UNIVERSITY OF CALIFORNIA, SAN DIEGO

Evolutionary Algorithms with Local Search for Combinatorial Optimization

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

Mark William Shannon Land

Committee in charge:

Professor Richard K. Belew, Chairperson
Professor Samuel R. Buss

Professor Garrison W. Cottrell

Professor Philip E. Gill

Professor Russell Impagliazzo

1998

Copyright
Mark William Shannon Land, 1998
All rights reserved.

The dissertation of Mark William Shannon Land is ap-
proved, and it is acceptable in quality and form for pub-

lication on microfilm:

Chair

University of California, San Diego

1998

i1

To Jing

v

IT

TABLE OF CONTENTS

Signature Page o Lo i
Dedicationo v
Table of Contents v
List of Figures o vii
List of Tables Ib'e
Acknowledgmentso L X
Vita, Publications, and Fields of Study xi
Abstract L xii
Introduction L 1
A. Global Optimization 2
1. Evolutionary Algorithms 2
2. Simulated Annealing oo 5
3. Go-With-the-Winners 5
B. Local Search 8
C. Global-Local Hybrid Algorithms 9
1. Evolutionary Algorithm with Local Search 9
2. Simulated Annealing oo 10
3. Go-With-the-Winners 10
D. Dissertation Overview 11
Backgroundo oo 13
A. Prior Knowledge o o 13
1. Evolutionary Algorithms 13
2. Local Search 15
3. Evolutionary Algorithm Plus Local Search Hybrid 21
4. Simulated Annealingo oo 25
B. Outstanding Issues oo 27
1. Generational vs. Steady-State 0oL, 27
2. Lamarckian vs. Darwinian L. 27
3. Local Search Selection 0L 30
4. Simulated Annealing vs. EA+LS 000 30

I1I

IV

Intuitions and Argumentso 32
A. LS Complexity Theory Arguments 32
1. Cases where Local SearchisEasy 33
2. Polynomial-Time Local Search Complexity Class 36
B. Operating Assumptions about EA+LS 38
C. Designing Complementary Operators 39
1. Roleof LS o 39
2. Mechanisms of Global-Local Interaction 41
3. Biasing LS Selection oo 43
4. Reconsidering Standard EA Operators 49
Experiments 50
A. Binary Graph Bipartitioning 000 51
1. Graph Instance Distributions 53
2. Free Nodes and Node Affinities 55
3. Experimental Details and Data Presentation 59
B. Monte Carlo Local Search 60
1. Local Search Methods 60
2. Results 0 63
C. Evolutionary Algorithm L . 77
1. Baseline Results oo 77
2. Effect of Crossover 80
D. Evolutionary Algorithm with Local Search: Mechanisms of LS Interaction 88
1. Generational vs. Steady-State 0oL, 93
2. Choice of Local Search Method 94
3. Role of Mutation L 98
4. FEffect of Crossover and Macromutation 106
5. Local/Global Search Ratio 116
6. Choice of Local Search Selection Method 122
7. Lamarckian vs. Darwinian Evolution 133
E. Other Global Search Algorithms 139
1. Simulated Annealing oL L Lo 141
2. Go-With-the-Winners 0L 151
Conclusions L 155
A. EA+LS Effective for Graph Bisection 155
B. New EA+LS Algorithm Integrates Global and Local 156
C. LS Compositionality Hypothesis 156
D. Large Mutation Sizes and Instance-Specific Heuristics 158
E. Darwinian Evolution Competitive and Robust 159
F. Problems are Difficult o000 160
G. Summary L 160
Bibliographyo 163

vi

I.1
[.2

I1.1
I1.2
I1.3
I1.4

1.1

V.1

V.2

IV.3

V.4

IV.5

IV.6

V.7

IV.8

IV.9

IV.10
V.11
V.12
IV.13
IV.14
IV.15
IV.16
IV.17
IV.18
IV.19
IV.20
V.21
V.22
IV.23
V.24
IV.25
IV.26
V.27
IV.28
V.29
IV.30
IV.31
V.32

LIST OF FIGURES

Generic Evolutionary Algorithm 3
Go-With-the-Winners Algorithm 7
Standard Evolutionary Algorithm 14
Canonical Local Search Algorithm 17
Evolutionary Algorithm with Local Search 21
Canonical Simulated Annealing Algorithm 26
Misleading sample of local basins 42
Part of a graph and fitness landscape 56
Node with affinity zeroo 58
Pair of nodes with affinity zeroo 58
Comparison of Monte Carlo, EA, and Monte Carlo LS 79
Comparison of Monte Carlo LS and the EA with LS 81
Three standard crossover operators 82
Comparison of crossover methods 89
Steady-State EA with Short LS 90
Expanded Steady-State with Short LS algorithm 92
Generational vs. Steady-State 95
Comparison of Local Search methods 97
Return percentage for mutantso oL 100
Average Hamming distance of reoptimized mutants 104
Mutation rate comparison using HF 107
Mutation rate comparison using UF 108
Comparison of crossover methods when using LS 110
Comparison of crossover methods for a generational EA using LS . 112
Comparison of crossover methods for a generational EA without LS 113
Population diversity for various crossover methods 115

Comparison of local/global ratios and LS increments without LS sniff 118
Comparison of local/global ratios and LS increments with LS sniff . 121

Sniff length comparison using random LS selection 125
Distribution of LS allocation for random LS selection 126
Sniff length comparison using fitness-based LS selection. 128
Distribution of LS allocation for fitness-based LS selection 129
Sniff length comparison using LS potential-based LS selection . . . 130
Comparison of LS selection methods for sniff length 0. 132
Darwinian vs Lamarckian for mutation size 0 134
Darwinian vs Lamarckian for mutation size 1/N 136
Darwinian vs Lamarckian for mutation size 5/N 137
Comparison of mutation size under Darwinian evolution 138
Comparison of crossover methods under Darwinian evolution 140

vii

IV.33
IV.34
IV.35
IV.36
IV.37
IV.38
IV.39
IV.40
IV.41
V.42

V.1

Comparison of Simulated Annealing and the EA4+LS 142
SA with off-line LS on r0124.20 144
Frequency of local basin changes on r0124.20 146
Frequency of new local basin discoveries on r0124.20 147
SA with off-line LS on r0124.03 148
Frequency of local basin changes on r0124.03 149
Frequency of new local basin discoveries on r0124.03 150
Frequency of local basin changes on r0500.10 151
Frequency of local basin changes on r0500.20 152
Go-With-the-Winners vs. EA4+LS 153
EA+LS, MCLS, and SA vs. best known 161

viii

V.1
V.2
IV.3
V.4
IV.5
IV.6
V.7
IV.8
IV.9
IV.10
V.11
V.12
IV.13
IV.14
IV.15
IV.16
IV.17
IV.18
IV.19
IV.20
V.21
V.22
IV.23
V.24
IV.25

LIST OF TABLES

Average number of evaluations for HF 64
Number of local minimafor HF 64
Average/best cost for HF 65
Average number of evaluations for HS 65
Number of local minimafor HS 66
Average/best partition cost for HS 66
Average number of evaluations for UF 67
Number of local minimafor UF 67
Average/best partition cost for UF 68
Average number of evaluations for US 68
Number of local minimafor US 69
Average/best partition cost for US 69
Average number of evaluations for BF 0L 70
Number of local minimafor BF 70
Average/best partition cost for BF o000 71
Average number of evaluations for BS 71
Number of local minimafor BS 72
Average/best partition cost for BS 72
Average partition cost oL 0oL 74
Average LS length oo oo 75
Comparison of normalization methods 86
Local minimum stability 000 101
Experiment summary oL oL 119
Average final solutions for SA and EA+LS 141
Node affinities at end of SArun 154

X

ACKNOWLEDGMENTS

Thanks to my advisor Rik Belew for guiding me through the past few years.
Thanks also to Bill Hart (a virtual committee member) and Russell Impagliazzo
for their detailed and insightful comments as the dissertation developed. I am also
indebted to Sid Sidorowich and ThermaWave Inc. for gently exposing me to the
industrial world and funding me for much of my stay. I thank Charles Elkan for some
early funding while I was still exploring topics.

[am especially gratetul to Chris Rosin for emotional support and construc-
tive criticism of drafts of much of my writing. I thank Thomas Kammeyer, Filippo
Menczer, Craig Mautner, and the rest of the Cognitive Computer Science Research
Group for helpful comments and interesting conversations along the way. Special
thanks to Dan Clouse for his help and the use of his computer when cycles were
scarce. Thanks also to Ted Carson for doing extra work to supply me with the Go-
With-the-Winners data in Section IV.E.2. Most important, thanks to Jing for walking

with me through good times and bad.

VITA

December 7, 1970 Born, Scottsdale, Arizona

1992 B.5., California Institute of Technology
1994 M.S., University of California, San Diego
1998 Doctor of Philosophy

University of California, San Diego

PUBLICATIONS

Land, M., SIDorowich, J. J., and Belew, R. K. (1997). “Using Genetic Algorithms
with Local Search for Thin Film Metrology.” Proceeding of the Seventh International
Conference on Genetic Algorithms.

Pollack, J., Blair, A., Land, M. (1997). “Coevolution of a Backgammon Player.”
Artificial Life V.

Land, M., Belew, R. K. (1995). “No two-state CA for density classification exists.”
Physical Review Letters 74:25, pp. 5148-5150.

Land, M., Belew, R. K. (1995). “Towards a Self-Replicating Language for Computa-

tion.” Proceedings of the Fourth Annual Conference on Evolutionary Programming.

FIELDS OF STUDY

Major Field: Computer Science
Studies in Genetic Algorithms
Professor Richard K. Belew

xi

ABSTRACT OF THE DISSERTATION
Evolutionary Algorithms with Local Search for Combinatorial Optimization
by

Mark William Shannon Land
Doctor of Philosophy in Computer Science

University of California, San Diego, 1998
Professor Richard K. Belew, Chair

The goal of global optimization is to minimize (or maximize) an objective
function over its entire domain. Heuristic methods such as evolutionary algorithms
and simulated annealing are often employed. Alternatively, it is sometimes accept-
able to find a local optimum, which is as good as all solutions in its neighborhood.
Local search methods are comparatively well-understood, and local optima can often
be found efficiently even for problems in which global optimization is difficult [66].
Global/local hybrid algorithms combine aspects of both global and local optimization
to search more effectively than either global or local optimization by themselves.

Evolutionary algorithms using local search have frequently been applied to
problems in continuous optimization with great success. Not only does the addition of
local search substantially improve the performance of the evolutionary algorithm, but
the hybrid often outperforms other global optimization techniques such as simulated
annealing.

In this dissertation we explore the effectiveness of evolutionary algorithms
with local search in the combinatorial domain. We show that the EA+LS hybrid
is more effective for graph bisection than either the EA or LS alone, and that it is
competitive with simulated annealing. A new variant of the EA+LS is presented
which interleaves the global and local search operators. We find that while crossover

is valuable to an EA without LS in this problem, the addition of LS obviates the need

xii

for crossover. We also show how appropriate mutation sizes in an EA+LS depend
on the size of local basins. These insights point to the possibility of instance-specific
heuristics, in which the search algorithm is tailored to specific features of the instances
under consideration. We show that Darwinian evolution is as effective as Lamarckian,
and is more robust under changes to the genetic operators. In addition, we explore
the effectiveness of steady-state vs. generational EAs, different local search lengths,

and various local/global ratios.

x1il

Chapter 1

Introduction

Global optimization is concerned with finding the best possible solution
to a given problem. As there are no efficient algorithms to achieve this goal in
general, heuristic global optimization methods are often employed. Examples include
simulated annealing and evolutionary algorithms (EA).

Alternatively, it is sometimes acceptable to find a local optimum, which is
as good as all solutions in its neighborhood. Local search methods are comparatively
well-understood, and local optima can often be found efficiently even for problems in
which global optimization is difficult [66]. Global/local hybrid algorithms combine
aspects of both global and local optimization to search more effectively than either
global or local optimization by themselves.

Evolutionary algorithms using local search have frequently been applied to
problems in continuous optimization with great success [38, 71, 56, 43]. Not only does
the addition of local search substantially improve the performance of the evolutionary
algorithm, but the hybrid often outperforms other global optimization techniques such
as simulated annealing.

In this dissertation we explore the effectiveness of evolutionary algorithms
with local search in the combinatorial domain. Building on work by Hart [38] regard-
ing continuous optimization, we examine the role of local search and its interaction

with the standard evolutionary operators and features of the problem instances. A

new variant of the basic algorithm is developed which allows a more complete in-
tegration of the local and global search aspects, in addition to greater flexibility in
examining the effect of relevant algorithmic parameters. This algorithm is used in
experiments on various classes of graph bisection instances. Results are compared to
those for other global search techniques, and analyzed in terms of instance features

and algorithmic parameters.

I.A Global Optimization

The goal of optimization is to find a solution to some problem which mini-
mizes (or maximizes) some measure of “goodness.” Formally, given a fitness function
f: X — R over some closed domain X, the goal is to find a value * € X which
minimizes (or maximizes) f. Such a value of x is called a global optimum since it is
the optimal value over the entire search space. For many problems of interest it is
believed that there is no algorithm which is guaranteed to find a global optimum in
polynomial time. In such cases, a heuristic is often used to hopefully find a “good”
solution with high probability. Common global optimization heuristics include simu-
lated annealing, tabu search, and evolutionary algorithms. This dissertation primar-
ily examines the last of these, and relates it to simulated annealing and the recent

Go-With-the-Winners algorithm.

I.A.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) encompass a broad class of heuristic tech-
niques, including genetic algorithms, evolution strategies, evolutionary programming,
and genetic programming. What these methods have in common is their use of
population-based sampling with successive populations biased towards regions where
fit solutions have previously been found. A population of solutions is maintained,
initially composed of randomly generated individuals. From this population, solu-

tions are selected for reproduction. Solutions which are more fit (f(x) is lower) are

more likely to be selected, so that the search tends towards regions of the space where
good solutions have been observed previously. The reproduction includes some form
of perturbation of the solution by a set of genetic operators, possibly a recombination
(or crossover) with another selected individual. Finally, the new solution is placed
into the population, usually replacing a current solution.

There is substantial literature devoted to each subclass of evolutionary algo-
rithm, and each has many variants [22, 6]. Figure I.1 outlines the generic algorithm;

we briefly describe each of the major subclasses below.

Randomly generate an initial population of size M
Repeat
Evaluate each genotype in the population
Select genotypes for reproduction, based on fitness
Perform recombination on selected genotypes
Perform mutation on selected genotypes
Replace part or all of population with new genotypes

Until good enough solution found, or out of time

Figure I.1: Generic Evolutionary Algorithm

Evolutionary programming (EP) [23, 21] originated as a method to evolve
finite state machines to perform various tasks, though its use is now significantly
broader. What distinguishes EP from GAs most starkly is the lack of recombination:
the population evolves through selection and mutation only. Practitioners of EP ar-
gue that for real-world problems, there usually are not composable building blocks
for crossover to exploit. The various parameters of a given problem are too interre-
lated for there to be independently solvable subproblems. We explore this issue in
Sections IV.C.2 and IV.D.4.

The evolution strategies (ES) [73, 5] are characterized primarily by their use

of adaptive mutation sizes. Mutations are typically drawn from some distribution

whose variance is itself encoded on the genotype. Hence, the size and shape of the
mutations evolve along with the solutions. Also distinguishing ES is the common use
of the steady-state replacement method, in which a single solution at a time is gen-
erated and placed into the population, as opposed to replacing the entire population
at once (the generational approach).

Genetic algorithms (GAs) [41, 27, 17] are characterized by the importance
they place on recombination (or crossover) of solutions. In a well-designed GA,
crossover is able to combine successful “subsolutions” from disparate parents to form
new solutions with the best of both. In other words, once a subsolution (known as a
building block) is discovered by any member of the population, it can be propagated
to the rest of the population without needing to be rediscovered. This is considered
to be the primary source of novel solutions in a GA, though small mutations are
usually used as well. Hence, designers of genetic algorithms are careful to design the
problem representation and crossover operator to work well together. Being in direct
contrast to the approach taken by EP, this is the source of some controversy in the
EA community and literature [46].

Historically, GAs have generally used binary representations even for real-
valued parameters, although this practice is not as universal as it once was. The
genetic algorithm is perhaps the most commonly used type of EA, and it is the type
used throughout this dissertation.

Finally, the genetic programming (GP) [54] class of algorithms is concerned
with the evolution of programs. Usually the representation is in terms of LISP-type
S-expressions, which are essentially trees having operators at all internal nodes and
operands at the leaves. Specialized types of mutation and crossover are used to handle
this tree data structure.

Though FEAs can generally be classified according to the above types, there
are no absolute boundaries between them. Many EAs incorporate features of different
classes; for example, “GAs” which are steady-state or which do not use crossover are

not uncommon. In fact, genetic programming is often considered to be a proper subset

of genetic algorithms. We make no claims about one method being generally superior
to another, and will use the term EA unless the need arises to be more specific. Most
experiments in this dissertation use crossover and constant mutation sizes, and so
fall naturally into the GA class. We usually use a steady-state version, however,

and occasionally do without crossover. The details of our variant are described in

Section IV.D.

I.LA.2 Simulated Annealing

Simulated annealing [52, 15] is a different type of global search technique.
Instead of a population, a single solution is maintained. At each time step, a small
perturbation is made to the current solution, and the resulting new solution is com-
pared to the current one. The new solution replaces the current solution if it is

better, or with probability e?fie/Teme

if it is worse. Here, Ay, is the difference in
fitness between the two solutions, and Temp is the current temperature. Therefore,
the probability of moving to the new solution decreases exponentially as its fitness
gets worse, and also as the temperature gets lower. Usually the temperature is grad-
ually decreased throughout the run, so that uphill moves (for minimization) become
less and less likely as the run progresses. Our implementation of SA, which is fairly
typical, is described in more detail in Section I1.A.4 and Figure 11.4.

Initially, SA explores globally, spending more time in regions which on av-
erage have fitter solutions. In later stages the search is confined to a small area, and

SA simply optimizes within that area. In these final stages it is very similar to local

search, as described in Section 1.B.

I.A.3 Go-With-the-Winners

Go-With-the-Winners (GWW) [3] (and a variant by Dimitriou and Impagli-
azzo [19, 20]) is a fairly recent search algorithm that attempts to continually maintain

a uniform distribution over all solutions which are better than some explicit threshold

fitness. The algorithm is outlined in Figure [.2. As in EAs, a population of solutions
(or “particles”) is maintained. The algorithm proceeds in distinct stages, analogous
to an EA’s generations. Unlike the EA, however, all members of the population
are required to be better than the threshold fitness, which gets incrementally more
restrictive as the search progresses. At each step, the particles are redistributed ac-
cording to an estimate of their potential for future improvement. This is similar to
selection and reproduction in an EA. although it is not based on fitness and there
is no recombination. Finally, each member of the population does a random walk
of small mutations (starting from its current position), restricted to solutions whose
fitness is within one of the current threshold.

Crucial to understanding this method is the notion of the search graph. The
nodes of the search graph are simply the possible solutions to the problem. Two
nodes are connected with an edge if the corresponding solutions are one “mutation”
apart, where a mutation is typically a single bit flip. In GWW. parts of the search
graphs corresponding to solutions which are worse than the current threshold are
not visited. As the threshold is decreased, therefore, more and more of the graph
becomes off-limits. The accessible portion of the search graph eventually becomes
disconnected, resulting in separate components which cannot be reached from each
other without traveling through the forbidden portion. Through its redistribution
and randomization steps, GWW attempts to maintain at least one particle in each
component at all times, while maintaining a uniform distribution of solutions within
each component. The success of these goals depends on the number of particles used,
the length of the random walks (both of which are algorithmic parameters), and the
characteristics of the problem instance.

With its focus on uniformly covering the entire search graph, GWW exem-
plifies exploration, as opposed to exploitation. Roughly, an exploitative algorithm is
one which takes advantage of any quick improvements it finds, possibly at the ex-
pense of larger improvements which could be found by a more careful global search.

In contrast, an explorative algorithm may forgo easy improvements in the interest

o Initialization Stage: Generate Pop random solutions. Set i to be

a maximum possible value for a solution.
e Until all particles are at local minima do:
e Stage

— Pre-redistribution: Define the up degree of a particle as the
number of neighbors with value at most ¢ + 1. Redistribute
each particle to one of the current solutions inversely pro-

portional to the up degree.

— Post-redistribution: Define the down degree of a particle as
the number of neighbors with value at most ;. Redistribute
each particle to one of the current solutions proportional to

the down degree.

— Randomization: For each particle, perform a 2w + 1 step
random walk, restricting odd steps to neighbors with value

at most ¢, and even steps to neighbors with value at most

r— 1.

o Go to stage v — 1.

Figure 1.2: Go-With-the-Winners Algorithm for minimization. The constants Pop
and w are algorithmic parameters. Figure adapted with permission from [14].

of doing a complete search. For an EA, the degree to which selection favors fitter
individuals (the selection pressure) determines the tradeoff between exploration and
exploitation. Note that local search is the ultimate exploitation algorithm, always
moving downhill.

While GWW can be used as an optimization algorithm, it has a unique
strength in allowing the analysis of specific problems. If the number of particles and
the random walk length are sufficiently large, the algorithm can gather statistics such
as the number of connected components there are at each threshold. Such data can be
useful in tailoring specific optimization algorithms to specific applications of interest.
This process is described for graph bisection of planted bisection graphs by Carson
and Impagliazzo in [14]. Due to the knowledge gained about these graphs from GWW,

planted bisection is one of the classes of test problems for our experiments.

I.B Local Search

In contrast to global optimization, local optimization—hereafter referred to
as local search (LS)—is concerned with finding a solution which is as good as or
better than all other solutions in its local “neighborhood.” Such a solution is called
a local optimum. At the most basic level, all local search algorithms follow the same
algorithm: an initial solution is generated and is repeatedly improved by making
small changes. This continues until there are no neighbors which are better. Local
search is often easier than global search in that local optima can be found efficiently.
Furthermore, a solution can be verified as a local optimum quickly, whereas verifying a
global optimum may require examining the entire search space. Though local optima
are generally more fit than random solutions, they may be substantially worse than
global optima.

There are substantial differences between LS methods for continuous do-
mains and those for combinatorial domains. Continuous LS algorithms make use of

explicit step sizes and directions in the search space. The search progresses by making

steps of various sizes in one direction after another until a local minimum is reached.
Often, these methods make use of gradient information (either computed directly or
estimated by a finite-difference method) to determine the direction of the next move.

Combinatorial problems, on the other hand, have no notion of gradient
or even direction in the search space. If a particular move improves the solution,
there is no way to “move further” in that direction. Combinatorial LS algorithms
generally differ in how the next move is chosen, and in how the neighborhood is
defined. The neighborhood of a solution x is defined to be the set of solutions which
can be reached from x by a single “step” of the local search algorithm. Hence, different
LS algorithms may search over different neighborhood structures, and what qualifies
as a local optimum under one algorithm may not qualify in another.

Section I1.A.2 reviews the techniques used for both continuous and combi-
natorial LS, and discusses the differences. We discuss various issues related to com-

binatorial LS in Section I1.A.2 and examine specific algorithms for graph bisection in

Section IV.B.

I.C Global-Local Hybrid Algorithms

Global-Local hybrid algorithms combine aspects of both global and local
search in order to improve the quality of the final solutions found and the efficiency
of the algorithm. Global search techniques need to explore broad regions of the search
space and determine where to focus further effort. In general they are less efficient
than local search at finding local optima. Hence, a natural synthesis is to rely on
a global search method to choose solutions in promising regions of the domain, and

then use LS to refine these solutions to local optima.

I.C.1 Evolutionary Algorithm with Local Search

For evolutionary algorithms, the composition of global and local search can

be done explicitly: solutions in the population may undergo LS before being evaluated.

10

Note that the global and local aspects of the search inform each other; the EA provides
starting points in good regions of the search space, and LS returns information about
local optima which may be used by the EA to bias future sampling. We refer to such
an algorithm as an evolutionary algorithm with local search (FA+4LS). Previous work
by several authors (for example [62, 1, 38, 71]) has shown that the EA+LS can be a
substantial improvement over the EA without LS on a wide variety of problems. In
particular, Hart [38] examines several possible ways of using LS in an EA context for
continuous optimization, including applying LS to only a fraction of the population,
using only a fixed amount of LS per solution, and biasing the selection of solutions
which will undergo LS. In this dissertation we extend Hart’s analysis to the case of
combinatorial problems, examining many of the same issues (including length of LS
to use and how to allocate it) and several new issues (including the use of crossover
and the ratio of global to local search effort) in this context. Some of the lessons we

draw may have applications back to the continuous case.

I.C.2 Simulated Annealing

Simulated annealing combines global and local search in a less explicit man-
ner. When the temperature is high, it is able to explore many regions of the search
space, while the lower probability of accepting inferior moves biases it towards spend-
ing somewhat more time in regions where it finds better solutions. As the temperature
is lowered, however, the search becomes increasingly localized. Eventually, when the
temperature is very low, the only moves which are accepted are improving moves.
At this point the search is equivalent to a local search. Hence, SA transitions from

global to local search in a fairly continuous manner.

I.C.3 Go-With-the-Winners

The Go-With-the-Winners algorithm also blends aspects of global and local

search. By maintaining a population and attempting to keep it uniformly distributed

11

among the allowable solutions, it covers the overall space as well as an EA. On the
other hand, by relentlessly forcing the entire population to have better fitness than

the threshold, it is similar to local search, in which each move improves the solution.

I.D Dissertation Overview

Techniques described in this chapter are examined in detail in the disser-
tation. Experiments examine the EA, local search from random starting points (so-
called Monte Carlo local search), simulated annealing, and especially the EA+LS
hybrid.

Chapter II provides background information for local search, evolutionary
algorithms (with and without local search), and simulated annealing. The difference
between continuous and combinatorial optimization is explored in Section I1.A.2.Some
outstanding issues relating to EA4LS are discussed, including the allocation of local
search to members of the population and the methods of applying LS results.

Chapter III lays out our intuitions about how an EA+LS search progresses,
especially with regard to the effects that LS has on the global search. Also considered
are the ways in which the presence of LS modifies the role of the usual genetic op-
erators (recombination and mutation). These intuitions lead to several expectations
and recommendations, which are tested in the experiments of Chapter IV. Finally,
some related complexity theory results are examined, especially the Polynomial-Time
Local Search complexity class.

Chapter IV presents the results of a series of experiments which explore all
of the above themes. The experiments are carried out for graph bisection on instances
from a variety of classes. Graph characteristics that are likely to affect search (number
of local minima, basin sizes, and stability of local minima) are explored for each
class. Baseline results are presented for Monte Carlo local search under various local
search methods, with a focus on the tradeoff between solution quality and search

time. The EA without local search is evaluated to examine the role of the genetic

12

operators when LS in not used. Then, several EA4+LS parameters are explored,
including the mutation size, use of crossover, local/global search ratio, LS length, and
whether the partitions resulting from local search are used by the EA. We analyze
the results in terms of our expectations, as presented in Chapter III. We conclude
with a performance comparison of EA4LS and simulated annealing.

Chapter V presents a discussion of the major findings, open questions, and

directions for future research.

Chapter 11

Background

II.A Prior Knowledge

II.A.1 Evolutionary Algorithms
Algorithm Description

Evolutionary algorithms (EAs) have become very popular as a method for
“global” search or optimization. They do global sampling by maintaining a population
of genotypes, initially uniformly distributed throughout the search space. Succeed-
ing generations are produced from previous ones by means of selection (biasing the
population towards areas where the current generation shows greater promise) and
genetic operators, such as recombination and mutation.

More specifically, feasible solutions to the optimization problem are repre-
sented as a set of parameters, known as a genotype. The parameters may be real-
valued or discrete, depending on whether the problem being solved is continuous or
discrete. As an example, an evolutionary algorithm for the traveling salesman (TSP)
problem might represent a solution as a list of integers specifying the nodes in the
order in which they are visited. Initially, the EA randomly generates many genotypes,
and these are taken to be the initial population.

During each generation, every genotype in the population is evaluated and

13

14

assigned a fitness value, based on how good a solution it is. Genotypes are selected to
reproduce based on how good their fitness is. Better genotypes get to generate more
offspring, and therefore their genes have a greater prevalence in the next generation.
In this way succeeding generations are biased towards more promising regions of the
search space based on the statistics that are collected earlier on.

A new generation is produced by applying the genetic operators to on the
selected genotypes from the previous population. In the case of the genetic algorithm,
this is done by performing recombination, or crossover, Typically this involves taking
two of the selected “parents”, copying some of the parameters from one parent, and
copying the rest of the parameters from the other parent. Recombination of selected
genotypes is the primary means of generating new solutions. Mutations, small random
changes, are often done to the resulting genotypes. These are generally considered
to be helpful, if done in small enough quantities. An outline of the entire process is

given in Figure 11.1.

Randomly generate an initial population of size M

Repeat
Evaluate each genotype in the population
Select genotypes for reproduction, based on fitness
Perform recombination and mutation on selected genotypes
Replace part or all of population with new genotypes

Until good enough solution found, or out of time

Figure II.1: Standard Evolutionary Algorithm

Generational vs. Steady-State

The description above left open the question of how many new individuals
are generated at once, and how the individuals to be replaced are chosen. Most

commonly, the entire population is replaced at once, so that P new individuals are

15

generated in each generation, where P is the size of the population. An EA using
this scheme is called a generational EA, to emphasize the fact that the population is
modified in distinct generations. A frequently used variant on the generational EA
is to keep the single best individual in the population for the next generation, so
that the search never loses the best solution seen. This technique is known as simple
elitism.

In contrast to the generational method, a steady-state EA replaces only one
individual at a time. The individual to be replaced is usually the worst individual
in the population. A steady-state EA may be more stable, as the best solutions do
not get replaced until the newly generated solutions become superior. Though it is
less common than the generational technique, we will use steady-state EAs for most
of our experiments, as it allows the results of LS to be maintained in the population.

