to be a another, and so on. Since only 1000 local searches were initially performed,we get only two runs for this graph. By grouping the data in this way, we get a faircomparison between the methods (as they use the same number of evaluations) andan improved ability to do statistical comparisons, as there are multiple MCLS runsfor each graph.IV.C.2 E�ect of CrossoverThe general purpose of the crossover operator is to recombine useful partsof distinct genotypes to create a solution which has the best of both parents. Theability of crossover to do this depends of course on the problem at hand, and also onthe way solutions are represented and the speci�cs of the crossover operator. Genericoperators may be suitable for many problems, if there is a straightforward binaryrepresentation. For example, the k-SAT problem has an obvious representation, a
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Child: 1 0 00 0 0110 0c)Figure IV.6: Three standard crossover operators: a) One-point crossover, b)two-point crossover, c) uniform crossover. The boxes indicate which parent each bitis chosen from.single bit for each variable indicating its truth value.Standard crossover operators such as one-point, two-point, and uniformcrossover simply assign each bit in the child to be the same as the correspondingbit in one of the parents (see Figure IV.6). Speci�cally, one-point crossover randomlychooses a \crossover point" on the genotype: all bits before that point are copiedfrom one of the parents and all bits after the point are copied from the other parent.Two-point crossover is similar, but there are two crossover points. The bits beforethe �rst point and after the second point are copied from one parent, and the bitsbetween the two points are copied from the other. One- and two- point crossover re-spect locality on the genotype, so that bits which are near each other are more likelyto be chosen from the same parent than bits which are far apart. Finally, uniformcrossover chooses between the parents independently for each bit, so that there is nolinkage between positions on the genotype.Graph partitioning allows a straightforward binary representation. Speci�-cally, the genotype has one bit for each node, specifying which side of the partitionthat node is on. While simple, this representation has a few drawbacks. First, anygiven partition has two distinct encodings. This can be problematic for crossover,



83as two parents may be quite similar to each other but have very di�erent encod-ings. This may cause crossover to disrupt parts of the solution on which the parentsagree, because the corresponding sections of the genotype are di�erent. We will ex-amine ways to deal with this problem, including \normalizing" representations beforerecombination so that they are more similar.A second problem with this representation is that the common crossoveroperators described above often produce invalid partitions. Valid partitions musthave the same number of nodes on each side of the partition, but this property is notpreserved by any of the operators described. For all graph partitioning experimentsin this dissertation we use the following crossover operator: for each bit on which theparents have the same value, this value is copied to the child. The settings for theremaining bits are chosen uniformly at random from all possible settings which havethe required number of 0s and 1s. Hence, crossover always produces a valid partition.Furthermore, it preserves any genetic information that both parents possess.This operator is a special case of the RARw subset recombination operatordescribed by Radcli�e [70, 69]; in particular it is equivalent to RAR1. In preliminaryexperiments we tried RARw for various values of w and found RAR1 to be robustacross all graph instances. Note also this operator ignores locality on the genotype,i.e. nodes which are adjacent on the genotype are no more or less likely to be copiedfrom the same parent than nodes which are far apart. This is reasonable for randomgraphs since the order of nodes on the genotype does not re
ect any prior expectationsabout which nodes should be transferred together. For geometric graphs there may beways to arrange the genotype so as to exploit the structure, e.g. putting geometricallyclose nodes near other on the genotype. We make no such attempt here, instead usinga random ordering of nodes.Symmetric Normalization of PartitionsAs discussed above, the existence of duplicate representations for each par-tition may be problematic for crossover. In order to alleviate this problem, we



84try various methods of normalizing the partitions' representations before perform-ing crossover. Intuitively, if two parents are similar we want their representationsto be similar also. Hence, an obvious procedure is to examine each pair of parentsbefore applying crossover and to invert (
ip all the bits of) one of them if this bringstheir representations closer together. Here distance is de�ned to be Hamming dis-tance. We call this procedure pairwise Hamming normalization. Note that under thismethod the actual parity of the representation used for a partition in the population isirrelevant, as the bitstrings are always normalized before interacting with each other.Several alternative normalization procedures are compared to the pairwiseHammingmethod. The population-wide Hamming method normalizes the entire pop-ulation with respect to the current best solution in each generation. The population-wide �xed node method selects a single reference node in the graph prior to the startof the EA run. Each generation, the entire population is normalized with respectto this node, i.e. the bitstrings are set so that the bit corresponding to this nodeis 0 in every genotype. The motivation for this is that it eliminates the duplicaterepresentation problem; the symmetry is broken by �xing the reference node. Thepopulation-wide random node method is similar, but the reference node is selectedrandomly every generation. The random method simply inverts each parent withprobability 0:5. This is used as a test to see if normalization matters at all. Finally,the null method does no normalization. For all methods, any normalization is appliedbefore crossover.Experiments are performed comparing the various normalization methods.A generational EA without local search is used, with a population size of 150. The per-node mutation probability is 0.002. Since the EA is generational, any normalizationthat occurs does not directly a�ect succeeding generations. Its only a�ect is bymodifying the operands of crossover. Table IV.21 displays the relative performance ofeach of these methods on the 24 random and geometric graphs from [44]. Each numberin the table represents the best solution found after 200 generations, averaged over tenruns. To facilitate comparison across di�erent graphs, the numbers are scaled with



85respect to the pairwise Hamming method, so that a rating of less than 1:0 indicatesbetter performance than pairwise Hamming. We see that the there is little di�erencebetween the pairwise Hamming, population-wide Hamming, and null methods. Thepopulation-wide random node and randommethods both do substantially worse on allgraphs. The population-wide �xed node method is comparable to the best methodson the random graphs and is somewhat worse on the geometric graphs, though stillmuch better than the worst methods.It is not surprising that the random method does so poorly; under thismethod similar parents will have dissimilar representations as often as not. Giventhis result, then, it is somewhat surprising that the null method does as well as allthe others. If it is detrimental to make the representations dissimilar (a la the randommethod), then why isn't it bene�cial to always make them similar? One possibilityis that the population automatically converges onto one of the two representationalconventions. In this case all the bitstrings would be more similar than dissimilar, andnormalization would have no e�ect.Also curious is the fact that the population-wide random node method doesalmost as poorly as the random method. It may be the case that choosing a randomnode as a reference each generation has the same e�ect as random normalization. Asan extreme example, consider what happens if the chosen reference node has degreezero. Then in each genotype it is equally likely to be 0 or 1, regardless of the rest of thesolution. Hence, setting the bitstring so that this node's bit is 0 is e�ectively the sameas randomly deciding whether or not to invert it. Note that the situation is di�erentfor the population-wide �xed node method. In this case, even if the �xed node hasdegree zero, there is a �xed representational choice which allows the population toconverge.Crossover vs. MacromutationA sometimes controversial issue is whether a crossover (or recombination)operator is useful as part of an EA [41, 46, 23]. Proponents of crossover argue that



86Table IV.21: Comparison of normalization methods: The relative e�ectivenessof various normalization methods on 24 graphs. Each entry represents the �tness ofthe �nal solution found by an EA, averaged over ten runs. All �gures are normalizedwith respect to the pairwise Hamming method, which be de�nition has value 1.0.Pop-wide Pop-widePairwise Pop-wide �xed randomgraph Hamming Hamming node node random nullr0124.03 1.00 0.96 0.94 2.26 2.28 0.88r0124.05 1.00 1.06 1.05 1.62 1.66 1.01r0124.10 1.00 1.01 1.01 1.33 1.33 1.02r0124.20 1.00 0.99 1.00 1.16 1.18 0.99r0250.03 1.00 1.02 1.03 2.55 2.55 0.97r0250.05 1.00 0.99 1.02 1.75 1.78 0.97r0250.10 1.00 1.01 1.02 1.41 1.42 1.00r0250.20 1.00 1.00 1.01 1.24 1.24 1.01r0500.03 1.00 0.97 1.14 2.47 2.48 0.96r0500.05 1.00 1.00 1.07 1.76 1.78 1.01r0500.10 1.00 0.99 1.03 1.41 1.42 0.98r0500.20 1.00 0.99 1.02 1.24 1.24 0.99r1000.03 1.00 0.99 1.15 1.96 1.98 0.97r1000.05 1.00 0.99 1.08 1.52 1.53 0.99r1000.10 1.00 1.00 1.05 1.32 1.32 1.00r1000.20 1.00 1.00 1.02 1.19 1.20 1.00avg. random 1.00 1.00 1.04 1.64 1.65 0.99g0500.05 1.00 1.05 1.35 5.39 5.49 1.05g0500.10 1.00 1.08 1.39 4.65 4.77 0.96g0500.20 1.00 1.03 1.18 3.99 4.07 1.11g0500.40 1.00 0.95 1.17 3.62 3.71 0.84g1000.05 1.00 1.00 1.32 2.88 2.94 1.04g1000.10 1.00 1.00 1.25 2.60 2.64 0.97g1000.20 1.00 1.03 1.26 2.53 2.57 1.07g1000.40 1.00 0.98 1.21 2.46 2.49 0.96avg. geometric 1.00 1.01 1.27 3.51 3.59 1.00



87it is crucial whenever the representation of the problem at hand allows \buildingblocks." Roughly, a building block is a schemata which represents a good solution toa subproblem of the problem at hand. For example, in graph partitioning a buildingblock might be a part of the genotype which speci�es that some group of nodes ison the same side of the partition. If these nodes form a small clique, then partitionscontaining this building block will have higher �tness than those without it, on av-erage. The main idea is that if there are several such building blocks, they can bediscovered independently (through the normal EA processes of variation and selec-tion) and then combined with crossover. For a more thorough discussion of buildingblocks and schemata see [41].A test that is commonly done to evaluate crossover's e�ectiveness is to com-pare an EA with crossover to one without. When crossover is not used, new solutionsare generated by simply cloning one parent and applying mutation. If an EA works aswell without crossover as with, then crossover is not combining building blocks. Notethat if using crossover does help, it does not necessarily follow that it is combiningbuilding blocks. It could simply be the case that the variation generated by crossoverin the population is bene�cial. In this case, it is rather like a large mutation operator,and it is said to produce macromutations.The possibility that crossover bene�ts search by simply allowing macromuta-tions leads to another test, developed by Jones [46], in which \random" (or \headlesschicken") crossover is used. For random crossover, one parent is selected from thepopulation in the usual way, but the second parent is randomly generated. Thecrossover operator is then applied to produce a new solution, and the randomly gen-erated parent is discarded. In this way the bene�t of macromutation is examined inthe absence of any genetic recombination. If an EA with random crossover performsas well as one with normal crossover, this implies that crossover's bene�t derives fromits macromutations and not from its combining of building blocks.Figure IV.7 shows the results of EA runs using the three crossover methodson eight graphs. These runs are performed using a steady-state EA with an expected



