A Spectral Domain Dominant Feature Extraction Algorithm for Palm-print Recognition

Hafiz Imtiaz

Bangladesh University of Engineering and Technology Dhaka-1000, Bangladesh

Shaikh Anowarul Fattah

Bangladesh University of Engineering and Technology Dhaka-1000, Bangladesh

hafiz.imtiaz@live.com

sfattah@princeton.edu

Abstract

In this paper, a spectral feature extraction algorithm is proposed for palm-print recognition, which can efficiently capture the detail spatial variations in a palm-print image. The entire image is segmented into several spatial modules and the task of feature extraction is carried out using two dimensional Fourier transform within those spatial modules. A dominant spectral feature selection algorithm is proposed, which offers an advantage of very low feature dimension and results in a very high within-class compactness and between-class separability of the extracted features. A principal component analysis is performed to further reduce the feature dimension. From our extensive experimentations on different palm-print databases, it is found that the performance of the proposed method in terms of recognition accuracy and computational complexity is superior to that of some of the recent methods.

Keywords: Spectral Feature extraction, Principal Component Analysis (PCA), Two-dimensional Fourier Transform, Classification, Palm-print Recognition, Entropy, Modularization.

1. INTRODUCTION

Conventional ID card and password based identification methods, although very popular, are no more reliable as before because of the use of several advanced techniques of forgery and password-hacking. As an alternative, biometrics, such as palm-print, finger-print, face and iris being used for authentication and criminal identification [1]. The main advantage of biometrics is that these are not prone to theft and loss, and do not rely on the memory of their users. Moreover, they do not change significantly over time and it is difficult for a person to alter own physiological biometric or imitate that of other person's. Among different biometrics, in security applications with a scope of collecting digital identity, the palm-prints are recently getting more attention among researchers [2, 3].

Palm-print recognition is a complicated visual task even for humans. The primary difficulty arises from the fact that different palm-print images of a particular person may vary largely, while those of different persons may not necessarily vary significantly. Moreover, some aspects of palm-prints, such as variations in illumination, position, and scale, make the recognition task more complicated [4].

Palm-print recognition methods are based on extracting unique major and minor line structures that remain stable throughout the lifetime. In this regard, generally, either line-based or texture-based feature extraction algorithms are employed [5]. In the line-based schemes, generally, different edge detection methods are used to extract palm lines (principal lines, wrinkles, ridges, etc.) [6, 7]. The extracted edges, either directly or being represented in other formats, are used for template matching. In cases where more than one person possess similar principal lines, line based algorithms may result in ambiguous identification. In order to overcome this limitation, the texture-based feature extraction schemes can be used, where the variations existing in either the

different blocks of images or the features extracted from those blocks are computed [8, 9]. In this regard, generally, principal component analysis (PCA) or linear discriminant analysis (LDA) are employed directly on palm-print image data or some popular transforms, such as Fourier and discrete cosine transforms (DCT), are used for extracting features from the image data. Given the extracted features, various classifiers, such as decision-based neural networks and Euclidean distance based classifier, are employed for palm-print recognition [6, 7]. Despite many relatively successful attempts to implement face or palm-print recognition system, a single approach, which combines accuracy, robustness, and low computational burden, is yet to be developed.

In this paper, the main objective is to extract precisely spatial variations from each segment of the entire palm-print image instead of considering a global variation pattern. An efficient feature extraction scheme using two dimensional Fourier transform is developed, which operates within those spatial modules to obtain dominant spectral features. It is shown that the discriminating capabilities of the proposed features, that are extracted from the sub-images, are enhanced because of modularization of the palm-print image. Moreover, the improvement of the quality of the extracted features as a result of illumination adjustment has also been analyzed. Apart from considering only the dominant spectral features, further reduction of the feature dimension is obtained by employing the PCA. Finally, recognition task is carried out using a distance based classifiers.