We discuss this issue further in Section I1.B.1.

I1.A.2 Local Search

Generally stated, the goal of local search is to find a solution which is as
good as or better than all of its surrounding points. The meaning of this depends on
the problem at hand: for continuous problems we define local minima in terms of open
subsets of R™, while problems on a discrete domain employ a specified neighborhood
structure to define local optima. We briefly describe the major approaches for both
the continuous and combinatorial cases, and then discuss some of the fundamental

issues which make the cases different.

Continuous

Local search techniques on continuous domains can generally be described
as falling into two classes, direct and indirect search, based on what information is
available to the local searcher. Direct methods use no information other than the
fitness values of the points they sample; in particular, no use is made of gradients

or second derivatives or approximations to them. Common direct search techniques

16

include the downhill simplex method due to Nelder and Mead [63, 68] and the Solis-
Wets algorithm (SW) [78]. The latter attempts moves of the current “step size” along
all axes until an improvement is found, with conditions for shrinking or expanding
the step size in response to the frequency with which improving moves are found.
Pattern search methods [82, 18, 81] have also come into frequent use.

Indirect search methods are often used when gradient information is effi-
ciently computable. The simplest such method, gradient descent, repeatedly com-
putes the gradient at the current location and moves in the opposite (for minimiza-
tion) direction. Different algorithms differ in how much the step size is changed and
under what conditions. More sophisticated conjugate gradient methods use gradient
information in an attempt to deduce the direction of the local minimum. At each
stage of the algorithm a line-search minimization is done along the current direction.
For quadratic functions in n dimensions, the process converges on the minimum af-
ter n such line-searches. Finally, the quasi-Newton methods attempt to estimate the
Hessian of the function through repeated line-minimizations. For a more complete

discussion of the various methods see [68].

Combinatorial

Local search methods on combinatorial domains all follow the same basic
pattern: choose an initial point, then repeatedly move to a neighbor which is better
than the current point. While this is simple enough, there are many details regarding
how the improving moves are chosen and what qualifies as a “neighbor” which dif-
ferentiate various LS algorithms. Note that LS for combinatorial problems is always
a direct search method, since there is not a notion of gradient. Figure I1.2 gives the
canonical discrete LS algorithm. The initial step (generate an initial solution) is gen-
erally done uniformly at random over the search space. Alternatively, in an EA4LS
hybrid, the evolutionary algorithm is used to generate the initial starting points, as

discussed in Section I1.A.3.

17

Generate an initial solution P
Repeat
Move to a neighbor P’ with better cost

Until P has no neighbors better than itself

Figure I1.2: Canonical Local Search Algorithm

Neighborhood Structure Local search methods assume a neighborhood structure,
which defines what moves are legal. Formally, a neighborhood structure N on a search
domain S is a function N: S — 2% which specifies the set of neighbors for each point in
the search space. For local search to be feasible the size of each point’s neighborhood
must be small compared to the size of the search space. For problems which can be
represented as n-bit strings, for example, a typical neighborhood for a point is just the
collection of strings which are a single bit-flip away; such a neighborhood has size n.
Additionally, the neighborhood structure is usually symmetric (i.e. if y € N(x) then
x € N(y)), but this it not a requirement. In fact the well-known Kernighan-Lin LS
method for graph partitioning [51] employs a nonsymmetric neighborhood structure.

The success of the local search algorithm will depend on the neighborhood
structure chosen. There are no general rules for how to choose neighborhoods, but
in general larger neighborhoods may be expected to result in better local minima.
To see this note that any local minimum under a given neighborhood structure N
will also be a local minimum under any structure N’ for which N'(z) C N(x) for
all x. The average quality of the local minima found under a given neighborhood
structure is referred to as the structure’s strength. Strong neighborhoods result in

better solutions, though the time required to find the solutions may also be greater.

Move Decision The second decision that must be made in defining a LS algorithm
is the choice of move decision, i.e. among the neighbors which are better than the

current solution, how does the algorithm choose which one to move to? There are

18

two standard decision rules, steepest descent and first-improve. The steepest descent
method always chooses the very best neighbor. Note that this requires the entire
neighborhood to be searched at each step.

The first-improve method simply moves to the first neighbor it examines
which is better. Hence, the algorithm may examine only a fraction of the neighbor-
hood of each point it visits. For this reason first-improve is often faster than steepest
descent, though it may also result in different local minima. An additional issue with
first-improve is the order in which the neighbors are examined. Since it moves to the
first improvement seen, different orderings may result in different local minima. Gen-
erally the neighbors are examined in a random order. But it may be advantageous to
used a fixed ordering if by so doing one can take advantage of knowledge about the

problem being searched. For a broader discussion on combinatorial LS issues see [66].

Differences between Continuous and Combinatorial

There are many significant differences between continuous optimization and
combinatorial optimization which affect how we do EA4LS. One difference has to
do with the nature of global search. Combinatorial problems of interest are gener-
ally NP-complete, whereas continuous problems are usually not analyzed in terms of
complexity. Being difficult to solve, an NP-complete problem may be expected to
have higher-order dependencies between genes. This makes it harder for the EA to
perform an effective search. Alternatively, it requires more intelligent design of the
genetic representation and operators.

Aside from global concerns, the notion of local search is completely changed
in the combinatorial domain. Continuous local searchers make explicit and repeated
use of the notion of direction. Typically moves are made in a given direction until no
more progress can be made. Then a new direction is chosen. The moves being made
may be of varying sizes, depending on the success of previous steps.

In contrast, combinatorial problems do not have the same notion of direc-

tion. Swapping a node from one side of a partition to the other or changing a variable

19

from True to False are all-or-nothing events which cannot be extended. A success-
ful LS step cannot be capitalized upon by doing more of the same. An immediate
consequence of this is that there is no notion of gradient. Gradients (analytic or
approximated) are commonly used in continuous optimization in so-called indirect
search. All search in the combinatorial case must be direct, relying only on func-
tions cost directly discovered during the search. Standard direct search techniques
for continuous problems include the downhill simplex method due to Nelder and
Mead [63, 68] and the Solis-Wets algorithm (SW) [78]. But while both of these op-
erate without a gradient, they still make use of direction, and so no direct analogue
exists for combinatorial problems.

Another consequence of there being no direction is that there is not the
same concept of step size. Hart has shown that issues regarding initial step size and
how it can be adapted during search can be critical to the success of an EA+4LS for
continuous optimization [32, 37]. The only notion of step size in our case is related
to how many parameters can be changed in a step (e.g. swapping two nodes at a
time instead of one). This does correspond to having neighbors which are varying
distances away, but it is not the same. Increasing the step size here also increases
(combinatorially) the number of neighbors, and hence changes the neighborhood more
radically than in the continuous case.

One way in which Hart has found varying step size to be helpful is that
large step sizes allow local search to “jump over” smaller basins to find better solu-
tions which would not necessarily be reachable by way of a continuous monotonically
improving path. In this way the “local search” can do a larger scale search. This
is thought to be helpful mainly early in an EA+LS run, when the global search is
still in full swing. Later on, the step sizes are decreased, and LS assumes the role of
a refinement operator, zeroing in on local optima. Such a dual role cannot occur in
the combinatorial case which has fixed step size. Single step moves will never be able
to jump out of basins (This does not mean that every solution is associated with a

single basin. Many solutions can reach multiple basins through paths of improving

20

single steps). In a sense, this makes the role of LS in a combinatorial EA easier to
understand, as it is restricted to do “pure LS”.

A related issue is that of the minimum scale of search. Continuous problems
are notable for not having a smallest scale. In practice, it is not usually known a
priori what the minimum feature size of the search space is, or how close to optimal
is close enough. The limiting factor is often decided by the floating point precision
of the machine being used. Combinatorial problems have an absolute minimum scale
which is known in advance, namely the minimal move defined by the neighborhood
structure. One important consequence of this is that it allows for well-defined stopping
criterion for LS.

Combinatorial search problems of interest generally have hundreds or thou-
sands of dimensions. Continuous problems usually do not have this many dimensions,
and can be interesting and difficult even with ten or fewer dimensions. Accordingly,
exhaustively searching the neighborhood requires more effort in the combinatorial
case. More solutions have to be considered per local search step, and this may affect
the relative value of LS.

A final difference between continuous and combinatorial problems concerns
the existence of well-defined local basins and local optima. Basins are well-defined
in the continuous case; specifically, the basin associated with a local optimum is the
set of points from which a continuous monotonically improving path could not end
up at any other local optimum. A local minimum (maximum) can be defined as a
point which has a neighborhood containing only less fit points. Formally, a point
x € R" is a local minimum if there is an € > 0 such that f(2’) > f(x) for all 2’ € R"
with ||’ — z|| < e. Note that neither of these definitions refers to any particular local
search method. The basin structure is implicit in the space R" by way of common
analytical notions.

Combinatorial problems, in contrast, have basins and local optima only with
respect to particular LS methods or neighborhood structures. They are not implicit

in the problem itself, and may be very different under different neighborhood struec-

21

tures. Somewhat paradoxically, the ability to find a local optimum and verify its
optimality are trivial (conceptually, not necessarily computationally) in the combi-
natorial case. In the continuous case, exact local optima are generally not attainable
(due to precision limits and finite search times), and verifying that a point is a local

optimum is not possible without the use of gradient information.

I1.A.3 Evolutionary Algorithm Plus Local Search Hybrid
Algorithm Description

An often-used extension to the EA as described above is the addition of
a local searcher. A local searcher is an algorithm like gradient descent or random
hill-climbing which searches only for a local optimum. These methods are not meant
to do any sort of global optimization, leaving this up to the population and genetic
operators. The local search algorithm is applied to members of the population after
recombination and mutation, and the fitnesses at the local optima are used for the

selection step. The pseudo-code for this algorithm is shown in Figure I1.3.

Randomly generate an initial population of size M

Repeat
Evaluate each genotype (or locally optimized genotype)
Select genotypes for reproduction, based on fitness
Perform recombination and mutation on selected genotypes
Perform local search on members of the population

Until good enough solution found, or out of time

Figure I11.3: Evolutionary Algorithm with Local Search

For continuous optimization problems, there are good reasons to expect local
search to be a beneficial addition to the evolutionary algorithm. The view we take

is that the global population-based search is complemented by a local refinement

22

operator. Essentially, we expect the EA, with its (hopefully) diverse population and
recombination operators, to perform a “global” sampling over the entire search space.
It gathers statistics about the various regions and then gradually focuses search on
regions with better average solutions.

Local search has a complementary role to the global searching of the EA. It
is not expected to search a large portion of the search space, as presumably the local
search basins of attraction will be small compared to the size of the search space. One
immediate potential benefit offered by local search is that it improves the quality of
the statistics gathered during the EA’s global sampling. The local optima provide a
consistent characterization of the various basins (namely, the lowest point). Hence,
the EA is likely better served by the values at the local optima than it is by values
at random points.

Another reason that a local searcher can help is that EAs are not efficient
hill-climbers. On optimization problems that are solvable by local search methods
(e.g. gradient descent, conjugate gradient, etc.), it is generally the case that the
local search algorithm will find the optimum faster than an EA. This has been shown
empirically many times [24, 86, 25] for continuous problems. This is partially because
of their exploitation of gradient information. However, in Section IV.C.1, we will see
empirical evidence that this is also true of combinatorial problems, for which gradient
information cannot be exploited.

Given that we have a good local searcher, the hope is that the EA searches
over basins, rather than points. Ideally, new individuals generated by the genetic
operators would be in different basins of attraction. If there are not too many local
basins, then the EA may be able to search all or almost all of them. More likely, there
will be many more local basins than members of the populations. In this case, the
EA has to rely on there being regularities over the local optima that can be exploited.
Of course, if there are very few local basins, then multiple runs of the local searcher
from random initial positions may be best, eliminating the need for adaptive global

search.

23

Lamarckian vs. Darwinian Evolution

The algorithm description above does not specify what is done with the
results of local search, other than that the resulting fitnesses are used for selection.
The resulting solution itself can be dealt with in one of two ways. Commonly, the
result of LS replaces the pre-optimized solution in the population, i.e. the results of LS
are copied back onto the genotype. This strategy is known as Lamarckian evolution,
as it allows “acquired traits” to be passed on genetically. For certain problems in
which the genotype is not equivalent to the phenotype it may not be possible to use
this strategy. Section I1.B.2 discusses under what situations it may be appropriate.

The alternative to Lamarckian evolution is Darwinian evolution, in which
the solution resulting from LS is discarded—only its fitness influences the search.
This technique is used when Lamarckianism is not an option, and sometimes even

when it is. The benefits of both methods are discussed in Section 11.B.2.

Lessons from Continuous

In his Ph.D. dissertation [38], Hart examined the role of local search when
used in conjunction with EAs. This work was concerned primarily with continuous op-
timization problems, including molecular conformation, training of neural networks,
and some complicated artificial test problems. The basic finding was that EAs with
local search were superior to EAs without local search. On every problem studied, a
sophisticated local searcher such as conjugate gradient was found to be beneficial to
the EA. This means that the EA with local search was able to find better solutions
in the same amount of time.

A common way to use local search in a EA is to apply it to every member
of each population. The resulting solutions replace the population members, and are
used to generate the next population under selection and recombination (so-called
Lamarckian evolution). Hart investigated several variations on this scheme which are
generally applicable. The most important variant is the use of a small local search

probability. Instead of applying local search to every member of the population, it

24

is only applied to members with some (typically small) fixed probability. This was
very often beneficial over always using local search, and often remarkably so. Even
more benefit was obtained by allowing the local search probability to be adaptive,
changing according the diversity of the population.

Another possibility explored by Hart was the imposition of a maximum
search length. Instead of allowing each local search to go to completion, they were
cut off after some fixed number of steps. This was usually seen to be beneficial.
Finally, a variant mentioned by Hart but not explored was the possibility of “non-
Lamarckian” evolution. In this scheme, local search is performed only to obtain a
fitness value, but otherwise does not affect the genetic material which is passed on.
This has been explored by others [8, 48], but is generally not used for optimization.

It is worth noting that the best results found in Hart’s dissertation were
for gradient-based local search methods. This is not particularly informative for
discrete optimization, since there isn’t the notion of a gradient. Hart also examined
a direct local search method (using no gradient information) developed by Solis and
Wets [78]. This was found to be quite beneficial is some cases but not in others.
More recent work by Hart has found that a different kind of direct search, known as
pattern search [82, 18, 81], is more effective than Solis-Wets as an addition to the
EA [33, 32, 37].

Thin Film Metrology Recently, we have applied an EA to the industrial problem
of thin film metrology [56]. Various measurements are made of the physical properties
at the surface of a processed semiconductor wafer. The task is to determine the actual
structure and materials present in the stack of films on the surface. This is of great
importance to chip manufacturers as a verification that their fabrication processes
are working correctly.

The physical measurements provide only indirect information about the
structure of the film stack; models must be found which match the data in order

to infer the structure. The parameters of these models include such things as the

25

thickness, index of refraction, and extinction coefficient of each of the layers. The EA
has been used successfully to search over model-space and provide good fits to the
data. We have found that adding a sophisticated local search method (a Levenberg-
Marquardt type nonlinear least-squares fitter) to the EA can result in significantly

better fits, using the same amount of computational effort.

II.A.4 Simulated Annealing

Simulated annealing (SA) [52, 15] provides an especially interesting contrast
to an EA+LS, in part because it has proven itself to be an effective, robust method
in many applications. It can also be viewed as a global /local hybrid: at high temper-
atures it explores more or less without restriction, or globally. As the temperature
is decreased, fewer and fewer uphill moves are made, and the search is more and
more local. EA+4LS variants “factor” global and and local aspects into separate but
interleaved searches rather than randomly selecting between the two criteria at each
step.

The basic algorithm is presented in Figure I1.4. SA can be thought of as
a generalized version of local search: the algorithm maintains a single solution and
repeatedly examines neighbors of this solution. Whenever an improving neighbor is
found that neighbor becomes the new current solution. What differentiates SA from
local search is what happens when a worse neighbor is encountered. SA moves to
this neighbor with a probability depending on the difference in fitness between the
current solution and the neighbor, and also on the current “temperature.” The worse
the neighbor is, the less likely SA is to move there. Furthermore, as the run progresses
the temperature decreases, which exponentially lowers the probability of moving to
a worse neighbor. Eventually, this probability is so low that virtually no moves are
made to worse neighbors. At this point SA is equivalent to local search, as all moves
are improving.

There is well-regarded study by Johnson et al. of simulated annealing applied
to graph bisection [44]. We use this study as a baseline for our EA+LS experiments.

26

Randomly generate a solution, current
Repeat
Repeat for N steps
Perturb current to get new
If (new is better than current), current = new
Else replace currenl with probability ¢new=Jeurrent) [Temp

Temp = Temp * R

Until no improvement or out of time

Figure I1.4: Canonical Simulated Annealing Algorithm

Furthermore, where we perform SA experiments (see Section IV.E.1) we use the
same algorithmic choices used there. Specifically, we choose an initial temperature
which results in approximately 40% of moves being accepted. This temperature is
determined empirically prior to the SA run. The temperature reduction factor (R)
is 0.95. The maximum number of steps spent at a given temperature (N) is 16n,
where n is the number of nodes in the graph. The temperature is decreased more
quickly if the percentages of moves which are accepted is overly high. Specifically,
whenever 9n moves have been accepted at a give temperature it is decreased. Finally,
the run is terminated when the percentage of accepted moves falls below 2.0% for five
consecutive temperature values.

A final note about the details of the graph partitioning search space: as
discussed in Section IV. A, the search is performed over “unbalanced partition space,”
in which the partitions considered may not have equal-size subsets. An imbalance
penalty is applied, but nevertheless there may be unbalanced partitions which are
local minima. Hence, we need a mechanism to “repair” unbalanced partitions at the
end of the SA run. The method we use is greedy, bringing the partition into balance
one node at a time, where the node chosen at each step is that which results in the

smallest increase (or largest decrease) in cost.

27

II.B Outstanding Issues

II.B.1 Generational vs. Steady-State

The question of whether to use a generational or a steady-state EA is often
not given much thought or is regarded as a matter of personal preference. However,
there may be solid reasons to favor one over the other in most cases. As a general
observation note that doing selection, creation, and evaluation one solution at a time
permits the information obtained with each new solution to be used in the creation of
the next. Contrast this with the generational approach in which an entire population
of solutions is generated at once, without regard for the results of preceding new
solutions. An algorithm with the freedom to use preceding results to bias successive
solutions would have to be able to do at least as well as this; in the worst case it could
just ignore all preceding solutions in the current generation. Direct comparisons
between generational and steady-state algorithms in the literature are sparse, but

see [29, 80, 26, 85, 47].

II.B.2 Lamarckian vs. Darwinian

A central issue in an EA+LS is how to use the results of LS. An algorithm
drawing inspiration from biological evolution might use the new fitness value for pur-
poses of selection, but would not carry the new solution itself into the next generation.
In other words, local search affects selection, but does not modify the genotype. This
so-called Darwinian evolution respects the notion that changes which occur during a
lifetime (analogous to local search in our case) cannot be genetically propagated to
future generations.

As algorithmic engineers, we often are not bound by this restriction. In
many FAs with LS, the new locally optimized solution replaces both the genotype
and the fitness of the old solution in the population. This so-called Lamarckian

evolution does not occur in nature because of the difficulty of reverse transcription of

28

phenotypic traits back onto the genotype.! For directly encoded optimization tasks,
this does not usually present a problem. Local search acts on the same representation
as the genotype, and so the “reverse transcription” in this case is just copying the
bitstring representation.

The question of whether to be Lamarckian or Darwinian in practice has
generally received little attention in the literature. Sometimes the Darwinian choice
is forced; this might occur if the genotypic and phenotypic spaces are substantially
different. For example, there may be a developmental process during which a geno-
type is “decoded” into a phenotype. The inverse of this mapping may be impractical
or impossible to compute, and hence changes which occur to the phenotype before
reproduction cannot be mapped back to the genotype. For a general discussion of
development and Lamarckian issues in evolutionary algorithms see [36] and [35]. Ex-
amples of such developmental systems include developmental neural networks [30],
grammar-based sorting networks [50], stochastic grammars [49], cellular automata
rules [55], and virtual block creatures [76].

Furthermore, it may be the case that LS produces solutions for which there
is no genetic encoding. As an example, in a protein folding application, Hart used a
genetic representation which coded for discrete bond angles (60° increments), whereas
local search was performed over the real domain [38, p. 107]. Another example is that
of evolving neural network weights as starting points for backpropagation [8]. The
range of weights which could be genetically encoded was only a restricted subset of
the weights which backpropagation could lead to. The genetic representation in both
of these examples is not expressive enough to encode the results of local search, and
so Darwinian evolution has to be used.

Despite the above concerns, Lamarckianism is often an option for optimiza-
tion applications. This is because current practice is usually to have a genetic rep-

resentation which directly encodes solutions (no development, so genotype equals

1But note that in recent years it has been observed that some simple bacteria seem to be able to
direct mutations in response to the environment [11]. Though not quite Lamarckian (the bacteria do
not individually adapt themselves to the environment, only their offspring), it is one way in which
the strict Darwinian view is violated.

29

phenotype), and which allows all possible solutions to be encoded. There is no ob-
stacle to using Lamarckian evolution, and the issue is simply whether this leads to
better performance than Darwinian evolution. In such a case Lamarckian evolution
is generally used in practice. It makes more intuitive sense, as the Darwinian al-
ternative constantly throws out much of the results of the expensive local searches.
Also, Lamarckianism has been seen empirically to do better on some instances of
both continuous problems [38, 56] and combinatorial problems [2]. However, Whitley
et al. [84] have shown that there do exist discrete optimization instances for which
Darwinian evolution is more likely to find the global optimum, though it is much

slower to converge.

Go-With-the-Winners Darwinian?

Another viewpoint on this issue can be had by considering the Go-With-
the-Winners algorithm of Aldous and Vazirani [3]. In particular, a variant of this by
Carson and Impagliazzo [14] is illustrative. In this search algorithm, a population
of solutions is maintained. At any point, all members of the population are better
than some threshold fitness, which gets more restrictive as the search progresses (see
Section [.A.3). At each step, each solution does a random walk on the search graph,
restricted by the current threshold. The length of this random walk is sufficient
that the solutions in each component of the search graph are effectively uniformly
distributed within that component. This uniformity is critical for finding the global
optimum. The relative “fitnesses” of the solutions don’t matter as long as they are
spread out evenly. This is more similar to Darwinian evolution than Lamarckian. If
we make the analogy that a local basin is like a connected component, with local
search playing the role of the random walk, then Darwinian evolution is concerned
with keeping solutions which are “connected to” (in the same basin as) good solutions,

but does not keep track of the good solutions themselves.

30

II.B.3 Local Search Selection

A key feature of the use of LS in an EA is that it need not be applied to
every solution in the population. In many cases, applying LS to as little of 5% of each
population results in faster convergence to good solutions. This somewhat surprising
effect was first observed by Hart [38, Chapter V], and has since been confirmed by
others in different contexts [71]. See Section II.A.3 for more details.

In light of this observation, the question naturally arises as to how best to
select the solutions which will undergo LS. Typically solutions are chosen uniformly
at random from the population, but this is not the only possibility. This issue of
local search selection is distinct from reproduction selection, though they are similar
in form: both involve choosing a subset of the population. The difference lies in what
this subset will be used for, and therefore how it should be chosen.

An obvious method for LS selection is to use the same procedure that re-
productive selection uses, namely biasing towards the selection of ’fit” solutions. This
approach has been used for the MAX-SAT problem by Grundy [31] and for contin-
uous optimization by Hart [38, Chapter V], though it is usually not used for fear of
losing diversity too quickly. Another approach, investigated by Hart in [38, Chap-
ter V] is to choose diverse solutions, hoping to use LS on a representative sample of
the population and to avoid premature convergence. See Section III.C.3 for a more

thorough discussion of these methods.

I1.B.4 Simulated Annealing vs. EA+4LS

Given the widespread use of the simulated annealing algorithm, and the
fact that it has both global and local search behaviors, it is natural to compare it
with EA4LS. What problems are best handled by SA and what problems are best
handled by EA+LS? Unfortunately, it is very difficult to make informative empirical
comparisons between the two algorithms. Each requires a fair amount of practitioner

skill (for example setting the genetic operator probabilities for EA+LS, or choosing

31

an annealing schedule for SA), and the two sets of practitioners are largely disjoint.
An implementation of one of the algorithms by a non-expert will always be suspect
from the point of view of an expert.

Nonetheless, empirical comparisons have been made ([16, 42, 83]) with mixed
results. One of the aims of this dissertation is to make a strong, detailed comparison.
A well-known and respected empirical study of SA on graph bipartitioning ([44]) is
taken to be an “expertly done” SA baseline. The same problem instances are attacked
by the EA+LS here; see Section IV.A for details.

Theoretical comparisons are also difficult to come by. One result by Hart [34]
shows, given some conditions, that EAs have a higher probability of finding a global
optimum if both algorithms are run for long enough (measured by number of potential
solutions considered). However, “long enough” may be impractically long, perhaps
longer than the the time required to search the entire search space.

It is possible to gain some insight by considering what is known about SA.
Sorkin has shown [79] that SA can be expected to work well roughly when the height
of the barrier between any two adjacent basins is proportional to the difference in
fitness between the basins’ optima. This ensures that the temperature scale is al-
ways appropriate. For example, two local optima whose fitnesses are nearly equal
cannot be effectively distinguished by SA until the temperature gets low. But at low
temperatures SA is unable to climb out of large basins. So in order to compare the
two optima, the barrier between them must be correspondingly low. Note that the
EA+LS does not suffer from this problem: if the global operators (recombination and
mutation) are working as expected, they will make changes large enough to escape
from local basins. This suggests at least one type of problem where EA4+LS might
be expected to outperform SA.

Chapter 111

Intuitions and Arguments

In this chapter we present our view of several issues relevant the EA+LS
hybrids. Section III.A makes a connection to the some complexity theory results,
including the Polynomial-Time Local Search complexity class. In Section III.B we
lay out some assumptions about how search progresses in an EA+LS algorithm.
Section III.C discusses how the role of standard EA operators changes in the context

of local search, and how these operators may be modify to complement LS.

III.A LS Complexity Theory Arguments

One advantage of working on combinatorial problems is that we can po-
tentially exploit knowledge gained from complexity theory. General results regarding
local search (specifically work on the Polynomial-Time Local Search complexity class)
imply that local search itself can be intractable. This obviously raises concerns about
any global search algorithm which applies LS multiple times. We will review the the-
ory below, and argue that it is not directly relevant for our purposes. Furthermore,
for many problems of interest (including restricted versions of graph partitioning,
TSP, and MAX-SAT) a simple complexity argument provides justification for the use
of a heuristic method such as an EA to provide starting points for LS.

Consider any optimization algorithm which operates by applying a LS sub-

32

33

routine to a succession (or set) of generated starting points. To simplify this argument
assume that the LS method is deterministic, so that local basins are well-defined, i.e.
every solution in the search space corresponds to exactly one local optimum under
the given LS method.

How quickly can a starting point be found from which LS will produce an
optimal solution? Put another way, how hard is it to identify any single point in a
local basin corresponding to a global optimum? The answer obviously depends on the
characteristics of the original problem, call it L. In some cases this question is easy
to answer. If the original problem L can be solved in polynomial time, for example,
then such a starting point can be found in polynomial time. The global optimum will
suffice.

More difficult to analyze is the case where L is NP-complete. If we assume
for the moment that any given execution of the LS method is guaranteed to complete
in polynomial time, then no polynomial time algorithm can find an optimal starting
point, unless P = NP; if there were such an algorithm we could solve L in polyno-
mial time. So with a polynomial time LS method for an NP-complete problem, any

practical algorithm for choosing starting points must be heuristic.

ITII.A.1 Cases where Local Search is Easy

Note that the number of improving steps made by a LS is bounded by the
number of distinct solution costs. If there are at most a polynomial number of such
costs, and if the size of any neighborhood and the time to compute a solution cost
are also polynomially bounded, then the LS algorithm will complete in polynomial
time.

In particular, binary graph bipartitioning, an NP-complete problem and a
major test domain for this dissertation, completes local search in polynomial time
when using polynomial size neighborhoods. This follows from the fact that the mini-
mum cost of a partition is 0 and the maximum cost is n?/4. To see this note that there

are n/2 nodes in each set of the partition. If every node in each set is connected to

34

every node in the other set (the worst case) then the partition cuts (n/2)(n/2) edges.
Furthermore, if LS explores unbalanced partitions (as some common neighborhoods
for graph partitioning do), the maximum partition cost is no larger: if the two sets of
the partition have n/2—k and n/24k nodes, and if every node in each set is connected
to every node in the other set, then the partition cuts (n/2—k)(n/2+k) = n?/4 —k?
edges. Finally, note that computing the cost of a solution takes polynomial time, and

we have:

Lemma 1 Any local search algorithm employing polynomial size neighborhoods on

the binary graph bipartitioning problem completes in polynomial time.

Note that the standard neighborhoods for bipartitioning, including all neigh-
borhoods examined in this dissertation, are polynomial size. These include swap-
ping any two nodes, moving a single node across the partition (allowing unbalanced
partitions), and the somewhat more complicated neighborhood associated with the
Kernighan-Lin algorithm [51] (and see [45]).

This is not all we can say about problems for which local search is easy. Other
examples in which the number of distinct solution costs is polynomially bounded
(and hence for which local search takes at most polynomial time) include weighted
integer graph partitioning where the edge weights are bounded by a polynomial in the
instance size, TSP with integer edge weights polynomially bounded, and MAX-kSAT.
The proofs for each of these are simple, and are given in turn below.

Define integer poly-weighted graph k-partitioning (IPWGPy) to be the prob-
lem of graph k-partitioning (dividing a graph into k equal size subsets so as to min-
imize the total weight of the edges between subsets) restricted to classes of graphs
which have nonnegative integer edge weights which are bounded from above by some
polynomial in the number of nodes. Note that this includes the binary graph bipar-

titioning problem discussed above, and hence is still NP-complete.