88mutation size of �ve node swaps per solution. We see that in all cases, standardcrossover does substantially better throughout the runs than either alternative. Ran-dom crossover is especially poor, improving little after the very early stages. Sincemacromutations are so detrimental, they cannot be the source of the bene�t for nor-mal crossover. This suggests that crossover does indeed combine building blocks fromdisparate solutions. Section IV.D.4 describes a similar experiment for an EA whichused local search.IV.D Evolutionary Algorithm with Local Search:Mechanisms of LS InteractionIn this section we explore the e�ect of varying several algorithmic parametersof the EA+LS hybrid. For most experiments we employ a new variant of the EA+LS,which allows us �ne control over the various aspects of the global/local interaction.Figure IV.8 outlines the algorithm. This is a steady-state algorithm in which LSapplied to every individual upon creation. Only a small amount of LS (a \sni�")is used; this may give a sense of how much potential there is for improvement withfurther local search. Each time a solution is created (and given a LS sni�), othersolutions may be selected to receive additional LS. Various methods may be usedto select which individuals get LS; for example it may be based on �tness or onan estimate of the potential for future improvement. The unusual feature of thisalgorithm is that it uses only small amounts of LS at a time, and that it allows variousmechanisms for selecting how the LS e�ort is allocated to the population. The goal isto maintain a population of solutions which have each undergone some amount of LS,so that useful comparisons can be made between members. In contrast, algorithmsin which a fraction of the population undergoes LS to completion may su�er fromthe problem that the best solutions are simply those which were chosen for LS, andso selection may be skewed.More generally, this new algorithm integrates global and local search more
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Figure IV.7: Comparison of crossover methods



90Randomly generate an initial population of size MDo a LS sniff on each memberRepeatPick two solutions, biased by fitnessCreate new through recombination and mutationDo LS sniff on newReplace the worst member of the population with newSelect (LS rate) additional members to do(LS increment) additional LSUntil good enough solution found, or out of timeFigure IV.8: Steady-State EA with Short LS: This algorithm is used for most ofthe experiments in this section.tightly than previous versions of EA+LS (such as the generational method in Sec-tion IV.D.1). Typical EA+LS hybrids proceed in alternating stages of global andlocal search. First the EA produces a new population, then local search is performed.The speci�c state of local search generally is not kept from one generation to the next,though LS results do in
uence selection of individuals and, in the case of Lamarckianevolution, the genotypes themselves.This interleaving of the global and local search phases allows the two toin
uence each other; e.g. the EA chooses good starting points, and LS provides anaccurate representation of that region of the domain. This scheme, however, does nottake full advantage of the possibilities for interaction between global and local search.The new algorithm interleaves global and local search at a �ner granularity. Selectionand reproduction can occur during a local search (i.e. in between successive stages ofLS on a single solution), and the amount of LS done on a solution can depend on thesuccess of whatever LS has already been done on it. Hence, population-wide statisticscan direct the use of LS at a �ne level, for instance by determining exactly how much



91LS to apply to each solution based on �tness, nearness to other population members,or other features. Furthermore, the state of LS is maintained in the population, unlikein the generational case, and can directly in
uence future selection.An expanded version of the algorithm is shown in Figure IV.9, with thevarious algorithmic parameters highlighted. Next to each parameter, a list of possi-ble instantiations is given. In fact, these values are all used in one or more of theexperiments in this section.The canonical parameter settings we use to compare with all variations areas follows: the length of LS sni� as well as LS increment is ten evaluations. Thenumber of extra individuals chosen for LS each time through the loop (LS rate) is two.Hence, thirty evaluations of LS are used for each evaluation of \global" search (newindividual generated by selection genetic operators). The extra individuals are chosenrandomly. The half-balanced �rst-improve LS method is used unless otherwise stated,and evolution is Lamarckian. We use we use standard RAR1 crossover. Finally, formost experiments a mutation size of 5=N (an expected �ve node swaps per genotype)is used, though Sections IV.D.1 and IV.D.2 use a �xed per-node mutation probabilityof 0.002. Except where explicitly varied, these parameter values are in use throughoutthis section.The remainder of this section is broken down into investigations of howthese various parameters a�ect search performance. Section IV.D.1 �rst compares ouralgorithm with a generational EA+LS and a more traditional steady-state EA+LS.Sections IV.D.3 and IV.D.4 examine the roles of mutation and crossover when LSis used. Section IV.D.2 examines the e�ect of the LS method used. Section IV.D.5examines the e�ect of using various amounts of local search and di�erent LS lengths,as well as omitting the LS sni� given to every individual when it is created. Finally,Section IV.D.6 looks at methods for choosing which solutions get additional LS.There are a few algorithmic details which are constant across all runs in thissection: the population size is 200; the crossover operator used is RAR1, and nonormalization of partitions is done beforehand (see Section IV.C.2 for an explanation
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93of both of these issues); and the selection algorithm used is stochastic universal se-lection [26], which selects individuals proportionally to their �tness, but attempts todo so in a way which minimizes random in
uences.IV.D.1 Generational vs. Steady-StateThe EA used for most of our experiments (see Figure IV.8) is somewhatdi�erent from the typical EA. One potentially important di�erence is that we use asteady-state as opposed to a generational replacement scheme. The other di�erenceshave to do with how local search is used. Speci�cally, a typical EA+LS might usecomplete LS, whereas we use only very small amounts of LS at any one time. Tocheck how our algorithm compares against more traditional methods, we compare itto a fairly typical generational EA+LS and also to a steady-state version which isotherwise the same as the generational method.The generational EA we use is Lamarckian, employing the half-balanced�rst-improve LS method. Each generation 5% of the population is chosen at randomto receive complete local search (LS runs until completion). There is a per-nodemutation probability of 0.002, and simple elitism is used. The same parameters areused for the steady-state variant, with each newly generated solution replacing theworst member of the population, and then undergoing local search with probability5%. We will refer to this method as the steady-state with complete LS method.The generational and steady-state with complete LS methods are used as abaseline to rate the steady-state with short LS algorithm used throughout this chapter.This method allocates LS in a radically di�erent manner: each time a new solution isgenerated it undergoes a LS sni� of length ten. Then two other solutions are chosen atrandom from the population and these also undergo ten evaluations each of LS. Thestate of each solution's LS is stored, so that if it is later selected to receive additionalLS this search is continued where it left o� previously. Hence LS can eventuallyreach local optima but will always require several applications to do so. All otheralgorithmic parameters are the same as for steady-state with complete LS.



94Figure IV.10 displays the results of the three methods on eight graph par-titioning instances. We see that the generational and steady-state with complete LSmethods are virtually identical in performance. In six of the eight graphs there isno statistical di�erence between the �nal solutions produced. This reassures us thatusing a steady-state replacement strategy is not harming the chances of having ane�ective algorithm. The comparison with steady-state with short LS is not favorable,however. On all graphs this method produces the worst �nal solutions (the di�erencewith generational is statistically signi�cant on all but the smallest graph). The modi-�cations regarding how LS is allocated are apparently quite detrimental to the search.Nevertheless, because this method allows �ne control over the use of LS we will useit as a starting point to investigate how global and local search issues interact. Wewill see later how the proper settings of the EA parameters allow it to be competitivewith the generational method (see especially Section IV.D.3).As a �nal observation, note that the di�erence in performance betweensteady-state with short LS and the other methods is especially large early in theruns. This is simply due to the fact that LS is unable to run to completion onany solution until several generations have passed. Because short LS is applied torandomly chosen members frequently, we expect that all solutions in the populationhave usually had roughly the same amount of LS|in early generations, this amountis small in comparison to the length of a complete LS. Contrast this to the completeLS methods, in which approximately 5% of any population in the �rst generation isat a local minimum. The result is that these methods have high-quality solutionsalmost from the start.IV.D.2 Choice of Local Search MethodAs discussed in Section III.C.1, the method used for local search can beexpected to have a substantial impact on the performance of an EA+LS hybrid. Themain concern is the tradeo� between the quickness of local search and the quality ofthe solutions it produces. Increasing the neighborhood size, for example examining all
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Figure IV.10: Generational vs. Steady-State



96pairs of bit 
ips rather than single bit 
ips, will result in better solutions. This bene�t,however, may not be worth the extra time spent searching the larger neighborhood.Other aspects of the local search algorithm can also have an impact. Notably,�rst-improve methods are generally much faster than steepest descent methods fora given neighborhood (recall Section IV.B.2). Despite this, the quality of solutionsfound by �rst-improve is often as good as or even better than those found by steepestdescent. Clearly, when two LS methods produce roughly comparable solutions, thequicker one can be expected to be a better choice as part of an EA+LS hybrid.Figure IV.11 compares EA+LS using various LS methods on eight instances of graphpartitioning. The LS methods used are the four combinations of unbalanced or half-balanced neighborhoods with �rst-improve or steepest descent moves. Due to itsexcessive running time, local search with the balanced neighborhood structure wasnot used as part of an EA+LS.For each instance, the runs using �rst-improve LS are superior to those usingsteepest descent LS. At all stages, the �rst-improve runs have signi�cantly bettersolutions. This is certainly at least partially due to fact that we are using very smallamounts (ten evaluations) of LS at a time. The steepest descent methods need toexamine the entire neighborhood, so n (number of graph nodes) evaluations of LSare required for any change to be made. Since each application of LS uses far fewerthan n evaluations, a solution must undergo LS several times to get even a single stepof improvement. It is likely that many solutions are replaced from the populationbefore completing this �rst step, thereby wasting the LS e�ort that had been appliedto them. In contrast, the �rst-improve methods can make multiple improvementswith only ten evaluations.Figure IV.11 shows virtually no di�erence between the use of unbalancedand half-balanced neighborhoods. With the exception of the graphs g0250.20 andg0500.40, the two are statistically indistinguishable throughout most of the runs.This observation holds for both �rst-improve and steepest descent methods. Thisresult seems to point to the tradeo� between solution quality and speed. Despite the



97
0 10 20 30

450

500

550

600

650

r0124.20
HF
HS
UF
US

0 20 40 60 80
800

900

1000

1100

1200

P
ar

ti
ti

on
 C

os
t

r0250.20

0 50 100

1800

2000

2200

2400

2600

r0500.20

0 10 20 30

500

1000 g0250.20

0 20 40 60 80
0

500

1000

1500

2000

2500

g0500.20

0 20 40 60 80
0

1000

2000

3000

4000 g0500.40

0 20 40 60 80

Evaluations (x 10,000)

1100

1200

1300

1400

1500

1600

P
ar

ti
ti

on
 C

os
t

p0250.9+16

0 50 100

Evaluations (x 10,000)

2200

2400

2600

2800

3000

3200

p0500.9+16

Figure IV.11: Comparison of Local Search methods



98fact that the unbalanced LS methods produce better solutions on average (thoughonly slightly better in the case of the random graphs), they are no better than half-balanced for use in an EA+LS. This is apparently due to their longer running time(10-50% longer than half-balanced).For the remainder of this chapter, the default LS method will be HF, as itis as good as the other methods on all graphs, and is statistically better on g0250.20and g0500.40.IV.D.3 Role of MutationThe size of mutations can be expected to play an important role in thee�ectiveness of the EA+LS hybrid. As discussed in Section III.C.4, mutations whichare too small to escape from local basins will have no e�ect in the later stages of a run,as local search will return such mutated solutions back to the local minimum. As aconsequence, mutation's role in preventing convergence and generating new solutionseven after convergence will be unful�lled with such small mutations. Therefore, weexpect that in order to be e�ective in the context of local search, mutation must makelarger changes. Speci�cally, mutations at least as large as local basin sizes will delayconvergence and may allow productive search to continue after convergence.In this section experiments are described which attempt to measure localbasin sizes and examine the e�ectiveness of various mutation sizes.Measuring Basin SizeIn order to determine the size of typical local basins, the following exper-iment is performed. For each graph instance, 100 initial partitions are chosen atrandom. Local search is performed to completion on each partition, resulting in 100local minima. For various mutation sizes, mutants of these local optima are gener-ated, and local search is applied to each mutant. By observing how frequently themutants are returned to their original local optima, and how this frequency varieswith the applied mutation size, we can gauge the size of the basins.



