
Chapter 25

Reasoning About Effects:
Seeing the Wood
Through the Trees
Graham Hutton1, Diana Fulger2
Category: Research Paper

Abstract: Pure functional languages such as Haskell support programming with
impure effects by exploiting mathematical notions such as monads, applicative
functors, and arrows. However, in contrast to the wealth of research on the use
of these notions to write effectful programs, there has been comparatively little
progress on reasoning about the resulting programs. In this article we focus on
this problem, using a simple but instructive example concerned with relabelling
binary trees.

25.1 INTRODUCTION

Mathematical notions such as monads [8], applicative functors [5] and arrows
[4] are now well established as mechanisms for pure programming with impure
effects such as exceptions, non-determinism, state, and input/output [10]. In par-
ticular, these notions provide uniform interfaces for programming with effects,
allowing programmers to focus on the essential high-level concepts, rather than
the low-level implementation details.

Because these notions simplify the process ofwriting programs that utilise
effects, we might similarly expect that they also simplify the process ofreasoning
about the resulting programs. Unfortunately, however, it still remains standard
practice to just expand out the basic effectful operations when trying to reason
about such programs, which seems rather unsatisfactory.

1University of Nottingham, UK;gmh@cs.nott.ac.uk
2University of Nottingham, UK;dqf@cs.nott.ac.uk

XXV–1

XXV–2 CHAPTER 25. REASONING ABOUT EFFECTS

In this article we focus on the problem of reasoning about effectful programs,
with the specific aim of avoiding such an expansion. In particular, we consider
a simple but instructive example concerned with relabelling binary trees. Our
thesis is that the simplicity of this example enables us to reveal a number of issues
regarding reasoning about effects that may otherwise have been obscured by the
complexity of larger examples. The article makes the following contributions:

•We prove the correctness of a tree relabelling function. Somewhat surpris-
ingly, even an elementary proof of this result does not seem to have appeared
in the functional programming literature before;

•We identify a number of basic properties of state in the context of applicative
functors, which allow us to prove the correctness of the relabelling function
using simple, point-free equational reasoning;

•We discuss a number of issues that arise from the development of this proof,
in particular the role that types play, and the idea of factorising a computation
into ‘essential’ and ‘plumbing’ parts, which in this example leads naturally to
the idea of generalising from finite to infinite structures;

•We propose the tree relabelling problem as a useful case study for other ap-
proaches to reasoning about effectful programs.

The article is aimed at a reader who is familiar with the basics of reasoning
about functional programs, say to the level of [1], but no specialist knowledge
about effectful programming and reasoning is assumed. An extended version of
the article that includes all proofs is available from the authors’ web pages.

25.2 RELABELLING A TREE

In this section we introduce the example that will form the central focus of this
article. Let us begin by defining a typeTree a of binary trees whose leaves contain
values of some parameter typea, together with a function that returns a list of the
leaf values orlabels that occur in such a tree:

data Tree a = Leaf a | Node (Tree a) (Tree a)
labels :: Tree a→ [a]
labels (Leaf x) = [x]
labels (Node l r) = labels l++ labels r

Now consider the problem of defining a function that replaces each leaf value in
such a tree with a unique orfresh integer. This can be achieved in many different
ways, but perhaps the simplest is to thread a fresh integer through a traversal of

25.2. RELABELLING A TREE XXV–3

the tree, which can be implemented as follows:

label :: Tree a→ Int→ (Tree Int, Int)
label (Leaf x) n = (Leaf n,n +1)
label (Node l r) n = (Node l′ r′,n′′)

where
(l′,n′) = label l n
(r′,n′′) = label r n′

relabel :: Tree a→ Tree Int
relabel t = fst (label t 0)

What does it mean for the relabelling function to be correct? Firstly, it must
preserve the shape of the original tree. And secondly, each label in the resulting
tree must be unique. For our purposes, we only consider the second property,
which can be formalised and proved correct as follows.