Lemma 2 Any local search algorithm employing polynomial size neighborhoods on

IPWGPy completes in polynomial time.

35

Proof:

It suffices to show that the number of distinct solution costs is polynomially
bounded. Since all edge weights are nonnegative integers, the cost of any partition will
be a nonnegative integer, and hence we need only show that the maximum possible
partition cost is polynomially bounded.

Let n be the number of nodes in the graph. For a given k-partition, each of
the subsets contains n/k nodes. Hence the number of edges from nodes in a particular
subset to nodes not in that subset is (n/k)(n — n/k). Multiplying by k to account
for the edges from each subset, and dividing by 2 to correct for duplicate counting
of edges, there are a total of (k/2)(n/k)(n —n/k) = n*(1 — 1/k)/2 edges between
subsets. Since each particular weight is bounded by a polynomial p(n), the total cost
of any partition is O(n?*p(n)). O

Similar to the above, define integer poly-weighted TSP (IPWTSP) to be TSP
restricted to classes of graphs which have nonnegative integer edge weights which are
bounded from above by some polynomial in the number of nodes. Note that this
problem is still NP-complete for non-trivial polynomials since TSP is strongly NP-

complete.

Lemma 3 Any local search algorithm employing polynomial size neighborhoods on

IPWTSP integer poly-weighted TSP completes in polynomial time.

Proof: As before, it suffices to show that the maximum possible tour cost is polyno-
mially bounded. Let n be the number of nodes in the graph. Then the cost of any
tour is the sum of n edge weights. Since each weight is bounded by a polynomial

p(n), the cost of a tour is O(np(n)). O
Lemma 4 Any local search algorithm employing polynomial size neighborhoods on

MAX-ESAT completes in polynomial time.

Proof: It suffices to show that the number of distinct solution costs is polynomially

bounded. But given that the solution cost is the number of clauses satisfied, this

36

follows immediately from the fact that there are O(n*) possible k-clauses over n

variables. O

Lemmas 2-4 are not meant to be a complete characterization of the problems
for which local search is easy. Rather they are quick results about some of the most

common problems in combinatorial optimization.

ITII.A.2 Polynomial-Time Local Search Complexity Class

Despite the above results for various combinatorial optimization problems,
local search methods cannot always be guaranteed to run in polynomial time. In fact,
the subject of the computational complexity of local search has received much atten-
tion in the literature since it is a general approach which has often been quite effec-
tive empirically. The basic theoretical work involves the complexity class Polynomial-
Time Local Search (PLS) and is described by Johnson, Papadimitriou and Yannakakis
in [45].

In this paper the class PLS is defined to be the class of search problems asso-
ciated with finding a local optimum for a given problem and neighborhood structure.

More formally, a problem L is a PLS-problem if the following conditions hold:

e Each instance z of L has a finite number of solutions of polynomial length.

e There exists a cost function ¢(s,x) returning a nonnegative integer for each

solution s of z.

e There is a neighborhood function N (s,) returning a set of solutions to x (called

the neighborhood of s)

o Finally, there exist three polynomial time algorithms A, B, and C, such that:

1. Given an instance = of L, A(x) returns some solution s of x.

2. Given an instance and a solution s, B(s,x) determines if s is a solution

of x, and if so returns the cost of s, c(s,).

37

3. Given an instance x and a solution s, C'(s, x) returns another solution s’ €
N{(s,2) with a better cost (i.e. ¢(s',) < ¢(s,2) in the case of minimization)

if such a solution exists. Otherwise it reports that no such solution exists.

Roughly this definition includes any discrete problem with nonnegative inte-
ger costs for which standard “nice” assumptions hold (polynomial size representations
and neighborhoods, polynomial time cost function, finite search space). In particular,
integer graph partitioning, integer TSP, and MAX-SAT are included given suitable
neighborhood structures.

It is important not to confuse the previous subsection about local searches
which complete in polynomial time with the current topic. The perhaps unfortunately
named PLS class is about problems in which a single step of local search takes poly-
nomial time, and includes problems for which the number of such steps performed
during a local search is not necessarily polynomial.

The main result about PLS problems is that simply finding any local op-
timum (as defined by the algorithm (') can take longer than polynomial time. The
class of search problems for finding any local optimum of a PLS problem is also known
as PLS. It is known that PLS contains Pg, the class of search problems computable
in polynomial time, but it is thought that PLS is not equal to Ps [45].

This fact does not directly address the issue of using LS in conjunction with
an EA. In an EA setting, we would like to know how quickly LS (or some other
algorithm) can find the particular local optimum associated with a given starting
point (under the local search algorithm defined by C, for instance). The PLS result
does at least tell us that this cannot, in general, be done in polynomial time.

In fact, it is known that for some problems, there are instances and starting
points for which local search takes exponentially many steps. Such instances arise, for
example, in TSP under the 2-change neighborhood [58]. Hopfield neural networks are
also subject to potentially exponential settling times ([65, Chapter 10] and [64]). Even
worse for practitioners, it turns out there exist PLS problems and starting points s

for which it is NP-hard to find the local optimum associated with s, given a function

38

C. In other words, it’s not just that the local search procedure is brain-dead; no
algorithm can perform its task in polynomial time (if P # NP). This is shown by a
construction based on SATISFIABILITY in [45].

These results appear to counter our complexity argument for why EAs are
suitable for choosing LS starting points. If LS itself can take more than polynomial
time, then even if the EA works perfectly (e.g. quickly finds a starting point in an
optimal basin) we may not succeed. However, this does not necessarily argue against
the EA, as no other method for choosing starting points will alleviate this problem
either. Furthermore, as noted in [45], these worst-case local searches seem only to arise
for perverse or contrived instances and starting points: for example, in TSP using the
2-swap neighborhood, the only known examples of exponentially long LS sequences
are for complex contrived instances, and no such instances are known for the A-swap
neighborhood with A > 2. Empirically observed LS lengths from random starting
points on more natural instances typically grow as low-order polynomials [57, 66].
Indeed, as we have shown in the previous subsection, under reasonable restrictions of

common problems local search can be guaranteed to take only polynomial time.

III.B Operating Assumptions about EA+LS

This section will try to make explicit our assumptions about how EA+LS
algorithms operate. We will consider the ways in which LS interacts with the global
search, what roles it fills, and what it should do for us. For the most part these
comments will apply to both the continuous and combinatorial cases, but exceptions

will be noted.

1. LS searches within basins, the EA searches over basins. As previously noted,
Hart has observed that this is not always true or even desirable in the continuous
setting. It is a true statement, however, in the combinatorial case. The question
then becomes how to ensure that the EA effectively chooses basins, while relying

on LS to do refinement.

39

2. The EA should not generate multiple solutions in the same local basin. Any
time LS is done from multiple points in the same basin there is the potential
for wasted effort. For instance, in the case of complete LS and Lamarckian
evolution we will end up with two population members which are exactly the
same, and this is unlikely to help the global search. It will not be practical
to entirely prevent such an event from ever occurring, but this principle can

influence the design of the EA.

3. The minimum scale of the evolutionary operators should be the same as the size
of local basins. This means that the genetic operators (especially mutation)
should modify solutions at least enough to move them out of their current
basins. This is related to the above point. Mutations which move solutions
around within a basin have little effect, as LS can take any point in the basin
back to the local optimum. In EAs without LS, mutation can serve the role of
a refinement operator, but this is entirely inappropriate when LS is being used
explicitly. In this case, mutation is probably best used to search one step higher

in the scale hierarchy, exploring nearby local basins.

II1.C Designing Complementary Operators

When LS is added to an EA, it interacts with the genetic operators and
alters the dynamics of the search. The presence of LS also modifies the role that the
other operators play, and allows these roles to be redefined to some extent. The role
of LS, its interactions with the EA, and the implications of these issues are the topic

of this subsection.

ITI.C.1 Role of LS

To understand how LS interacts with the EA, we must understand what
it does. We also have some freedom in implementing LS to reflect what it is we

want it to do. The first very important observation about LS is that it is often quite

40

powerful in its own right. Frequently an effective method for global optimization is
simply to do some sophisticated LS from a succession of randomly chosen starting
points. This method has been used, for example, to do graph partitioning with the
Kernighan-Lin algorithm [51], MAX-SAT with the GSAT algorithm [74, 53], and thin
film metrology using a Levenberg-Marquardt least-squares fitter [56]. Even very sim-
ple LS algorithms can often be powerful. In graph bipartitioning on random graphs,
for example, random local optima under the 2-swap neighborhood are virtually guar-
anteed to be substantially better than random non-optimized partitions.

First and foremost, LS is a refinement operator. It takes solutions and
quickly refines them until no further (local) improvement is possible. Compared with
the EA itself, LS is quite efficient at finding the local optimum of a basin. An EA
will eventually get there, but it will take longer, as it proceeds through fortuitous
mutations and occasionally selects less fit individuals for reproduction (thus moving
in the wrong direction). EAs have long been known to be poor local searchers (cf.
Section I1.A.3).

Since an FA+LS algorithm will make use of the LS algorithm many times,
it is important that the LS method be relatively quick. Generally this means using a
small neighborhood. While this means the local optima found are likely to be inferior
to those found under a large neighborhood, this is more than compensated for by
the fact that many more local searches can be done (they may be used to have more
generations or a larger population, for instance). Note that seemingly small changes
in the neighborhood definition can result in dramatic changes in neighborhood size,
and hence LS efficiency. For and n-bit string, there are n 1-bit neighbors but O(n?)
2-bit neighbors.

The speed of LS is also affected by the method used to decide which neighbor
to move to. In general the first-improve method will be quicker than the steepest-
descent method, which must always examine the entire neighborhood. To bring these
issues into focus, consider some data gathered on a 1000-node geometric graph. An

average 2-swap steepest descent LS examines over 62 million solutions before termi-

41

nating, whereas an average first-improve 1-swap LS sees less than 20 thousand. This
difference is so great that an entire EA4LS run using the quick method can complete
before a single LS using the slower method. See Section IV.B.2 for a more complete
description of this data.

How can we be sure the extra quality gained by a long-running LS isn’t
worth the extra effort? It may well be worth it if we are simply going to do LS from
random starting points. But in our context, we are relying on the genetic operators
to search over basins and LS to do refinement within basins. Large neighborhoods
result in larger local basins, and hence make the LS more global. If the price of this
is a vastly more expensive L.S method, then we are better off relying on the EA for
this global search. Even if the larger neighborhood is not more expensive, it is not
clear that it offers a benefit in the face of an EA search which presumably will be able
to examine nearby neighborhoods if the region looks promising. Note that this can
be taken too far: the smallest non-empty neighborhood structure is for each solution
to have exactly one neighbor. This would likely result in very small basins, and LS
would be unlikely to offer substantial gains.

Another way to view this issue is to consider the tradeoff between LS ef-
fort and population size. A quicker LS allows a larger population, while using the
same total search effort per generation. A larger population allows a better statisti-
cal sample of the search space and slows convergence of the population. These are
both potentially substantial benefits to the global search. A larger population also
better allows the EA to assume the role that a larger LS neighborhood would serve.
Specifically, the EA is better able to explore nearby neighborhoods which would be

coalesced under a larger neighborhood structure.

ITI.C.2 Mechanisms of Global-Local Interaction

There are a number of ways in which LS can alter the dynamics of an
EA search, aside from its nominal role as a refinement operator. By returning the

optimum of each basin it examines, L.S allows a better characterization of the search

42

domain. If the EA is searching over basins, then its ultimate goal is to find the
basin whose local optimum is also the global optimum. Towards this end, it is the
optima of the basins that would seem most important for informing the EA search.
On a related note, consider the sampling that an EA does in each generation. In
order to compare basins, it would desirable if population members in different basins
were somehow similarly representative of those respective basins. Figure II1.1 shows
a situation where an unfortunate sample is misleading with regards to which basins
are best. The local optima, of course, define the value of basins, and so cannot be
misleading. In this way, LS allows a more reliable sample than random sampling

without LS.

Figure II1.1: Misleading sample of local basins: The solid dots mark the local
optima of the basins. Sampling randomly allows the possibility of being misled about
the relative goodness of the basins: the X’s in the diagram indicate sample points
which are anticorrelated with the local optima.

Another way LS can affect the global search has to do with commonalities
across local optima. For combinatorial problems local optima can be expected to
have many features in common [9]. As an example consider a MAX-SAT formula that
has (among others) several variables which occur exactly once. Under any standard

neighborhood structure, these variables will always be set the same way by LS no

43

matter what the initial assignment is. In a sense there is wasted effort in having LS
discover these settings over and over throughout the course of an evolutionary run.
But note that with Lamarckian evolution, these common settings will quickly come
to dominate the population and then fixate. In this sense the dimensionality of the
global search will be reduced to the non-trivial variables. We believe that this is
generally a beneficial effect.

The power of LS can sometimes disrupt the genetic search by leading to an
unwarranted loss of diversity. In the case of infrequent LS (only a fraction of the
population gets LS in any given generation), the solutions which do get LS will likely
end up with much better fitness than the others. The fitness can be so much better
that these solutions come to dominate the population. They may or may not actually
represent better basins, but they “drag” the population in their direction nonetheless.

Competing with this tendency is the notion of “delayed commitment” which
can occur with Darwinian evolution. Consider a solution which is in a good basin
but which is not the local optimum. Its fitness will remain the same (equal to the
local optimum) even if it gets modified by genetic operators, as long as it remains
within the basin. In effect, this allows it to explore the entire basin without suffering
from reduced fitness. Why might this be helpful? This solution can bump into all the
adjacent basins, in effect giving it an expanded neighborhood. It can survive while it

explores a large area. This is sometimes referred to as the Baldwin effect.

III.C.3 Biasing LS Selection

When doing LS on only a fraction of each population, some method is needed
to choose those solutions which will undergo LS. Usually they are chosen uniformly at
random, but there are more sophisticated possibilities. We will examine three other

methods of biasing LS selection: based on fitness, diversity, and “LS potential.”

Fitness An obvious method for local search selection is to use the same procedure

that reproductive selection uses, namely biasing towards the selection of ’fit” solutions.

44

Upon first inspection this seems to make good sense. A strawman argument in favor
of this approach might go as follows: “This approach focuses LS on the best solutions,
which are most likely to be in the best local basins. Also, the EA will be generating
the next population from these good solutions anyway, so it doesn’t make sense to
use LS on the weak solutions which are less likely to influence the next generation.”

This argument fails because it ignores the dynamics of the EA, and the
interaction between LS and the global search. The argument might hold if LS were
to be applied during a single generation only, but the cumulative effect of using LS
on successive generations makes the analysis more complicated. Consider, the best
solutions in the population are likely to be those which have already had LS, or whose
parents benefited from LS.! They may be good simply by virtue of previous LS, and
do not necessarily represent a better region of the search space. Biasing additional
LS towards these solutions reinforces their dominance.

In this way, search focuses on the portion of the search space which happened
to get LS early on. The result is a reduced chance of exploring novel regions of the
search space. This can be expected to lead to quick convergence to a final solution,
but at the expense of solution quality. Additionally, if the best solutions have indeed
benefited from LS then they are more likely to be near local optima.? This implies
that these solutions are the ones which will get the least benefit from LS, and will also
be the least “efficient” to optimize. This is because LS generally needs to examine
more neighbors to find an improving solution when it is near an optimum.

The above discussion can be summarized by a set of predictions about the
performance of an EA+LS using this method of local search selection. In compari-
son to the random local search selection method, fitness-based local search selection
should result in faster convergence but worse solutions, on average. Furthermore,

since the course of the EA is more heavily influenced by the initial allocation of LS,

!For example, in bipartitioning the effect of LS is so great that random solutions are almost
certainly substantially less fit than randomly selected local optima.

?These solutions are not necessarily exactly at local optima already. They may have been gener-
ated through mutation or recombination of locally optimal solutions, or they may have undergone
partial LS.

45

we can predict a greater variance in solution quality from one run to the next.

An interesting alternative to consider is to select less fit solutions for LS.
This will likely have the effect of allocating LS to solutions which have not benefited
from it before, and hence spreading LS to different regions of the space. In contrast to
the above situation it would allow a fairer’ comparison between diverse solutions and
result in greater exploration. However, it is hard to see how this could be superior
to random LS selection, which also allocates LS to diverse regions of the space, and

without 'rewarding’ bad solutions.

Diversity In light of the above discussion of how solutions which get LS can come to
dominate the population, it is desirable to explore ways to prevent this. In particular,
we would like to ensure that solutions from different regions of the search space all
get LS, otherwise the EA may bias succeeding generations towards a particular region
simply because the solutions in other regions did not get LS. One way to approach this
is to use an explicit diversity-based LS selection method: selected solutions will be far
away from each other, and ideally span as much of the search space as the population
itself. This helps ensure locally optimized solutions cover the search space, and tends
to prevent premature convergence.

Stated another way, the proper scale for the global search is the current span
of the population, and for this reason doing LS on two relatively nearby solutions may
be inappropriate. During any given generation, the EA needs to be able to compare
regions as diverse as its population, and is less concerned with distinctions between
relatively local variants. Furthermore, selecting diverse solutions reduces the chance
that two points from the same local basin will undergo LS. This would be something
of a waste of effort, especially in the Lamarckian case, as we would have two copies
of the same local optimum in the population.

There are several possible ways to select a diverse set from the population.
This is very similar to the diversity enforcement [60, 59] and fitness sharing [28, 61, 77]

schemes which are often used for reproductive selection in EA practice. This case is

46

different, however, in that we are selecting a small subset of the population (without
replacement). In contrast, selection for reproduction typically chooses a set as large
as or larger than the population, with replacement.

One approach explored by Hart [38] is the use of a generalized F-statistic.
In biology, the F-statistic is used to measure the degree of inbreeding in a population.
Hart adapted this notion to the case of haploid genotypes and used it to identify di-
verse solutions which would become more likely to receive LS. More recent discussions
with Hart [32] have resulted in various other possible approaches.

To describe these approaches formally, we introduce some notation. Let P
be the current population. Let L be the set of solutions to be selected, on which LS
will be performed. Let |P| =n, |L| = k, and d;; be the distance (according to some
metric on the search space) between solutions ¢ and j. Consider the following three

methods to select L.

1. One of our goals is to choose points which are as far away from each other as
possible, so that no two selection points are near to each other. Formally, we
want choose the set which maximizes the minimum distance between points in
L:

L = arg max(min d;;
& LCP(z’,jeL ”)

2. An alternative priority is to ensure that every point in the population is near
some solution which will get LS. For instance, if the population consists of
distinct but tight clusters, we would ideally choose one solution from each clus-
ter. This goal is not quite the same as the above, as it takes into account the

distances between selected points and nonselected points.

This goal can be formalized as follows: Let L be the set which minizes the
maximum distance between any nonselected solution and its nearest selected
solution.

L = arg min(max min d,;)
LCP" gl jeL

47

3. The above two methods exactly specify L, but may not be efficient to compute.
The straightforward algorithms require O(n*k?) and O(n**1k) time. A linear
time heuristic method is to iteratively select k points from P, making sure each
new point is at least a distance d from any previously selected point. The
parameter d would need to be set carefully at each generation, based on the
current population. Setting it too high would cause the above procedure to
fail, whereas setting it too low would allow choices of L which do not span the

population.

Whichever of these methods is used, a basic prediction can be made about
the behavior of an EA+LS using a diversity-based LS selection scheme (in comparison
to random LS selection). Because diverse solutions are explored, it should take longer
for the population to converge, and the final solution can be expected to be of better

quality, on average.

LS Potential Ultimately, the motivation for biasing LS selection is to choose so-
lutions for which LS will be most “useful.”. Roughly, the usefulness of LS on a
particular solution is based on how much information we gain about that solution
and what this tells us about the global search. The latter is usually the more impor-
tant consideration in an EA context, especially during the early stages of a run. As
an example, performing a full LS on one solution is not as useful in characterizing
the global landscape as performing half-completed LS on two distinct solutions. The
former tells us about a single point only, and does not allow a meaningful comparison
of that locally optimal point with other nonoptimized points. The latter at least
allows a fairer comparison of two points from different regions.

Along with usefulness, the efficiency of LS must also be considered; solutions
that are near their local optimum likely require more computational effort per unit
gain in fitness than solutions which still have many improving neighbors. These issues
motivate the use of a “LS-potential” LS selection technique, in which solutions are

chosen according to their expected gain in fitness per unit of computational effort.

48

This makes most sense in the context of partial LS, where only a given (small) amount
of computational effort is expended for any one application of LS. The continuous
analog of this technique would be to choose the solutions with largest gradient. In
the discrete case, we mean the expected gain in fitness over a small fixed amount of
LS (for example, 20 function evaluations), what we term LS potential.

The idea is that if it can be accurately determined which solutions can
be most efficiently improved, then these solutions will make the most effective use
of LS. There are several complementary reasons why this should be so. The most
straightforward is that allocates LS to the solutions on which it can be of most direct
benefit. In terms of simply improving average population fitness, these are the optimal
solutions to choose. Conversely, the least easily improved solutions are likely to be
those which are at or near local optima.? Such solutions have few improving neighbors
and so L.S must examine many neighbors at each step.

Indeed, applying LS to these nearly optimal solutions is not likely to be very
helpful. The small gain in fitness which may be achieved is probably dominated by
the difference in fitness values of the various solutions in other local basins. As long
as there are large differences between populations members which have not all been
optimized, it is inappropriate to expend effort on minimal refinement. The proposed
method will apply LS to less optimized solutions until such time as all members of the
population are nearly optimal. More generally, it allows all solutions to progress to
roughly the same stage of LS in their respective basins, thus facilitating comparisons
between them. As the population becomes more stable and the solutions get closer
to the optima, this scheme automatically allows LS to progress to the next level of
refinement, in a sense adaptively adjusting the fitness scale of refinement.

The above discussion assumes some way of determining LS potential. How
can we estimate this in practice? A simple method would be to invert the fitnesses,
assuming that the most fit solutions are most difficult to improve, and the least fit

are easiest to improve. This assumption may be roughly true in an average sense,

30bviously we should not apply LS to a known local optimum.

49

but it is very crude. In reality, there are certain to be local optima which have poor
fitness, and good solutions which nevertheless have can be much improved. Note that
this method is the same as the inverse-fitness LS selection method discussed above.

A more sophisticated method involves “sniffing” the potential of each solu-
tion as it is produced (though mutation or recombination). Each solution undergoes
a small amount of LS (e.g. 20 function evaluations) and its fitness improvement is
recorded. This gain per unit of effort is taken to be its potential. In other words, we
use a measure of past LS effectiveness as an estimate for future effectiveness. The
effect of any future LS is recorded, and the LS potential is always taken to be the LS
effectiveness over the most recent k function evaluations for that solution. In this way
every population member has a L.S potential associated with it which can be used to
allocate future LS.

This method has a couple of drawbacks. The first is that is may be necessary
to do a fair amount of LS to get a reliable estimate of future potential. The second
is that it may deal poorly with “saddle points,” solutions which have few improving
immediate neighbors, but which have much room for improvement a few steps away.
The initial estimate may label such solutions as having very low potential, which

would be inaccurate.

III.C.4 Reconsidering Standard EA Operators

In light of the effect of LS, the standard EA may need to be reconsidered.
Most obviously, small mutations don’t make sense if each population member will
be locally optimized each generation. Any changes caused by mutation away from a
local optimum will be undone by LS. In this case mutation can have no effect within
a basin. This suggests using larger mutations, at least large enough to move from
one basin to another. Such an operator has exploratory value, and in fact is similar

to (small) mutation’s original role, only on a larger scale.

Chapter IV

Experiments

This chapter describes a collection of experiments and discusses the results.
The test problem for nearly all experiments is binary graph bipartitioning (or bisec-
tion), which is described in Section IV.A along with the instance distributions used
and other details related to our experiments. In the remaining sections we compare
the EA4LS algorithm to Monte Carlo local search, simulated annealing, and the
EA without local search. In Section IV.D we describe a variant of the steady-state
EA which allows fine control over various EA parameters that are relevant to local
search. We then present a comprehensive examination of these parameters and how
they impact the effectiveness of the EA+LS.

Most experiments in this chapter are performed on a small (eight instances)
collection of graphs of various types. We will generally be concerned with trends
across the graphs (e.g. method A works best on all graphs, or works best only on
geometric graphs, etc.). After describing the instance classes we use (Section IV.A.1)
and investigating some general properties of the graph bisection search space (Sec-
tion IV.A.2), we describe the details of our experiments and data presentation in

Section IV.A.3. This sets the stage for the rest of the chapter.

30

51

IV.A Binary Graph Bipartitioning

The main test bed for this dissertation is the problem of binary graph bi-
partitioning. This is a well-studied problem in combinatorial optimization which is
difficult enough to be of interest, yet allows a simple representation for evolutionary
algorithms. It is an important problem in the field of load balancing for parallel
computer systems, as well as for the placement of circuit components. There is also
a well-known and comprehensive study by Johnson et al. [44] regarding the effective-
ness of simulated annealing on various instances of this problem. In Section IV.E.1
we compare the performance of the EA+LS with simulated annealing as described
by Johnson et al.

The general graph k-partitioning problem is defined for an undirected graph
G with weights edges I/ and nodes V. The goal is to find a partition of the nodes
into equal-size subsets so as to minimize the sum of the weights of all edges which
connect nodes from different subsets. More formally, define a k-partition of V' to be
a set of k subsets, V; C V, for ¢ = 1...k, such that U;—y Vi =V, V;NV; = 0 for
i # j,and |V;| = |V|/k for ¢ = 1... k. Then the problem is to find a k-partition of V'

which minimizes

> w(v,w).

veVi,weVy i

We will be looking a subclass of this, namely binary graph bipartitioning.
In this case, partitions contain only two subsets (k = 2), and all edge weights are
either zero or one. We will sometimes say a graph has or doesn’t have a particular
edge to mean the edge has a weight of one or zero, respectively.

Both general graph partitioning and the binary bipartitioning version are
NP-complete, but there are positive results concerning how good an approximation is
possible with polynomial-time algorithms. Saran and Vazirani show that the general
problem is approximable to within a factor of |V|/2 [72]. A more encouraging result
due to Arora, Karger and Karpinski [4] is that for binary graphs in which every vertex

has degree ©(|V]), bipartitioning has a polynomial-time approximation scheme. An

52

interesting question is what happens to the complexity of the problem when a penalty
term is added for unbalanced partitions. Note that if the weight on the penalty is
low enough (e.g. zero) then the problem is equivalent to MIN-CUT, which is in P.

Methods for solving graph bisection can be classified according to how
quickly they run and the quality of the solutions produced. The quickest meth-
ods which produce high-quality solutions simply apply local search from randomly
chosen starting points. Section IV.B explores this technique in some detail. Some
fairly recent techniques which quickly produce very good solutions are hierarchical
clustering [40] and spectral methods [75, 67, 10, 39]. When speed is not crucial and
it is important to find the best partition possible, simulated annealing is generally
used. Like simulated annealing, the EA+LS is a long-running method which aims to
explores to entire domain. Hence, we consider simulated annealing to be the most
appropriate method to compare against. This comparison is made in Section IV.E.1.
Go-With-the-Winners is an even slower technique which may be able to find even
better solutions. We compare this to the EA+LS in Section IV.E.2.

There is a natural representation for graph bipartitioning in the context of
an evolutionary algorithm. The genotype is simply an array of |V bits, each bit in-
dicating which subset that node is a member of. There are a couple of issues arising
from this simple scheme. The first is that there are two equivalent representations
of any partition; flipping all bits gives the same partition but results in a bitstring
which is maximally far away in terms of Hamming distance. Where we discuss such
distances, we will often “normalize” partitions so that they are closer together. The
second issue regards the fact that the representation of a valid partition must have
an equal number of ones and zeros. Generic genetic operators such as single-point
crossover or bit-flipping mutation do not preserve this property, and so produce in-
valid partitions. We will have to use more specialized operators to avoid this. See
Section IV.C.2 for details.

When doing local search, we will usually be searching over the unbalanced

search space, which includes invalid partitions (unequal subset sizes) as well as valid

33

ones. In order to bias search towards the balanced partitions, a penalty is added to
the fitness which increases with the degree of imbalanced. Following Johnson et al.,
the penalty we use is 0.05(|V;| — [V2|)?. The leading constant 0.05 was found to allow

for good good solutions to be quickly found in the context of simulated annealing [44].

IV.A.1 Graph Instance Distributions

We examine partitioning on three classes of binary graphs, random, random
geometric, and planted bisection graphs. Several instances of the first two were studied
in [44]. All of those instances are among those we examine with local search (cf.
Section IV.B), and several of them are used for the comprehensive examination of
EA+LS in Section IV.D. Planted bisection graphs are more easily understood, and
have been analyzed by Carson and Impagliazzo [13].

Random A random graph of size n is generated by considering all pairs of nodes,
and including an edge for each pair with some fixed probability p. The expected
degree for each node is then (n — 1)p. Johnson et al. use graphs of size 124, 250, 500,
and 1000, with expected degree 2.5, 5.0 10.0, and 20.0 for each size.

Geometric To generate a random geometric graph of size n, n points are generated
uniformly at random over the unit square. Each point corresponds to a node in the
graph. Any two nodes which are within Euclidean distance d of each other are
connected by an edge. The expected average degree is related to the parameter d.
Note that a circle of radius d inside the square is expected to enclose nwd? points, so
this is a rough approximation of the average degree for relatively small values of d.
Points nearer to the edge of the square will obviously have smaller expected degree.
Johnson et al. use graphs of size 500 and 1000, with expected average degree 5.0,
10.0, 20.0, and 40.0 for each size.