99For this experiment, mutation involves swapping 1 to 20 randomly chosenpairs of nodes, depending on the size of the mutation. For each size, 20 mutants weregenerated. For each mutation size the results of all 100 basins are aggregated, givinga sample size of 2,000 (100 basins times 20 mutants each). Furthermore, this entireexperiment is performed for both the HF and UF local search techniques. Figure IV.12shows the percentage of time that local search returns a mutant to its original localminimum as a function of mutation size, for each graph and LS method.Small basins The most obvious observation from Figure IV.12 is that all the per-centages for 1 or more mutations are low, most less than 25%. This seems to implythat even a single swap is usually enough to escape a local basin. This is somewhatsurprising, and makes it appear that any mutation size will allow the bene�ts dis-cussed above. However, there are a couple of reasons why this conclusion does notfollow, and we will argue that this data is merely unhelpful in determining propermutation size.First, as discussed in Section IV.A.2, there may be equivalence classes orpseudo-equivalence classes of local minima having the same cost which are one node-swap away from each other. This can happen, for example, if there are nodes of degreezero in the graph instance. Any two such nodes on opposite sides of the partition canbe swapped to produce an equivalent partition which is no di�erent in any signi�cantway. In this case, there may technically be a great many very small local basins ina small region of the search space, the only barrier between them being the penaltyassociated with temporarily unbalancing the graph by moving degree zero nodes.However, the distinction between these tiny basins is probably not importantto the global search. They all have the same cost and lie in the same small regionof the space, and can be treated interchangeably, as if they form one large localbasin. A mutation operator which merely moves between them is unlikely to be verybene�cial. Mutations need to be large enough to escape this \large-scale" basin, andto discover \non-equivalent" basins. In this sense Figure IV.12 is somewhat unhelpful
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Figure IV.12: Return percentage for mutants



101in determining proper mutation size.A second reason the data is misleading has to do with the speci�cs of thelocal search methods. As described in Section IV.B.1, the HF and UF methods donot always result in a partition which is at a local minimum. In fact, after applyingHF (or UF) to a partition, reapplying it to the result may produce a better solution.This is part of the explanation for the low percentages in Figure IV.12. Local searchdoesn't return the partitions to their starting points because these aren't necessarilylocal minima.This claim is supported by Table IV.22, which shows the percentage of timethe \local minima" from above are returned when local search is applied to themselves(the same experiment as above, but with mutation size zero). We see that for allgraphs, there is a substantial chance of local search modifying the results of previouslocal search.Table IV.22: local minimum stability: When local search is applied to partitionswhich are themselves the result of (one previous) local search, the percentage of timethe same partition is returned. The columns labeled \one LS" are for partitions whichare the result of a single local search. The \veri�ed" columns are for partitions whichhave undergone several local searches, the \settling" columns displaying how manylocal searches on average. See the text for details.HF UFone LS veri�ed settling one LS veri�ed settlingr0124.20 44.0 70.9 2.79 46.0 78.8 2.41r0250.20 63.4 85.6 1.99 61.2 86.2 1.77r0500.20 80.8 85.9 1.43 81.2 92.5 1.47g0250.20 35.0 85.2 6.20 72.1 87.7 1.46g0500.20 15.5 66.4 9.69 50.5 82.7 1.98g0500.40 26.5 73.5 12.18 72.4 88.6 1.63p0250.9.16 51.4 68.8 2.11 44.8 79.2 2.44p0500.9.16 70.0 81.5 2.38 71.6 91.5 1.52In order to account for this problem, another set of experiments is performed,similar to the above, but using \veri�ed" local minima. As before, we generate 100initial partitions and perform local search on each of them. Then we repeatedlyperform local search on the results (updating the solutions if improvements are found)



102until �ve local searches in a row are performed without �nding an improvement. Inthis way we obtain partitions which are partially veri�ed to be true local minima.We will call these veri�ed local minima and their corresponding basins veri�ed localbasins. Table IV.22 shows the LS return percentages for the veri�ed local minimanext to the corresponding data for the unveri�ed local minima. We see that in allcases the veri�ed local minima are substantially more stable, in that local search isless likely to end up with a di�erent partition. Note that the percentages are still lessthan 100% because of the equivalent partitions problem, and also because the veri�edpartitions are not completely guaranteed to be local minima. Also displayed is the\settling time," or the average number of local searches performed before �ndingthe �nal solution. This is seen to be quite high for the geometric graphs under HF,and this is re
ected in the pronounced di�erence between the veri�ed and unveri�edreturn percentages seen for the graphs.The stability of the veri�ed local minima under mutation is displayed inFigure IV.12 along with that of the unveri�ed partitions. As expected, we see that inall cases the percentages are higher for the veri�ed local minima. Despite the greateroverall stability, however, the original observation about low percentages still applies.For most graphs, even a single node swap is usually enough to escape from a localbasin. To some extent this is still an artifact of the \equivalent partitions," so it isdi�cult to infer a proper mutation size from the data.As a �nal note, it is tempting to regard the veri�ed local minima data asmore useful, as it is more pure in terms of what it considers to be local minima.However, both sets of data (veri�ed and unveri�ed) are relevant to understanding thebehavior of the EA+LS algorithm. The unveri�ed local minima are what the EAwill see in early stages, when population members have undergone only one LS, ifthat. After the population has largely converged, mutation and local search will bethe driving forces, and most population members will more likely be at or near truelocal minima. This situation is better re
ected by the veri�ed local minima data.



103Graph and LS characteristics Figure IV.12 and Table IV.22 contain useful com-parative information regarding the di�erent graph instances. First, note that thegeometric graphs show a more gradual dropo� in stability than the other graph typesdo as the size of mutations increases. Consider the ratio of the return percentage aftersize one mutations vs. size �ve mutations. We see that this ratio is almost alwaysless than 2.0 in the case of geometric graphs, whereas it ranges from 4.4 to 22.3 forrandom graphs and 6.2 to 13.8 for planted bisection graphs.This slow dropo� for geometric graphs, together with the fact that the ge-ometric graphs have higher return percentages overall, is a good indication that thelocal basins are more \well-de�ned" and perhaps larger in geometric graphs. By thiswe mean there is some local structure from which it is di�cult to escape by smallmutations. It may seem contradictory that the return probability is low (less than40%) for �ve mutations, yet drops o� slowly all the way out to 20 mutations. It seemsto imply that there is not too much structure at a scale of more that 5 swaps, butthe structure that is there extends to at least 20 swaps. Our interpretation of thisis that there are indeed large basin-like structures (size 20 or more), but that withineach of these there are the usual tiny basins containing roughly equivalent partitions.Mutations of various size traverse the tiny basins easily, but cannot escape the largerstructure.As further evidence for this view, consider Figure IV.13, which shows theaverage Hamming distance of the reoptimizedmutants from their initial local minima.That is, after each mutant in the above experiments is locally optimized, its Hammingdistance from the initial local minimum (before mutation) is measured. The �gureshows a clear di�erence between the three graph types. For the geometric graphs, thereoptimized mutants are much closer to the initial local minimum than the mutantsthemselves. In other words, local search acts to return the mutants towards the initialoptimum. Even after 20 mutations, local search �nds optima which have an averageHamming distance of only 6.59 from the initial minimum. Note also that 20 mutationscorresponds to a mutant Hamming distance of approximately 40, since each mutation



104swaps a pair of nodes (expected value slightly less than 40 since the same node maybe moved twice).
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105makes little di�erence.The data also allow a comparison of basin properties under di�erent localsearch methods. The main observation here is that the partitions found by UF aregenerally more stable than those found by HF. This may be because UF does a morethorough search to begin with, and therefore has less room to improve.In summary, it is di�cult to get a clear idea from the data presented whatmutation size may be appropriate. This is partially because of very small barriersbetween equivalent partitions, resulting in a proliferation of tiny basins which aremostly irrelevant to the global search. Another reason is the imperfect nature of thelocal search algorithms used, which do not always return true local minima. Despitethese problems, some general observations can be made regarding the stability of localminima for various graphs and local search methods. Speci�cally, geometric graphshave more stable local minima than random or planted bisection graphs, and the UFmethod produces more stable minima than the HF method.E�ect of Mutation SizeIn order to examine the role of mutation in the context of local search,experiments are performed using various mutation sizes in an EA+LS hybrid. Thecanonical mutation size is one swap (expected value) per genotype. We expect thisto have little e�ect since the basins are presumably larger than this. A mutation sizeof zero is also tested for comparison. Due to the di�culty in determining basins sizes(see Section IV.D.3), somewhat arbitrary mutation sizes of �ve, ten, and twenty nodeswaps are chosen to test to e�ect \large" mutation. As has been seen, mutations ofthese sizes will usually disrupt local minima enough that local search will not returnto the same partition.Figure IV.14 compares EA+LS using the �ve mutation sizes on eight in-stances of graph partitioning with the HF local search method. Figure IV.15 displaysdata from corresponding EA+LS runs with the UF local search method. As can beseen, the largest mutation sizes generally result in the best �nal solutions. In all



106cases, these solutions are either statistically signi�cantly better than or are statisti-cally indistinguishable from the solutions found using smaller mutation sizes.In contrast to the situation at the ends of the runs, we see that large muta-tions may cause the EA+LS to perform worse initially. In fact, for graphs in whichthere is a clear di�erence early on, using no mutation is best of all, and using largemutation is worst. We believe this is due to mutation partially undoing the e�ects oflocal search. Mutation serves to move the population away from local minima, whichdegrades the average population �tness. Note that since mutation is applied equallyto all population members, this may not substantially hinder the global search in theearly stages. If all members' �tnesses are a�ected the same amount, the relative com-parisons between members will be una�ected, and the global selection should roughlyfocus on the same regions as it would otherwise.The two observations in the preceding paragraphs con�rm our predictionsthat larger-than-usual mutations are appropriate for an EA+LS hybrid. The bene�tof such large mutations in the latter stages of a run are so substantial that theyovercome the detrimental e�ect observed early on.What is most surprising about these �gures is that very large mutation sizes(20 node swaps per individual) are not detrimental. If the EA's population containsuseful information about the search space, then disruptions of this magnitude mightbe expected to degrade the EA's e�ectiveness. How large can mutations be withoutbeing detrimental? In Section IV.D.4 we examine the extreme case of \macromuta-tions", in which half the genotype (on average) is mutated.IV.D.4 E�ect of Crossover and MacromutationIn order to judge the role of crossover, we compare our standard EA to twovariants. The �rst variant uses no crossover, so that a new solution is generated bysimply cloning one parent and applying mutation. If crossover is of any bene�t thenthis method will not do as well as the canonical EA. Note that removing crossovertakes away one source of variation in the population. Hence, the EA will often
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Figure IV.14: Mutation rate comparison using HF
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Figure IV.15: Mutation rate comparison using UF