Theorem 25.1 (correctness of relabel). For all finite trees t:

nodups (labels (relable t))

where
nodups :: Eq a⇒ [a]→ Bool
nodups [] = True
nodups (x : xs) = ¬ (elem x xs) ∧ nodups xs

Proof : by equational reasoning, using two lemmas.

let (t′,n) = label t 0 in

nodups (labels (relabel t))
= { applyingrelabel }

nodups (labels t′)
= { behaviour oflabels (lemma 25.2)}

nodups [0. .n−1]
= { intervals have no duplicates (lemma 25.3)}

True
��

Lemma 25.2 (behaviour of labels). For all finite trees t and integers n:

label t n = (t′,n′) ⇒ n <n′ ∧ labels t′ = [n . .n′ −1]

That is,label returns a new labeln′ that is strictly greater than the initial labeln,
and a new tree whose labels are precisely the non-empty interval[n . .n′ −1].

Lemma 25.3 (intervals have no duplicates). For all integers a � b:

nodups [a . .b]

XXV–4 CHAPTER 25. REASONING ABOUT EFFECTS

The proofs of the above lemmas are straightforward, but require considerable
care, and proceed using the elementary technique of expanding out definitions.
The remainder of the article shows how the relabelling function, together with its
proof of correctness, can be reworked in a higher-level manner.

25.3 RELABELLING USING MONADS

Our relabelling function is currently defined by explicitly threading a fresh label
through the computation. We now consider how it may be defined in a more
structured manner using monads [11]. Recall that in Haskell, the notion of a
monad is captured by the following class declaration:

class Monad m where
return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b

That is, a parameterised typem is a member of the classMonad of monadic types
if it is equipped withreturn and(>>=) functions of the specified types. A typical
monadic expression built using these two functions has the following structure:

m1>>=λ v1→
m2>>=λ v2→
...
mn>>=λ vn→
return (f v1 v2 · · · vn)

That is, applym1 and call its result valuev1; then applym2 and call its result
valuev2; . . .; then applymn and call its result valuevn; and finally, combine all
the results by applying the functionf . Haskell provides a special syntax for such
monadic expressions, allowing them to be expressed in the following form:

do v1← m1
v2← m2
...
vn←mn
return (f v1 v2 · · · vn)

For the purposes of defining our relabelling function, we will utilise the state
monad, which is based upon the notion of astate transformer (abbreviated by
ST), which in turn is a function that takes a state as its argument, and returns a
pair comprising a result value and a new state:

type ST s a = s→ (a,s)

25.3. RELABELLING USING MONADS XXV–5

For any types of states, it is straightforward to makeST s into a monadic type:

instance Monad (ST s) where
return :: a→ ST s a
return v = λ s→ (v,s)
(>>=) :: ST s a→ (a→ ST s b)→ ST s b
st >>= f = λ s→ let (v,s′) = st s in (f v) s′

That is,return converts a value into a state transformer that simply returns that
value without modifying the state. In turn,>>= provides a means of sequencing
state transformers:st>>= f applies the state transformerst to an initial states, then
applies the functionf to the resulting valuev to give a second state transformer
(f v), which is then applied to the modified states′ to give the final result.

Aside: the above declaration forST s as a monadic type is not actually valid
Haskell, as types defined using thetype mechanism are not permitted to be made
into instances of classes.The solution is to redefineST using thedata or newtype
mechanisms, but this requires the introduction of a dummy constructor. For sim-
plicity, however, we do not do this here.End of aside.

Now let us return to the problem of relabelling trees, which was based upon
the idea of taking the next fresh integer as an additional argument, and returning
the next fresh integer as an additional result. In other words, tree relabelling can
be expressed using the notion of a state transformer, in which the state is simply
the next fresh integer, and the result value is the relabelled tree.

In order to generate a fresh integer, wedefine a special state transformer that
returns the current state as its result, and the next integer as the new state:

fresh :: ST Int Int
fresh = λ n→ (n,n +1)

Using this, together with thedo notation that is supported as a result ofST being
monadic, it is now straightforward to redefine the tree relabelling function

label :: Trea a→ Int→ (Tree Int,a)

in monadic style as a function that takes a tree and returns a state transformer that
produces the same tree with each leaf labelled by a fresh integer:

label :: Tree a→ ST Int (Tree Int)
label (Leaf x) = do n← fresh

return (Leaf n)
label (Node l r) = do l′ ← label l

r′ ← label r
return (Node l′ r′)

Note that when expressed in this manner, the programmer no longer has to
worry about the tedious and error-prone task of plumbing of fresh labels, as this
is taken care of automatically by the underlying monadic primitives.