Planted Bisection A planted bisection graph is one in which a desired bisection

is purposefully embedded in an otherwise random graph. Specifically, each pair of

o4

nodes is connected by an edge with probability ¢ if the nodes are on opposite sides of
the partition, and probability p if on the same side. By following this procedure with
p > ¢, we can generate graphs which are biased towards the desired partition having
minimal cost. If p is sufficiently large in comparison to ¢, then with high probability
the desired partition is the actual global minimum [13]. Such graphs have a very
simple global structure, and the global optimum can often be found by performing
local search from random initial partitions. Carson and Impagliazzo have described
ranges of p and ¢ for which this is least likely [14]. We examine two graphs, of size
250 and 500, with p = 32/n and ¢ = 18/n for each. Hence, these graphs have average
expected degree 25, (16 edges on the same side of the partition, 9 going across the
partition).

In preliminary experiments using local search (Section IV.B), we examine
all 24 graphs from the Johnson study, the two planted bisection graphs mentioned,
plus one additional random geometric graph with size 250 and expected degree 20.0.
For the more comprehensive EA+LS experiments (Section IV.D), we examine the
small (500 nodes or fewer) random and geometric graphs with degree 20 as well as
the two planted bisection graphs.

From this point on, the following notation will be used to refer to the various
graphs: a single letter denoting the type of the graph (r for random, g for geometric,
or p for planted bisection), followed by the number of nodes in the graphs, followed by
the expected average degree. For example, the geometric graph with 500 nodes and
degree 20.0 is referred to as “g0500.20.”! The planted bisection graphs are designated
“p0250.9416” and “p0500.9+16,” to emphasize the distinction between edges going

across the partition and those on the same side.

!Note that this notation is somewhat different from that used by Johnson et al. In particular,
they use g and u for the random graphs and geometric graphs, respectively. Furthermore, for the
random graphs, their label specifies the value of p used instead of the expected degree. Hence, their
£0500.04 18 our r0500.20.

)

IV.A.2 Free Nodes and Node Affinities

An important feature of all the graphs we examined is that their search
spaces possess plateaus of same-fitness partitions. When considering the unbalanced
search space with fitness penalty, these plateaus translate to regions with many bal-
anced local minima of equal fitness separated by small barriers. These regions are
problematic for local search, as it quickly gets stuck in one of these tiny “artifac-
tual” local basins, as opposed to exploring the real structure of the search space.
Section IV.D.3 illustrates how this leads to difficulty in defining local basins and

determining their characteristic sizes.

Free Nodes Consider the case of free nodes, or nodes of degree zero. Several of
the low-degree random graphs used by Johnson et al. have many free nodes. In any
partition in which the set of free nodes is split among the subsets of the partition,
the free nodes can be moved about or interchanged without affecting the cost of the
partition. Furthermore, the resulting partitions are not different in any way that is
relevant to the global search. Figure IV.1 displays part of a graph with free nodes, and
a corresponding fitness landscape. Free nodes ¢ and b can be placed on either side of
the partition without affecting the cost, other than perhaps incurring the imbalance
penalty.

If there are k free nodes to split evenly by the partition, there will be equiv-
alence classes of partitions, each with (5) partitions having the same cost. These
equivalent partitions are adjacent to each other in balanced search space, and are two
moves apart in unbalanced space. In unbalanced space, the immediate neighbors of
any balanced partition include equivalent partitions with the same cost, except that
they are penalized by the imbalance penalty. Hence, there may be a “plateau” with
many equivalent size one local basins, artifacts of the unbalanced space and penalty.
The bottom half of Figure IV.1 shows such a situation. Unfortunately, local search
will settle into one of these and stop instead of exploring the structure of the actual

(balanced) partition space.

56

™~
Oob
Q
O a
/Q I
|
|
| Penalty for imbalance
False minimum
/

LSstep rebalancing

Figure IV.1: Part of a graph and fitness landscape: Nodes a and b are free
nodes, while node ¢ has affinity zero. The bottom half of the figure displays a fitness
landscape, with unbalanced partitions represented with bold lines.

57

This effect also complicates the analysis of graphs and certain algorithms
such as simulated annealing. In Section IV.E.1 we examine the “basin-finding be-
havior” of simulated annealing, how frequently it switches basins and discovers new
ones as temperature decreases. The proliferation of equivalent basins makes it more
difficult to interpret the results there. Alternatively, in Section IV.D.3 we attempt
to measure the average basin size of various graphs in order to better design genetic

operators. This endeavor is also complicated by the same effect.

Node Affinity Besides nodes of degree zero, there may be other “pseudo-free”
nodes in a graph which can move between sets without affecting the partition cost,
depending on the current partition. These nodes lead to a similar effect as that
described above. Significantly, however, moving these nodes around may affect the
possibilities of future improvement, and so the resulting partitions are not truly equiv-
alent in terms of the global search. We will define a node affinity, where nodes with
affinity zero play a similar role to the degree zero nodes above. These nodes arise both
for the low-degree graphs and also the higher-degree graphs, which have no nodes of
degree zero.

In the context of a given partition of a graph, a node’s affinity is the number
of edges it has to nodes on the same side of the partition, minus the number of edges

to nodes on the the opposite side:
affin(v) = |v,w € E,w e Vi| — |v,w € E,w € V3,

where v € V;. Alternatively, it is the change in cost associated with moving the node
to the other side of the partition. Intuitively, this describes the affinity a node has for
the side of the partition it is currently in. Degree zero nodes always have affinity zero,
whereas the affinity of all other nodes will depend on the current partition. Local
search will only move nodes with affin < 0. In this sense, affinity also describes how
much about the current partition has to change before a given node can be moved.
The concept also plays a role in simulated annealing, where the probability of moving

a node is inversely correlated with its affinity. In Section IV.E.1 we present results

38

confirming these intuitions.

Nodes with affin = 0 are interchangeable just as nodes of degree zero are,
subject to the possible change in affinities once nodes start moving (for example,
two nodes with zero affinity can each be moved independently without affecting the
cost, but if they are connected, then moving one will affect the affinity of the other).
Therefore, they lead to similar regions of degenerate local basins containing roughly
equivalent partitions. In this case, the different partitions may actually be different
with regards to the global search. Nevertheless, the same problem of local search
getting stuck quickly results. A couple of examples of common situations where node

with zeros affinity arise are shown in figures IV.2 and 1V.3.

A A

C B C

VLR~ R

Figure IV.2: Node with affinity zero: Node (A) has degree two, and is connected
to neighbors (B and C) in opposite sets. Node A switches sets without changing the
cost. The partition cuts vertically, so that nodes to the left and right of the dashed
line are in opposite sides of the partition. B and C may be connected to other nodes
not shown, but A is not. A therefore has affinity zero.

A B A B A B

D C D

C
SRV VRS T

Figure IV.3: Pair of nodes with affinity zero: Pair of nodes (A and B) connected
to each other, and to nodes (C and D) on opposite sides of the partition. Nodes A

and B switch sets without changing the cost. A and B both have affinity zero in the
leftmost diagram. Note that longer chains of degree two nodes would allow even more
partitions with equal cost.

39

IV.A.3 Experimental Details and Data Presentation

Most experiments in this chapter are performed on a small (eight instances)
collection of graphs of various types. We will generally be concerned with trends
across the graphs (e.g. method A works best on all graphs, or works best only on
geometric graphs, etc.). Hence, data for all eight graphs will be plotted side-by-side
in a single figure (see Figure IV.4 for an example). The plots are arranged so that the
three plots on the upper left side are for the random graphs, with graph size increasing
down the page. The three plots on the upper right side are for the geometric graphs,
with graph size and/or degree increasing down the page. Finally, the bottom two
plots are for the planted bisection graphs. These classes of graph instances, as well
as the particular instances used, are discussed in Section IV.A.1.

The data displayed in the eight-plot figures is usually the performance of
EA+LS as a function of time. Unless otherwise stated, the data shown will be the
fitness of the best solution in the population, averaged over ten runs. For a given
algorithm and graph instance the ten runs will differ only in the initial random seed
used, but the same group of ten seeds is used for all groups of runs. When present,
error bars will always represent the standard error over the ten runs (note that error
bars are almost always used if not otherwise stated, though they are often too small to
be seen). Wherever we report significance results for comparisons on a single graph,
we use a one-way analysis of variance (two-tailed Student’s t-test) with confidence
threshold 0.05.

Each figure also displays the best known solution and the average solu-
tion found by simulated annealing, when these are available. Specifically, simulated
annealing data is available for the three random graphs (r0124.20, 10250.20, and
r0500.20) and the two larger geometric graphs (g0500.20 and g0500.40). The aver-
age SA solution is displayed with a dashed horizontal line for these graphs. For the
geometric graphs, Johnson et al. [44] have developed specialized bisection techniques
which find substantially better solutions than simulated annealing. The fitness of

these solutions is displayed with a solid horizontal line for g0500.20 and g0500.40.

60

Finally, we can calculate the expected fitness of the best solution for the planted bi-
section graphs. This value is displayed by a solid horizontal line for two p0250.9+16
and p0500.9+16.

When considering performance as a function of time, our metric of time is
the number of function evaluations used. Here, we consider every solution exam-
ined to be a function evaluation. Note that for many problems (including graph
partitioning) there are efficient ways to incrementally update solutions when small
changes are made (as in local search or simulated annealing, for example), so that the
computational effort required to evaluate solutions may vary greatly depending on
how the solution is created. Nevertheless, we stick with function evaluations as our
metric, as we hope for our conclusions to speak generally about global/local search
issues rather than about graph partitioning in particular. The number of solutions
considered is a concrete metric which can be applied to any problem in a straightfor-
ward manner. Furthermore, even for comparisons within graph partitioning, we can
easily compare general methods without regard for the implementation details of the

algorithms employed.

IV.B Monte Carlo Local Search

In order to determine the properties of the graph instances, as well as the
various local search methods, a series of “Monte Carlo local search” experiments
was performed. For several graph instances, six local search methods are applied to
1,000 randomly generated partitions. Measurements gathered about each local search

include the number of partitions considered and the decrease in partition cost.

IV.B.1 Local Search Methods

Three neighborhood structures are examined, and both steepest descent and
first-improve search techniques (described in Section II.A.2) are examined for each,

giving a total of six LS algorithms. The three neighborhood structures used are

61

balanced, unbalanced, and half-balanced.

Balanced Under the balanced neighborhood structure, the neighbors of a partition
are simply all partitions which can be reached by swapping any two nodes from
opposite sides of the partition. In this case, all neighbors of a balanced partition are
also balanced, and the search is conducted over balanced partitions only. Since each
side of the partition has n/2 nodes, the neighborhood size is (n/2)?, where n is the
size of the graph.

Unbalanced The unbalanced neighborhood structure allows as neighbors all par-
titions (balanced or unbalanced) which can be obtained by moving a single node to
the opposite side of the partition. A penalty term is added to the cost of unbalanced
partitions (with penalty increasing quadratically with respect to degree of imbalance;
see Section IV.A for details) to focus the search on “nearly balanced” partitions.
In practice, however, the search can proceed for many steps without examining any
balanced solutions. Note that this neighborhood structure has much smaller neigh-
borhoods than the balanced structure (size n vs. (n/2)?), and hence can be expected
to allow for quicker local search.

A few important subtleties arise from allowing unbalanced partitions. First,
there is no guarantee that the final local minimum found under this structure will
be a legal (i.e. balanced) partition. In order to get a legal solution, then, the final
unbalanced partition is brought back into balance one node at a time. This is done
greedily, so that at each step, the node from the larger side of the partition which
results in the best partition cost is moved. It sometimes happens that the balanced
solution obtained in this way is inferior to a balanced partition which was seen earlier
during the local search (this can happen because the search through unbalanced
solutions reached a portion of the search space with inferior balanced solutions, or
simply due to the imperfect nature of the greedy rebalancing). For this reason the
best balanced partition seen during the local search is retained, and returned if it is

better than the final (rebalanced) partition.

62

In this sense the final solution returned by local search may not actually
be a local minimum. The fitness landscape of Figure IV.1 is illustrative. If the local
minimum found has to be rebalanced, the resulting balanced partition will likely have
worse cost than the unbalanced local minimum. Moreover, it will likely not be a local
minimum in the unbalanced neighborhood structure. It may even be the case that
performing an additional local search from this final partition would result in a better
balanced partition. In the figure this is labeled as a “false minimum.” However, since
LS is nondeterministic, it would not be possible to check for false minima without
performing all possible local searches, of which there could be combinatorially many.
For this reason, no attempt is made to reoptimize or verify the final result of a local

search.

Half-balanced The third neighborhood structure examined, the half-balanced struc-
ture, is a compromise between the balanced and unbalanced structures. For a bal-
anced partition the neighbors are the same as for the unbalanced structure, namely
all partitions which can be obtained by moving a single node to the opposite side of
the partition. For partitions which are a single node out of balance, the neighbor-
hood consists only of those balanced partitions which can be obtained by moving a
single node. In other words, as the local search proceeds, the current solution will be
alternate between being balanced and being one node out of balance.

The half-balanced structure has the same quickness advantage as the un-
balanced structure, due to its small neighborhood size: balanced partitions have the
same neighborhood under both structures (size n), but unbalanced partitions have an
even smaller neighborhood under the half-balanced structure (size n/2). It also has
the advantage of keeping the search tightly focused on balanced partitions, avoiding
some of the problems mentioned for the unbalanced structure. It should be noted,
however, that even this structure allows for the possibility of the final partition not
being an actual local minimum.

The six local search methods are described by the three neighborhood struc-

63

tures balanced (B), unbalanced (U), and half-balanced (H), under either steepest
descent (S) or first-improve (F). Henceforth, the six methods will be labeled BS,
BF, US, UF, HS, and HF.

IV.B.2 Results

The experiments were performed on 27 separate graphs. These include the
24 graphs used in [44] plus three more generated for purposes of this study. For each
graph instance, the six local search methods described were applied to 1,000 randomly

chosen initial partitions.

Properties of graphs

Tables IV.1-1V.18 show the partition cost (average and best), average num-
ber of evaluations, and the number of distinct local minima found (out of 1,000 local
searches) for each graph and local search method. These tables allow an easy com-
parison of the characteristics of the graphs as their size and degree vary.

The first thing to notice is that the number of evaluations used (equivalently,
the number of partitions considered) per local search increases with both the size and
average degree of the graph. With one exception, this is true for random, geometric,
and planted bisection graphs. The number of evaluations used can be taken as a
measure of the difficulty of the graph for local search. That more evaluations are
required as the number of nodes increases is to be expected, as the neighborhood
size scales (linearly or quadratically depending on the LS method being used) with
number of nodes.

What is more surprising is that increasing the expected degree also increases
the number of evaluations. For a given graph size, the neighborhood size is the same
no matter what the average degree, so this effect must be due to an increasing number
of improving moves made during local search. This implies that the local basins are
larger as the average degree increases, and therefore that there are fewer of them.

The one exception to this trend occurs with the half-balanced first-improve LS on

64

Table IV.1: Average number of evaluations for HF: The average, over 1,000
initial starting points, of the number of evaluations used (i.e. partitions considered)
for the half-balanced first-improve LS method. The three groups of figures are for
random graphs, geometric graphs, and planted bisection graphs. In each group, rows
represent graphs with the same number of nodes, and columns represent graphs with
the same expected degree.
‘ V] ‘ average degree ‘
2.5 5.0 10.0 20.0
random 124 | 577 721 806 782
250 | 1364 1748 2083 2231
500 | 3199 3962 4935 5998
1000 | 7418 9500 12099 15066
5 10 20 40
uniform 250 1542
geometric 500 | 3885 3917 3509 3309
1000 | 9335 10436 9430 9157

9416
planted 250 2259
bisection 500 6234

Table IV.2: Number of local minima for HF: The number of distinct local minima
resulting from half-balanced first-improve LS applied to 1,000 random initial parti-
tions. For the case in which fewer than 1,000 distinct local minima were found, the
number of occurrences of the most common local minima is given in parentheses.
‘ \4 ‘ average degree ‘
2.5 5.0 10.0 20.0
random 124 | 1000 1000 999(2) 997(2)
250 | 1000 1000 1000 1000
500 | 1000 1000 1000 1000
1000 | 1000 1000 1000 1000
5 10 20 40
uniform 250 896(27)
geometric 500 | 1000 1000 1000 958(13)
1000 | 1000 1000 1000 999(2)
9416
planted 250 1000
bisection 500 1000

Table IV.3: Average/best partition cost for HF: The average and best partition

65

cost, over 1,000 initial starting points, resulting from half-balanced first-improve LS.

‘ \4 ‘ average degree ‘
2.5 5.0 10.0 20.0
random 124 | 244/ 15 77.8/ 64 196.0/ 180 479.1/ 452
250 | 58.8/ 42 144.4/124 397.0/ 369 875.9/ 835
500 | 105.1/ 86 291.5/260 705.2/ 658 1844.6/1778
1000 | 210.6/182 590.2/543 1536.2/1469 3602.6/3500
5 10 20 40
uniform 250 304.5/140
geometric 500 69.2/34 180.4/ 70 466.2/192 1018.9/474
1000 | 149.9/96 366.0/203 910.1/455 1860.2/737
9416
planted 250 1183.8/1141
bisection 500 2332.1/2260
Table IV.4: Average number of evaluations for HS
‘ V] ‘ average degree ‘
2.5 5.0 10.0 20.0
random 124 3284 3759 4140 4273
250 | 11783 14578 16384 17612
500 | 46287 54443 60840 69669
1000 | 185793 212728 242092 272868
5 10 20 40
uniform 250 21353
geometric 500 | 67931 78774 85276 88285
1000 | 261602 311360 342417 359776
9416
planted 250 17996
bisection 500 72015

i

[able IV.5: Number of local minima for HS

V] average degree
2.5 5.0 10.0 20.0
random 124 | 1000 1000 1000 997(2)
250 | 1000 1000 1000 1000
500 | 1000 1000 1000 1000
1000 | 1000 1000 1000 1000
5 10 20 40
uniform 250 658(60)
geometric 500 | 1000 1000 987(3) 760(34)
1000 | 1000 1000 1000 954(10)
9+16
planted 250 1000
bisection 500 1000
Table IV.6: Average/best partition cost for HS
V] ‘ average degree ‘
2.5 5.0 10.0 20.0
random 124 | 242/ 15 79.2/ 66 196.6/ 179 478.6/ 449
250 | 59.3/ 45 146.9/126 400.9/ 370 878.0/ 836
500 | 106.2/ 86 297.9/258 T17.4/ 677 1856.0/1793
1000 | 214.4/188 610.0/566 1567.2/1506 3636.4/3536
5 10 20 40
uniform 250 237.7/140
geometric 500 | 68.7/ 25 154.6/ 49 341.3/178 659.4/412
1000 | 158.3/111 324.7/180 661.3/293 1226.9/737
9+16
planted 250 1186.4/1148
bisection 500 2343.3/2278

66

Table IV.7: Average number of evaluations for UF

V] ‘ average degree ‘

2.5 5.0 10.0 20.0
random 124 | 609 773 905 1160
250 | 1426 1828 2247 2665

500 | 3269 4066 5073 6591

1000 | 7518 9454 12294 15929

5 10 20 40

uniform 250 2619

geometric 500 | 4164 4964 6010 7103
1000 | 9503 11804 14470 19417

9416
planted 250 2788
bisection 500 6956

Table 1V.8: Number of local minima for UF

\4 ‘ average degree
2.5 5.0 10.0 20.0
random 124 | 1000 1000 999(2) 964(19)
250 | 1000 1000 1000 1000
500 | 1000 1000 1000 1000
1000 | 1000 1000 1000 1000
5 10 20 40

uniform 250 498(52)

geometric 500 | 1000 1000 996(2) 409(106)
1000 | 1000 1000 1000 941(5)

9416
planted 250 1000
bisection 500 1000

Table IV.9: Average/best partition cost for UF

\4 ‘ average degree ‘
2.5 5.0 10.0 20.0
random 124 | 244/ 15 77.6/ 64 1951/ 179 474.2/ 449
250 | 58.5/ 42 144.3/117 395.8/ 364 872.1/ 836
500 | 105.2/ 85 290.8/259 705.9/ 666 1843.5/1782
1000 | 210.4/177 591.0/540 1536.6/1469 3599.8/3510
5 10 20 40
uniform 250 249.7/140
geometric 500 68.0/35 166.1/ 60 386.5/178 758.6 /417
1000 | 148.3/89 355.2/203 821.1/400 1479.1/737
9416
planted 250 1179.3/1128
bisection 500 2330.8/2258
Table IV.10: Average number of evaluations for US
\4 ‘ average degree ‘
2.5 5.0 10.0 20.0
random 124 4331 5009 5464 6015
250 | 15640 19307 21768 23501
500 | 61481 72486 80809 93174
1000 | 247324 283284 322700 365077
5 10 20 40
uniform 250 29970
geometric 500 | 90358 105168 117637 125487
1000 | 348438 415185 462597 497522
9416
planted 250 24029
bisection 500 96218

63

Table IV.11: Number of local minima for US
\4 ‘ average degree
2.5 5.0 10.0 20.0
random 124 | 1000 1000 999(2) 962(18)
250 | 1000 1000 1000 1000
500 | 1000 1000 1000 1000
1000 | 1000 1000 1000 1000
5 10 20 40
uniform 250 309(112)
geometric 500 | 1000 1000 922(9) 182(317)
1000 | 1000 1000 1000 739(29)
9416
planted 250 1000
bisection 500 1000
Table IV.12: Average/best partition cost for US
V] ‘ average degree ‘
2.5 5.0 10.0 20.0
random 124 | 24.1/ 15 78.7/ 65 196.4/ 180 475.0/ 449
250 | 59.1/ 45 146.7/125 400.1/ 374 876.9/ 833
500 | 106.1/ 85 297.5/258 T17.2/ 672 1854.5/1794
1000 | 214.4/187 609.5/567 1566.4/1494 3634.2/3545
5 10 20 40
uniform 250 215.0/140
geometric 500 | 68.4/ 25 152.5/ 49 318.4/178 584.1/412
1000 | 157.9/102 323.0/179 641.1/289 1151.6/737
9416
planted 250 1184.6/1126
bisection 500 2341.7/2275

69

Table IV.13: Average number of evaluations for BF

V] ‘ average degree ‘

2.5 5.0 10.0 20.0
random 124 5179 6578 7740 9516
250 | 18495 23861 31064 35939

500 | 69634 78388 95227 138000

1000 | 268784 289657 342934 461823

5 10 20 40

uniform 250 40918

geometric 500 | 98626 125650 153553 161510
1000 | 330966 448410 578481 683845

9416
planted 250 38598
bisection 500 144486

Table 1V.14: Number of local minima for BF

V] ‘ average degree

2.5 5.0 10.0 20.0
random 124 | 1000 1000 999(2) 978(7)
250 | 1000 1000 1000 1000

500 | 1000 1000 1000 1000

1000 | 1000 1000 1000 1000

5 10 20 40

uniform 250 315(89)

geometric 500 | 1000 1000 966(4) 313(60)
1000 | 1000 1000 1000 885(7)

9416
planted 250 1000
bisection 500 1000

Table IV.15: Average/best partition cost for BF

\4 ‘ average degree ‘
2.5 5.0 10.0 20.0
random 124 24.0/ 15 76.6/ 64 193.5/ 179 472.4/ 449
250 57.0/ 40 142.3/121 392.7/ 364 868.1/ 831
500 | 102.8/ 80 285.9/249 699.8/ 653 1833.6/1770
1000 | 202.7/170 580.5/532 1523.1/1461 3581.2/3485
5 10 20 40
uniform 250 221.8/140
geometric 500 61.1/28 147.3/ 52 347.3/178 694.7/412
1000 | 136.3/88 312.8/170 689.2/333 1333.7/737
9+16
planted 250 1174.4/1133
bisection 500 2319.1/2261
Table IV.16: Average number of evaluations for BS
\4 ‘ average degree ‘
2.5 5.0 10.0 20.0
random 124 68108 77710 86236 94708
250 492094 607047 687000 747141
500 | 3861125 4547625 5069500 5826063
1000 | 30974000 35498750 40399750 45676000
5 10 20 40
uniform 250 941547
geometric 500 | 5672875 6608188 7427313 7863250
1000 | 43618250 52001750 58177000 62611250
9+16
planted 250 772516
bisection 500 6033000

71

Table IV.17: Number of local minima for BS

\4 ‘ average degree
2.5 5.0 10.0 20.0
random 124 | 1000 1000 1000 992(3)
250 | 1000 1000 1000 1000
500 | 1000 1000 1000 1000
1000 | 1000 1000 1000 1000
5 10 20 40
uniform 250 355(65)
geometric 500 | 1000 1000 938(5) 213(138)
1000 | 1000 1000 1000 782(13)
9+16
planted 250 1000
bisection 500 1000
Table IV.18: Average/best partition cost for BS
V] ‘ average degree ‘
2.5 5.0 10.0 20.0
random 124 | 24.3/ 15 79.5/ 65 196.7/ 179 475.9/ 449
250 | 59.4/ 45 147.1/122 400.8/ 369 876.7/ 840
500 | 106.2/ 85 298.0/258 T717.8/ 672 1856.1/1792
1000 | 214.6/188 610.0/570 1567.1/1498 3634.8/3530
5 10 20 40
uniform 250 222.7/140
geometric 500 | 68.6/ 25 153.5/ 49 320.4/178 599.4/412
1000 | 158.5/110 323.8/172 641.9/287 1163.1/737
9+16
planted 250 1184.2/1125
bisection 500 2341.9/2269

72

73

the geometric graphs, for which the longest searches are observed for the degree ten
graphs. This effect appears to be robust for this .S method, holding for graphs of
size 500 and 1,000, but it is not observed for any other LS method.

More direct evidence regarding the number of local basins can also be seen
in the tables. We see that for almost every graph, no two local minima (out of the
1,000 found) were the same. This implies a very large number of local basins, as
not even a chance occurrence resulted in seeing the same basin more than once.? It
is not clear to what extent this reflects complex structure of the search space. As
discussed in Section IV.A.2, there can be large equivalence classes of distinct local
minima which are not different in any meaningful way (for example nodes of degree
zero can be swapped with no effect on partition cost).

For five of the graphs, several duplicate local minima were found by at least
one of the L.S methods. This implies either that these graphs have fewer basins, or
that they have some much larger basins. All of these graphs have high average degree,
which is consistent with the inference drawn above about high degree leading to larger
and fewer basins.

A final observation to make about the graphs is that the average cost of the
local minima increases with the number of nodes and the average degree. This is to
be expected, as larger and more connected graphs will require more edges to be cut

by any partition.

Comparison of Local Search Methods

Tables IV.19 and 1V.20 redisplay some of the information in Section IV.B.2
to facilitate comparison of the local search methods. Table IV.19 shows the average
partition cost of the local minima found by LS and Table IV.20 shows the average
number of evaluations per LS.

The data shown are for a subset of the graphs examined in Section IV.B.2.

This subset is used for the comprehensive empirical study of EA+LS in Section IV.D.

2A quick calculation shows that if there are 700,000 equal size basins, the chance that there will
be no duplicates after choosing 1,000 at random is approximately 50%.

74

The subset provides instances of various sizes (124, 250, and 500 nodes) and types
(random, uniform geometric, and planted bisection graphs) for a given average degree.
All but one of the graphs has expected degree between 20 and 25. We believe these to
be more difficult than the smaller degree graphs as there are fewer free nodes (recall
Section IV.A.2). Finally, one graph is included which has expected degree 40, to

gauge the effect that this has on algorithm performance.

Table IV.19: Average partition cost

BS BF UsS UF HS HF
r0124.20 4759 4723 4752 474.1 478.9 479.0
r0250.20 876.7 868.1 875.9 8721 878.0 875.9
r0500.20 1856.1 1833.6 1854.1 1843.5 1856.1 1844.6
£0250.20 320.3 347.3 320.1 386.5 343.1 466.1
£0500.20 641.9 689.2 642.1 §21.0 663.5 910.0
£0500.40 1163.0 1333.6 1146.7 1479.0 1222.1 1860.2
p0250.9+16 1184.2 1174.4 1184.5 1179.3 1186.3 1183.8
p0500.9+16 2341.8 2319.1 2341.6 2330.7 2343.2 2332.1

There are several observations to make from Table IV.19. First, the relative
effectiveness of the LS methods depends on the type of graph being searched. For
almost all random and planted bisection graphs, and all neighborhood structures,
first-improve LS finds slightly better solutions than steepest descent. The differences
are small but consistent. That steepest descent often does worse may seen coun-
terintuitive. The explanation is that this greedy method can quickly get “stuck” in
a nearby basin, whereas the first-improve method has more freedom to roam over
multiple basins, due to its stochasticity.

For the geometric graphs, in contrast to the above, steepest descent finds
markedly better solutions. For these highly structured graphs, there is a real benefit
to making as much progress as possible with each step. As we will see below, however,
these greatly superior solutions come at the expense of speed.

Comparing neighborhood structures, the results again depend on the type
of graph being searched. For the random and planted bisection graphs, there is

little difference between the three neighborhoods. The best average solutions are

75

found with the balanced first-improve method, but these are at most 1% better than
the solutions found with the other neighborhoods using first-improve. Neighborhood
structure makes more of a difference on the geometric graphs. On these graphs, using
steepest descent, the balanced and unbalanced neighborhoods have similar solution
quality, with half-balanced somewhat worse (up to 7%). Using the first-improve
method, there is a much bigger difference between the neighborhoods, with balanced

being the best and half-balanced by far the worst.

Table IV.20: Average LS length: For comparison, a single step of LS using the
balanced neighborhood requires 3844, 15.625, or 62,500 evaluations for a graph of size
124, 250, or 500, respectively.