109converge quickly unless mutation is large enough to compensate.The second variant we examine uses so-called \random" or \headless chicken"crossover [46], in which the standard crossover operator is used, but one of the parentsis a new randomly generated solution. The purpose of this experiment is to deter-mine why crossover is bene�cial, if it is. Crossover typically is thought to combineuseful building blocks from distinct solutions to produce a child with the best of bothparents. If this is the case, then an EA using random crossover should not do aswell, since it does not combine parts from di�erent solutions in the population. Onthe other hand, crossover is sometimes bene�cial simply because it allows large-scalevariations, or \macromutations." If an EA using random crossover works as well asone using standard crossover, this is a good indication that crossover is not e�ectiveat combining building blocks.Figure IV.16 compares an EA using standard-, random-, or no-crossover oneight graphs. The expected mutation size for these experiments is �ve node swaps persolution. This value was chosen as a good compromise between speed and solutionquality based on the experiments in Section IV.D.3.Surprisingly, we see that in general standard crossover does not do substan-tially better than either of the two variants. On the random and planted bisectiongraphs, standard-crossover and no-crossover perform approximately the same, withrandom the worst, though the di�erences are small in all cases. On the large geomet-ric graphs, the order is reversed, with random doing the best, and no crossover theworst. For all graphs, no crossover �nds the best solutions in the early stages of theruns. To check that crossover's ine�ectiveness is not simply a feature of our steady-state algorithm, we repeat the experiment using a generational EA+LS with simpleelitism. We perform LS to completion on 5% of each population, chosen randomly.Because a generational EA has somewhat lower selection pressure, smaller mutationsizes are appropriate: we use one node swap (expected) per genotype. All otherparameters are the same as in the steady-state case. The results are shown in Fig-



110
0 10 20 30

450

500

550

600

650

r0124.20
random
none
standard

0 20 40 60 80
800

900

1000

1100

1200

P
ar

ti
ti

on
 C

os
t

r0250.20

0 50 100

1800

2000

2200

2400

2600

r0500.20

0 10 20 30 40

500

1000 g0250.20

0 20 40 60 80 100
0

500

1000

1500

2000

2500

g0500.20

0 20 40 60 80 100
0

1000

2000

3000

4000 g0500.40

0 20 40 60 80

Evaluations (x 10,000)

1100

1200

1300

1400

1500

1600

P
ar

ti
ti

on
 C

os
t

p0250.9+16

0 50 100

Evaluations (x 10,000)

2200

2400

2600

2800

3000

3200

p0500.9+16

Figure IV.16: Comparison of crossover methods when using LS



111ure IV.17. The same behavior is seen, there being little di�erence between standard-,random-, and no-crossover. Additionally, when the generational EA is run withoutLS, we do see (Figure IV.18) that standard-crossover is more e�ective than eitherrandom- or no-crossover, with random- being the worst by far. This mirrors theresults of Section IV.C.2 using the steady-state EA+LS.These results seem to imply that crossover is not operating as we expectit to, and is not even bene�cial on some graphs. This is even more surprising inlight of the fact that crossover is essential when we are not using local search (seeSection IV.C.2). It seems that when local search is not used, there are composablebuilding blocks which are combined by crossover, but that using local search causesthis process to \break" somehow. We consider two possible explanations. The �rstis that the populations are too converged for crossover to work. The second is thatlocal search itself exploits the compositional structure of the search space, obviatingthe need for crossover. We will show that the �rst hypothesis is incorrect for at leastsome of the instances, and that the second is consistent with all the data available.Lack of Diversity? When local search is used in a Lamarckian fashion, one mayexpect the population to converge quickly. This can happen because local search oftenacts to reduce variation; there are commonalities across local minima, and thereforepopulation members have more in common with each other after local search has beenapplied than before. Standard crossover has no e�ect on a fully converged population,as the o�spring of two identical parents are unchanged. Furthermore, an EA's searchis essentially over once the population converges, unless the genetic operators createenough variation. Hence, random crossover may be quite bene�cial in this situation.Figure IV.19 displays a measure of the population diversity for runs usingeach of the three crossover methods. The diversity measure used is the averagenormalized Hamming distance (as de�ned in Section IV.A). We see from the �gurethat there is a strict ordering of the three methods in terms of diversity: in all casesrandom-crossover maintains high diversity throughout, no-crossover quickly loses its
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Figure IV.17: Comparison of crossover methods for a generational EA using LS
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Figure IV.18: Comparison of crossover methods for a generational EA without LS



114diversity, and standard-crossover falls somewhere in between. This is as it must be,re
ecting the relative amounts of variation introduced by the three methods.A more revealing observation from Figure IV.19 is that the speed of conver-gence under standard crossover depends on the graph. Speci�cally, for the randomand planted bisection graphs the standard EA retains high diversity late into theruns. This runs counter to the proposed explanation for crossover's ine�ectiveness,namely that there is not enough variation across the population for it to combinedisparate solutions in novel ways. Note that on the geometric graphs diversity dropso� quite quickly with standard crossover, almost as quickly as with no crossover. De-spite the fact that this is consistent with the proposed explanation, we believe thatthere is more going on. Our second explanation, discussed next, is consistent withthe convergence rates for all types of graphs.LS Exploits Compositional Structure? The second explanation concerns thenature of the local minima in typical graph partitioning instances. The local minimacontain many similarities to each other: there are certain schemata (e.g. two par-ticular nodes together or apart) which are common to most minima. As a contrivedexample, consider a graph with a small clique, which is not connected to the rest ofthe graph. Local search from any initial partition will place all nodes of this cliquetogether if it can do so while maintaining balance. Hence all local minima will havethis pattern (or schema) in common. Furthermore, if there are several such cliqueslocal search will place the nodes of each one together.If an EA without local search is applied to such a graph, these schemata willhave to be discovered through the standard processes of random variation and selec-tion. The key point is that crossover allows these separate building blocks (cliques)to be discovered independently and then combined. Crossover is hence crucial tothe global search. When local search is used, however, all of these building blocksare found automatically by each complete local search. If there are no larger scalebuilding blocks (too large for local search to reliably handle) to be combined, then
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Figure IV.19: Population diversity for various crossover methods



116crossover will not be useful for this purpose. This is of course an extreme exam-ple but it provides a sense of how a single use of local search can discover multiplegood building blocks. Note that crossover may still be useful for generating variation,however, and in this case random crossover may do as well or better.This hypothesis is somewhat astonishing, and counters our original expec-tations based on our intuitions and especially the results of Section IV.C.2. Yet itis consistent with all the data presented in this section and Section IV.D.3 regard-ing the role of mutation. As we saw there, large mutation sizes (�ve node swapsper solution) are bene�cial, and very large mutation sizes (ten or twenty node swapsper solution) produce quite similar results, in some cases a little better. In fact, thelargest mutation size examined produces results which are comparable to those ofrandom crossover. Roughly, as long as mutation gets out of the local basin, it makesno di�erence how big a change it makes. This seems to imply that there is littleexploitable structure to the search space, beyond that handled by local search. Thepossible generality of the hypothesis to other problems is discussed in Section V.IV.D.5 Local/Global Search RatioThe EA+LS hybrid is a combination of global and local search search meth-ods. As such, a question immediately presents itself: what it the appropriate amountof e�ort to put forth doing local as opposed to global search? We explore this issue byvarying the local/global ratio, which is de�ned to be the number of evaluations spentdoing local search each time a new solution is generated by the genetic operators.All experiments described so far in this section have used the same procedurefor allocating local search; each time a new solution is generated by the geneticoperators, ten steps of LS are applied to it, and then two randomly chosen solutionsin the population also get ten evaluations each. The parameters used (ten evaluations,two extra individuals) are somewhat arbitrary.3 We will investigate the behavior of3In fact, the decision to perform LS on two individuals was made so as to maintain the samelocal/global ratio as was observed in previous experiments employing a generational EA with infre-quent, complete LS.



117the EA for various values of this ratio, as well as the LS increment.The local/global ratio is determined by three algorithmic parameters: theamount of LS given a new solution when it is created (the sni� length), the numberof additional solutions chosen to get LS (the LS rate), and the amount of LS givento each of these additional solutions (the LS increment). Simply,local/global ratio = sni� lenth + (LS rate)(LS increment):Hence, the local/global ratio for all experiments described so far has been 30. Inorder to get a sense for how appropriate this ratio is, we compare with runs usinglocal/global ratios of 10 and 100. Regarding LS increment, the default value of tenintuitively seems like a lower bound on how much LS is useful|longer searches maybe bene�cial. Therefore, for each local/global ratio, we try LS increments of 10and 100. Finally, since the solutions getting LS are selected randomly, the initial\sni�" may not be bene�cial. We perform experiments with sni� length 0 and 10. InSection IV.D.6 we examine other selection methods for which the sni� is expected tobe more important.Table IV.23 summarizes the experiments performed. Note that some com-binations of parameter values result in a fractional LS rate. The EA handles thisdeterministically by keeping a running 
oating point sum which is incremented bythe LS rate whenever a new solution is generated. Each time the sum surpasses anintegral value a solution is chosen for local search.Figure IV.20 compares the six methods which have sni� length zero. Earlybehavior is determined primarily by the LS length while the �nal solution qual-ity (when there is a di�erence between the methods) is determined mainly the lo-cal/global ratio. More speci�cally, for all graphs an LS increment of 100 gives signif-icantly better solutions early on than LS increment 10. For the random and plantedbisection graphs, all methods are approximately equal in terms of the �nal solution.On the geometric graphs, however, the larger local/global ratios result in better so-lutions. The e�ect of LS increment, which is so strong early in the runs, is minimalby the end.
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Figure IV.20: Comparison of local/global ratios and LS increments without LS sni�



119Table IV.23: Experiment summary: The algorithmic parameter values used inthe experiments of Section IV.D.5. For each experiment, the sni� length, local/globalratio, LS increment, and LS rate are given. Note that the experiment with sni�length 10 and local/global ratio 10 does no additional LS, so the LS increment is notapplicable.sni� local/globallength ratio LS increment LS rate0 10 10 10 10 100 0.10 30 10 30 30 100 0.30 100 10 100 100 100 110 10 NA 010 30 10 210 30 100 0.210 100 10 910 100 100 0.9Our interpretation of the �rst observation (longer LS helps initially) is asfollows. From previous experiments we know that LS is quite powerful at quickly�nding high-quality solutions (cf. Section IV.B.2). Hence, doing a long LS (100evaluations) on a single random solution will generally yield a better partition thandoing short LS (ten evaluations) on ten random solutions. This is manifested in theEA, where focusing the LS e�ort on a small number of partitions is the fastest wayto improve initially.In the longer term the bene�t of long LS does not persist simply becausethere is a limit to the amount of LS which can be performed on a given solution.Even if LS is applied for only a few evaluations at a time, multiple applications willeventually result in reaching a local minimum. Furthermore, long LS may cause thepopulation be become \unbalanced," with some members much better than otherssimply by virtue of having had more local search. This may skew selection andtherefore harm the global search. In fact this e�ect is not seen in the data; for mostgraphs and local/global ratios, there is no statistical di�erence between using longand short LS in terms of the �nal solutions.