XXV–6 CHAPTER 25. REASONING ABOUT EFFECTS

25.4 RELABELLING USING APPLICATIVE FUNCTORS

While the definition of thelabel function is much improved using monads, there
is still room for further simplification. In particular, the use of thedo notation
requires that the result of each monadic expression is given a name, even if this
name is only used once, as in the definition oflabel. We now show how the need
for such names can be avoided by redefining label using applicative functors [5],
which in Haskell are captured by the following class declaration:

class Applicative f where
pure :: a→ f a
(�) :: f (a→ b)→ f a→ f b

The idea is that the functionpure converts a value into a computation that return
this value without performing any effects (and hence plays the same role asreturn
for monads), while� provides a lifted form of function application in which the
function itself, together with its argument and result, are produced by computa-
tions that may have effects. As with normal function application,� is assumed to
associate to the left; for example,f � x � y means(f � x) � y.

Applicative functors are more general than monads, in the sense that every
monad is applicative, with the� operator defined bymf � mx = do { f ←mf ;x←
mx;return (f x)}. As suggested by the name, every applicative functor is also a
functor, withmap :: (a→ b)→ f a→ f b defined bymap f x = pure f � x.

A typical applicative expression has the following structure:

pure f � m1 � m2 � · · · mn

That is, a pure functionf is applied to the results of a sequence of effectful ar-
gumentsm1, m2, . . ., mn. In fact, using laws that every applicative functor must
satisfy [5], any expression built usingpure and� can be transformed into this
form, which is abbreviated using the following special syntax:

� f m1 m2 · · · mn �

Note that unlike with thedo notation, there is no longer any need to name the
results of the argument computations, as this is taken care of automatically by
the underlying applicative functor primitives. This special syntax is not currently
supported by Haskell, but we will use it in this article.

Even though state transformers are monadic and are hence applicative as de-
scribed above, it is useful to consideran explicit declaration of this fact:

instance Applicative (ST s) where
pure :: a→ ST s a
pure v = λ s→ (v,s)
(�) :: ST s (a→ b)→ ST s a→ ST s b
mf � mx = λ s→ let (f ,s′) = mf s

(x,s′′) = mx s′
in (f x,s′′)

25.5. INTERLUDE ON PAIRS AND LISTS XXV–7

That is,pure v simply returns the valuev without modifying the state, whilemf �
mx begins by applyingmf to the initial states to produce a functionf and a new
states′, then appliesmx to this state to produce a valuex and a new states′′, and
concludes by returningf x as the final result ands′′ as the final state.

Using the fact thatST is applicative, it is now straightforward to redefine the
label function in applicative style, as follows:

label :: Tree a→ ST Int (Tree Int)
label (Leaf x) = � Leaf fresh �
label (Node l r) = � Node (label l) (label r) �

This definition captures in a clear and concise way our intuition about relabelling,
namely that aLeaf is relabelled by replacing its argument value by a fresh label,
and that aNode is relabelled by recursively relabelling its two subtrees. All the
plumbing of fresh labels and argument values is handled automatically.

Just as thelabel function is now expressed in a high-level manner, so we would
like to prove the correctness of this function in a similarly high-level manner. Our
approach to this is based upon two ideas, namely to work at the point-free (or
function) level as far as possible, and to generalise from finite to infinite lists of
labels. In the next section we define a number of functions on pairs and infinite
lists that will be used to formulate and prove our main correctness theorem.