BS BF UsS UF HS HF
r0124.20 95k 9516 6101 1213 4264 824
r0250.20 747k 35939 23833 2726 17654 2283
r0500.20 5826k 138000 93570 6646 69762 6057
£0250.20 7427k 153553 | 117875 6221 85197 3736
£0500.20 58177k 578481 | 463704 14796 | 342511 9826
£0500.40 62611k 683845 | 498826 19866 | 360123 9636
p0250.9+16 773k 38598 24029 2788 17996 2259
p0500.9+16 1738k 144486 96218 6956 72015 6234

Two important trends regarding LS length can be seen in Table IV.20. The
first is that for any neighborhood structure, the first-improve method is much quicker
than steepest descent. Depending on the graph and neighborhood, steepest descent
uses anywhere from five to 90 times as many evaluations as first-improve. This points
to how much time is saved by consistently finding quick improvements in the early
and middle stages of local search. In the final stages of LS, when the search is near
a local minimum, improving neighbors are hard to find and there is not as much
difference between steepest descent and first-improve.

The other trend to notice is the enormous amount of time spent when using
the balanced neighborhood. With its quadratic neighborhood size, it is necessarily
much slower than the other methods. Even when using the first-improve method, in
which the full neighborhood does not have to be searched every time, the balanced

neighborhoods still suffer. This has an easy explanation. Even with first-improve, the

76

entire neighborhood has to be searched at least once, namely on the last step of LS
before returning. This full search is necessary to verify that the search has reached a
local minimum. Even this one search of the complete neighborhood takes roughly as
many evaluations as an entire local search using one of the other neighborhoods.

The balanced neighborhood’s slowness has obvious consequences for our
intended use of LS as part of an EA. On the geometric graphs, the only graphs
for which the balanced neighborhood gives substantially better solutions, the running
time ranges from 40 to over 100 times as slow as the half-balanced method, depending
on the graph and whether steepest descent or first-improve is used. This means that
an EA could sample many regions of the global search space and do half-balanced LS
on these samples in the time it would take to do balanced LS on a single partition.
It our intuitions about EA+LS are correct, it is much more important to gather
many samples and quickly refine them than to spend enormous effort refining a single
point. For example, in the most extreme case, comparing balanced steepest descent
with half-balanced first-improve on the graph g0500.40, the latter is almost 6,500
times faster, and would allow a complete EA4LS run to finish before one LS of the
former.

The comparison between the unbalanced and half-balanced neighborhoods
is more interesting. For all graphs and for both steepest descent and first-improve, the
half-balanced neighborhood is quicker. The unbalanced neighborhood uses from 10
to 106% more evaluations. This difference is substantial, but the tradeoff is solution
quality. The unbalanced neighborhood always gives better solutions, particularly on
the geometric graphs. The biggest disparity between unbalanced and half-balanced,
both in terms of solution quality and running time, occurs on the geometric graphs
using first-improve. This interesting tradeoff is explored in Section IV.D.2 in the
context of an EA.

In summary, there is little difference in solution quality between the various
LS methods for random and planted bisection graphs, so the speed of LS alone may

be expected to determine its usefulness. On the geometric graphs, the LS method

77

makes a big difference in solution quality, with steepest descent clearly superior, and
with the half-balanced neighborhood somewhat worse than the other neighborhoods.
For all graphs, the balanced neighborhood is too slow to be useful in comparison
to the other methods, and the half-balanced is substantially faster than unbalanced.
Also in all cases, first-improve is quicker than steepest descent. For the random and
planted bisection graphs, these observations suggest that half-balanced first-improve
will be most successful as part of an EA4LS algorithm. For the geometric graphs,

there are tradeoffs between speed and quality, and there is no clear recommendation.

IV.C Evolutionary Algorithm

As a baseline for evaluating the usefulness of local search, we first examine an
EA without LS. In this section the EA is compared to random sampling, Monte Carlo
local search, and finally the EA+LS. We also examine the effectiveness of crossover, as
a prelude to Section IV.D.4, in which a corresponding set of experiments is performed

in the context of LS.

IV.C.1 Baseline Results

As a first check of the EA’s effectiveness, we compare it to Monte Carlo (MC)
search, which is simply unbiased random sampling (note that this is not the same as
Monte Carlo local search, discussed in the previous section, as no local search is done).
The EA used in the experiments is fairly typical. It is generational, with an expected
mutation size of five node swaps per solution. All other algorithmic parameters are
set to their standard values (see Section IV.D).

Figure IV.4 includes a comparison of the EA and Monte Carlo search. The
curves shown for MC are simply plots of the best solution found as a function of
the number of solutions considered. In other words, we repeatedly generate solutions
uniformly at random over the search space, and keep a record of each time a solution

is found which is better than any found previously. Note that each solution is drawn

78

independently, so the curves simply reflect the probability of finding solutions of
various fitness. Nevertheless, this presentation allows a direct comparison with the
EA in terms of the speed and quality of search. Note that the MC curve has no error
bars, as only a single “run” is done.

We see that on all graphs the EA does substantially better than MC, begin-
ning with the earliest stages. Even when MC is allowed ten times as many evaluations
as the EA| its solutions are substantially worse. The EA is clearly effective at biasing
its sampling towards good regions of the space.

The EA is also compared to Monte Carlo local search using half-balanced
first-improve LS. The MCLS plots are generated in a similar fashion to those for
MC; local search is run to completion on a sequence of randomly generated starting
solutions. A record is kept of each time a solution is encountered which is better than
any seen previously. Note that the local searches are done in series: one LS runs to
completion before the next one begins.

We see from the figure that MCLS finds much better solutions than the EA,
and that it finds them very quickly. In fact, the average local minimum has better
cost (recall Table 1V.3) than the final EA solutions, even though the average local
search length is less than 1% of the time spent by the EA. This illustrates the power
of LS for graph bisection; even though the EA’s global search is very effective when
compared to random search, it is completely inadequate in comparison to simply
doing local search from a few random starting points.

Since local search itself it so powerful, the use of a population-based sam-
pling algorithm (EA) needs to be justified. We compare MCLS to the generational
EA+LS described in Section IV.D.1, which finds the best solutions of all the EA4LS
variants considered in this dissertation. Figure IV.5 displays the performance of this
algorithm against MCLS. We see that on the random and planted bisection graphs,
there is indeed a benefit to having the EA choose the starting points for LS. The
difference between MCLS and EA+LS is significant on each of these graphs. There
is no significant difference on the geometric graphs, though on average the EA4LS

79

r0124.20

‘&'ﬁ"ﬁﬂ
R R P

1000

i\ﬁ g0250.20

550—; | M“M“M*M&M&aﬁ-g
500 500 —e— MonteCarlo .
:E] —---Evolufign Y Algorithm
A50) T ZEHEIE I 2 2 3 3 36 36 36 36 3 3 H I H I I X x x--Monte Carlo L
T3 5€ 3¢ 3¢ 3¢ 3¢ 3¢ 3¢ 36 36 3¢ 2 3 3¢ 3¢ % ¢ 3¢ 3 %
0 10 20 30 40 0 10 20 30 40
2500
1200
B r0250.20 20003 —* *
Z i g0500.20
5
.9 AAAAAAAAAAA‘A'AAAAAAAA‘AAAA
5
a e - TEPRPRTVORRIVRTRRRTI
] T [T [T [[|
0 20 40 60 8 100
2600 4000 7 *
. g0500.40
2400 3000 Sy,
2200 —| rassrsssrsppppppee 2000
2000
1000
O NP oY E— .- TTYRP—
0 [[[T [[|
0 20 40 60 8 100
1600 3200
i p0250.9+16
B 1500 30009
S . T p0500.9+16
= 14004 2800
o E
= 13003 2600
& 1200 2400
E "- % e e e LUK
1100 3 , S— —— 2200 ——m88— ——
0 20 40 60 8 100 0 50 100

Evaluations (x 10,000)

Evaluations (x 10,000)

Figure IV.4: Comparison of Monte Carlo, A, and Monte Carlo LS

80

performed as well as or better than MCLS on all three.

In summary, the EA effectively biases its sampling towards good regions
of the search space, as compared to random sampling. Local search, however, is so
powerful that doing even a single LS from a random starting point will probably
result in a superior solution, in a fraction of the time used by the EA. Nevertheless,
the EA’s population-based global search is superior to random sampling in choosing

favorable starting points for LS.

A note about MCLS plots The data for the MCLS plots in this section are
taken from the experiments described in Section IV.B.2, in which local search was
performed on 1000 random initial starting points. In order to generate the curves,
these independent local searches are grouped to form several “runs” of the same length
as the EA+LS. For example, on 10124.20 the EA+LS is allowed to run for 400,000
evaluations. A single HF local search on this graph uses 824 evaluation on average.
Hence, 485 (400,000/824) complete local searches are equivalent to an EA+LS run.
Therefore, we consider the first 485 local searches to be a single MCLS run, the next
485 to be a another, and so on. Since only 1000 local searches were initially performed,
we get only two runs for this graph. By grouping the data in this way, we get a fair
comparison between the methods (as they use the same number of evaluations) and
an improved ability to do statistical comparisons, as there are multiple MCLS runs

for each graph.

IV.C.2 Effect of Crossover

The general purpose of the crossover operator is to recombine useful parts
of distinct genotypes to create a solution which has the best of both parents. The
ability of crossover to do this depends of course on the problem at hand, and also on
the way solutions are represented and the specifics of the crossover operator. Generic
operators may be suitable for many problems, if there is a straightforward binary

representation. For example, the k-SAT problem has an obvious representation, a

81

Partition Cost

2600

2400 r0500.20

2200

2000 —,

Partition Cost

p0500.9+16

A,

TYYYYYYYYY

| AA000400000000000000 000000 NBNBAMNISIRIIIIAIAIAIAL
]

! ! I ! I ! I ! | 2200 T T T T
O 20 40 60 80 100 0 50 100

Evaluations (x 10,000) Evaluations (x 10,000)

Figure IV.5: Comparison of Monte Carlo LS and the EA with LS

82

Crossover point Crossover points

y 2\
Paentl: [01100/00110 Paentl: [0110000[110
Parent 2: 10100(10101| Paent2 101/0010]101

Child: 0110010101 Child: 0110010110
a) b)

Parent1: [0/2[1J0 0 0[0/1 1[0]
Parent2: 1[0]1[0[0[70[1[0]1

Child: 0010010100

c)
Figure IV.6: Three standard crossover operators: a) One-point crossover, b)
two-point crossover, ¢) uniform crossover. The boxes indicate which parent each bit
is chosen from.
single bit for each variable indicating its truth value.

Standard crossover operators such as one-point, two-point, and uniform
crossover simply assign each bit in the child to be the same as the corresponding
bit in one of the parents (see Figure IV.6). Specifically, one-point crossover randomly
chooses a “crossover point” on the genotype: all bits before that point are copied
from one of the parents and all bits after the point are copied from the other parent.
Two-point crossover is similar, but there are two crossover points. The bits before
the first point and after the second point are copied from one parent, and the bits
between the two points are copied from the other. One- and two- point crossover re-
spect locality on the genotype, so that bits which are near each other are more likely
to be chosen from the same parent than bits which are far apart. Finally, uniform
crossover chooses between the parents independently for each bit, so that there is no
linkage between positions on the genotype.

Graph partitioning allows a straightforward binary representation. Specifi-
cally, the genotype has one bit for each node, specifying which side of the partition
that node is on. While simple, this representation has a few drawbacks. First, any

given partition has two distinct encodings. This can be problematic for crossover,

83

as two parents may be quite similar to each other but have very different encod-
ings. This may cause crossover to disrupt parts of the solution on which the parents
agree, because the corresponding sections of the genotype are different. We will ex-
amine ways to deal with this problem, including “normalizing” representations before
recombination so that they are more similar.

A second problem with this representation is that the common crossover
operators described above often produce invalid partitions. Valid partitions must
have the same number of nodes on each side of the partition, but this property is not
preserved by any of the operators described. For all graph partitioning experiments
in this dissertation we use the following crossover operator: for each bit on which the
parents have the same value, this value is copied to the child. The settings for the
remaining bits are chosen uniformly at random from all possible settings which have
the required number of 0s and 1s. Hence, crossover always produces a valid partition.
Furthermore, it preserves any genetic information that both parents possess.

This operator is a special case of the RAR,, subset recombination operator
described by Radcliffe [70, 69]; in particular it is equivalent to RAR,.,. In preliminary
experiments we tried RAR,, for various values of w and found RAR., to be robust
across all graph instances. Note also this operator ignores locality on the genotype,
i.e. nodes which are adjacent on the genotype are no more or less likely to be copied
from the same parent than nodes which are far apart. This is reasonable for random
graphs since the order of nodes on the genotype does not reflect any prior expectations
about which nodes should be transferred together. For geometric graphs there may be
ways to arrange the genotype so as to exploit the structure, e.g. putting geometrically
close nodes near other on the genotype. We make no such attempt here, instead using

a random ordering of nodes.

Symmetric Normalization of Partitions

As discussed above, the existence of duplicate representations for each par-

tition may be problematic for crossover. In order to alleviate this problem, we

84

try various methods of normalizing the partitions’ representations before perform-
ing crossover. Intuitively, if two parents are similar we want their representations
to be similar also. Hence, an obvious procedure is to examine each pair of parents
before applying crossover and to invert (flip all the bits of) one of them if this brings
their representations closer together. Here distance is defined to be Hamming dis-
tance. We call this procedure pairwise Hamming normalization. Note that under this
method the actual parity of the representation used for a partition in the population is
irrelevant, as the bitstrings are always normalized before interacting with each other.

Several alternative normalization procedures are compared to the pairwise
Hamming method. The population-wide Hamming method normalizes the entire pop-
ulation with respect to the current best solution in each generation. The population-
wide fired node method selects a single reference node in the graph prior to the start
of the EA run. Each generation, the entire population is normalized with respect
to this node, i.e. the bitstrings are set so that the bit corresponding to this node
is 0 in every genotype. The motivation for this is that it eliminates the duplicate
representation problem; the symmetry is broken by fixing the reference node. The
population-wide random node method is similar, but the reference node is selected
randomly every generation. The random method simply inverts each parent with
probability 0.5. This is used as a test to see if normalization matters at all. Finally,
the null method does no normalization. For all methods, any normalization is applied
before crossover.

Experiments are performed comparing the various normalization methods.
A generational EA without local search is used, with a population size of 150. The per-
node mutation probability is 0.002. Since the EA is generational, any normalization
that occurs does not directly affect succeeding generations. Its only affect is by
modifying the operands of crossover. Table V.21 displays the relative performance of
each of these methods on the 24 random and geometric graphs from [44]. Each number
in the table represents the best solution found after 200 generations, averaged over ten

runs. To facilitate comparison across different graphs, the numbers are scaled with

89

respect to the pairwise Hamming method, so that a rating of less than 1.0 indicates
better performance than pairwise Hamming. We see that the there is little difference
between the pairwise Hamming, population-wide Hamming, and null methods. The
population-wide random node and random methods both do substantially worse on all
graphs. The population-wide fixed node method is comparable to the best methods
on the random graphs and is somewhat worse on the geometric graphs, though still
much better than the worst methods.

It is not surprising that the random method does so poorly; under this
method similar parents will have dissimilar representations as often as not. Given
this result, then, it is somewhat surprising that the null method does as well as all
the others. If it is detrimental to make the representations dissimilar (a la the random
method), then why isn’t it beneficial to always make them similar? One possibility
is that the population automatically converges onto one of the two representational
conventions. In this case all the bitstrings would be more similar than dissimilar, and
normalization would have no effect.

Also curious is the fact that the population-wide random node method does
almost as poorly as the random method. It may be the case that choosing a random
node as a reference each generation has the same effect as random normalization. As
an extreme example, consider what happens if the chosen reference node has degree
zero. Then in each genotype it is equally likely to be 0 or 1, regardless of the rest of the
solution. Hence, setting the bitstring so that this node’s bit is 0 is effectively the same
as randomly deciding whether or not to invert it. Note that the situation is different
for the population-wide fized node method. In this case, even if the fixed node has
degree zero, there is a fixed representational choice which allows the population to

converge.

Crossover vs. Macromutation

A sometimes controversial issue is whether a crossover (or recombination)

operator is useful as part of an EA [41, 46, 23]. Proponents of crossover argue that

86

Table IV.21: Comparison of normalization methods: The relative effectiveness
of various normalization methods on 24 graphs. Fach entry represents the fitness of
the final solution found by an EA, averaged over ten runs. All figures are normalized
with respect to the pairwise Hamming method, which be definition has value 1.0.

Pop-wide Pop-wide

Pairwise Pop-wide fixed random
graph | Hamming Hamming node node random null
r0124.03 1.00 0.96 0.94 2.26 2.28 0.88
r0124.05 1.00 1.06 1.05 1.62 1.66 1.01
r0124.10 1.00 1.01 1.01 1.33 1.33 1.02
r0124.20 1.00 0.99 1.00 1.16 1.18 0.99
r0250.03 1.00 1.02 1.03 2.55 2.55 0.97
r0250.05 1.00 0.99 1.02 1.75 1.78 0.97
r0250.10 1.00 1.01 1.02 1.41 1.42 1.00
r0250.20 1.00 1.00 1.01 1.24 1.24 1.01
r0500.03 1.00 0.97 1.14 2.47 2.48 0.96
r0500.05 1.00 1.00 1.07 1.76 1.78 1.01
r0500.10 1.00 0.99 1.03 1.41 1.42 0.98
r0500.20 1.00 0.99 1.02 1.24 1.24 0.99
r1000.03 1.00 0.99 1.15 1.96 1.98 0.97
r1000.05 1.00 0.99 1.08 1.52 1.53 0.99
r1000.10 1.00 1.00 1.05 1.32 1.32 1.00
r1000.20 1.00 1.00 1.02 1.19 1.20 1.00
avg. random 1.00 1.00 1.04 1.64 1.65 0.99
£0500.05 1.00 1.05 1.35 5.39 5.49 1.05
£0500.10 1.00 1.08 1.39 4.65 4.77 0.96
£0500.20 1.00 1.03 1.18 3.99 4.07 1.11
£0500.40 1.00 0.95 1.17 3.62 3.71 0.84
£1000.05 1.00 1.00 1.32 2.88 2.94 1.04
£1000.10 1.00 1.00 1.25 2.60 2.64 0.97
£1000.20 1.00 1.03 1.26 2.53 2.57 1.07
£1000.40 1.00 0.98 1.21 2.46 2.49 0.96
avg. geometric 1.00 1.01 1.27 3.51 3.59 1.00

87

it is crucial whenever the representation of the problem at hand allows “building
blocks.” Roughly, a building block is a schemata which represents a good solution to
a subproblem of the problem at hand. For example, in graph partitioning a building
block might be a part of the genotype which specifies that some group of nodes is
on the same side of the partition. If these nodes form a small clique, then partitions
containing this building block will have higher fitness than those without it, on av-
erage. The main idea is that if there are several such building blocks, they can be
discovered independently (through the normal EA processes of variation and selec-
tion) and then combined with crossover. For a more thorough discussion of building
blocks and schemata see [41].

A test that is commonly done to evaluate crossover’s effectiveness is to com-
pare an KA with crossover to one without. When crossover is not used, new solutions
are generated by simply cloning one parent and applying mutation. If an EA works as
well without crossover as with, then crossover is not combining building blocks. Note
that if using crossover does help, it does not necessarily follow that it is combining
building blocks. It could simply be the case that the variation generated by crossover
in the population is beneficial. In this case, it is rather like a large mutation operator,
and it is said to produce macromutations.

The possibility that crossover benefits search by simply allowing macromuta-
tions leads to another test, developed by Jones [46], in which “random” (or “headless
chicken”) crossover is used. For random crossover, one parent is selected from the
population in the usual way, but the second parent is randomly generated. The
crossover operator is then applied to produce a new solution, and the randomly gen-
erated parent is discarded. In this way the benefit of macromutation is examined in
the absence of any genetic recombination. If an EA with random crossover performs
as well as one with normal crossover, this implies that crossover’s benefit derives from
its macromutations and not from its combining of building blocks.

Figure IV.7 shows the results of EA runs using the three crossover methods

on eight graphs. These runs are performed using a steady-state EA with an expected

88

mutation size of five node swaps per solution. We see that in all cases, standard
crossover does substantially better throughout the runs than either alternative. Ran-
dom crossover is especially poor, improving little after the very early stages. Since
macromutations are so detrimental, they cannot be the source of the benefit for nor-
mal crossover. This suggests that crossover does indeed combine building blocks from
disparate solutions. Section IV.D.4 describes a similar experiment for an EA which

used local search.

IV.D Evolutionary Algorithm with Local Search:
Mechanisms of LS Interaction

In this section we explore the effect of varying several algorithmic parameters
of the EA+LS hybrid. For most experiments we employ a new variant of the EA+4LS,
which allows us fine control over the various aspects of the global/local interaction.
Figure IV.8 outlines the algorithm. This is a steady-state algorithm in which LS
applied to every individual upon creation. Only a small amount of LS (a “sniff”)
is used; this may give a sense of how much potential there is for improvement with
further local search. Each time a solution is created (and given a LS sniff), other
solutions may be selected to receive additional LS. Various methods may be used
to select which individuals get LS; for example it may be based on fitness or on
an estimate of the potential for future improvement. The unusual feature of this
algorithm is that it uses only small amounts of LS at a time, and that it allows various
mechanisms for selecting how the LS effort is allocated to the population. The goal is
to maintain a population of solutions which have each undergone some amount of LS,
so that useful comparisons can be made between members. In contrast, algorithms
in which a fraction of the population undergoes LS to completion may suffer from
the problem that the best solutions are simply those which were chosen for LS, and
so selection may be skewed.

More generally, this new algorithm integrates global and local search more

89

Partition Cost

650

6001\2\ r0124.20
550—;

\
500

1 x ;
4503 - - - TIEEEEEEEXIRIZR

L g0250.20
1000 —_'\

N
Tn
1 —e— random
1% —-&--none
500_‘\’\ S ﬁ_%ﬂ—x—standard
| ENRAANAA
*x K e ;Se-g
""""" N UM I
0 10 20 30

1000]
500]

2500 g0500.20
2000 M
1500

4000 jtw
3000 3}

% g0500.40

Partition Cost

1600
1500 ; p0250.9+16
1400 —

1300 -
1200 -

(R0 | ————————
0 20

Evaluations (x 10,000)

2800

2600 ;-

2400

3200
2000 % p0500.9+16

2200

0 50

Evaluations (x 10,000)

Figure IV.7: Comparison of crossover methods

90

Randomly generate an initial population of size M
Do a LS sniff on each member
Repeat
Pick two solutions, biased by fitness
Create new through recombination and mutation
Do LS sniff on new
Replace the worst member of the population with new
Select (LS rate) additional members to do
(LS increment) additional LS

Until good enough solution found, or out of time

Figure IV.8: Steady-State EA with Short LS: This algorithm is used for most of

the experiments in this section.

tightly than previous versions of EA+LS (such as the generational method in Sec-
tion IV.D.1). Typical EA+LS hybrids proceed in alternating stages of global and
local search. First the EA produces a new population, then local search is performed.
The specific state of local search generally is not kept from one generation to the next,
though LS results do influence selection of individuals and, in the case of Lamarckian
evolution, the genotypes themselves.

This interleaving of the global and local search phases allows the two to
influence each other; e.g. the EA chooses good starting points, and LS provides an
accurate representation of that region of the domain. This scheme, however, does not
take full advantage of the possibilities for interaction between global and local search.
The new algorithm interleaves global and local search at a finer granularity. Selection
and reproduction can occur during a local search (i.e. in between successive stages of
LS on a single solution), and the amount of LS done on a solution can depend on the
success of whatever LS has already been done on it. Hence, population-wide statistics

can direct the use of LS at a fine level, for instance by determining exactly how much

91

LS to apply to each solution based on fitness, nearness to other population members,
or other features. Furthermore, the state of LS is maintained in the population, unlike
in the generational case, and can directly influence future selection.

An expanded version of the algorithm is shown in Figure IV.9, with the
various algorithmic parameters highlighted. Next to each parameter, a list of possi-
ble instantiations is given. In fact, these values are all used in one or more of the
experiments in this section.

The canonical parameter settings we use to compare with all variations are
as follows: the length of LS sniff as well as LS increment is ten evaluations. The
number of extra individuals chosen for LS each time through the loop (LS rate) is two.
Hence, thirty evaluations of LS are used for each evaluation of “global” search (new
individual generated by selection genetic operators). The extra individuals are chosen
randomly. The half-balanced first-improve LS method is used unless otherwise stated,
and evolution is Lamarckian. We use we use standard RAR., crossover. Finally, for
most experiments a mutation size of 5/N (an expected five node swaps per genotype)
is used, though Sections IV.D.1 and IV.D.2 use a fixed per-node mutation probability
of 0.002. Except where explicitly varied, these parameter values are in use throughout
this section.

The remainder of this section is broken down into investigations of how
these various parameters affect search performance. Section IV.D.1 first compares our
algorithm with a generational EA+LS and a more traditional steady-state EA+LS.
Sections IV.D.3 and IV.D.4 examine the roles of mutation and crossover when LS
is used. Section IV.D.2 examines the effect of the LS method used. Section IV.D.5
examines the effect of using various amounts of local search and different LS lengths,
as well as omitting the LS sniff given to every individual when it is created. Finally,
Section IV.D.6 looks at methods for choosing which solutions get additional LS.

There are a few algorithmic details which are constant across all runs in this
section: the population size is 200; the crossover operator used is RAR.,, and no

normalization of partitions is done beforehand (see Section 1V.C.2 for an explanation

92

Steady-State EA with Local Search

Generate Initial Population

Do LS sniff on each member

Repeat

Select two solutions, biased towards fit

Create new by crossover and mutation © | 2N*

0
10~
20

IV.D.5
IV.D.6

Do LS sniff on new

HF *
UF
HS | IV.D.2

U

0

N

10/N
Standard * 20/N
Random
None VD4 IV.D.3

Replace worst member of population with new

Select LSrate membersto do

Randomly *
Fitness-based
LS Potential

Lamarckian *
Darwinian

L Sincrement additional LS 'V:D-7

IV.D.6

IV.D.5

0
10*
100

IV.D.5

Figure IV.9: Expanded Steady-State with Short LS algorithm: The various
algorithmic parameter values used in this section are listed in boxes next to the
appropriate variables, with the default values starred. In italics next to each box are
the sections in which that parameter is explored.

93

of both of these issues); and the selection algorithm used is stochastic universal se-
lection [26], which selects individuals proportionally to their fitness, but attempts to

do so in a way which minimizes random influences.

IV.D.1 Generational vs. Steady-State

The EA used for most of our experiments (see Figure IV.8) is somewhat
different from the typical EA. One potentially important difference is that we use a
steady-state as opposed to a generational replacement scheme. The other differences
have to do with how local search is used. Specifically, a typical EA+LS might use
complete LS, whereas we use only very small amounts of LS at any one time. To
check how our algorithm compares against more traditional methods, we compare it
to a fairly typical generational EA+LS and also to a steady-state version which is
otherwise the same as the generational method.

The generational EA we use is Lamarckian, employing the half-balanced
first-improve LS method. Each generation 5% of the population is chosen at random
to receive complete local search (LS runs until completion). There is a per-node
mutation probability of 0.002, and simple elitism is used. The same parameters are
used for the steady-state variant, with each newly generated solution replacing the
worst member of the population, and then undergoing local search with probability
5%. We will refer to this method as the steady-state with complete LS method.

The generational and steady-state with complete .S methods are used as a
baseline to rate the steady-state with short LS algorithm used throughout this chapter.
This method allocates LS in a radically different manner: each time a new solution is
generated it undergoes a LS sniff of length ten. Then two other solutions are chosen at
random from the population and these also undergo ten evaluations each of LS. The
state of each solution’s LS is stored, so that if it is later selected to receive additional
LS this search is continued where it left off previously. Hence LS can eventually
reach local optima but will always require several applications to do so. All other

algorithmic parameters are the same as for steady-state with complete LS.

94

Figure IV.10 displays the results of the three methods on eight graph par-
titioning instances. We see that the generational and steady-state with complete LS
methods are virtually identical in performance. In six of the eight graphs there is
no statistical difference between the final solutions produced. This reassures us that
using a steady-state replacement strategy is not harming the chances of having an
effective algorithm. The comparison with steady-state with short LS is not favorable,
however. On all graphs this method produces the worst final solutions (the difference
with generational is statistically significant on all but the smallest graph). The modi-
fications regarding how LS is allocated are apparently quite detrimental to the search.
Nevertheless, because this method allows fine control over the use of LS we will use
it as a starting point to investigate how global and local search issues interact. We
will see later how the proper settings of the EA parameters allow it to be competitive
with the generational method (see especially Section 1V.D.3).

As a final observation, note that the difference in performance between
steady-state with short LS and the other methods is especially large early in the
runs. This is simply due to the fact that LS is unable to run to completion on
any solution until several generations have passed. Because short LS is applied to
randomly chosen members frequently, we expect that all solutions in the population
have usually had roughly the same amount of LS—in early generations, this amount
is small in comparison to the length of a complete LS. Contrast this to the complete
LS methods, in which approximately 5% of any population in the first generation is
at a local minimum. The result is that these methods have high-quality solutions

almost from the start.

IV.D.2 Choice of Local Search Method

As discussed in Section III.C.1, the method used for local search can be
expected to have a substantial impact on the performance of an EA+LS hybrid. The
main concern is the tradeoff between the quickness of local search and the quality of

the solutions it produces. Increasing the neighborhood size, for example examining all

95

Partition Cost

90250.20

+

com f' elLS

500] en. completeLS

2500

208 ¢0500.20
1500
1000
500 I

4000 3
3000
2000

1000 4]

Partition Cost

Evaluations (x 10,000)

3200
3000 3
2800
2600
2400

2200 B
0 50 100
Evaluations (x 10,000)

Figure IV.10: Generational vs. Steady-State

96

pairs of bit flips rather than single bit flips, will result in better solutions. This benefit,
however, may not be worth the extra time spent searching the larger neighborhood.