120What does sometimes di�erentiate the methods at the end of the runs forgeometric graphs is the local/global ratio. The di�erences are small, but in all casesa ratio of 10 results in worse solutions than a ratio of 30 or 100. On g0250.20 andg0500.20 the di�erence between a ratio of 10 and 100 is statistically signi�cant. Nosuch e�ect is observed on the random or planted bisection graphs.Figure IV.21 displays the the results of the �ve methods which use a sni�length of ten. The �rst observation is that the worst method in all cases is that withratio 10. This is not surprising, as no additional LS is performed other than theinitial sni�. No solution ever gets more than ten evaluations worth of local search,unlike the other methods in which the local search e�ort applied to a solution canaccumulate over multiple applications. Hence, it is di�cult for local minima to befound with this method. Otherwise, the same observations apply as for the case withsni� length zero. Namely, LS increment 100 is always superior to LS increment 10in the early stages, and larger local/global ratios are superior to smaller ones whenthere is a signi�cant di�erence.In order to examine the e�ect of the sni� length, we compare a sni� length 0method with a sni� length 10 method. In both cases we use local/global ratio 100 andLS increment 100|these values are chosen because they are competitive with othermethods on all graphs, for either value of sni� length. Looking at the �nal solutionvalues, sni� length has virtually no e�ect, there being a signi�cant di�erence for onlyone graph.In summary, LS increment has a large e�ect on the speed with which the EA�nds good solutions, with longer searches �nding good solutions faster. This e�ectdoes not persist to the end of the run, however. Rather, the most important factorin �nal solution quality is the local/global ratio, with larger ratios being as good asor better than smaller ratios. This e�ect appears only for the geometric graphs, andis fairly weak even then. Finally, for an e�ective choice of local/global ratio and LSincrement, there is no signi�cant bene�t or detriment to using an initial LS sni�.
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Figure IV.21: Comparison of local/global ratios and LS increments with LS sni�



122IV.D.6 Choice of Local Search Selection MethodIn many EA+LS algorithms, including ours, there is a step in which mem-bers of the population are selected to undergo local search. In typical generationalimplementations (cf. [38, 71, 56]), for example, some small fraction of the populationis chosen at the start of each generation. The steady-state complete LS algorithmdescribed in Section IV.D.1 does local search with small probability on each new so-lution as it is generated, while the steady-state short LS algorithm we use in mostexperiments picks k population members each time a new solution is generated.All experiments described to this point have chosen the solutions which un-dergo LS uniformly at random from the population, without regard for �tness orprevious LS results.4 Section III.C.3 discusses several alternative strategies, includ-ing some previously examined by Hart [38] for continuous optimization. We referto such strategies as local search selection methods. In this section we empiricallyevaluate two such methods: biasing LS selection towards �t solutions, and biasing to-wards solutions which have the greatest \local search potential." These methods arecompared against our default method, random LS selection. Additionally, since both�tness and measures of LS potential are a�ected by the amount of LS a solution hasreceived, various LS sni� lengths are used for each method. A partial examination ofsni� length under the random LS selection method was explored in Section IV.D.5.Preliminaries De�ne local search potential to be the amount of improvementwhichcan be made to a solution by local search, before reaching a local minimum. Thereis of course no way to know this value without carrying out the local search, so weneed some way to estimate it.Related work by Carson and Impagliazzo [14] has shown that for some\hard" instances of planted bisection, a solution's LS potential is negatively cor-related with its distance from the planted bisection. This provides some justi�cationfor focussing search on the solutions with greatest potential, as these are likely near-4The exception to this is that we never select solutions on which LS has previously run tocompletion.



123est to the global optimum. This observation does not provide us with a measure ofpotential, however, unless we happen to know what the planted bisection is ahead oftime. The method we use is to keep track of the success of any previous LS onthe solution, and to equate recent rate of improvement with the LS potential. Themotivation for this estimate is that LS typically makes rapid improvements whenthe solution is far from its corresponding local optimum, as there are many ways toimprove such a solution; in the extreme, a totally random solution can be expectedto have half its neighbors better than itself. As LS gets closer to the optimum, fewerand fewer improving moves are possible, and the rate of improvement decreases. Notethat this applies to both �rst-improve LS, in which the number of neighbors whichmust be examined increases, and steepest descent LS, in which the best move is likelyto have a smaller gain in �tness than when half of all moves are improving.The speci�cs of our estimate are as follows: a running window of the 100most recent evaluations of LS is kept for each solution in the population. The averagedecrease in partition cost per LS evaluation, taken over the most recent 100 evalu-ations, is used as our estimate of LS potential. For solutions which have had fewerthan 100 evaluations of LS, the average is taken over their entire LS history. Newsolutions which have had no LS are assigned the average of the LS potentials of allpopulation members which have had LS. Finally, solutions for which LS has run tocompletion are excluded from LS selection, and their LS potential is not included inthe average assigned to new solutions.When either �tness or LS potential is used for LS selection, the procedureused for this selection is the same as that used for reproductive selection (recall Sec-tion IV.D). In the case of LS potential, the \�tnesses" used for LS selection are simplythe negative of the LS potential; we use the negative because the selection procedureis designed for minimization, and we want to bias selection towards solutions withthe highest potential.Finally, the experiments in this section use LS sni� lengths of 0, 10, and



12420. In all cases, the local/global ratio is 30, and the LS increment is 10. Recall fromSection IV.D.5 thatlocal/global ratio = sni� lenth + (LS rate)(LS increment):Therefore, the number of additional solutions chosen for LS each time a new solutionis generated (the LS rate) will vary: the rate will be 3, 2, or 1 for LS sni� lengths of0, 10, or 20, respectively.E�ect of Sni� LengthRandom LS selection Figure IV.22 compares three sni� lengths for an EA+LSusing random LS selection. On all graphs, the best results are obtained by usingno sni� at all, and the worst results occur with the longest sni� length. It is notobvious that the sni� length should have any e�ect at all, as the remaining LS issimply being distributed randomly. Note, however, that longer sni� lengths havethe e�ect of distributing LS more uniformly among the population, as every membergets at least the sni�. With no sni�, some members may never get any LS, whileothers will get much more than average just by chance. This seems to imply that auniform allocation of LS is suboptimal, at least when the alternative is to allocate LSrandomly without bias.In order to get a better idea of how the search progresses, we examine thepopulation at regular intervals and record how much LS has been applied to eachsolution (we call this the solution's LS allocation. This data tells us how uniformlyLS is distributed among the population. We expect new members of the populationto have undergone only a small amount of LS, while solutions which have been in thepopulation longest will have accumulated the most LS just by chance. Figure IV.23displays the average and standard deviation of the LS allocations for a single run onthe graph u0500.20, using sni� length 10. The average and standard deviation aretaken over the population, but do not include those solutions which have had onlythe initial LS sni�, nor those for which LS has run to completion. The number of



125
0 10 20 30

450

500

550

600

650

r0124.20
sniff 20
sniff 10
sniff 0

0 20 40 60 80
800

900

1000

1100

1200

P
ar

ti
ti

on
 C

os
t

r0250.20

0 50 100

1800

2000

2200

2400

2600

r0500.20

0 10 20 30

500

1000 g0250.20

0 20 40 60 80
0

500

1000

1500

2000

2500

g0500.20

0 20 40 60 80
0

1000

2000

3000

4000 g0500.40

0 20 40 60 80

Evaluations (x 10,000)

1100

1200

1300

1400

1500

1600

P
ar

ti
ti

on
 C

os
t

p0250.9+16

0 50 100

Evaluations (x 10,000)

2200

2400

2600

2800

3000

3200

p0500.9+16

Figure IV.22: Sni� length comparison using random LS selection



126solutions falling into each of these two categories is displayed with separate lines inthe �gure.
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Figure IV.23: Distribution of LS allocation for random LS selectionInitially, we see a large number of solutions which have had only the LS sni�.The average LS allocation increases quickly, however, and soon most of the populationhas received some additional local search. After roughly 200,000 evaluations theaverage LS allocation drops sharply, and then begins rising again, and continues toincrease throughout the run. By about 600,000 evaluations, there are several solutionsfor which LS has run to completion. The number of these solutions increases steadilyuntil the entire population (other than the new solution each time) is at local minima.Note that this causes the average LS allocation curve to drop, since the local minimaare not included in its average.The general trend of increasing LS allocation is not surprising; as the searchprogresses, some solutions remain in the population for long periods by virtue ofhigh �tness. These will periodically be allocated LS, thus increasing the average LSallocation. The dip in LS allocation, however, is unexpected. It implies that solutions



127which have been in the population a while and which have received substantial localsearch are suddenly being displaced by newer solutions. The phenomenon is alsoobserved in other runs on the same graph, though at di�erent points in di�erentruns. Why this happens is unknown, but comprehending it seems important tounderstanding the progression of the search. This is a possible direction for futureresearch.Biased LS selection The next set of experiments uses �tness-based LS selection,again with sni� lengths of 0, 10, or 20. For these runs, the same selection proce-dure is used for LS selection as is used for reproductive selection (see Section IV.D).Therefore, the solutions which contribute the most genetically to future generationsalso get the most LS. As discussed in Section III.C.3, we may therefore expect fasterconvergence of the population and perhaps worse �nal solutions.Figure IV.24 compares �tness-based LS selection for the three sni� lengths.Once again we see that larger sni� lengths result in worse solutions, when there is adi�erence. It is not clear if this implies that �tness-based LS selection is bene�cial (asshorter sni� lengths allow more LS to be assigned based on �tness), or if we are simplyobserving the bene�t of less uniformly allocated LS, as in the random LS selectioncase. Note, however, that the solutions which have received the most LS are likely tobe the most �t, and therefore are the most likely to receive future LS. In this way theallocation of LS may be even more nonuniform than in the random selection case.To examine this hypothesis, we display the LS allocation average and stan-dard deviation in Figure IV.25 for a typical run on u0500.20, using �tness-based LSselection and sni� length 10. Two main di�erences are observed between this �g-ure and Figure IV.23, which shows the corresponding data for random LS selection.First, both the average LS allocation and the standard deviation are much higherfor the �tness-based run. This is consistent with the hypothesis that �tness-basedLS selection leads to a more skewed distribution of LS allocation. Second, there isno dip in the LS allocation curve in �tness-based case. This may be related to the
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Figure IV.24: Sni� length comparison using �tness-based LS selection