25.5 INTERLUDE ON PAIRS AND LISTS

Because state transformers return pairs, when working at the point-free level it is
natural to utilise a number of standard functions on pairs:

f ×g = λ (x,y)→ (f x,g y)
〈f ,g〉 = λ x→ (f x,g x)
assoc (x,(y,z)) = ((x,y),z)
unassoc ((x,y),z) = (x,(y,z))

These functions satisfy a number of familiar equational properties arising from
the categorical nature of pairs [6], which will be used freely throughout the rest
of this article. For example, for all functions of the appropriate types, the product
(×) and split〈−,−〉 operators satisfy the following fusion properties:

(f ×g)◦(h× i) = (f ◦h)× (g ◦ i)
(f ×g)◦〈h, i〉 = 〈f ◦h,g ◦ i〉
〈f ,g〉 ◦h = 〈f ◦h,g ◦h〉

We will also use uncurried versions of the list operators cons(:) and append
(++), and a special variant of function composition(◦) that allows a curried func-

XXV–8 CHAPTER 25. REASONING ABOUT EFFECTS

tion with two arguments to be composed with a function with a single argument:

cons :: (a, [a])→ [a]
cons = uncurry (:)
append :: ([a], [a])→ [a]
append = uncurry (++)
(•) :: (c→ d)→ (a→ b→ c)→ a→ b→ d
f • g = curry (f ◦uncurry g)

Now let us consider infinite lists (or streams) of labels, such as those produced
by the functionfrom, which generates an infinitely ascending list of numbers:

from :: Int→ [Int]
from n = n : from (n +1)

For example,from 0 = 0 : 1 : 2 : 3 :· · · . In this setting, our current definition for
the functionnodups that decides if a list has no duplicate elements is no longer
appropriate, as applying this function to an infinite list results in non-termination.
Our solution is to utilise the following new definition:

nodups xs ⇔ rmdups xs = xs

where
rmdups :: Eq a⇒ [a]→ [a]
rmdups [] = []
rmdups (x : xs) = x : rmdups (filter (�= x) xs)

That is, a list contains no duplicates if removing duplicates does not change the
list. Note that the use of mathematical equality (=) rather than Haskell equality
(==) in the new definition fornodups, which is required to avoid the issue of
non-termination, means thatnodups is now a meta-level definition rather than a
Haskell definition. Moreover, we will in fact use a lifted version ofnodups that
applies to functions that generate lists, rather than lists themselves:

nodups f ⇔ rmdups◦ f = f

That is, a function produces no duplicates if removing duplicates after applying
the function does not change the resulting list.

25.6 PROOF OF CORRECTNESS

Using the new operators from the previous section, we can now state the correct-
ness of ourlabel function in a point-free manner.

Theorem 25.4 (correctness of label). For all finite trees t:

nodups (append◦ (labels× from)◦ label t)

25.6. PROOF OF CORRECTNESS XXV–9

That is, if we label a tree and then append the list of labels in the resulting tree with
the infinite list of unused labels (produced by applyingfrom to the first unused
label) then each label in the resulting list is unique. This result is stronger than we
actually need, by considering both the labels in the tree and the unused labels, but
strengthening the result in this manner leads to a simple and natural proof.

Proof : by direct application of two lemmas.

nodups (append◦ (labels× from)◦ label t)
⇔ { behaviour oflabel (lemma 25.5)}

nodups from
⇔ { from produces no duplicates (lemma 25.8)}

True
��

Lemma 25.5 (behaviour of label). For all finite trees t:

append◦ (labels× from)◦ label t = from

That is, if we label a tree and then append its list of labels with the list of unused
labels, the result is the original list of fresh labels. This lemma is a natural general-
isation of lemma 25.2 in our original proof, which stated that iflabel t n = (t′,n′),
then we haven<n′ andlabels t′ = [n . .n′−1]. In order to formulate this result in a
point-free manner, our first step is to consider the expression(labels× id)◦ label t,
which returns a pair comprising the labels of the tree, say[n . .n′ −1], and the next
fresh label,n′. But how can we specify that the output pair has this form? The
approach taken above in lemma 25.5 is to append the list[n . .n′−1] to the infinite
list from n′, and assert that the resulting list is given byfrom n.

Proof : by equational reasoning, using two lemmas.

append◦ (labels× from)◦ label t
= { products}

append◦ (labels× id)◦ (id× from)◦ label t
= { factorisinglabel (lemma 25.6)}

append◦ (labels× id)◦ label′ t ◦ from
= { behaviour oflabel′ (lemma 25.7)}

from
��

Note that the two lemmas used in this proof can be fused together to give a
direct proof without the use of separate lemmas, but we find the separation of the
proof into two parts in this manner to be more instructive. By analogy with pro-
gram fission [3], the dual to program fusion, factorising a proof into component
parts in this manner might be termed proof fission.