Other aspects of the local search algorithm can also have an impact. Notably,
first-improve methods are generally much faster than steepest descent methods for
a given neighborhood (recall Section IV.B.2). Despite this, the quality of solutions
found by first-improve is often as good as or even better than those found by steepest
descent. Clearly, when two LS methods produce roughly comparable solutions, the
quicker one can be expected to be a better choice as part of an EA+LS hybrid.
Figure IV.11 compares EA4LS using various LS methods on eight instances of graph
partitioning. The LS methods used are the four combinations of unbalanced or half-
balanced neighborhoods with first-improve or steepest descent moves. Due to its
excessive running time, local search with the balanced neighborhood structure was
not used as part of an EA+LS.

For each instance, the runs using first-improve LS are superior to those using
steepest descent LS. At all stages, the first-improve runs have significantly better
solutions. This is certainly at least partially due to fact that we are using very small
amounts (ten evaluations) of LS at a time. The steepest descent methods need to
examine the entire neighborhood, so n (number of graph nodes) evaluations of LS
are required for any change to be made. Since each application of LS uses far fewer
than n evaluations, a solution must undergo LS several times to get even a single step
of improvement. It is likely that many solutions are replaced from the population
before completing this first step, thereby wasting the LS effort that had been applied
to them. In contrast, the first-improve methods can make multiple improvements
with only ten evaluations.

Figure IV.11 shows virtually no difference between the use of unbalanced
and half-balanced neighborhoods. With the exception of the graphs g0250.20 and
£0500.40, the two are statistically indistinguishable throughout most of the runs.
This observation holds for both first-improve and steepest descent methods. This

result seems to point to the tradeoff between solution quality and speed. Despite the

97

Partition Cost

650

600

550

500

450

1200

1100 -8

1000

900

800

2600

2400 T,

2200
2000
1800

Partition Cost

1600

1500 4
1400 3
1300 3
1200 3

p0250.9+16

1100 3

Evaluations (x 10,000)

—T :
20 40 60 80

Evaluations (x 10,000)

Figure IV.11: Comparison of Local Search methods

98

fact that the unbalanced LS methods produce better solutions on average (though
only slightly better in the case of the random graphs), they are no better than half-
balanced for use in an EA+LS. This is apparently due to their longer running time
(10-50% longer than half-balanced).

For the remainder of this chapter, the default L.S method will be HF', as it
is as good as the other methods on all graphs, and is statistically better on g0250.20
and g0500.40.

IV.D.3 Role of Mutation

The size of mutations can be expected to play an important role in the
effectiveness of the EA+LS hybrid. As discussed in Section I11.C.4, mutations which
are too small to escape from local basins will have no effect in the later stages of a run,
as local search will return such mutated solutions back to the local minimum. As a
consequence, mutation’s role in preventing convergence and generating new solutions
even after convergence will be unfulfilled with such small mutations. Therefore, we
expect that in order to be effective in the context of local search, mutation must make
larger changes. Specifically, mutations at least as large as local basin sizes will delay
convergence and may allow productive search to continue after convergence.

In this section experiments are described which attempt to measure local

basin sizes and examine the effectiveness of various mutation sizes.

Measuring Basin Size

In order to determine the size of typical local basins, the following exper-
iment is performed. For each graph instance, 100 initial partitions are chosen at
random. Local search is performed to completion on each partition, resulting in 100
local minima. For various mutation sizes, mutants of these local optima are gener-
ated, and local search is applied to each mutant. By observing how frequently the
mutants are returned to their original local optima, and how this frequency varies

with the applied mutation size, we can gauge the size of the basins.

99

For this experiment, mutation involves swapping 1 to 20 randomly chosen
pairs of nodes, depending on the size of the mutation. For each size, 20 mutants were
generated. For each mutation size the results of all 100 basins are aggregated, giving
a sample size of 2,000 (100 basins times 20 mutants each). Furthermore, this entire
experiment is performed for both the HF and UF local search techniques. Figure [V.12
shows the percentage of time that local search returns a mutant to its original local

minimum as a function of mutation size, for each graph and LS method.

Small basins The most obvious observation from Figure IV.12 is that all the per-
centages for 1 or more mutations are low, most less than 25%. This seems to imply
that even a single swap is usually enough to escape a local basin. This is somewhat
surprising, and makes it appear that any mutation size will allow the benefits dis-
cussed above. However, there are a couple of reasons why this conclusion does not
follow, and we will argue that this data is merely unhelpful in determining proper
mutation size.

First, as discussed in Section IV.A.2, there may be equivalence classes or
pseudo-equivalence classes of local minima having the same cost which are one node-
swap away from each other. This can happen, for example, if there are nodes of degree
zero in the graph instance. Any two such nodes on opposite sides of the partition can
be swapped to produce an equivalent partition which is no different in any significant
way. In this case, there may technically be a great many very small local basins in
a small region of the search space, the only barrier between them being the penalty
associated with temporarily unbalancing the graph by moving degree zero nodes.

However, the distinction between these tiny basins is probably not important
to the global search. They all have the same cost and lie in the same small region
of the space, and can be treated interchangeably, as if they form one large local
basin. A mutation operator which merely moves between them is unlikely to be very
beneficial. Mutations need to be large enough to escape this “large-scale” basin, and

to discover “non-equivalent” basins. In this sense Figure V.12 is somewhat unhelptul

100

Return Per centage

100

r0124.20 g0250.20
—e— UF verified \
—a— HF verified a
‘&Z\oo

NAOCOO'O“OO-
DA A DA A A
T

ﬁﬁ—A-A-A—A-A-A—A-AM-A-A—&A—ﬁ—A—A
T]

Return Per centage

p0500.9+16

1 0 5 10 1 20
Mutation Size Mutation Size

Figure IV.12: Return percentage for mutants

101

in determining proper mutation size.

A second reason the data is misleading has to do with the specifics of the
local search methods. As described in Section IV.B.1, the HF and UF methods do
not always result in a partition which is at a local minimum. In fact, after applying
HF (or UF) to a partition, reapplying it to the result may produce a better solution.
This is part of the explanation for the low percentages in Figure IV.12. Local search
doesn’t return the partitions to their starting points because these aren’t necessarily
local minima.

This claim is supported by Table V.22, which shows the percentage of time
the “local minima” from above are returned when local search is applied to themselves
(the same experiment as above, but with mutation size zero). We see that for all
graphs, there is a substantial chance of local search modifying the results of previous

local search.

Table 1V.22: local minimum stability: When local search is applied to partitions
which are themselves the result of (one previous) local search, the percentage of time
the same partition is returned. The columns labeled “one L.S” are for partitions which
are the result of a single local search. The “verified” columns are for partitions which
have undergone several local searches, the “settling” columns displaying how many
local searches on average. See the text for details.

HF UF

one LS | verified settling || one LS | verified settling

r0124.20 44.0 70.9 2.79 46.0 78.8 2.41

r0250.20 63.4 85.6 1.99 61.2 86.2 1.77

r0500.20 80.8 85.9 1.43 81.2 92.5 1.47

£0250.20 35.0 85.2 6.20 72.1 87.7 1.46

£0500.20 15.5 66.4 9.69 50.5 82.7 1.98

£0500.40 26.5 73.5 12.18 72.4 88.6 1.63

p0250.9.16 51.4 68.8 2.11 44.8 79.2 2.44
p0500.9.16 70.0 81.5 2.38 71.6 91.5 1.52

In order to account for this problem, another set of experiments is performed,
similar to the above, but using “verified” local minima. As before, we generate 100
initial partitions and perform local search on each of them. Then we repeatedly

perform local search on the results (updating the solutions if improvements are found)

102

until five local searches in a row are performed without finding an improvement. In
this way we obtain partitions which are partially verified to be true local minima.
We will call these verified local minima and their corresponding basins verified local
basins.

Table 1V.22 shows the LS return percentages for the verified local minima
next to the corresponding data for the unverified local minima. We see that in all
cases the verified local minima are substantially more stable, in that local search is
less likely to end up with a different partition. Note that the percentages are still less
than 100% because of the equivalent partitions problem, and also because the verified
partitions are not completely guaranteed to be local minima. Also displayed is the
“settling time,” or the average number of local searches performed before finding
the final solution. This is seen to be quite high for the geometric graphs under HF,
and this is reflected in the pronounced difference between the verified and unverified
return percentages seen for the graphs.

The stability of the verified local minima under mutation is displayed in
Figure IV.12 along with that of the unverified partitions. As expected, we see that in
all cases the percentages are higher for the verified local minima. Despite the greater
overall stability, however, the original observation about low percentages still applies.
For most graphs, even a single node swap is usually enough to escape from a local
basin. To some extent this is still an artifact of the “equivalent partitions,” so it is
difficult to infer a proper mutation size from the data.

As a final note, it is tempting to regard the verified local minima data as
more useful, as it is more pure in terms of what it considers to be local minima.
However, both sets of data (verified and unverified) are relevant to understanding the
behavior of the EA+LS algorithm. The unverified local minima are what the EA
will see in early stages, when population members have undergone only one LS, if
that. After the population has largely converged, mutation and local search will be
the driving forces, and most population members will more likely be at or near true

local minima. This situation is better reflected by the verified local minima data.

103

Graph and LS characteristics Figure IV.12 and Table IV.22 contain useful com-
parative information regarding the different graph instances. First, note that the
geometric graphs show a more gradual dropoff in stability than the other graph types
do as the size of mutations increases. Consider the ratio of the return percentage after
size one mutations vs. size five mutations. We see that this ratio is almost always
less than 2.0 in the case of geometric graphs, whereas it ranges from 4.4 to 22.3 for
random graphs and 6.2 to 13.8 for planted bisection graphs.

This slow dropoff for geometric graphs, together with the fact that the ge-
ometric graphs have higher return percentages overall, is a good indication that the
local basins are more “well-defined” and perhaps larger in geometric graphs. By this
we mean there is some local structure from which it is difficult to escape by small
mutations. It may seem contradictory that the return probability is low (less than
40%) for five mutations, yet drops off slowly all the way out to 20 mutations. It seems
to imply that there is not too much structure at a scale of more that 5 swaps, but
the structure that is there extends to at least 20 swaps. Our interpretation of this
is that there are indeed large basin-like structures (size 20 or more), but that within
each of these there are the usual tiny basins containing roughly equivalent partitions.
Mutations of various size traverse the tiny basins easily, but cannot escape the larger
structure.

As further evidence for this view, consider Figure IV.13, which shows the
average Hamming distance of the reoptimized mutants from their initial local minima.
That is, after each mutant in the above experiments is locally optimized, its Hamming
distance from the initial local minimum (before mutation) is measured. The figure
shows a clear difference between the three graph types. For the geometric graphs, the
reoptimized mutants are much closer to the initial local minimum than the mutants
themselves. In other words, local search acts to return the mutants towards the initial
optimum. Even after 20 mutations, local search finds optima which have an average
Hamming distance of only 6.59 from the initial minimum. Note also that 20 mutations

corresponds to a mutant Hamming distance of approximately 40, since each mutation

104

swaps a pair of nodes (expected value slightly less than 40 since the same node may

be moved twice).

45 T T T
40 e/,gjfff‘
r0500.20, p0500.9+16 "
prasts
35 | P R
T
/@,{j’i*"
2 oA p0250.9+16 .4
L s i
@ ,e/‘ffi/"' g
8 s LR
3 o Lg% 10250.20
k] 25 P iR
© T4 LAATX .
E’ ¥ if 4 5 vv/'j;'/ - A
€ 20 + K La
£ o e ~-- 10124.20
& Q/i,%r'" e = U ’
15 et . - i
e g a7
/ﬁ o > . PN
10 e Pt T ;
R T geometric graphs
o o e e -
£ A o 3o X oS b -
D :
17 o '{«j{:§
f et ®
0 1 1 1
0 5 10 15 20

mutation size

Figure IV.13: Average Hamming distance of reoptimized mutants: For each
graph, the average Hamming distance of the reoptimized mutants from the initial
local minimum, as a function of mutation size. The straight line approximates the
expected Hamming distance of the mutants themselves, before local search.

For the random and planted bisection graphs, local search actually moves
the mutants away from the initial local optimum in the case of small mutations. This
is a clear indication that these mutations are outside of the initial minimum’s basin
of attraction. Note however that as the mutation size increases, local search does
begin to move the mutants towards the initial minimum. The mutation threshold at
which this happens depends on the graph size. We believe this is a manifestation of
the fact that all local minima have a certain amount in common, creating a tendency
for random points to be moved towards each other by local search. Note that while
the size of these graphs affects the distance of the reoptimized mutants, for a given
size there is little difference between the date for random or planted bisection graphs.

Contrast this with the situation for the geometric graphs, in which the graph size

105

makes little difference.

The data also allow a comparison of basin properties under different local
search methods. The main observation here is that the partitions found by UF are
generally more stable than those found by HF. This may be because UF does a more
thorough search to begin with, and therefore has less room to improve.

In summary, it is difficult to get a clear idea from the data presented what
mutation size may be appropriate. This is partially because of very small barriers
between equivalent partitions, resulting in a proliferation of tiny basins which are
mostly irrelevant to the global search. Another reason is the imperfect nature of the
local search algorithms used, which do not always return true local minima. Despite
these problems, some general observations can be made regarding the stability of local
minima for various graphs and local search methods. Specifically, geometric graphs
have more stable local minima than random or planted bisection graphs, and the UF

method produces more stable minima than the HF method.

Effect of Mutation Size

In order to examine the role of mutation in the context of local search,
experiments are performed using various mutation sizes in an EA+LS hybrid. The
canonical mutation size is one swap (expected value) per genotype. We expect this
to have little effect since the basins are presumably larger than this. A mutation size
of zero is also tested for comparison. Due to the difficulty in determining basins sizes
(see Section IV.D.3), somewhat arbitrary mutation sizes of five, ten, and twenty node
swaps are chosen to test to effect “large” mutation. As has been seen, mutations of
these sizes will usually disrupt local minima enough that local search will not return
to the same partition.

Figure IV.14 compares EA+LS using the five mutation sizes on eight in-
stances of graph partitioning with the HF local search method. Figure IV.15 displays
data from corresponding EA+LS runs with the UF local search method. As can be

seen, the largest mutation sizes generally result in the best final solutions. In all

106

cases, these solutions are either statistically significantly better than or are statisti-
cally indistinguishable from the solutions found using smaller mutation sizes.

In contrast to the situation at the ends of the runs, we see that large muta-
tions may cause the EA+LS to perform worse initially. In fact, for graphs in which
there is a clear difference early on, using no mutation is best of all, and using large
mutation is worst. We believe this is due to mutation partially undoing the effects of
local search. Mutation serves to move the population away from local minima, which
degrades the average population fitness. Note that since mutation is applied equally
to all population members, this may not substantially hinder the global search in the
early stages. If all members’ fitnesses are affected the same amount, the relative com-
parisons between members will be unaffected, and the global selection should roughly
focus on the same regions as it would otherwise.

The two observations in the preceding paragraphs confirm our predictions
that larger-than-usual mutations are appropriate for an EA+LS hybrid. The benefit
of such large mutations in the latter stages of a run are so substantial that they
overcome the detrimental effect observed early on.

What is most surprising about these figures is that very large mutation sizes
(20 node swaps per individual) are not detrimental. If the EA’s population contains
useful information about the search space, then disruptions of this magnitude might
be expected to degrade the EA’s effectiveness. How large can mutations be without
being detrimental? In Section IV.D.4 we examine the extreme case of “macromuta-

tions”, in which half the genotype (on average) is mutated.

IV.D.4 Effect of Crossover and Macromutation

In order to judge the role of crossover, we compare our standard EA to two
variants. The first variant uses no crossover, so that a new solution is generated by
simply cloning one parent and applying mutation. If crossover is of any benefit then
this method will not do as well as the canonical EA. Note that removing crossover

takes away one source of variation in the population. Hence, the EA will often

107

Partition Cost

r0124.20

90250.20

Partition Cost

1600

1500 -

1400

13004 4

1200 -

1100 3

Evaluations (x 10,000)

50 100
Evaluations (x 10,000)

Figure IV.14: Mutation rate comparison using HF

108

r0124.20 o0, 90250.20

0
(@]
O
c
i=l
@
o
0O 20 40 60 80 100 0O 20 40 60 80 100
1600
= 14004
h=l 1k
= 13004 %
$ 1200
nodf—m—m—om—or—H—— +—+—+ 200 /—/—mMm—————
0O 20 40 60 80 100 0 50 100
Evaluations (x 10,000) Evaluations (x 10,000)

Figure IV.15: Mutation rate comparison using UF

109

converge quickly unless mutation is large enough to compensate.

The second variant we examine uses so-called “random” or “headless chicken”
crossover [46], in which the standard crossover operator is used, but one of the parents
is a new randomly generated solution. The purpose of this experiment is to deter-
mine why crossover is beneficial, if it is. Crossover typically is thought to combine
useful building blocks from distinct solutions to produce a child with the best of both
parents. If this is the case, then an EA using random crossover should not do as
well, since it does not combine parts from different solutions in the population. On
the other hand, crossover is sometimes beneficial simply because it allows large-scale
variations, or “macromutations.” If an EA using random crossover works as well as
one using standard crossover, this is a good indication that crossover is not effective
at combining building blocks.

Figure IV.16 compares an EA using standard-, random-, or no-crossover on
eight graphs. The expected mutation size for these experiments is five node swaps per
solution. This value was chosen as a good compromise between speed and solution
quality based on the experiments in Section 1V.D.3.

Surprisingly, we see that in general standard crossover does not do substan-
tially better than either of the two variants. On the random and planted bisection
graphs, standard-crossover and no-crossover perform approximately the same, with
random the worst, though the differences are small in all cases. On the large geomet-
ric graphs, the order is reversed, with random doing the best, and no crossover the
worst. For all graphs, no crossover finds the best solutions in the early stages of the
runs.

To check that crossover’s ineffectiveness is not simply a feature of our steady-
state algorithm, we repeat the experiment using a generational EA+LS with simple
elitism. We perform LS to completion on 5% of each population, chosen randomly.
Because a generational EA has somewhat lower selection pressure, smaller mutation
sizes are appropriate: we use one node swap (expected) per genotype. All other

parameters are the same as in the steady-state case. The results are shown in Fig-

110

Partition Cost

90250.20

—e— random

Partition Cost

Evaluations (x 10,000) Evaluations (x 10,000)

Figure IV.16: Comparison of crossover methods when using LS

111

ure [V.17. The same behavior is seen, there being little difference between standard-,
random-, and no-crossover. Additionally, when the generational EA is run without
LS, we do see (Figure IV.18) that standard-crossover is more effective than either
random- or no-crossover, with random- being the worst by far. This mirrors the
results of Section IV.C.2 using the steady-state EA+LS.

These results seem to imply that crossover is not operating as we expect
it to, and is not even beneficial on some graphs. This is even more surprising in
light of the fact that crossover is essential when we are not using local search (see
Section IV.C.2). It seems that when local search is not used, there are composable
building blocks which are combined by crossover, but that using local search causes
this process to “break” somehow. We consider two possible explanations. The first
is that the populations are too converged for crossover to work. The second is that
local search itself exploits the compositional structure of the search space, obviating
the need for crossover. We will show that the first hypothesis is incorrect for at least

some of the instances, and that the second is consistent with all the data available.

Lack of Diversity? When local search is used in a Lamarckian fashion, one may
expect the population to converge quickly. This can happen because local search often
acts to reduce variation; there are commonalities across local minima, and therefore
population members have more in common with each other after local search has been
applied than before. Standard crossover has no effect on a fully converged population,
as the offspring of two identical parents are unchanged. Furthermore, an EA’s search
is essentially over once the population converges, unless the genetic operators create
enough variation. Hence, random crossover may be quite beneficial in this situation.

Figure IV.19 displays a measure of the population diversity for runs using
each of the three crossover methods. The diversity measure used is the average
normalized Hamming distance (as defined in Section IV.A). We see from the figure
that there is a strict ordering of the three methods in terms of diversity: in all cases

random-crossover maintains high diversity throughout, no-crossover quickly loses its

112

650

600 r0124.20 1000 90250.20

550 1 —e— random

o 500 h —_>Ae_ gt%?%ar d
. 90500.20
e
7]
o
iy

0 50 100

Evaluations (x 10,000) Evaluations (x 10,000)

Figure IV.17: Comparison of crossover methods for a generational EA using LS

113

] g0250.20
1000 —:'\

\\
10 —e— random
1% s non%I q
500 | \R x- - Standar
I _
| x2S i0R0eE8E8245E
""""" [rrrrrrTTTrTTTrTTTTTTTTTTT T/
0 10 20 30
03 ¢0500.20
2000
1
1500—jﬁ
|

1000]

Partition Cost

0 50 100 0O 20 40 60 8
1600 3200
7 15003 p0250.9+16 3000% p0500.9+16
© 1400 ' 2800 -}
9 .
= 13004 2600 12
$ 1200 4 X s 2400 | Xy g
nof—m—om—m—-mr—mm—— 20 F T
0O 20 40 60 8 0 50 100
Evaluations (x 10,000) Evaluations (x 10,000)

Figure IV.18: Comparison of crossover methods for a generational EA without LS

114

diversity, and standard-crossover falls somewhere in between. This is as it must be,
reflecting the relative amounts of variation introduced by the three methods.

A more revealing observation from Figure IV.19 is that the speed of conver-
gence under standard crossover depends on the graph. Specifically, for the random
and planted bisection graphs the standard EA retains high diversity late into the
runs. This runs counter to the proposed explanation for crossover’s ineffectiveness,
namely that there is not enough variation across the population for it to combine
disparate solutions in novel ways. Note that on the geometric graphs diversity drops
off quite quickly with standard crossover, almost as quickly as with no crossover. De-
spite the fact that this is consistent with the proposed explanation, we believe that
there is more going on. Qur second explanation, discussed next, is consistent with

the convergence rates for all types of graphs.

LS Exploits Compositional Structure? The second explanation concerns the
nature of the local minima in typical graph partitioning instances. The local minima
contain many similarities to each other: there are certain schemata (e.g. two par-
ticular nodes together or apart) which are common to most minima. As a contrived
example, consider a graph with a small clique, which is not connected to the rest of
the graph. Local search from any initial partition will place all nodes of this clique
together if it can do so while maintaining balance. Hence all local minima will have
this pattern (or schema) in common. Furthermore, if there are several such cliques
local search will place the nodes of each one together.

It an EA without local search is applied to such a graph, these schemata will
have to be discovered through the standard processes of random variation and selec-
tion. The key point is that crossover allows these separate building blocks (cliques)
to be discovered independently and then combined. Crossover is hence crucial to
the global search. When local search is used, however, all of these building blocks
are found automatically by each complete local search. If there are no larger scale

building blocks (too large for local search to reliably handle) to be combined, then

115

Evaluations (x 10,000)

8
C
©
v]
a)]
(@)] J
£ 504 100
E 4
£] 50
s]
0 [[T [[0
0 20 40 60 80
250 4 250
200 F 200
150 150
100 100
50 50
0 0
250
8 :
g 200
v
A 150
(@)]
£ 100
E 4
=] 50
s]
0 [T [T [T [| 0
0O 20 40 60 80 100

Evaluations (x 10,000)

Figure IV.19: Population diversity for various crossover methods

116

crossover will not be useful for this purpose. This is of course an extreme exam-
ple but it provides a sense of how a single use of local search can discover multiple
good building blocks. Note that crossover may still be useful for generating variation,
however, and in this case random crossover may do as well or better.

This hypothesis is somewhat astonishing, and counters our original expec-
tations based on our intuitions and especially the results of Section IV.C.2. Yet it
is consistent with all the data presented in this section and Section 1V.D.3 regard-
ing the role of mutation. As we saw there, large mutation sizes (five node swaps
per solution) are beneficial, and very large mutation sizes (ten or twenty node swaps
per solution) produce quite similar results, in some cases a little better. In fact, the
largest mutation size examined produces results which are comparable to those of
random crossover. Roughly, as long as mutation gets out of the local basin, it makes
no difference how big a change it makes. This seems to imply that there is little
exploitable structure to the search space, beyond that handled by local search. The
possible generality of the hypothesis to other problems is discussed in Section V.

IV.D.5 Local/Global Search Ratio

The EA+LS hybrid is a combination of global and local search search meth-
ods. As such, a question immediately presents itself: what it the appropriate amount
of effort to put forth doing local as opposed to global search? We explore this issue by
varying the local/global ratio, which is defined to be the number of evaluations spent
doing local search each time a new solution is generated by the genetic operators.

All experiments described so far in this section have used the same procedure
for allocating local search; each time a new solution is generated by the genetic
operators, ten steps of LS are applied to it, and then two randomly chosen solutions
in the population also get ten evaluations each. The parameters used (ten evaluations,

two extra individuals) are somewhat arbitrary.” We will investigate the behavior of

3In fact, the decision to perform LS on two individuals was made so as to maintain the same
local/global ratio as was observed in previous experiments employing a generational EA with infre-
quent, complete LS.

117

the EA for various values of this ratio, as well as the LS increment.

The local/global ratio is determined by three algorithmic parameters: the
amount of LS given a new solution when it is created (the sniff length), the number
of additional solutions chosen to get LS (the LS rate), and the amount of LS given
to each of these additional solutions (the LS increment). Simply,

local/global ratio = sniff lenth + (LS rate)(LS increment).

Hence, the local/global ratio for all experiments described so far has been 30. In
order to get a sense for how appropriate this ratio is, we compare with runs using
local/global ratios of 10 and 100. Regarding LS increment, the default value of ten
intuitively seems like a lower bound on how much LS is useful—longer searches may
be beneficial. Therefore, for each local/global ratio, we try LS increments of 10
and 100. Finally, since the solutions getting LS are selected randomly, the initial
“sniff” may not be beneficial. We perform experiments with sniff length 0 and 10. In
Section [V.D.6 we examine other selection methods for which the sniff is expected to
be more important.

Table V.23 summarizes the experiments performed. Note that some com-
binations of parameter values result in a fractional LS rate. The EA handles this
deterministically by keeping a running floating point sum which is incremented by
the LS rate whenever a new solution is generated. Each time the sum surpasses an
integral value a solution is chosen for local search.

Figure IV.20 compares the six methods which have sniff length zero. Early
behavior is determined primarily by the LS length while the final solution qual-
ity (when there is a difference between the methods) is determined mainly the lo-
cal/global ratio. More specifically, for all graphs an LS increment of 100 gives signif-
icantly better solutions early on than LS increment 10. For the random and planted
bisection graphs, all methods are approximately equal in terms of the final solution.
On the geometric graphs, however, the larger local/global ratios result in better so-
lutions. The effect of LS increment, which is so strong early in the runs, is minimal

by the end.

118

Partition Cost

650
600
550
500

450

1200
1100

1000

900 3 4

800

2600
2400

2200 {¢

2000
1800

20 40 60 80

Partition Cost

1600
1500 Es

1400 -

1300 -
12004 %

1100 3

20 40 60 80

Evaluations (x 10,000)

50 100
Evaluations (x 10,000)

Figure IV.20: Comparison of local/global ratios and LS increments without LS sniff

119

Table 1V.23: Experiment summary: The algorithmic parameter values used in
the experiments of Section IV.D.5. For each experiment, the sniff length, local/global
ratio, LS increment, and LS rate are given. Note that the experiment with sniff
length 10 and local/global ratio 10 does no additional LS, so the LS increment is not
applicable.

sniff local/global
length ratio LS increment LS rate
0 10 10 1
0 10 100 0.1
0 30 10 3
0 30 100 0.3
0 100 10 10
0 100 100 1
10 10 NA 0
10 30 10 2
10 30 100 0.2
10 100 10 9
10 100 100 0.9

Our interpretation of the first observation (longer LS helps initially) is as
follows. From previous experiments we know that LS is quite powerful at quickly
finding high-quality solutions (cf. Section 1V.B.2). Hence, doing a long LS (100
evaluations) on a single random solution will generally yield a better partition than
doing short LS (ten evaluations) on ten random solutions. This is manifested in the
EA, where focusing the LS effort on a small number of partitions is the fastest way
to improve initially.

In the longer term the benefit of long LS does not persist simply because
there is a limit to the amount of LS which can be performed on a given solution.
Even if LS is applied for only a few evaluations at a time, multiple applications will
eventually result in reaching a local minimum. Furthermore, long LS may cause the
population be become “unbalanced,” with some members much better than others
simply by virtue of having had more local search. This may skew selection and
therefore harm the global search. In fact this effect is not seen in the data; for most
graphs and local/global ratios, there is no statistical difference between using long

and short LS in terms of the final solutions.

120

What does sometimes differentiate the methods at the end of the runs for
geometric graphs is the local/global ratio. The differences are small, but in all cases
a ratio of 10 results in worse solutions than a ratio of 30 or 100. On g0250.20 and
£0500.20 the difference between a ratio of 10 and 100 is statistically significant. No
such effect is observed on the random or planted bisection graphs.

Figure IV.21 displays the the results of the five methods which use a sniff
length of ten. The first observation is that the worst method in all cases is that with
ratio 10. This is not surprising, as no additional LS is performed other than the
initial sniff. No solution ever gets more than ten evaluations worth of local search,
unlike the other methods in which the local search effort applied to a solution can
accumulate over multiple applications. Hence, it is difficult for local minima to be
found with this method. Otherwise, the same observations apply as for the case with
sniff length zero. Namely, LS increment 100 is always superior to LS increment 10
in the early stages, and larger local/global ratios are superior to smaller ones when
there is a significant difference.

In order to examine the effect of the sniff length, we compare a sniff length 0
method with a sniff length 10 method. In both cases we use local/global ratio 100 and
LS increment 100—these values are chosen because they are competitive with other
methods on all graphs, for either value of sniff length. Looking at the final solution
values, sniff length has virtually no effect, there being a significant difference for only
one graph.

In summary, LS increment has a large effect on the speed with which the EA
finds good solutions, with longer searches finding good solutions faster. This effect
does not persist to the end of the run, however. Rather, the most important factor
in final solution quality is the local/global ratio, with larger ratios being as good as
or better than smaller ratios. This effect appears only for the geometric graphs, and
is fairly weak even then. Finally, for an effective choice of local/global ratio and LS

increment, there is no significant benefit or detriment to using an initial LS sniff.