129possibility that long-lived solutions receive more LS than in the random LS selectioncase; since the established solutions have the bene�t of extra LS, it is more di�cultfor new solutions to make to compete with and displace them. This explanation isspeculative, however, as we do not yet understand the cause of the dip in the randomcase.
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Figure IV.25: Distribution of LS allocation for �tness-based LS selectionReturning to the issue of sni� length under biased LS selection, Figure IV.26displays the performance of the LS potential method under various sni� lengths. Aswith the other methods, when there is a di�erence in performance, longer LS sni�slead to worse solutions. This relation is especially surprising for the LS potentialmethod, as presumably some amount of LS is necessary to get an estimate of asolution's future potential for improvement. We will discuss possible explanations forthis below.
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Figure IV.26: Sni� length comparison using LS potential-based LS selection



131E�ect of LS Selection MethodsAs each of the three selection methods does best with a sni� length of zero,we compare their performance using this value. Figure IV.27 shows that there isvirtually no di�erence between the methods in terms of the �nal solutions found.Where a clear di�erence does show up, however, is in the early stages of the runs. Onall graphs, �tness-based LS selection makes the fastest progress. This is as expected,since this method exploits the best members of the population with local search tothe exclusion of others. In early stages, it is therefore likely to have solutions whichhave undergone more LS than any solutions under the other methods. For this samereason, it is somewhat surprising that this method is competitive with the others interms of �nal solutions. With its self-amplifying focus on the best solutions, one mightexpect it to lose diversity early on and be unable to continue searching e�ectively.Apparently this is not the case.That the LS potential method is no better than the others counters ouroriginal expectations (see Section III.C.3). The results indicate that our e�orts toallocate LS intelligently are no more helpful than simply allocating it randomly. Thereare two possible explanations for this: the measure we use for LS potential is poor,or biasing LS selection towards solutions with high LS potential is unhelpful.Both of these hypotheses are testable to some extent. An EA+LS can berun in which in addition to the usual LS, \o�-line" LS is run to completion on everysolution. The results of these additional local searches do not in
uence the algorithm,but rather are used for analysis purposes. In particular, this would provide us withthe true LS potential; the di�erence between a solution's current �tness and the�tness of its local minimum is its potential for improvement. Hence we could directlymeasure the correlation between LS potential and our estimate of it. To test thesecond hypothesis, we could use the directly measured LS potential (as opposed toour estimate) to bias LS selection. If this method still does no better than randomLS selection, then we can conclude that our intuitions are indeed 
awed in some way.Both of these experiments are directions for future research.
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Figure IV.27: Comparison of LS selection methods for sni� length 0



133In summary, we �nd no di�erence between the various LS selection methodsin terms of �nal solution �tness. The �tness-based method is best in the early stagesof the runs, which agrees with our intuitions that it is the most exploitative of themethods. For all methods the use of a sni� length is generally harmful. The fact thatLS potential is no better than random selection, and that the use of sni� length isunhelpful even when using LS potential runs counter to our intuitions, but possibleexplanations present themselves which are testable.IV.D.7 Lamarckian vs. Darwinian EvolutionAll EA+LS experiments so far described in this dissertation have usedLamarckian evolution, in which the solutions resulting from local search replace thecorresponding preoptimized solutions in the population. Hence, local improvementsdirectly a�ect the genetic information in the population. An alternative to this isDarwinian evolution, in which the �tness resulting from local search is used for selec-tion purposes, but the resulting solution itself is discarded. In this section we examinethe Darwinian alternative under various mutation sizes and types of crossover. Wewill often refer back to Sections IV.D.3 and IV.D.4, which present the correspondingLamarckian experiments.E�ect of Mutation SizeFigure IV.28 compares Darwinian and Lamarckian evolution for an EA usingour standard crossover, but without mutation. Overall the Darwinian alternative isseen to result in better �nal solutions. This can be explained by recalling the resultsof Section IV.D.3, where we examined the e�ect of mutation size in the context ofLamarckianism. There we found that large mutations are required to prevent thesearch from becoming trapped in local basins, especially for the geometric graphs. Inthe Darwinian case, however, there is no danger of getting trapped, since the resultsof local are not copied back onto the genotype.For comparison, Figure IV.29 shows the corresponding data for runs using
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Figure IV.28: Darwinian vs Lamarckian for mutation size 0



135an expected mutation size of one node swap per solution. Here we see that on therandom and planted bisection graphs, where local basins are very small, the advantageof Darwinian evolution is lost entirely. This is consistent with our explanation, aseven small mutations are adequate to escape most local basins on these graphs. The�gure shows that on the geometric graphs, where the basins are larger, the Darwinianmethod is still superior. Since the genotypes in the Darwinian case are not �xatedon the local minima, a solution may move between basins by a succession of smallmutations, even if the basins are large.Finally, Figure IV.30 compares Lamarckian and Darwinian evolution for amutation size of �ve. We see that the Lamarckian version performs as well as or betterthan Darwinian on all graphs. Mutations this large are enough for the EA to escapelocal basins even on geometric graphs, as con�rmed by the results of Section IV.D.3.As mutation size plays an important role in the e�ectiveness of the Lamar-ckian EA+LS, the question naturally arises as to what e�ect it has in the Darwiniancase. As noted above, mutation is no longer necessitated by the need to escape localbasins. It may still be useful for some other purpose, however. Figure IV.31 com-pares three mutation sizes (zero, one, and �ve expected node swaps per solution)under Darwinian evolution. There is virtually no di�erence in performance of thesearches. Apparently, the extra genetic variation introduced by large mutations is ofno bene�t or detriment to the global search. Conversely, even the lack of mutationis not detrimental. As genetic variation is clearly necessary for search to proceed, itmust be the case that crossover alone is a su�cient source of this variation.Role of CrossoverIn Section IV.D.4 we saw evidence that crossover does not operate as ex-pected under Lamarckian evolution. Speci�cally, it does not e�ectively combine build-ing blocks from di�erent solutions. This is despite the evidence in Section IV.C.2 thatcrossover does work as expected when local search is not being used. Our interpreta-tion of this is that local search obviates the need for crossover by discovering building
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Figure IV.29: Darwinian vs Lamarckian for mutation size 1/N
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Figure IV.30: Darwinian vs Lamarckian for mutation size 5/N
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Figure IV.31: Comparison of mutation size under Darwinian evolution



139blocks itself. Roughly, each application of local search �nd all composable subsolu-tions. In light of the Lamarckian and no-LS results, we may predict what e�ectcrossover has in the Darwinian case. Since LS �nds all building blocks each time it isapplied, we still do not expect crossover to be helpful. It makes little di�erence thatthe building blocks are not encoded onto the genotype; they will be found again thenext time LS is applied. Note that this argument assumes an ideal situation in whichevery local search �nds every composable subsolution. The reality of the situationmay be more complicated, but as long as most local searches �nd most of the buildingblocks, the expected function of crossover is unnecessary.Figure IV.32 compares standard-, random-, and no-crossover (as de�ned inSection IV.C.2) for a Darwinian EA+LS with mutation size �ve. There is virtuallyno di�erence between these three methods, indicating that crossover is indeed inef-fective at combining building blocks. Additionally, there is no apparent bene�t ordetriment to using random crossover when compared to no crossover at all. Comparethis to Figure IV.31, which shows no di�erence in using various mutation sizes understandard crossover. These data indicate that as long as there is some method to intro-duce variation it does not matter how much is introduced, at least up to the randomcrossover benchmark. Since local search does not directly �xate the population onspeci�c bit-patterns, any amount of mutation will maintain su�cient diversity.IV.E Other Global Search AlgorithmsIn this section we consider global search methods other than the EA+LS.Section IV.E.1 compares simulated annealing to the EA+LS, and shows that the typeof graph being searched a�ects performance. Section IV.E.1 analyzes the behaviorof SA by performing \o�-line LS" during the run. Finally, Section IV.E.2 comparesthe Go-With-the-Winners algorithm to EA+LS. As discussed in Chapter I, both SAand GWW have global and local aspects to their search. Since they integrate these
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Figure IV.32: Comparison of crossover methods under Darwinian evolution



141aspects less explicitly than the EA+LS, the comparisons are important.IV.E.1 Simulated AnnealingComparison to EAThe best known general-purpose method for graph bisection is simulatedannealing [15, 52]. Figure IV.33 compares SA to the EA+LS. The EA+LS used isthe generational EA+LS described in Section IV.D.1, which �nds the best solutionsof all the EA+LS variants considered in this dissertation. Our implementation of SAis taken from Johnson et al. [44], and is described in Section II.A.4.We see that in all cases the EA+LS starts out �nding substantially bettersolutions than SA. This is a direct results of its use of LS: it quickly �nds localminima while SA is exploring globally. On the planted bisection and larger randomgraphs, SA eventually catches up with EA+LS and �nds better solutions. On thegeometric graphs, however, EA+LS retains it superiority throughout the runs. Sincethe di�erences at the end of the runs are too small to be seen in the �gure, we displaythe average �nal solution values in Table IV.24.Table IV.24: Average �nal solutions for SA and EA+LS: The average of the�nal solutions from SA and EA+LS, for the eight graph instances. Ten EA+LS runswere done for each graph, and from 30 to 70 SA runs. The number of SA runs doneis also shown. A * in the signi�cance column indicates that the di�erence betweenSA and EA+LS is statistically signi�cant (two-tailed Student's t-test with p < 0:05).numberEA+LS SA SA runs signi�cancer0124.20 450.4 449.9 50r0250.20 837.8 830.5 70 *r0500.20 1789.8 1752.8 40 *g0250.20 141.7 166.3 30 *g0500.20 206.6 209.4 40g0500.40 464.0 468.4 40p0250.9+16 1141.3 1132.3 70 *p0500.9+16 2277.0 2231.0 40 *Note that the EA+LS runs shown here are given only as many evaluations
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Figure IV.33: Comparison of Simulated Annealing and the EA+LS



143as SA uses, and hence are shorter than we typically use. For many of these graphs,the EA+LS will continue to improve its solutions if it is allowed to run longer. SA,on the other hand, makes no further improvement if run longer, as the temperaturebecomes too low for any search to occur.Basin-Finding BehaviorIn order to better understand the behavior of simulated annealing for graphpartitioning, we perform several runs using \o�-line" local search. Each time the SAalgorithm moves to a new partition, we do a complete local search and record theresulting local optimum. This is done extraneously to SA itself, so that the currentpartition and its cost are unmodi�ed. In this way we get a sense of the trajectory ofthe search, how frequently it changes local basins, and how often it �nds new basins.Common intuition about simulated annealing suggests roughly what to ex-pect. At high temperature, SA will visit many local basins without spending too muchtime in any one basin. As the temperature is lowered, the frequency with which SAexplores new basins should decrease. Eventually, it becomes con�ned to smaller andsmaller groups of basins, until �nally the temperature is so low that it cannot escapethe basin it is in. The experiments described here con�rm this intuition on somegraphs, and help to characterize the type of exploration which occurs in the laterstages of a run. We will see, however, that for many graphs (especially sparse ones)the intuition isn't quite right. The reason has to do with nodes of low a�nity (seeSection IV.A.2).In order to maintain consistency in our determination of local basins, a de-terministic local searcher is used for these experiments. A randomized local searcherwould complicate the analysis by reporting di�erent local minima for adjacent solu-tions (or even the same solution). In particular, we use a steepest descent strategyover the unbalanced neighborhood, in which the nodes are ordered beforehand so asto break ties (multiple equally good \best" moves) during the local search.Figure IV.34 shows the progression of a typical SA run on the graph r0124.20.