Lemma 25.6 (factorising label). For all finite trees t:

(id× from)◦ label t = (label′ t)◦ from

XXV–10 CHAPTER 25. REASONING ABOUT EFFECTS

where
label′ :: Tree a→ ST [b] (Tree b)
label′ (Leaf x) = � Leaf fetch �
label′ (Node l r) = � Node (label′ l) (label′ r) �

fetch :: ST [a] a
fetch = λ xs→ (head xs, tail xs)

The new functionlabel′ is defined in precisely the same manner aslabel, except
that it utilises an infinite list of fresh labels as the internal state, rather than a single
fresh label as previously, and consumes labels from this list one at a time using a
new state transformerfetch. The lemma itself states that labelling a tree and then
extending the next fresh label to an infinite list (by applyingfrom) gives the same
result as producing an infinite list of fresh labels and then applyinglabel′.

Lemma 25.6 shows howlabel can be factorised into two parts, namely the
generation of an infinite supply of fresh labels usingfrom (the essential part of the
computation, which is monomorphic), and the threading of this list through the
tree usinglabel′ (the plumbing part, which is polymorphic.) Factorisinglabel in
this manner is both an interesting concept in its own right, and leads to a simple
and natural proof of the behaviour oflabel (lemma 25.5).

Proof : by structural induction ont, using a number of lemmas about state trans-
formers and basic functions, which are contained in the appendix.

Case:t = Leaf x

(id× from)◦ label (Leaf x)
= { applyinglabel }

(id× from)◦ � Leaf fresh �
= { output state fusion (lemma 25.15)}

� Leaf ((id× from)◦ fresh) �
= { relationship betweenfresh andfetch (lemma 25.18)}

� Leaf (fetch◦ from) �
= { input state fusion (lemma 25.11)}

� Leaf fetch �◦ from
= { unapplyinglabel′ }

label′ (Leaf x)◦ from

Case:t = Node l r

(id× from)◦ label (Node l r)
= { applyinglabel }

(id× from)◦ � Node (label l) (label r) �
= { output state fusion (lemma 25.16)}

� Node (label l) ((id× from)◦ label r) �
= { induction hypothesis forr }

� Node (label l) ((label′ r)◦ from) �

25.6. PROOF OF CORRECTNESS XXV–11

= { state shifting (lemma 25.17)}
� Node ((id× from)◦ label l) (label′ r) �

= { induction hypothesis forl }
� Node (label′ r ◦ from) (label′ r) �

= { input state fusion (lemma 25.12)}
� Node (label′ r) (label′ r) �◦ from

= { unapplyinglabel′ }
label′ (Node l r)◦ from

��
There are two important points to note about this proof. First of all, it pro-

ceeds by simple equational reasoning, without the need to expand out the under-
lying definitions. And secondly, a number of intermediate steps appear to be type
incorrect with respect to the� � notation, by using arguments that are not state
transformers. For example, in the base case the expression(id× from)◦ fresh has
typeInt→ (Int, [Int]), which is not a state transformer because the state changes
from Int to [Int]. However, when we come to prove the state transformer lemmas
themselves, we will find that such type incorrect reasoning is perfectly sound.

Lemma 25.7 (behaviour of label’). For all finite trees t:

append◦ (labels x id)◦ label′ t = id

That is, if we applylabel′ to a tree and then append its labels to the unused labels,
the result is the original list of fresh labels.

Proof : by structural induction ont, using a number of lemmas (see appendix).

Case:t = Leaf x

append◦ (labels× id)◦ label′ (Leaf x)
= { applyinglabel′ }

append◦ (labels× id)◦ � Leaf fetch �
= { bracket notation (lemma 25.9)}

append◦ � labels � Leaf fetch � �
= { nested state fusion (lemma 25.13)}

append◦ � (labels◦Leaf) fetch �
= { behaviour oflabels on leaves (lemma 25.19)}

append◦ � [−] fetch �
= { property ofappend (lemma 25.21)}

cons◦ fetch
= { applyingfetch }

cons◦ 〈head, tail〉
= { property ofcons }

id

Case:t = Node l r

XXV–12 CHAPTER 25. REASONING ABOUT EFFECTS

append◦ (labels× id)◦ label′ (Node l r)
= { applyinglabel′ }

append◦ (labels× id)◦ � Node (label′ l) (label′ r) �
= { bracket notation (lemma 25.10)}