2. BRIEF DESCRIPTION OF THE PROPOSED SCHEME

A typical palm-print recognition system consists of some major steps, namely, input palm-print image collection, pre-processing, feature extraction, classification and template storage or database, as illustrated in Fig. 1. The input palm-print image can be collected generally by using a palm-print scanner. In the process of capturing palm images, distortions including rotation, shift and translation may be present in the palm images, which make it difficult to locate at the correct position. Pre-processing sets up a coordinate system to align palm-print images and to segment a part of palm-print image for feature extraction. For the purpose of classification, an image database is needed to be prepared consisting template palm-images of different persons. The recognition task is based on comparing a test palm-print image with template data. It is obvious that considering images themselves would require extensive computations for the purpose of comparison. Thus, instead of utilizing the raw palm-print images, some characteristic features are extracted for preparing the template. It is to be noted that the recognition accuracy strongly depends upon the quality of the extracted features. Therefore, the main focus of this research is to develop an efficient feature extraction algorithm.

The proposed feature extraction algorithm is based on extracting spatial variations precisely from the spatial modules of the palm-print image instead of utilizing the image as a whole. In view of this, a modularization technique is employed first to segment the entire palm-print into several small segments. It should be noted that variation of illumination of different palm-print images of the same person may affect their similarity. Therefore, prior to feature extraction, an illumination adjustment step is included in the proposed algorithm. After feature extraction, a classifier compares two palm-print features and a database is used to store registered templates and also for verification purposes.

FIGURE 1: Block diagram of the proposed method

3. PROPOSED METHOD

For any type of biometric recognition, the most important task is to extract distinguishing features from the template data, which directly dictates the recognition accuracy. In comparison to person recognition based on face or voice biometrics, palm-print recognition is very challenging even for a human being. For the case of palm-print recognition, obtaining a significant feature space with respect to the spatial variation in a palm-print image is very crucial. Moreover, a direct subjective correspondence between palm-print features in the spatial domain and those in the frequency domain is not very apparent. In what follows, we are going to demonstrate the proposed feature extraction algorithm for palm-print recognition, where spatial domain local variation is extracted from frequency domain transform.

3.1 Spectral Feature Extraction from Spatial Modules

For biometric recognition, feature extraction can be carried out using mainly two approaches, namely, the spatial domain approach and the frequency domain approach. The spatial domain approach utilizes the spatial data directly from the palm-print image or employs some statistical measure of the spatial data. On the other hand, frequency domain approaches employ some kind of transform over the palm-print images for feature extraction and have been widely discussed and applied in image processing [10].

It is well-known that Fourier transform based algorithms offer ease of implementation in practical applications. Hence, we intend to develop an efficient feature extraction scheme using two dimensional Fourier transform. For a function f(x, y) of size $M \times N$ with two-dimensional (2D) variation, the 2D discrete Fourier transform (2D-DFT) is given by [11]

$$\mathcal{F}(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi (\frac{ux}{M} + \frac{vy}{N})},$$
(1)

where u = 1, 2, ..., M - 1 and v = 1, 2, ..., N - 1. Palm-prints of a person possess some major and minor line structures along with some ridges and wrinkles. A person can be distinguished from another person based on the differences of these major and minor line structures. Fig. 2 shows sample palm-print images of two different persons. The three major lines of the two persons are quite similar. They differ only in minor line structure. In this case, if we considered the line structures of the two images locally, we may distinguish the two images.

FIGURE 2: Sample palm-print images of two persons. Square block contains portion of images (a) without any minor line (b) with a minor line

For example, if we looked closely within the bordered regions of the palm-print images in Fig. 2, they would seem are different. Moreover, it is evident that a small block of the palm-print image may or may not contain the major lines but will definitely contain several minor lines. These minor lines may not be properly enhanced or captured when operating on an image as a whole and may not contribute to the feature vector. Hence, in that case, the feature vectors of the palm-prints shown in Fig. 2 may be similar enough to be wrongfully identified as if they belong to the same person. Therefore, we propose to extract features from local zones of the palm-print images.