144As a function of evaluations, this graph displays the cost of the SA's solution at eachstep and the cost of the local optimum associated with each. As expected, SA'saverage solution gets gradually better as the temperature decreases. One thing tonote, though, is how volatile it is. The cost of the current solution repeatedly increasesand decreases by as much as 50% of its entire range. Despite this, the solutions areof relatively high quality: throughout virtually the entire run no partition is visitedwhose cost is greater than 90% of the average random partition cost.
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Figure IV.34: SA with o�-line LS on r0124.20: The progression of a single SArun. The light-colored curve shows the partition cost of SA's solution at each step.The darker (bottom) curve shows the cost of the local optima associated with SA'ssolutions. Finally, the uppermost curve shows SA's temperature (scaled to �t theplot). For comparison, a random partition has expected cost 639.3.As the temperature is lowered, the volatility of the solution cost decreases,and SA's solutions are closer in cost to their local optima. This corresponds to theintuition that SA settles down and becomes more like local search as it \cools." Thevalue of the corresponding local optima is also volatile. In fact, good basins are foundearly on|LS �nds solutions within the �rst 1,000 evaluations which are as good asthe �nal solution, although SA doesn't �nd such solutions until much later|and lost



145repeatedly.Another interesting feature of this �gure is that SA starts �nding partitionswhich are better than their corresponding local optima. This is because SA searchesover unbalanced partitions, whereas the local optima are all balanced. In this graph itis possible to obtain a lower partition cost (including the imbalance penalty) by beingslightly out of balance. Furthermore, the best unbalanced partitions found by SA donot correspond to the best balanced local optima. In the �nal stage of the run shownSA spends most of its time in a region whose local optimum is worse than that foundpreviously (450 vs. 449), but which nevertheless has better unbalanced partitions. Inat least this graph, then, allowing unbalanced partitions with the penalty can misleadthe search.To better understand how the SA search progresses, we can also look athow frequently SA changes basins and how often it �nds new, previously unvisited,basins. Figure IV.35 shows the percentage of moves made by SA which change localbasins (alternatively, for which the associated local optimum changes), as the SArun progresses. We see that this percentage gradually decreases on average, withSA switching basins only rarely after 60,000 evaluations. Figure IV.36 shows thepercentage of moves which discover new basins. Such discoveries are rare after 45,000evaluations, while SA is still actively switching among previously found basins.Note that it is not the case that SA has simply explored all possible basinsby this point. In all, this run visited 1,646 distinct basins. In contrast, performinglocal search from 10,000 random partitions found 9,265 distinct local minima. Thedata therefore imply that SA gradually settles into a narrow region, and eventuallyinto a single basin, matching our intuition.Unexpected Behavior In contrast to r0124.20, there are several graphs for whichSA does not behave as originally expected, in terms of the frequency of changing localbasins and discovering new basins. These graphs include those with very low degree,having many degree zero nodes, and to a lesser extent more dense graphs for which
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Figure IV.35: Frequency of local basin changes on r0124.20: For the sameSA run as in Figure IV.34, the percentage of moves which are accepted, and thepercentage of the accepted moves which change local basins. The data are aggregatedinto blocks of 1,000 SA evaluations each to generate the bar graph.low a�nity nodes are common.Figure IV.37 shows the progression of a typical run on the graph r0124.03.As with r0124.20, the solution gradually gets better but varies greatly in the process:the cost of the current solution repeatedly increases and decreases by as much as 50%of its entire range. As before, the solutions are of relatively high quality: generallystaying below 75% of the average random partition cost.An interesting feature of this graphs is the sharp decrease in cost at around35,000 evaluations. What apparently happened here is that SA found a series ofimprovements which were too good to be undone given the temperature at that point(alternatively, the volatility was too low to overcome the large gains). As seen, thisevent coincided with an improvement in the local optimum as well, indicating thatSA found a new better basin. Other than this one event, however, note that thequality of the local optima does not follow a clear trend as the run progresses. The
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Figure IV.36: Frequency of new local basin discoveries on r0124.20: For thesame SA run as in Figure IV.34, the percentage of moves which are accepted, andthe percentage of the accepted moves which enter new local basins. The data areaggregated into blocks of 1,000 SA evaluations each to generate the bar graph.values of the optima go up and down, and in fact very good local basins (optimumwith value 15 versus the �nal value of 13) are found early on but are then lost.More interesting are the plots showing the frequency of switching basins(Figure IV.38) and �nding new basins (Figure IV.39). Both of these frequenciesincrease throughout the run, averaging over 70% by the end of the run. This behaviorcontinues even after all the important activity has ceased. After 80,000 evaluations,there is no improvement in in the SA's solution cost or the costs of the associatedlocal minima. Note that the absolute rates of these events (basin switching andbasin discovery) in terms of evaluations is not increasing. What is increasing is thepercentage of SA's accepted moves which switch or discover basins. This is a rathersurprising fact: on this graph SA's move become more likely to switch (and discover)basins as the temperature cools!Since SA 
ips only a single bit each move, it takes several accepting moves
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Figure IV.37: SA with o�-line LS on r0124.03: The progression of a single SArun. The light-colored curve shows the partition cost of SA's solution at each step.The darker (bottom) curve shows the cost of the local optima associated with SA'ssolutions. Finally, the uppermost curve shows SA's temperature (scaled to �t theplot). For comparison, a totally random partition has expected cost 75.1.for it to signi�cantly change its current solution. Since over 70% of its moves in thelater stages are to new local basins, this implies that this graph must have very smallbasins. Indeed it does; this graphs has 12 nodes of degree zero, which leads to manyequivalent partitions packed together with only small barriers between them (recallSection IV.A.2). SA is simply wandering around such a region sampling the variousequivalent partitions.Given that SA is actively sampling new basins long after it has ceased im-proving, we may ask how large a region of the overall search space it spans during thelate stages. SA changed basins 407 times between evaluation 80,000 and the end ofthe run (over 100,000 evaluations). The 407 associated local minima show a strongsimilarity to each other. Of the 124 nodes in the graph, 107 are labeled (set 0 or1) the same way by every one of the minima. These nodes are apparently \�xed"and cannot be moved once the temperature gets low. Of the 17 nodes which do get
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Figure IV.38: Frequency of local basin changes on r0124.03: For the sameSA run as in Figure IV.37, the percentage of moves which are accepted, and thepercentage of the accepted moves which change local basins. The data are aggregatedinto blocks of 1,000 SA evaluations each to generate the bar graph.moved, 12 are the degree zero nodes mentioned earlier. The other �ve all have degreetwo, but have an a�nity of zero (cf. Section IV.A.25). This allows them to be movedfreely without modifying the partition cost.The above comments are for a single SA run on r0124.03. The qualitativeobservations about increasing basin switching and discovery are repeatable acrossruns, as is the observation of a small region of the space being explored in the �nalstage. In particular, there is a core set of approximately 100 nodes which are �xedin the late stages of any run, though they may be set to di�erent values in di�erentruns.Denser Graphs Even in graphs which have no nodes of degree zero, SA maycontinue to explore di�erent basins throughout the run. Figures IV.40 and IV.41 showthe frequency of basin changes for the graphs r0500.10 and r0500.20, respectively. We5In fact, these �ve nodes are the basis for the examples of zero a�nity nodes in Section IV.A.2.
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Figure IV.39: Frequency of new local basin discoveries on r0124.03: For thesame SA run as in Figure IV.37, the percentage of moves which are accepted, andthe percentage of the accepted moves which enter new local basins. The data areaggregated into blocks of 1,000 SA evaluations each to generate the bar graph.see that the frequency increases in the latter stages despite the fact that these graphshave no nodes of degree zero (the lowest degree is 2 for r0500.10 and 7 for r0500.20).Note that this e�ect is not as pronounced as in the sparse graph r0124.03; in particularthe frequency decreases for roughly the �rst half of the runs, before starting to increaseagain. If we examine which nodes are being moved by SA at low temperature, weagain see that the vast majority are �xed in place. Speci�cally, for the r0500.10 run,only 43 of the 500 nodes move after the evaluation 300,000. Similarly, only 35 ofthe nodes in r0500.20 are moved after evaluation 300,000. It is instructive to classifythese nodes according to how much time each spends on either side of the partition.Call a node \�xed" if it stays on one side the entire time. Call it \semi�xed" if itspends more than 75% of it times on one side. Otherwise it is \loose." Table IV.25shows the number of each of the types for r0124.03, r0500.10, and r0500.20, as well
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Figure IV.40: Frequency of local basin changes on r0500.10: The percentageof moves which are accepted, and the percentage of the accepted moves which changelocal basins. The data are aggregated into blocks of 1,000 SA evaluations each togenerate the bar graph.as the average a�nity for nodes of each type. We see that as a group the �xed nodeshave the highest average a�nity, and the loose nodes have the lowest.In summary, we have examined some intuitions about how simulated anneal-ing operates, speci�cally that it should change basins and discover new basins lessfrequently as the temperature is lowered. This intuition turns out not to be quite truefor some graphs. The reason has to do with equivalent or nearly equivalent partitionswhich di�er by nodes of low a�nity. Although SA may continue to discover newbasins throughout the run, it does become con�ned to a tiny fraction of the searchspace eventually.IV.E.2 Go-With-the-WinnersThe Go-With-the-Winners algorithm of Dimitriou and Impagliazzo [19] makesfor another interesting comparison of global search algorithms. As described in Sec-
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Figure IV.41: Frequency of local basin changes on r0500.20: The percentageof moves which are accepted, and the percentage of the accepted moves which changelocal basins. The data are aggregated into blocks of 1,000 SA evaluations each togenerate the bar graph.tion I.A.3, GWW attempts to maintain uniform sampling of all solutions which arebetter a given threshold. This threshold is decreased by one at each stage of the al-gorithm, so that the solutions in the population continually get better. GWW excelsat exploratory search [14], but can also be used as an optimization method by settingits algorithmic parameters (number of \particles" and random walk length) smallenough. Figure IV.42 compares GWW to the EA+LS on two graph bisection in-stances. The GWW data in the �gure is provided by Carson [12] for runs usingten particles and a random walk length of ten steps. These parameter settings werechosen for e�cient optimization (as opposed to exploratory search), though minimale�ort was invested in tuning them. The EA+LS algorithm we use is the generic gen-erational EA+LS from Section IV.D.1 (and the same one we compare against SA inSection IV.E.1).
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Figure IV.42: Comparison of Go-With-the-Winners and the EA+LS: Eachmethod is run ten times on each graph, and standard error bars are shown.