append◦ � labels � Node (label′ l) (label′ r) � �
= { nested state fusion (lemma 25.14)}

append◦ � (labels • Node) (label′ l) (label′ r) �
= { behaviour oflabels on nodes (lemma 25.20)}

append◦ � (curry (append◦ (labels× labels))) (label′ l) (label′ r) �
= { property ofappend (lemma 25.22)}

append◦ (labels× (append◦ (labels× id)◦ labels′ r))◦ labels′ l
= { induction hypothesis forr }

append◦ (labels× id)◦ labels′ l
= { induction hypothesis forl }

id
��

Lemma 25.8 (from produces no duplicates).

nodups from

This lemma is a natural generalisation of lemma 25.3 from our original proof,
which stated that ifa � b thennodups [a . .b], with the finite interval[a . .b] gen-
eralised to an infinite list produced by the functionfrom.

25.7 CONCLUSION AND FURTHER WORK

In this article we showed how a simple tree relabelling function can be proved
correct using point-free equational reasoning, by identifying and exploiting basic
properties of state in the context of applicative functors. Our proof relied on
three ideas: factorising an effectful computation into essential and plumbing parts,
generalising from finite to infinite lists of fresh labels, and relaxing the typing
constraints on the applicative functornotation to accommodate internal changes
in the type of the state. The first of these ideas appears to be novel, while the
latter two are instances of the familiar mathematical practice of moving to a more
general framework for the purposes of proofs, such as moving from two to three
dimensional space in geometry, or from real to complex numbers in analysis.

There are a number of possible directions for further work. First of all, our
current definition of the relabelling function uses explicit recursion, and it would
be interesting to see if there is any benefit to be gained from using a more struc-
tured approach to recursion, such as that provided by applicative traversals [5] or
monadic folds [7]. Secondly, we would like to propose the relabelling problems as
a simple but instructive case study for other approaches to reasoning about effects,
such as rigid induction [2] and Hoare type theory [9]. And finally, it is important
to consider how our approach can be adapted both to other effects, and to more
substantial programming examples. In this direction, we have proved in a similar

25.7. CONCLUSION AND FURTHER WORK XXV–13

manner an analogous factorisation result for a relabelling function in which each
leaf is labelled by its lexicographic path from the root of the tree, which suggests
that our approach may indeed be more widely applicable.

Acknowledgements

We would like to thank Thorsten Altenkirch, Martin Escard´o, Hugo Herbelin,
Conor McBride, James McKinna, Nicolas Oury, Wouter Swierstra, and the other
FP lab members in Nottingham for useful comments, and Galois for funding a
sabbatical visit during which part of this article was written.

APPENDIX: OTHER PROPERTIES

This appendix presents the properties of state transformers and basic functions
that were used to prove our main correctness result. The first two lemmas show
how the bracket notation for applicative functors can be expanded out in a point-
free manner for the case of functions with one or two stateful arguments.

Lemma 25.9 (bracket notation). For all f :: a→ b and x ::ST s a:

� f x � = (f × id)◦ x

Lemma 25.10 (bracket notation). For all f ::a→ b→ c, x ::ST s a, and y ::ST s b:

� f x y � = ((uncurry f)× id)◦assoc◦ (id× y)◦x

The next two lemmas show how a function that modifies the input state, in-
cluding potentially its type, can be fused with the bracket notation.

Lemma 25.11 (input state fusion). For all f :: a→ b, x :: ST s′ a, and g :: s→ s′:

� f x �◦g = � f (x◦g) �

Note that in the right-side of this equation, the expressionx◦g has types→ (a,s′),
which is not a state transformer because the type of the state changes froms
to s′, and hence the use of the applicative functor notation is not type correct.
However, when the notation is expanded out in the proof, we find that the resulting
expression is indeed type correct, which formally justifies our abuse of the bracket
notation. A similar comment holds for a number of other lemmas in this section.

Lemma 25.12 (input state fusion).