121

g0250.20
—— . N
g
by 2 1880
263 BBt 6n050008 bh
10 20 30 40
J2 g0500.20
o
5
7
S
5

Evaluations (x 10,000) Evaluations (x 10,000)

Figure 1V.21: Comparison of local/global ratios and LS increments with LS sniff

122

IV.D.6 Choice of Local Search Selection Method

In many EA4LS algorithms, including ours, there is a step in which mem-
bers of the population are selected to undergo local search. In typical generational
implementations (cf. [38, 71, 56]), for example, some small fraction of the population
is chosen at the start of each generation. The steady-state complete LS algorithm
described in Section IV.D.1 does local search with small probability on each new so-
lution as it is generated, while the steady-state short LS algorithm we use in most
experiments picks k population members each time a new solution is generated.

All experiments described to this point have chosen the solutions which un-
dergo LS uniformly at random from the population, without regard for fitness or
previous LS results.* Section II1.C.3 discusses several alternative strategies, includ-
ing some previously examined by Hart [38] for continuous optimization. We refer
to such strategies as local search selection methods. In this section we empirically
evaluate two such methods: biasing LS selection towards fit solutions, and biasing to-
wards solutions which have the greatest “local search potential.” These methods are
compared against our default method, random LS selection. Additionally, since both
fitness and measures of LS potential are affected by the amount of LS a solution has
received, various LS sniff lengths are used for each method. A partial examination of

sniff length under the random LS selection method was explored in Section IV.D.5.

Preliminaries Define local search potential to be the amount of improvement which
can be made to a solution by local search, before reaching a local minimum. There
is of course no way to know this value without carrying out the local search, so we
need some way to estimate it.

Related work by Carson and Impagliazzo [14] has shown that for some
“hard” instances of planted bisection, a solution’s LS potential is negatively cor-
related with its distance from the planted bisection. This provides some justification

for focussing search on the solutions with greatest potential, as these are likely near-

*The exception to this is that we never select solutions on which LS has previously run to
completion.

123

est to the global optimum. This observation does not provide us with a measure of
potential, however, unless we happen to know what the planted bisection is ahead of
time.

The method we use is to keep track of the success of any previous LS on
the solution, and to equate recent rate of improvement with the LS potential. The
motivation for this estimate is that LS typically makes rapid improvements when
the solution is far from its corresponding local optimum, as there are many ways to
improve such a solution; in the extreme, a totally random solution can be expected
to have half its neighbors better than itself. As LS gets closer to the optimum, fewer
and fewer improving moves are possible, and the rate of improvement decreases. Note
that this applies to both first-improve LS, in which the number of neighbors which
must be examined increases, and steepest descent LS, in which the best move is likely
to have a smaller gain in fitness than when half of all moves are improving.

The specifics of our estimate are as follows: a running window of the 100
most recent evaluations of LS is kept for each solution in the population. The average
decrease in partition cost per LS evaluation, taken over the most recent 100 evalu-
ations, is used as our estimate of LS potential. For solutions which have had fewer
than 100 evaluations of LS, the average is taken over their entire LS history. New
solutions which have had no LS are assigned the average of the LS potentials of all
population members which have had LS. Finally, solutions for which LS has run to
completion are excluded from LS selection, and their LS potential is not included in
the average assigned to new solutions.

When either fitness or LS potential is used for LS selection, the procedure
used for this selection is the same as that used for reproductive selection (recall Sec-
tion IV.D). In the case of LS potential, the “fitnesses” used for LS selection are simply
the negative of the LS potential; we use the negative because the selection procedure
is designed for minimization, and we want to bias selection towards solutions with
the highest potential.

Finally, the experiments in this section use LS sniff lengths of 0, 10, and

124

20. In all cases, the local/global ratio is 30, and the LS increment is 10. Recall from
Section IV.D.5 that

local/global ratio = sniff lenth + (LS rate)(LS increment).

Therefore, the number of additional solutions chosen for LS each time a new solution
is generated (the LS rate) will vary: the rate will be 3, 2, or 1 for LS sniff lengths of

0, 10, or 20, respectively.

Effect of Sniff Length

Random LS selection Figure 1V.22 compares three sniff lengths for an EA4LS
using random LS selection. On all graphs, the best results are obtained by using
no sniff at all, and the worst results occur with the longest sniff length. It is not
obvious that the sniff length should have any effect at all, as the remaining LS is
simply being distributed randomly. Note, however, that longer sniff lengths have
the effect of distributing LS more uniformly among the population, as every member
gets at least the sniff. With no sniff, some members may never get any LS, while
others will get much more than average just by chance. This seems to imply that a
uniform allocation of LS is suboptimal, at least when the alternative is to allocate LS
randomly without bias.

In order to get a better idea of how the search progresses, we examine the
population at regular intervals and record how much LS has been applied to each
solution (we call this the solution’s LS allocation. This data tells us how uniformly
LS is distributed among the population. We expect new members of the population
to have undergone only a small amount of LS, while solutions which have been in the
population longest will have accumulated the most LS just by chance. Figure 1V.23
displays the average and standard deviation of the LS allocations for a single run on
the graph u0500.20, using sniff length 10. The average and standard deviation are
taken over the population, but do not include those solutions which have had only

the initial LS sniff, nor those for which LS has run to completion. The number of

125

Partition Cost

90250.20

“E B

Partition Cost

Evaluations (x 10,000) Evaluations (x 10,000)

Figure IV.22: Sniff length comparison using random LS selection

126

solutions falling into each of these two categories is displayed with separate lines in

the figure.
1200 T T T T T T T T T
avg LS length ro—
- # sniff only ----
T | v #completed LS -----
1000 T -
800 |- T :
2 _ -
s 600 -
2 B -
£} -
E -
>
(]
0 400 4
-
200 | % %} I [, - .
\‘ix \\\\\\ ,\\/{,:\J\ Aol L 60000600los
0 fani - -
_200 1 1 1 1 1 1 1 1 1

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1le+06
Evaluations

Figure IV.23: Distribution of LS allocation for random LS selection

Initially, we see a large number of solutions which have had only the LS sniff.
The average LS allocation increases quickly, however, and soon most of the population
has received some additional local search. After roughly 200,000 evaluations the
average LS allocation drops sharply, and then begins rising again, and continues to
increase throughout the run. By about 600,000 evaluations, there are several solutions
for which LS has run to completion. The number of these solutions increases steadily
until the entire population (other than the new solution each time) is at local minima.
Note that this causes the average LS allocation curve to drop, since the local minima
are not included in its average.

The general trend of increasing LS allocation is not surprising; as the search
progresses, some solutions remain in the population for long periods by virtue of
high fitness. These will periodically be allocated LS, thus increasing the average LS

allocation. The dip in LS allocation, however, is unexpected. It implies that solutions

127

which have been in the population a while and which have received substantial local
search are suddenly being displaced by newer solutions. The phenomenon is also
observed in other runs on the same graph, though at different points in different
runs. Why this happens is unknown, but comprehending it seems important to
understanding the progression of the search. This is a possible direction for future

research.

Biased LS selection The next set of experiments uses fitness-based LS selection,
again with sniff lengths of 0, 10, or 20. For these runs, the same selection proce-
dure is used for LS selection as is used for reproductive selection (see Section IV.D).
Therefore, the solutions which contribute the most genetically to future generations
also get the most LS. As discussed in Section II1.C.3, we may therefore expect faster
convergence of the population and perhaps worse final solutions.

Figure IV.24 compares fitness-based LS selection for the three sniff lengths.
Once again we see that larger sniff lengths result in worse solutions, when there is a
difference. It is not clear if this implies that fitness-based LS selection is beneficial (as
shorter sniff lengths allow more LS to be assigned based on fitness), or if we are simply
observing the benefit of less uniformly allocated LS, as in the random LS selection
case. Note, however, that the solutions which have received the most LS are likely to
be the most fit, and therefore are the most likely to receive future LS. In this way the
allocation of LS may be even more nonuniform than in the random selection case.

To examine this hypothesis, we display the LS allocation average and stan-
dard deviation in Figure IV.25 for a typical run on u0500.20, using fitness-based LS
selection and sniff length 10. Two main differences are observed between this fig-
ure and Figure IV.23, which shows the corresponding data for random LS selection.
First, both the average LS allocation and the standard deviation are much higher
for the fitness-based run. This is consistent with the hypothesis that fitness-based
LS selection leads to a more skewed distribution of LS allocation. Second, there is

no dip in the LS allocation curve in fitness-based case. This may be related to the

128

Partition Cost

g0250.20
e ige

- %= 9l

r0124.20 1000}

Partition Cost

——
100
Evaluations (x 10,000) Evaluations (x 10,000)

Figure IV.24: Sniff length comparison using fitness-based LS selection

129

possibility that long-lived solutions receive more LS than in the random LS selection
case; since the established solutions have the benefit of extra LS, it is more difficult
for new solutions to make to compete with and displace them. This explanation is
speculative, however, as we do not yet understand the cause of the dip in the random

case.

2000 T T T T T T T T T

avg LS length ro—
sniff only -

1800 |- # completﬁed LS ----- 7]
1600 |- T .
1400 | B T i
1200 7 T i
1000 |- T 1 -

800 |- T i

600 |- -
400 | - 1 B
%H TS -

0 ‘\‘ % 0 e e L L.l /,, 000

_200 1 1 1 1 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1le+06
Evaluations

LS evaluations

Figure IV.25: Distribution of LS allocation for fitness-based LS selection

Returning to the issue of sniff length under biased LS selection, Figure IV.26
displays the performance of the LS potential method under various sniff lengths. As
with the other methods, when there is a difference in performance, longer LS sniffs
lead to worse solutions. This relation is especially surprising for the LS potential
method, as presumably some amount of LS is necessary to get an estimate of a
solution’s future potential for improvement. We will discuss possible explanations for

this below.

130

650 —
%2}
&
g
%2}
&
g

Evaluations (x 10,000) Evaluations (x 10,000)

Figure IV.26: Sniff length comparison using LS potential-based LS selection

131

Effect of LS Selection Methods

As each of the three selection methods does best with a sniff length of zero,
we compare their performance using this value. Figure IV.27 shows that there is
virtually no difference between the methods in terms of the final solutions found.
Where a clear difference does show up, however, is in the early stages of the runs. On
all graphs, fitness-based LS selection makes the fastest progress. This is as expected,
since this method exploits the best members of the population with local search to
the exclusion of others. In early stages, it is therefore likely to have solutions which
have undergone more LS than any solutions under the other methods. For this same
reason, it is somewhat surprising that this method is competitive with the others in
terms of final solutions. With its self-amplitying focus on the best solutions, one might
expect it to lose diversity early on and be unable to continue searching effectively.
Apparently this is not the case.

That the LS potential method is no better than the others counters our
original expectations (see Section II1.C.3). The results indicate that our efforts to
allocate LS intelligently are no more helpful than simply allocating it randomly. There
are two possible explanations for this: the measure we use for LS potential is poor,
or biasing LS selection towards solutions with high LS potential is unhelpful.

Both of these hypotheses are testable to some extent. An EA+LS can be
run in which in addition to the usual LS, “off-line” LS is run to completion on every
solution. The results of these additional local searches do not influence the algorithm,
but rather are used for analysis purposes. In particular, this would provide us with
the true LS potential; the difference between a solution’s current fitness and the
fitness of its local minimum is its potential for improvement. Hence we could directly
measure the correlation between LS potential and our estimate of it. To test the
second hypothesis, we could use the directly measured LS potential (as opposed to
our estimate) to bias LS selection. If this method still does no better than random
LS selection, then we can conclude that our intuitions are indeed flawed in some way.

Both of these experiments are directions for future research.

132

Partition Cost

r0124.20 ol 90250.20

—e— random .
— - Sggstentlal
- x--TItn

Partition Cost

——
100
Evaluations (x 10,000) Evaluations (x 10,000)

Figure IV.27: Comparison of LS selection methods for sniff length 0

133

In summary, we find no difference between the various LS selection methods
in terms of final solution fitness. The fitness-based method is best in the early stages
of the runs, which agrees with our intuitions that it is the most exploitative of the
methods. For all methods the use of a sniff length is generally harmful. The fact that
LS potential is no better than random selection, and that the use of sniff length is
unhelpful even when using LS potential runs counter to our intuitions, but possible

explanations present themselves which are testable.

IV.D.7 Lamarckian vs. Darwinian Evolution

All EA+LS experiments so far described in this dissertation have used
Lamarckian evolution, in which the solutions resulting from local search replace the
corresponding preoptimized solutions in the population. Hence, local improvements
directly affect the genetic information in the population. An alternative to this is
Darwinian evolution, in which the fitness resulting from local search is used for selec-
tion purposes, but the resulting solution itself is discarded. In this section we examine
the Darwinian alternative under various mutation sizes and types of crossover. We
will often refer back to Sections IV.D.3 and IV.D.4, which present the corresponding

Lamarckian experiments.

Effect of Mutation Size

Figure IV.28 compares Darwinian and Lamarckian evolution for an EA using
our standard crossover, but without mutation. Overall the Darwinian alternative is
seen to result in better final solutions. This can be explained by recalling the results
of Section IV.D.3, where we examined the effect of mutation size in the context of
Lamarckianism. There we found that large mutations are required to prevent the
search from becoming trapped in local basins, especially for the geometric graphs. In
the Darwinian case, however, there is no danger of getting trapped, since the results
of local are not copied back onto the genotype.

For comparison, Figure IV.29 shows the corresponding data for runs using

134

Partition Cost

650

000 r0124.20
550
500

4504 -----=8

1200

1100

1000

900

800

2600
2400

2200 |
2000
1800

90250.20

—e— Darwinjan
—-&-- Lamarckian

Partition Cost

1600
1500 4
1400 3
1300 3
1200 3

1100 3

Evaluations (x 10,000)

Evaluations (x 10,000)

Figure IV.28: Darwinian vs Lamarckian for mutation size 0

135

an expected mutation size of one node swap per solution. Here we see that on the
random and planted bisection graphs, where local basins are very small, the advantage
of Darwinian evolution is lost entirely. This is consistent with our explanation, as
even small mutations are adequate to escape most local basins on these graphs. The
figure shows that on the geometric graphs, where the basins are larger, the Darwinian
method is still superior. Since the genotypes in the Darwinian case are not fixated
on the local minima, a solution may move between basins by a succession of small
mutations, even if the basins are large.

Finally, Figure IV.30 compares Lamarckian and Darwinian evolution for a
mutation size of five. We see that the Lamarckian version performs as well as or better
than Darwinian on all graphs. Mutations this large are enough for the EA to escape
local basins even on geometric graphs, as confirmed by the results of Section IV.D.3.

As mutation size plays an important role in the effectiveness of the Lamar-
ckian EA+LS, the question naturally arises as to what effect it has in the Darwinian
case. As noted above, mutation is no longer necessitated by the need to escape local
basins. It may still be useful for some other purpose, however. Figure IV.31 com-
pares three mutation sizes (zero, one, and five expected node swaps per solution)
under Darwinian evolution. There is virtually no difference in performance of the
searches. Apparently, the extra genetic variation introduced by large mutations is of
no benefit or detriment to the global search. Conversely, even the lack of mutation
is not detrimental. As genetic variation is clearly necessary for search to proceed, it

must be the case that crossover alone is a sufficient source of this variation.

Role of Crossover

In Section IV.D.4 we saw evidence that crossover does not operate as ex-
pected under Lamarckian evolution. Specifically, it does not effectively combine build-
ing blocks from different solutions. This is despite the evidence in Section IV.C.2 that
crossover does work as expected when local search is not being used. Our interpreta-

tion of this is that local search obviates the need for crossover by discovering building

136

Partition Cost

650

600

550

500

450

r0124.20

1200

1100

1000

900

800

2600
2400

2200 |
2000
1800

90250.20

—e— Darwinjan
—-&-- Lamarckian

Partition Cost

1600
1500
1400
1300 3
1200 3

1100 3

Evaluations (x 10,000)

50 100
Evaluations (x 10,000)

Figure IV.29: Darwinian vs Lamarckian for mutation size 1/N

137

Partition Cost

650

600

550

500

450

r0124.20

1200

1100

1000

900

800

2600
2400
2200
2000
1800

90250.20

—e— Darwinjan
—-&-- Lamarckian

Partition Cost

1600
1500 4
1400 3
1300 3
1200 3

1100 3

Evaluations (x 10,000)

p0500.9+16

50 100
Evaluations (x 10,000)

Figure IV.30: Darwinian vs Lamarckian for mutation size 5/N

138

Partition Cost

o0 r0124.20

90250.20

Partition Cost

1600
1500
1400 4)
1300-§*A
1200§

1100 /e

Evaluations (x 10,000)

— T
50 100

Evaluations (x 10,000)

Figure IV.31: Comparison of mutation size under Darwinian evolution

139

blocks itself. Roughly, each application of local search find all composable subsolu-
tions.

In light of the Lamarckian and no-LS results, we may predict what effect
crossover has in the Darwinian case. Since LS finds all building blocks each time it is
applied, we still do not expect crossover to be helpful. It makes little difference that
the building blocks are not encoded onto the genotype; they will be found again the
next time LS is applied. Note that this argument assumes an ideal situation in which
every local search finds every composable subsolution. The reality of the situation
may be more complicated, but as long as most local searches find most of the building
blocks, the expected function of crossover is unnecessary.

Figure IV.32 compares standard-, random-, and no-crossover (as defined in
Section IV.C.2) for a Darwinian EA+LS with mutation size five. There is virtually
no difference between these three methods, indicating that crossover is indeed inef-
fective at combining building blocks. Additionally, there is no apparent benefit or
detriment to using random crossover when compared to no crossover at all. Compare
this to Figure IV.31, which shows no difference in using various mutation sizes under
standard crossover. These data indicate that as long as there is some method to intro-
duce variation it does not matter how much is introduced, at least up to the random
crossover benchmark. Since local search does not directly fixate the population on

specific bit-patterns, any amount of mutation will maintain sufficient diversity.

IV.E Other Global Search Algorithms

In this section we consider global search methods other than the EA+LS.
Section IV.E.1 compares simulated annealing to the EA+LS, and shows that the type
of graph being searched affects performance. Section IV.E.1 analyzes the behavior
of SA by performing “off-line L.S” during the run. Finally, Section IV.E.2 compares
the Go-With-the-Winners algorithm to EA+LS. As discussed in Chapter I, both SA
and GWW have global and local aspects to their search. Since they integrate these

140

r0124.20

Partition Cost

90250.20

—e— random
—-&--NONEe
- x-- standard

1600
1500
1400

Partition Cost

1200 -

13004 &

1100 3

Evaluations (x 10,000)

— T
50 100

Evaluations (x 10,000)

Figure IV.32: Comparison of crossover methods under Darwinian evolution

141

aspects less explicitly than the EA+LS, the comparisons are important.

IV.E.1 Simulated Annealing
Comparison to EA

The best known general-purpose method for graph bisection is simulated
annealing [15, 52]. Figure 1V.33 compares SA to the EA4+LS. The EA+LS used is
the generational EA+LS described in Section IV.D.1, which finds the best solutions
of all the EA+LS variants considered in this dissertation. Our implementation of SA
is taken from Johnson et al. [44], and is described in Section I1.A 4.

We see that in all cases the FA+4LS starts out finding substantially better
solutions than SA. This is a direct results of its use of LS: it quickly finds local
minima while SA is exploring globally. On the planted bisection and larger random
graphs, SA eventually catches up with EA+LS and finds better solutions. On the
geometric graphs, however, EA+LS retains it superiority throughout the runs. Since
the differences at the end of the runs are too small to be seen in the figure, we display

the average final solution values in Table IV.24.

Table 1V.24: Average final solutions for SA and EA-+LS: The average of the
final solutions from SA and EA+LS, for the eight graph instances. Ten EA+4LS runs
were done for each graph, and from 30 to 70 SA runs. The number of SA runs done
is also shown. A * in the significance column indicates that the difference between
SA and EA+LS is statistically significant (two-tailed Student’s t-test with p < 0.05).

number
FEA+LS SA SA runs significance
r0124.20 450.4 449.9 50
r0250.20 837.8 830.5 70
r0500.20 1789.8 1752.8 40 *
£0250.20 141.7 166.3 30 *
£0500.20 206.6 209.4 40
£0500.40 464.0 468.4 40
p0250.9+16 1141.3 1132.3 70 *
p0500.9+16 | 2277.0 2231.0 40 *

Note that the EA+LS runs shown here are given only as many evaluations

142

Partition Cost

3 10124.20 1000

90250.20

D E'Ar\nJrul[atSmed Annealing

Partition Cost

Evaluations (x 10,000)

Evaluations (x 10,000)

Figure IV.33: Comparison of Simulated Annealing and the EA+LS

143

as SA uses, and hence are shorter than we typically use. For many of these graphs,
the EA+LS will continue to improve its solutions if it is allowed to run longer. SA,
on the other hand, makes no further improvement if run longer, as the temperature

becomes too low for any search to occur.

Basin-Finding Behavior

In order to better understand the behavior of simulated annealing for graph
partitioning, we perform several runs using “off-line” local search. Each time the SA
algorithm moves to a new partition, we do a complete local search and record the
resulting local optimum. This is done extraneously to SA itself, so that the current
partition and its cost are unmodified. In this way we get a sense of the trajectory of
the search, how frequently it changes local basins, and how often it finds new basins.

Common intuition about simulated annealing suggests roughly what to ex-
pect. At high temperature, SA will visit many local basins without spending too much
time in any one basin. As the temperature is lowered, the frequency with which SA
explores new basins should decrease. Eventually, it becomes confined to smaller and
smaller groups of basins, until finally the temperature is so low that it cannot escape
the basin it is in. The experiments described here confirm this intuition on some
graphs, and help to characterize the type of exploration which occurs in the later
stages of a run. We will see, however, that for many graphs (especially sparse ones)
the intuition isn’t quite right. The reason has to do with nodes of low affinity (see
Section IV.A.2).

In order to maintain consistency in our determination of local basins, a de-
terministic local searcher is used for these experiments. A randomized local searcher
would complicate the analysis by reporting different local minima for adjacent solu-
tions (or even the same solution). In particular, we use a steepest descent strategy
over the unbalanced neighborhood, in which the nodes are ordered beforehand so as
to break ties (multiple equally good “best” moves) during the local search.

Figure IV.34 shows the progression of a typical SA run on the graph r0124.20.

144

As a function of evaluations, this graph displays the cost of the SA’s solution at each
step and the cost of the local optimum associated with each. As expected, SA’s
average solution gets gradually better as the temperature decreases. One thing to
note, though, is how volatile it is. The cost of the current solution repeatedly increases
and decreases by as much as 50% of its entire range. Despite this, the solutions are
of relatively high quality: throughout virtually the entire run no partition is visited

whose cost is greater than 90% of the average random partition cost.

700 T T T T T T T T
post-LS cost —
temperature ——
650 E
600 |- E
@
o
(5]
s 550 | :
&
o
pa i
500 T .
k_‘nﬁ
T
MMIMM =
450 | ww et 4
e
400 1 1 1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

evaluations

Figure 1V.34: SA with off-line LS on r0124.20: The progression of a single SA
run. The light-colored curve shows the partition cost of SA’s solution at each step.
The darker (bottom) curve shows the cost of the local optima associated with SA’s
solutions. Finally, the uppermost curve shows SA’s temperature (scaled to fit the
plot). For comparison, a random partition has expected cost 639.3.

As the temperature is lowered, the volatility of the solution cost decreases,
and SA’s solutions are closer in cost to their local optima. This corresponds to the
intuition that SA settles down and becomes more like local search as it “cools.” The
value of the corresponding local optima is also volatile. In fact, good basins are found
early on—LS finds solutions within the first 1,000 evaluations which are as good as

the final solution, although SA doesn’t find such solutions until much later—and lost

145

repeatedly.

Another interesting feature of this figure is that SA starts finding partitions
which are better than their corresponding local optima. This is because SA searches
over unbalanced partitions, whereas the local optima are all balanced. In this graph it
is possible to obtain a lower partition cost (including the imbalance penalty) by being
slightly out of balance. Furthermore, the best unbalanced partitions found by SA do
not correspond to the best balanced local optima. In the final stage of the run shown
SA spends most of its time in a region whose local optimum is worse than that found
previously (450 vs. 449), but which nevertheless has better unbalanced partitions. In
at least this graph, then, allowing unbalanced partitions with the penalty can mislead
the search.

To better understand how the SA search progresses, we can also look at
how frequently SA changes basins and how often it finds new, previously unvisited,
basins. Figure IV.35 shows the percentage of moves made by SA which change local
basins (alternatively, for which the associated local optimum changes), as the SA
run progresses. We see that this percentage gradually decreases on average, with
SA switching basins only rarely after 60,000 evaluations. Figure IV.36 shows the
percentage of moves which discover new basins. Such discoveries are rare after 45,000
evaluations, while SA is still actively switching among previously found basins.

Note that it is not the case that SA has simply explored all possible basins
by this point. In all, this run visited 1,646 distinct basins. In contrast, performing
local search from 10,000 random partitions found 9,265 distinct local minima. The
data therefore imply that SA gradually settles into a narrow region, and eventually

into a single basin, matching our intuition.

Unexpected Behavior In contrast to r0124.20, there are several graphs for which
SA does not behave as originally expected, in terms of the frequency of changing local
basins and discovering new basins. These graphs include those with very low degree,

having many degree zero nodes, and to a lesser extent more dense graphs for which

146

100 T T T T T T T T

basin changes —

80 - E

60 [—

percentage

40 H .

20 | —

L TR

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
evaluations

Figure 1V.35: Frequency of local basin changes on r0124.20: For the same
SA run as in Figure IV.34, the percentage of moves which are accepted, and the
percentage of the accepted moves which change local basins. The data are aggregated
into blocks of 1,000 SA evaluations each to generate the bar graph.

low affinity nodes are common.

Figure IV.37 shows the progression of a typical run on the graph r0124.03.
As with r0124.20, the solution gradually gets better but varies greatly in the process:
the cost of the current solution repeatedly increases and decreases by as much as 50%
of its entire range. As before, the solutions are of relatively high quality: generally
staying below 75% of the average random partition cost.

An interesting feature of this graphs is the sharp decrease in cost at around
35,000 evaluations. What apparently happened here is that SA found a series of
improvements which were too good to be undone given the temperature at that point
(alternatively, the volatility was too low to overcome the large gains). As seen, this
event coincided with an improvement in the local optimum as well, indicating that
SA found a new better basin. Other than this one event, however, note that the

quality of the local optima does not follow a clear trend as the run progresses. The

147

100 T T T T T T T T

basin changes —

80 - E

60 [—

percentage

40 | .

Fﬂ%ﬁlﬂ .

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
evaluations

Figure IV.36: Frequency of new local basin discoveries on r0124.20: For the
same SA run as in Figure IV.34, the percentage of moves which are accepted, and
the percentage of the accepted moves which enter new local basins. The data are
aggregated into blocks of 1,000 SA evaluations each to generate the bar graph.

values of the optima go up and down, and in fact very good local basins (optimum
with value 15 versus the final value of 13) are found early on but are then lost.

More interesting are the plots showing the frequency of switching basins
(Figure 1V.38) and finding new basins (Figure IV.39). Both of these frequencies
increase throughout the run, averaging over 70% by the end of the run. This behavior
continues even after all the important activity has ceased. After 80,000 evaluations,
there is no improvement in in the SA’s solution cost or the costs of the associated
local minima. Note that the absolute rates of these events (basin switching and
basin discovery) in terms of evaluations is not increasing. What is increasing is the
percentage of SA’s accepted moves which switch or discover basins. This is a rather
surprising fact: on this graph SA’s move become more likely to switch (and discover)
basins as the temperature cools!

Since SA flips only a single bit each move, it takes several accepting moves

148

90 T T T T T
post-LS cost —
temperature —— 4
@
8 4
(5]
c
8
5 4
Q
-
20 T i
HI
I | i il o
10 | T 4
—
O 1 1 1 1 1
0 20000 40000 60000 80000 100000 120000

evaluations

Figure IV.37: SA with off-line LS on r0124.03: The progression of a single SA
run. The light-colored curve shows the partition cost of SA’s solution at each step.
The darker (bottom) curve shows the cost of the local optima associated with SA’s
solutions. Finally, the uppermost curve shows SA’s temperature (scaled to fit the
plot). For comparison, a totally random partition has expected cost 75.1.

for it to significantly change its current solution. Since over 70% of its moves in the
later stages are to new local basins, this implies that this graph must have very small
basins. Indeed it does; this graphs has 12 nodes of degree zero, which leads to many
equivalent partitions packed together with only small barriers between them (recall
Section IV.A.2). SA is simply wandering around such a region sampling the various
equivalent partitions.

Given that SA is actively sampling new basins long after it has ceased im-
proving, we may ask how large a region of the overall search space it spans during the
late stages. SA changed basins 407 times between evaluation 80,000 and the end of
the run (over 100,000 evaluations). The 407 associated local minima show a strong
similarity to each other. Of the 124 nodes in the graph, 107 are labeled (set 0 or
1) the same way by every one of the minima. These nodes are apparently “fixed”

and cannot be moved once the temperature gets low. Of the 17 nodes which do get

149

100

80

60

percentage

basin changes —

a0 |1

20 | —

O 1 1 1 1 !
0 20000 40000 60000 80000 100000 120000
evaluations

Figure 1V.38: Frequency of local basin changes on r0124.03: For the same
SA run as in Figure IV.37, the percentage of moves which are accepted, and the
percentage of the accepted moves which change local basins. The data are aggregated
into blocks of 1,000 SA evaluations each to generate the bar graph.

moved, 12 are the degree zero nodes mentioned earlier. The other five all have degree
two, but have an affinity of zero (cf. Section IV.A.2%). This allows them to be moved
freely without modifying the partition cost.

The above comments are for a single SA run on r0124.03. The qualitative
observations about increasing basin switching and discovery are repeatable across
runs, as is the observation of a small region of the space being explored in the final
stage. In particular, there is a core set of approximately 100 nodes which are fixed
in the late stages of any run, though they may be set to different values in different

rumns.