154Table IV.25: Node a�nities at end of SA run: For three graphs, a characteri-zation of the node movement in the �nal stage of a SA run. The number of nodeswhich are �xed, semi�xed, and loose is shown, as well as the average a�nity for thenodes in each group. The average is taken over the local optima associated with SA'ssolutions in the �nal stage of the run. The �nal stage is de�ned to begin at 80,000evaluations for r0124.03, and 300,000 evaluations for the the two larger graphs.r0124.03 r0500.10 r0500.20number avg. a�nity number avg. a�nity number avg. a�nity�xed 107 2.29 457 4.60 465 6.75semi�xed 2 0.39 28 1.67 25 1.82loose 15 0.02 15 0.39 10 1.12We see that the EA+LS is muchmore e�cient early on; this is a direct resultof its use of LS. GWW steadily improves, however, and by 1,000,000 evaluations doesnearly as well on r0250.20, though there is still a statistical di�erence. Note that thecomplete GWW runs go for much longer than shown in the �gure (roughly 4-7 millionevaluations for r0250.20 and 70-100 million for g0500.20), and its solutions continueimproving due to the ever-decreasing threshold. The �nal solutions from GWW arenot statistically di�erent from those of the EA+LS.A �nal note about the shape of the GWW curves: Carson [12] points out thatif partition cost is plotted against stage number instead of number of evaluations, thecurve should be a straight line. This is because the threshold decreases by exactly oneat each stage, and the solutions in the population tend to be close to the threshold.What accounts for the concave shape is that legal neighbors (with respect to thethreshold) become more di�cult to �nd as the threshold decreases, so each stageconsiders successively more partitions.



Chapter VConclusionsWe conclude the dissertation with a discussion of its major contributionsand general observations. For some topics we suggest directions for future research.We end with a brief summary of the issues examined.V.A EA+LS E�ective for Graph BisectionPrevious to this dissertation, the usefulness of LS in an EA context waswell-established for continuous optimization. That this bene�t would carry over tocombinatorial optimization was not obvious, given the various di�erences betweenthe two: lack of direction or gradient, large number of dimensions, di�cultly of NP-complete problems, and other issues discussed in Section II.A.2. These issues leadto substantial di�erences in the methods used for LS and the speed with which itoperates, making it di�cult to generalize from results on the continuous side.We have shown that for at least one combinatorial problem, graph bisection,LS greatly bene�ts the EA for a variety of instance classes. Furthermore, even thoughLS itself is quite powerful on this problem, we have demonstrated that the globalsearch performed by the EA is bene�cial even in the context of LS. Not only doesthe EA+LS perform better than Monte Carlo local search, it is competitive with thebest known general-purpose method for graph bisection, simulated annealing.155



156V.B New EA+LS Algorithm Integrates Globaland LocalTypical EA+LS hybrids (such as the generational EA+LS in SectionIV.D.1)proceed in alternating stages of global and local search. During each generation, theEA produces a new population, and local search is then performed on part of thepopulation. The local searches are usually performed to completion (although partiallocal searches have been explored by Hart[38]). The speci�c results of local search gen-erally are not kept from one generation to the next, though they do in
uence selectionof individuals and, in the case of Lamarckian evolution, the genotypes themselves.We have developed a new EA+LS variant which more tightly integratesglobal and local search, while still allowing the bene�ts of complete local searches.The primary distinguishing features of this algorithm are the use of extremely short LSlengths and the maintenance of partially optimized solutions in the population whichmay be more fully optimized as the algorithm progresses. This algorithm allows theglobal and local search components to in
uence each other at a �ner granularity,which may allow for more e�ective search on some problems. In our experiments itwas never more e�ective than the generic generational EA+LS, though this may bebecause of the limited range of options explored with regards to LS selection. Anadditional advantage of our algorithm is that allows careful experimental control overmany search parameters which may be important to search e�ectiveness. We makeextensive use of the algorithm throughout this dissertation.V.C LS Compositionality HypothesisThe major result emerging from the experiments is that LS obviates theneed for crossover. That is, despite evidence that crossover very e�ectively combinesbuilding blocks when LS is not used, this advantage disappears when LS is used. Wehypothesize that this is because LS itself is able to �nd the very same building blocks



157that crossover would otherwise combine. To our knowledge this e�ect (whether ornot our explanation for it is correct) has not been appreciated before. If it generalizesto other problems, it may be very important to the EA community, in which thepractical usefulness of crossover is sometimes hotly debated. It may be that thedebate is moot in the context of LS.While our interpretation of the e�ect (namely, that LS �nds all the buildingblocks) has not been directly veri�ed, we have explored one other potential explana-tion and rejected it (see Section IV.D.4). One way to verify our hypothesis wouldbe to explicitly identify the building blocks for a particular instance. In the case ofgraph bisection, we suspect that small cliques are a source of building blocks, withhigher �tness being associated with having the entire clique on the same side of thepartition. We can test this by examining the results of successful crossovers (thosethat produce a child with better �tness than either parent) in an EA without LS. Ifall such successful crossovers combine cliques from both parents, that would be strongevidence that the small cliques indeed correspond to the building blocks. If so, thenit would be a simple matter to check that LS always groups the nodes of each cliquetogether, thereby eliminating the need for crossover. An analysis along these lines isa possible direction for future research.It is possible that LS usurping crossover's role is speci�c to graph bisection.We do not know any comparison of crossover's e�ectiveness with and without localsearch for other problems. In fact, there are several studies [38, 71, 56] which indepen-dently examine both the use of LS and the e�ectiveness of crossover for continuousoptimization, but not the e�ectiveness of crossover when LS is used. Another futureresearch direction is to perform this comparison on other problems, both combinato-rial and continuous.Finally, our observations may simply be the result of the crossover operatorwe use. It appears that it operates on the same small substructures as LS. This maypoint to the need for a crossover operator which can combine \higher-order" building-blocks, analogous to the need for mutation to make larger-scale changes. It could be



158that the crossover operator we use (RAR1), is e�ective at combining small indepen-dent cliques, but is too disruptive to maintain large groups of cliques, which may bethe appropriate higher-level building blocks. One can imagine a di�erent recombina-tion operator being more e�ective at this task, and hence being more bene�cial thensimple random crossover even when LS is used. Note that such an operator may notbe e�ective without the use of LS, as the large structures on which it operates maytake too long to be discovered through mutation and selection alone.V.D Large Mutation Sizes and Instance-Speci�cHeuristicsRelated to the issue of random crossover (or macromutation) is the issueof the appropriate size of mutations. We saw that very large mutations were notdetrimental to the EA+LS search, but that standard mutation sizes were ine�ectivefor some instance classes. Speci�cally, for problems with de�nite basin structures(geometric graphs), under Lamarckian evolution, small mutations are not bene�cialin comparison to no mutation, but large mutations help. This is as we expected, sincemutations within a basin simply get returned to the local minimum by LS. Since ourexpectations followed our general understanding of the EA+LS search, we expect thisresult to generalize to other problems, and we o�er the following recipe: when LS isused with Lamarckian evolution, the appropriate size of mutation will be at least aslarge as the typical basin size.The above rule for setting mutation size is an example of an instance-speci�cheuristic, or an algorithm tailored to speci�c features of the instances under consid-eration. For di�cult problem classes (e.g. NP-complete) it may be necessary toexploit such features to improve search e�ectiveness. Here we have focussed on mu-tation size, but appropriate values for other algorithmic parameters (local/globalratio, LS length, etc.) may also depend on instance features. For that matter, sometypes of problems probably call algorithms other than the EA+LS. There are two



159parts to using instance-speci�c heuristics: determination of the instance features,and exploitation of these in the algorithmic design. For the former, one may performexperiments such as those in Section IV.D.3, where we carefully analyzed the basinsizes and structures through the repeated use of LS and mutation. More generally,we point to the ongoing work by Carson and Impagliazzo [14] with the Go-With-the-Winners algorithms (see Section I.A.3), which can be used to explore search spacestructure. We anticipate future integration of that research with our own, with thegoal of identifying particular features of instances which allow informed choices as towhich search algorithms are appropriate.V.E Darwinian Evolution Competitive and Ro-bustAn important observation from Section IV.D.7 is that Darwinian evolutionperforms just as well as Lamarckian. Direct comparisons in the literature are scarce,but the Lamarckian option is generally used for optimization. Our results show thatthis may not be a well-justi�ed choice. The reason that Darwinian evolution workswell may be related to LS compositionality hypothesis: every complete LS �nds everybuilding block. Hence, it makes no di�erence whether the results of LS are encoded onthe genotype, as the same building blocks will be found the next time LS is applied.Another explanation favored by Belew [7] involves the Mastery e�ect[36].Roughly, this is the notion that evolutionary pressure to improve the genotypes isreduced once they are \good enough" for LS to take them to the global optimum (orat least the best solution seen so far by the population). Note that the potential roleof the Mastery e�ect is somewhat diminished by our use of partial LS: since we usevery small amounts of LS at a time (ten evaluations), there is an advantage to beingvery close (within ten steps) to the optimum.Unlike the Lamarckian case, we saw that the Darwinian EA+LS is robustacross di�erent mutation sizes. Our explanation of this is that since LS results are not



160encoded on the genotype, any variation (whether by small mutations or crossover) isadequate to move from basin to basin by successive applications. Hence, unlike inthe Lamarckian case, the search cannot become \stuck" in suboptimal local basins.V.F Problems are Di�cultFinally, given that for all our problem instances, various versions of theEA+LS and SA �nd roughly the same partition costs, and that all runs seem to stopimproving after some point, it is tempting to conclude that we have solved these in-stances. It appears they might be too easy for a comparison of di�erent algorithmicparameter settings, since many settings may lead to the optimal solution. The reality,however, is that the instances examined in this dissertation are not trivial. Despiterepeated applications of simulated annealing and EA+LS under a variety of con�g-urations, the best solutions we found are substantially worse than the best knownon geometric graphs. Figure V.1 gives an expanded view of the average partitioncosts found by EA+LS, MCLS, and SA for g0500.20, compared to the best knownsolution.1 This indicates that the geometric graphs, at least, are fertile ground forthe development and testing of new heuristics. The random graphs may be equallydi�cult, but we do not have an independent method for �nding good solutions.V.G SummaryIn summary, we have shown that the EA+LS hybrid is more e�ective forgraph bisection than either the EA or LS alone, and that it is competitive with sim-ulated annealing. A new variant of the EA+LS has been developed which interleavesthe global and local search operators. We have discussed results concerning the ef-fectiveness of crossover and the role of mutation in the context of LS; these insights1The best solution was found by Johnson [44] using an algorithm developed speci�cally for geo-metric graphs. Roughly, this algorithm scans a straight line across the graph (laid out geometrically),and chooses the best partition encountered during the scan. This partition is then further optimizedby local search.
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Figure V.1: EA+LS, MCLS, and SA vs. best known: For g0500.20, an expandedview of end of ten EA+LS runs, compared to Monte Carlo LS. The dashed horizontalline is the average SA performance, and the the solid horizontal line is the bestsolution known.



162point to the possibility of instance-speci�c heuristics, in which the search algorithm istailored to speci�c features of the instances under consideration. We have seen thatDarwinian evolution is as e�ective as Lamarckian, and is more robust under changesto the genetic operators. In addition to the results mentioned in this chapter, wehave also explored the e�ectiveness of steady-state vs. generational EAs, di�erentlocal search lengths, and various local/global ratios.
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