For all f ::a→ b→ c, x ::ST s′ a, y ::ST s′ b, and g :: s→ s′:

� f x y �◦g = � f (x◦g) y �

XXV–14 CHAPTER 25. REASONING ABOUT EFFECTS

The next two lemmas show how two nested stateful computations can be fused
together into a single stateful computation.

Lemma 25.13 (nested state fusion). For all f :: b→ c, g ::a→ b, and x ::ST s a:

� f � g x � � = � (f ◦g) x �

Lemma 25.14 (nested state fusion).

For all f ::c→ d, g ::a→ b→ c, x :: ST s a, and y ::ST s b:

� f � g x y � � = � (f • g) x y �

The next two lemmas show how a function that modifies the output state,
including potentially its type, can be fused with the bracket notation.

Lemma 25.15 (output state fusion). For all f :: s→ s′, g ::a→ b, and x ::ST s a:

(id× f)◦ � g x � = � g ((id× f)◦x) �

Lemma 25.16 (output state fusion).

For all f :: s→ s′, g ::a→ b→ c, x :: ST s a and y :: ST s b:

(id× f)◦ � g x y � = � g x ((id× f)◦y) �

The next lemma shows how a function that modifies the intermediate state in
a two argument computation can be shifted between the two arguments.

Lemma 25.17 (state shifting).

For all f ::a→ b→ c, x ::ST s a, y ::ST s′ b and g :: s→ s′:

� f ((id×g)◦x) y � = � f x (y◦g) �

The remaining lemmas concern the behaviour of the functionsfresh, fetch,
labels andappend that are used in the formulation of our correctness result.

Lemma 25.18 (relationship between fresh and fetch).

(id× from)◦ fresh = fetch◦ from

Lemma 25.19 (behaviour of labels on leaves).

labels◦Leaf = [−]

25.7. CONCLUSION AND FURTHER WORK XXV–15

Lemma 25.20 (behaviour of labels on nodes).

labels • Node = curry (append◦ (labels× labels))

Lemma 25.21 (property of append). For all x :: ST [a] a:

append◦ � [−] x � = cons◦ x

Lemma 25.22 (property of append).

For all f ::a→ [c], g ::b→ [c], h ::ST [c] a, and i ::ST [c] b:

append◦ � (curry (append◦ (f ×g))) h i �
=

append◦ (f × (append◦ (g× id)◦ i))◦h

REFERENCES

[1] R. Bird. Introduction to Functional Programming using Haskell (second edition).
Prentice Hall, 1998.

[2] A. Filinski and K. Stovring. InductiveReasoning About Effectful Data Types. In
Proceedings of the ACM SIGPLAN International Conference on Functional Program-
ming, Freiburg, Germany, 2007.

[3] J. Gibbons. Fission for Program Comprehension. In T. Uustalu, editor,Mathematics
of Program Construction, volume 4014 ofLecture Notes in Computer Science, pages
162–179. Springer-Verlag, 2006.

[4] J. Hughes. Generalising Monads to Arrows.Science of Computer Programming,
37(1–3):67–111, 2000.

[5] C. McBride and R. Paterson. Applicative Programming With Effects.Journal of
Functional Programming, 18(1), 2008.

[6] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire. In J. Hughes, editor,Proceedings of the Confer-
ence on Functional Programming and Computer Architecture, number 523 in LNCS.
Springer-Verlag, 1991.

[7] E. Meijer and J. Jeuring. Merging Monads and Folds for Functional Programming.
In J. Jeuring and E. Meijer, editors,Advanced Functional Programming, volume 925
of LCNS. Springer-Verlag, 1995.

[8] E. Moggi. Computation Lambda-Calculus and Monads. InProc. IEEE Symposium
on Logic in Computer Science, 1989.

[9] A. Nanevski, G. Morrisett, and L. Birkedal. Hoare Type Theory, Polymorphism and
Separation.Journal of Functional Programming. To appear.

[10] P. Wadler. Monads for Functional Programming. In M. Broy, editor,Proceedings
of the Marktoberdorf Summer School on Program Design Calculi. Springer–Verlag,
Aug. 1992.

[11] P. Wadler. The Essence of Functional Programming. InProc. Principles of Program-
ming Languages, 1992.