Denser Graphs FEven in graphs which have no nodes of degree zero, SA may
continue to explore different basins throughout the run. Figures IV.40 and IV.41 show
the frequency of basin changes for the graphs r0500.10 and r0500.20, respectively. We

°In fact, these five nodes are the basis for the examples of zero affinity nodes in Section IV.A.2.

150

100 T T T T T

basin changes —

80 - E

60 [—

percentage

20 | —

O 1 1 1 1 !
0 20000 40000 60000 80000 100000 120000
evaluations

Figure IV.39: Frequency of new local basin discoveries on r0124.03: For the
same SA run as in Figure IV.37, the percentage of moves which are accepted, and
the percentage of the accepted moves which enter new local basins. The data are
aggregated into blocks of 1,000 SA evaluations each to generate the bar graph.

see that the frequency increases in the latter stages despite the fact that these graphs
have no nodes of degree zero (the lowest degree is 2 for r0500.10 and 7 for r0500.20).
Note that this effect is not as pronounced as in the sparse graph r0124.03; in particular
the frequency decreases for roughly the first half of the runs, before starting to increase
again.

It we examine which nodes are being moved by SA at low temperature, we
again see that the vast majority are fixed in place. Specifically, for the r0500.10 run,
only 43 of the 500 nodes move after the evaluation 300,000. Similarly, only 35 of
the nodes in r0500.20 are moved after evaluation 300,000. It is instructive to classify
these nodes according to how much time each spends on either side of the partition.
Call a node “fixed” if it stays on one side the entire time. Call it “semifixed” if it
spends more than 75% of it times on one side. Otherwise it is “loose.” Table 1V.25

shows the number of each of the types for r0124.03, r0500.10, and r0500.20, as well

151

100 T T T T T T

basin changes —

80 - E

60 [—

percentage

40 | .

20 | —

O 1 1 1 1 1 1
0 50000 100000 150000 200000 250000 300000 350000
evaluations

Figure 1V.40: Frequency of local basin changes on r0500.10: The percentage
of moves which are accepted, and the percentage of the accepted moves which change
local basins. The data are aggregated into blocks of 1,000 SA evaluations each to
generate the bar graph.

as the average affinity for nodes of each type. We see that as a group the fixed nodes
have the highest average affinity, and the loose nodes have the lowest.

In summary, we have examined some intuitions about how simulated anneal-
ing operates, specifically that it should change basins and discover new basins less
frequently as the temperature is lowered. This intuition turns out not to be quite true
for some graphs. The reason has to do with equivalent or nearly equivalent partitions
which differ by nodes of low affinity. Although SA may continue to discover new
basins throughout the run, it does become confined to a tiny fraction of the search

space eventually.

IV.E.2 Go-With-the-Winners

The Go-With-the-Winners algorithm of Dimitriou and Impagliazzo [19] makes

for another interesting comparison of global search algorithms. As described in Sec-

152

100 T T T T T T T

basin changes —

80 - E

60 [—

percentage

40 | .

20 | I i

O 1 1 1 1 1 i
0 50000 100000 150000 200000 250000 300000 350000 400000
evaluations

Figure 1V.41: Frequency of local basin changes on r0500.20: The percentage
of moves which are accepted, and the percentage of the accepted moves which change
local basins. The data are aggregated into blocks of 1,000 SA evaluations each to
generate the bar graph.

tion [.LA.3, GWW attempts to maintain uniform sampling of all solutions which are
better a given threshold. This threshold is decreased by one at each stage of the al-
gorithm, so that the solutions in the population continually get better. GWW excels
at exploratory search [14], but can also be used as an optimization method by setting
its algorithmic parameters (number of “particles” and random walk length) small
enough.

Figure IV.42 compares GWW to the EA+LS on two graph bisection in-
stances. The GWW data in the figure is provided by Carson [12] for runs using
ten particles and a random walk length of ten steps. These parameter settings were
chosen for efficient optimization (as opposed to exploratory search), though minimal
effort was invested in tuning them. The EA+4LS algorithm we use is the generic gen-
erational EA+LS from Section IV.D.1 (and the same one we compare against SA in

Section IV.E.1).

153

1200

r0250.20

|
[N
o
o

1000

Partition Cost

900

0500.20

Partition Cost

Evaluations (x 10,000)

Figure 1V.42: Comparison of Go-With-the-Winners and the EA+LS: Each

method is run ten times on each graph, and standard error bars are shown.

154

Table IV.25: Node affinities at end of SA run: For three graphs, a characteri-
zation of the node movement in the final stage of a SA run. The number of nodes
which are fixed, semifixed, and loose is shown, as well as the average affinity for the
nodes in each group. The average is taken over the local optima associated with SA’s
solutions in the final stage of the run. The final stage is defined to begin at 80,000
evaluations for r0124.03, and 300,000 evaluations for the the two larger graphs.

r0124.03 r0500.10 r0500.20
number avg. affinity | number avg. affinity | number avg. affinity
fixed 107 2.29 457 4.60 465 6.75
semifixed 2 0.39 28 1.67 25 1.82
loose 15 0.02 15 0.39 10 1.12

We see that the EA+LS is much more efficient early on; this is a direct result
of its use of LS. GWW steadily improves, however, and by 1,000,000 evaluations does
nearly as well on 10250.20, though there is still a statistical difference. Note that the
complete GWW runs go for much longer than shown in the figure (roughly 4-7 million
evaluations for r0250.20 and 70-100 million for g0500.20), and its solutions continue
improving due to the ever-decreasing threshold. The final solutions from GWW are
not statistically different from those of the EA+LS.

A final note about the shape of the GWW curves: Carson [12] points out that
if partition cost is plotted against stage number instead of number of evaluations, the
curve should be a straight line. This is because the threshold decreases by exactly one
at each stage, and the solutions in the population tend to be close to the threshold.
What accounts for the concave shape is that legal neighbors (with respect to the
threshold) become more difficult to find as the threshold decreases, so each stage

considers successively more partitions.

Chapter V

Conclusions

We conclude the dissertation with a discussion of its major contributions
and general observations. For some topics we suggest directions for future research.

We end with a brief summary of the issues examined.

V.A EA+LS Effective for Graph Bisection

Previous to this dissertation, the usefulness of LS in an EA context was
well-established for continuous optimization. That this benefit would carry over to
combinatorial optimization was not obvious, given the various differences between
the two: lack of direction or gradient, large number of dimensions, difficultly of NP-
complete problems, and other issues discussed in Section II.A.2. These issues lead
to substantial differences in the methods used for LS and the speed with which it
operates, making it difficult to generalize from results on the continuous side.

We have shown that for at least one combinatorial problem, graph bisection,
LS greatly benefits the EA for a variety of instance classes. Furthermore, even though
LS itself is quite powerful on this problem, we have demonstrated that the global
search performed by the EA is beneficial even in the context of LS. Not only does
the EA+LS perform better than Monte Carlo local search, it is competitive with the

best known general-purpose method for graph bisection, simulated annealing.

155

156

V.B New EA+4+LS Algorithm Integrates Global

and Local

Typical EA4LS hybrids (such as the generational EA+LS in SectionIV.D.1)
proceed in alternating stages of global and local search. During each generation, the
EA produces a new population, and local search is then performed on part of the
population. The local searches are usually performed to completion (although partial
local searches have been explored by Hart[38]). The specific results of local search gen-
erally are not kept from one generation to the next, though they do influence selection
of individuals and, in the case of Lamarckian evolution, the genotypes themselves.

We have developed a new EA+LS variant which more tightly integrates
global and local search, while still allowing the benefits of complete local searches.
The primary distinguishing features of this algorithm are the use of extremely short LS
lengths and the maintenance of partially optimized solutions in the population which
may be more fully optimized as the algorithm progresses. This algorithm allows the
global and local search components to influence each other at a finer granularity,
which may allow for more effective search on some problems. In our experiments it
was never more effective than the generic generational EA+LS, though this may be
because of the limited range of options explored with regards to LS selection. An
additional advantage of our algorithm is that allows careful experimental control over
many search parameters which may be important to search effectiveness. We make

extensive use of the algorithm throughout this dissertation.

V.C LS Compositionality Hypothesis

The major result emerging from the experiments is that LS obviates the
need for crossover. That is, despite evidence that crossover very effectively combines
building blocks when LS is not used, this advantage disappears when LS is used. We
hypothesize that this is because LS itself is able to find the very same building blocks

157

that crossover would otherwise combine. To our knowledge this effect (whether or
not our explanation for it is correct) has not been appreciated before. If it generalizes
to other problems, it may be very important to the EA community, in which the
practical usefulness of crossover is sometimes hotly debated. It may be that the
debate is moot in the context of LS.

While our interpretation of the effect (namely, that LS finds all the building
blocks) has not been directly verified, we have explored one other potential explana-
tion and rejected it (see Section IV.D.4). One way to verify our hypothesis would
be to explicitly identify the building blocks for a particular instance. In the case of
graph bisection, we suspect that small cliques are a source of building blocks, with
higher fitness being associated with having the entire clique on the same side of the
partition. We can test this by examining the results of successful crossovers (those
that produce a child with better fitness than either parent) in an EA without LS. If
all such successful crossovers combine cliques from both parents, that would be strong
evidence that the small cliques indeed correspond to the building blocks. If so, then
it would be a simple matter to check that LS always groups the nodes of each clique
together, thereby eliminating the need for crossover. An analysis along these lines is
a possible direction for future research.

It is possible that LS usurping crossover’s role is specific to graph bisection.
We do not know any comparison of crossover’s effectiveness with and without local
search for other problems. In fact, there are several studies [38, 71, 56] which indepen-
dently examine both the use of LS and the effectiveness of crossover for continuous
optimization, but not the effectiveness of crossover when LS is used. Another future
research direction is to perform this comparison on other problems, both combinato-
rial and continuous.

Finally, our observations may simply be the result of the crossover operator
we use. It appears that it operates on the same small substructures as LS. This may
point to the need for a crossover operator which can combine “higher-order” building-

blocks, analogous to the need for mutation to make larger-scale changes. It could be

158

that the crossover operator we use (RAR..), is effective at combining small indepen-
dent cliques, but is too disruptive to maintain large groups of cliques, which may be
the appropriate higher-level building blocks. One can imagine a different recombina-
tion operator being more effective at this task, and hence being more beneficial then
simple random crossover even when LS is used. Note that such an operator may not
be effective without the use of LS, as the large structures on which it operates may

take too long to be discovered through mutation and selection alone.

V.D Large Mutation Sizes and Instance-Specific
Heuristics

Related to the issue of random crossover (or macromutation) is the issue
of the appropriate size of mutations. We saw that very large mutations were not
detrimental to the EA4LS search, but that standard mutation sizes were ineffective
for some instance classes. Specifically, for problems with definite basin structures
(geometric graphs), under Lamarckian evolution, small mutations are not beneficial
in comparison to no mutation, but large mutations help. This is as we expected, since
mutations within a basin simply get returned to the local minimum by LS. Since our
expectations followed our general understanding of the EA+LS search, we expect this
result to generalize to other problems, and we offer the following recipe: when LS s
used with Lamarckian evolution, the appropriate size of mutation will be at least as
large as the typical basin size.

The above rule for setting mutation size is an example of an instance-specific
heuristie, or an algorithm tailored to specific features of the instances under consid-
eration. For difficult problem classes (e.g. NP-complete) it may be necessary to
exploit such features to improve search effectiveness. Here we have focussed on mu-
tation size, but appropriate values for other algorithmic parameters (local/global
ratio, LS length, etc.) may also depend on instance features. For that matter, some

types of problems probably call algorithms other than the EA+LS. There are two

159

parts to using instance-specific heuristics: determination of the instance features,
and exploitation of these in the algorithmic design. For the former, one may perform
experiments such as those in Section IV.D.3, where we carefully analyzed the basin
sizes and structures through the repeated use of LS and mutation. More generally,
we point to the ongoing work by Carson and Impagliazzo [14] with the Go-With-the-
Winners algorithms (see Section 1.A.3), which can be used to explore search space
structure. We anticipate future integration of that research with our own, with the
goal of identifying particular features of instances which allow informed choices as to

which search algorithms are appropriate.

V.E Darwinian Evolution Competitive and Ro-

bust

An important observation from Section IV.D.7 is that Darwinian evolution
performs just as well as Lamarckian. Direct comparisons in the literature are scarce,
but the Lamarckian option is generally used for optimization. Our results show that
this may not be a well-justified choice. The reason that Darwinian evolution works
well may be related to LS compositionality hypothesis: every complete LS finds every
building block. Hence, it makes no difference whether the results of LS are encoded on
the genotype, as the same building blocks will be found the next time LS is applied.

Another explanation favored by Belew [7] involves the Mastery effect[36].
Roughly, this is the notion that evolutionary pressure to improve the genotypes is
reduced once they are “good enough” for LS to take them to the global optimum (or
at least the best solution seen so far by the population). Note that the potential role
of the Mastery effect is somewhat diminished by our use of partial LS: since we use
very small amounts of LS at a time (ten evaluations), there is an advantage to being
very close (within ten steps) to the optimum.

Unlike the Lamarckian case, we saw that the Darwinian EA+LS is robust

across different mutation sizes. Our explanation of this is that since LS results are not

160

encoded on the genotype, any variation (whether by small mutations or crossover) is
adequate to move from basin to basin by successive applications. Hence, unlike in

the Lamarckian case, the search cannot become “stuck” in suboptimal local basins.

V.F Problems are Difficult

Finally, given that for all our problem instances, various versions of the
EA+LS and SA find roughly the same partition costs, and that all runs seem to stop
improving after some point, it is tempting to conclude that we have solved these in-
stances. It appears they might be too easy for a comparison of different algorithmic
parameter settings, since many settings may lead to the optimal solution. The reality,
however, is that the instances examined in this dissertation are not trivial. Despite
repeated applications of simulated annealing and EA+4LS under a variety of config-
urations, the best solutions we found are substantially worse than the best known

on geometric graphs. Figure V.1 gives an expanded view of the average partition

costs found by EA+LS, MCLS, and SA for g0500.20, compared to the best known

1 This indicates that the geometric graphs, at least, are fertile ground for

solution.
the development and testing of new heuristics. The random graphs may be equally

difficult, but we do not have an independent method for finding good solutions.

V.G Summary

In summary, we have shown that the EA+LS hybrid is more effective for
graph bisection than either the EA or LS alone, and that it is competitive with sim-
ulated annealing. A new variant of the EA+LS has been developed which interleaves
the global and local search operators. We have discussed results concerning the ef-

fectiveness of crossover and the role of mutation in the context of LS; these insights

!The best solution was found by Johnson [44] using an algorithm developed specifically for geo-
metric graphs. Roughly, this algorithm scans a straight line across the graph (laid out geometrically),
and chooses the best partition encountered during the scan. This partition is then further optimized
by local search.

161

400
_ g0500.20
350
g | —a— Monte Carlo Loca Search
O 300 - T —— EA + Local Search
ut] ----Smulated Annealing
S —— Best Known
250
LUTLLTLIITITIT
200—- 55 : H{{-
0 ' 2'0 ' 4'0 ' 6|0 ' 8|0 ' 1(')0

Evaluations (x 10,000)

Figure V.1: EA4LS, MCLS, and SA vs. best known: For g0500.20, an expanded
view of end of ten EA+LS runs, compared to Monte Carlo LS. The dashed horizontal

line is the average SA performance, and the the solid horizontal line is the best
solution known.

162

point to the possibility of instance-specific heuristics, in which the search algorithm is
tailored to specific features of the instances under consideration. We have seen that
Darwinian evolution is as effective as Lamarckian, and is more robust under changes
to the genetic operators. In addition to the results mentioned in this chapter, we
have also explored the effectiveness of steady-state vs. generational EAs, different

local search lengths, and various local/global ratios.

Bibliography

1]

2]

[10]

David H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer
Academic Publishers, 1987.

David H. Ackley and Michael L. Littman. A case for lamarckian evolution. In
Chris G. Langton, editor, Artificial Life III, pages 487-509. Addison-Wesley,
1994.

David Aldous and Umesh Vazirani. Go with the winners. In S. Goldwasser, ed-
itor, Proceedings 35th Annual Symposium on Foundations of Computer Science,

pages 492-501. IEEE, New York, 1994.

S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes
for dense instances of NP-hard problems. In 27th Annual ACM Symposium on
Theory of Computation, pages 284-293, 1995.

Thomas Back. FEwvolutionary Algorithms in Theory and Practice: FEvolution
Strategies, Evolutionary Programming, and Genetic Algorithms. Oxtord Uni-
versity Press, New York, 1996.

Thomas Back, Ulrich Hammel, and hans Paul Schwefel. Evolutionary compu-
tation: Comments on the history and current state. [EEE Transactions on
FEvolutionary Computation, 1(1):3-17, April 1997.

Richard K. Belew. personal communication.

Richard K. Belew, John McInerny, and Nicol N. Schraudolph. Evolving networks:
Using the genetic algorithm with connectionist learning. In Chris G. Langton,
Charles Taylor, J. Doyne Farmer, and Steen Rasmussen, editors, Proceeding of

the Second Conference on Artificial Life, pages 511-548. Addison-Wesley, 1991.
Kenneth D. Boese, Andrew B. Kahng, and Sudhakar Muddu. A new adap-

tive multi-start technique for combinatorial global optimizations. Operations

Research Letters, 16:101-113, 1994.

R. Boppana. Figenvalues and graph bisection: An average case analysis. In
Proceedings of the 25th Annual Symposium on Foundations of Computer Science,
pages 280-285. IEEE, 1987.

163

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[21]

[22]

23]

[24]

164

John Cairns, Julie Overbaugh, and Stephan Miller. The origin of mutants. Na-
ture, 335(6186):142—-145, September 8 1988.

Ted Carson, October 1998. personal communication.
Ted Carson and Russell Impagliazzo, September 1998. personal communication.

Ted Carson and Russell Impagliazzo. A method for experimentally exploring
search spaces: The case of graphs with small planted bisections. 1999. submitted
to The first Workshop on Algorithm Engineering and Experimentation.

V. Cerny. A thermodynamical approach to the travelling salesman problem: An
efficient simulation algorithm. J. Optim. Theory Appl., 45:41-51, 1985.

L. Davis, editor. Genetic Algorithms and Simulated Annealing. Morgan Kauf-
mann, Los Altos, CA, 1987.

L. Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York, 1991.

J. E. Dennis and Virginia J. Torczon. Derivative-free pattern search methods for
multidisciplinary design problems. In The Fifth AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, pages 992-993,
1994.

A. Dimitriou and R. Impagliazzo. Towards a rigorous analysis of local optimiza-
tion algorithms. In 28th ACM Symposium on the Theory of Computing, 1996.

A. Dimitriou and R. Impagliazzo. Go-with-the-winner algorithms for graph bi-
section. In SODA, pages 510-520, 1998.

D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. TEEE Press, 1995.

D. B. Fogel, editor. Evolutionary Computation: the Fossil Record. IEEE Press,
1998.

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence Through Sim-
ulated Evolution. Wiley, New York, 1966.

Stephanie Forrest and Melanie Mitchell. The performance of genetic algo-
rithms on Walsh polynomials: Some anomalous results and their explanation.
In Richard K. Belew and Lashon B. Booker, editors, Proceedings of the Fourth
International Conference on Genetic Algorithms, page 182. Morgan Kaufmann

Publishers, Inc., San Mateo, CA, 1991.

[25]

[29]

30]

31]

32]
33]

[34]

[35]

[36]

165

Stephanie Forrest and Melanie Mitchell. Relative building-block fitness and the
building-block hypothesis. In L. Darrell Whitley, editor, Foundations of Genetic
Algorithms 2, pages 109-126. Morgan Kaufmann Publishers, San Mateo, CA,
1993.

D. Goldberg and K. Deb. A comparative analysis of selection schemes used in
genetic algorithms. In Proceedings of the Foundations of Genetic Algorithms
Workshop, Indiana, 1990.

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

D.E. Goldberg and J. Richardson. Genetic algorithms with sharing for mul-
timodal function optimization. In John J. Grefenstette, editor, Proceedings of
the Second International Conference on Genetic Algorithms. L. Erlbaum Assoc.,

1987.

V. Scott Gordon and Darrell Whitley. Serial and parallel genetic algorithms as
function optimizers. In Stephanie Forrest, editor, Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms, pages 177-183. Morgan Kaufmann,
1993.

Frédéric Gruau and Darrell Whitley. Adding learning to the cellular development
of neural networks: Evolution and the baldwin effect. Evolutionary Computation,

1(3):213-233, 1993.

William Noble Grundy. Genetic algorithm variants of the GSAT algorithm, 1998.

in preparation.
William E. Hart. personal communication.

William E. Hart. Evolutionary pattern search algorithms. Technical report,
Sandia National Laboratories, Sep 1995.

William E. Hart. A theoretical comparison of evolutionary algorithms and sim-
ulated annealing. In Evolutionary Programming V, pages 147-154, Cambridge,
MA, 1996. MIT Press.

William E. Hart and Richard K. Belew. Optimization with genetic algorithm
hybrids that use local searches. In Richard K. Belew and Melanie Mitchell,
editors, Adaptive Individuals in Evolving Populations: Models and Algorithms,
chapter 27, pages 483-496. Addison-Wesley, 1996.

William E. Hart, Thomas E. Kammeyer, and Richard K. Belew. The role of
development in genetic algorithms. In D. Whitley and M. Vose, editors, Foun-
dations of Genetic Algorithms I, pages 315-332. Morgan Kauffman, 1994.

37]

38]

[39]

[40]

[41]

[42]

[49]

166

William E. Hart, Mark Land, and Richard K. Belew. Evolutionary algorithms
with local search: Hybridization issues for continuous search domains, 1998. in
preparation.

William Eugene Hart. Adaptive Global Optimization with Local Search. PhD
thesis, University of California, San Diego, 1994.

Bruce Hendrickson and Robert Leland. An improved spectral load balancing
method. In Proceedings of the 6th SIAM Conference on Parallel Processing for
Scientific Computing, pages 953-961. STAM, 1993.

Bruce Hendrickson and Robert Leland. A multilevel algorithm for partition-
ing graphs. Technical report, Sandia National Laboratories, Albuquerque, NM,
October 1993.

John H. Holland. Adaptation in Natural and Artificial Systems. The MIT Press,
1975.

L. Ingber and B. Rosen. Genetic algorithms and very fast simulated
reannealing—a comparison. Mathematical and Computer Modelling, 16:87-100,
1992.

Zhai Jinhui, Yan Yingbai, Jin Guofan, and Wu Minxian. Global/local united
search algorithm for global optimization. Optik, 108(4):161-164, 1998.

David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon.
Optimization by simulated annealing: An experimental evaluation; part I, graph

partitioning. Operations Research, 37(6):865-892, Nov-Dec 1989.

David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How
easy is local search? Journal of computer and system sciences, 37(1):79-100,

Aug 1988.

Terry Jones. Crossover, macromutation, and population-based search. In Larry J.
Eshelman, editor, Proceedings of the Sizth International Conference on Genetic
Algorithms, pages 73-80. Morgan Kaufmann Publishers, Inc., San Francisco, CA,
1995.

Kenneth A. De Jong and Jayshree Sarma. Generation gaps revisited. In L. Dar-
rell Whitley, editor, Foundations of Genetic Algorithms 2, pages 19-28. Morgan
Kaufmann Publishers, San Mateo, CA, 1993.

R. S. Judson, M. E. Colvin, J. C. Meza, A. Huffer, and D. Gutierrez. Do
intelligent configuration search techniques outperform random search for large
molecules? International Journal of Quantum Chemistry, pages 277-290, 1992.

Thomas E. Kammeyer. Evolving Stochastic Grammars. PhD thesis, University
of California, San Diego, 1998.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

167

Thomas E. Kammeyer, Richard K. Belew, and 5. Gill Williamson. FEvolving

compare-exchange networks using grammars. Artificial Life, 2(2), 1995.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 49(10):291-307, Feb 1970.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671-680, May 13 1983.

Scott Kirkpatrick and Bart Selman. Critical behavior in the satisfiability of
random boolean expressions. Science, 264:1297-1301, May 27 1994.

John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

Mark Land and Richard K. Belew. No perfect two-state cellular automata for
density classification exists. Physical Review Letters, 74(25):5148-5150, June 19
1995.

Mark Land, John J. SIDorowich, and Richard K. Belew. Using genetic algorithms
with local search for thin film metrology. In Thomas Back, editor, Proceedings
of the Seventh International Conference on Genetic Algorithms, pages 537-44.
Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1997.

S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling
salesman problem. Operation Research, 21:498-516, 1973.

G. Lueker. manuscript, Princeton University, 1976.

Samir W. Mahfoud. A comparison of parallel and sequential niching methods.
In Larry J. Eshelman, editor, Proceedings of the Sizth International Conference
on Genetic Algorithms, pages 136-143. Morgan Kaufmann, 1995.

Samir W. Mahfoud. Niching methods for genetic algorithms. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, Urbana, IL, USA, May 1995. TlIiGAL
Report 95001.

S.W. Mahfoud. Population size and genetic drift in fitness sharing. In L.D.
Whitley and M.D. Vose, editors, Foundations of Genetic Algorithms 3. Morgan
Kaufmann, 1995.

H. Mihlenbein. Parallel genetic algorithms, population genetics and combina-
torial optimization. In J. David Schaffer, editor, Proceedings of the Third Inter-
national Conference on Genetic Algorithms, pages 416-421. Morgan Kaufmann,
San Mateo, CA, 1989.

J. A. Nelder and R. Mead. A simplex method for function minimization. Com-

puter Journal, 7:308-313, 1965.

[64]

[65]
[66]

[68]

[69]

[72]

73]
[74]

[75]

168

C. H. Papadimitriou, A. A. Schaffer, and M. Yannakakis. On the complexity
of local search. In Proceedings of the 22nd ACM Symposium on the Theory of
Computing, pages 838-845, 1990.

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization—
Algorithms and Complexity. Prentice-Hall, 1982.

A. Pothen, H. Simon, and K. Liou. Partitioning sparse matrices with eigenvectors
of graphs. SIAM Journal on Matriz Analysis and Applications, 11(3):430-452,
1990.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes in C, chapter 10.4, pages 408-412. Cambridge University
Press, 2nd edition, 1995.

Nicholas J. Radcliffe. Forma analysis and random respectful recombination. In
Richard K. Belew and Lashon B. Booker, editors, Proceedings of the Fourth
International Conference on Genetic Algorithms. Morgan Kaufmann Publishers,

Inc., San Mateo, CA, 1991.

Nicholas J. Radcliffe. Genetic set recombination. In L. Darrell Whitley, editor,
Foundations of Genetic Algorithms 2. Morgan Kautmann Publishers, San Mateo,
CA, 1993.

Christopher D. Rosin, R. Scott Halliday, William E. Hart, and Richard K. Belew.
A comparison of global and local search methods in drug docking. In Thomas
Back, editor, Proceedings of the Seventh International Conference on Genetic
Algorithms, pages 221-8. Morgan Kaufmann Publishers, Inc., San Francisco,

CA, 1997.

H. Saran and V. V. Vazirani. Finding k-cuts within twice the optimal. In
Proceedings 32nd Annual Symposium on Foundations of Computer Science, pages

743-751. IEEE Computer Society Press, 1991.
Hans-Paul Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.

Bart Selman, Hector Levesque, and David Mitchell. A new method for solving
hard satisfiability problems. In Proceedings of the Tenth National Conference on
Artificial Intelligence (AAAI-92), pages 440-446, San Jose, CA, July 1992.

H. D. Simon. Partitioning of unstructured problems for parallel processing. In
Proceedings of Conference on Parallel Methods on Large Scale Structural Analysis
and Physics Applications. Pergammon Press, 1991.

[76]

[81]

[82]

[83]

[84]

[85]

[36]

169

K. Sims. Evolving 3D morphology and behavior by competition. In R. Brooks
and P. Maes, editors, Artificial Life IV Proceedings, pages 28-39. MIT Press,
1994.

R.E. Smith, S. Forrest, and A.S. Perelson. Searching for diverse, cooperative
populations with genetic algorithms. Fvolutionary Computation, 1(2), 1993.

F. J. Solis and R. J-B. Wets. Minimization by random search techniques. Math-
ematical Operations Research, 6:19-30, 1981.

G. B. Sorkin. Efficient simulated annealing on fractal energy landscapes. Algo-

rithmica, 6(3):367-418, 1991.

Gilbert Syswerda. A study of reproduction in generational and steady-state
genetic algorithms. In Proceedings of the Foundations of Genetic Algorithms
Workshop, Indiana, 1990.

Virginia Torczon. On the convergence of pattern search methods. SIAM Journal

of Optimization, 7(1):1-25, February 1997.

Virginia Torczon. Pattern search methods for nonlinear optimization.

SIAG/OPT Views-and-News, (6):7-10, Spring 1995.
N. L. Ulder, E. H. Aarts, H.-J. Bandelt, P. J. van Laarhoven, and E. Pesch.

Genetic local search algorithms for the traveling salesman problem. In Parallel
Problem Soving from Nature, pages 109-116, New York, 1990. Springer-Verlag.

D. Whitley, V. S. Gordon, and K. Mathias. Lamarckian evolution, the Baldwin
effect and function optimization. In Y. Davidor, H. P. Schwefel, and R. Berlin
Manner, editors, Parallel Problem Solving from Nature - PPSN III, pages 6-15.
Springer-Verlag, 1994.

D. Whitley and J. Kauth. Genitor: A different genetic algorithm. In Proceedings
4th Rocky Mountain Conference on Artificial Intelligence, Denver, 1988.

D. Whitley, K. Mathias, S. Rana, and J. Dzubera. Building better test functions.
In Larry J. Eshelman, editor, Proceedings of the Sizth International Conference

on Genetic Algorithms, page 239. Morgan Kaufmann Publishers, Inc., San Fran-
cisco, CA, 1995.