Figures 3(a) and 3(b) show the 400 lowest 2D-DFT coefficients of the palm-prints images of person 1 and person 2 considered as a whole, respectively. From these figures, it is evident that there exists no significant difference between the two transforms and hence, they are difficult to distinguish, although the palm-print images differ in the bordered region (Fig. 2). On the other hand, Figs. 4(a) and 4(b) show the 400 lowest 2D-DFT coefficients of the bordered regions of the palm-print images of person 1 and person 2, respectively (shown in Fig. 2). In these two figures, the spatial difference in the images are clearly signified in the spectral domain. Next, we compute the Euclidean distance between the DFT coefficients shown in Figs. 3(a) and 3(b) as a measure of similarity. Similarly, the Euclidean distance is computed for the DFT coefficients shown in Figs. 4(a) and 4(b). Fig. 5 shows a comparison between these Euclidean distances. In the former case, where the palm-print image is considered as a whole, the value of the Euclidean distance is smaller than that obtained in the latter case, where only the DFT coefficients of the bordered regions are considered. This clearly indicates that better distinguishable features are extracted from smaller modules than from the entire palm-print image as a whole. It can be observed that within a particular palm-print image, the change in information over the entire image may not be properly captured if the DFT operation is performed upon the image as a whole, because of the difference in patterns and positions of principal lines, ridges and wrinkles. Even if it is performed, it may offer spectral features with very low between-class separation. In order to obtain high within-class compactness as well as high between-class separability, we propose to segment the palm-print image into some small segments, which are capable of extracting variations in image geometry locally.

FIGURE 3: 400 lowest 2D-DFT coefficients of the entire palm-prints of (a) Person 1 shown in Fig. 2(a) and (b) Person 2 shown in Fig. 2(b)

FIGURE 4: 400 lowest 2D-DFT coefficients of the segment of palm-prints of (a) Person 1, corresponding to the square block shown in Fig. 2(a) and (b) Person 2, corresponding to the square block shown in Fig. 2(b)

3.2 Effect of Illumination

Light source is one of the key components in the system to capture enough of discriminant information for palm-print recognition. Hence, illumination adjustment is performed to eliminate the dependence of recognition accuracy upon intensity variation. In view of analyzing the effect of

illumination adjustment on the proposed extracted features, in Fig. 6, two sample palm-print images of the same person are shown. The images have different illumination conditions. It is required for a robust feature extraction scheme to ignore the difference in illumination and provide with similar feature vectors for these two images. We perform 2D-DFT upon each image, first without any illumination adjustment and then after performing illumination adjustment. In Fig. 7(a), the correlation of the 2D-DFT coefficients of the two images without any illumination adjustment is shown and in Fig. 7(b), the correlation of the 2D-DFT coefficients of the two images after illumination adjustment is shown. Since the correlation is a measure of similarity, it is evident from these two figures that the latter case exhibits more similarity between the DFT coefficients of Euclidian distance between the 2D-DFT coefficients of the two images for the aforementioned two cases is shown. In case of illumination adjustment, lower value of Euclidean distance is obtained, which clearly indicates a better similarity as well.

3.3 Proposed Dominant Spectral Feature

In the proposed method, instead of taking the DFT coefficients of the entire image, the coefficients obtained from each module of an image are considered to form a feature vector. However, if all of these coefficients were used, it would definitely result in a feature vector with a very large dimension. In view of reducing the feature dimension, we propose to utilize the magnitudes corresponding to the dominant DFT coefficients as spectral features. The 2D-DFT coefficient corresponding to the maximum magnitude is treated as the dominant coefficient. Considering the magnitudes of the 2D-DFT coefficients in descending order, magnitude values other than the dominant one may also be treated as possible candidates for desired features. In accordance with their magnitude values, these dominant magnitudes are termed as second-dominant (D2), third-dominant (D3), and so on. If the magnitude values along all the segments for the case of different dominant magnitudes remain similar, it would be very difficult to select one of those dominant magnitudes as a desired feature.

FIGURE 7: Correlation of the 2D-DFT coefficients of the sample palm-print images shown in Fig. 6: (a) with no illumination adjustment and (b) with illumination adjusted

FIGURE 8: Euclidian distance between 2D-DFT coefficients of sample palm-print images shown in Fig. 6

In order to demonstrate the characteristics of the dominant magnitudes in different modules, sample palm-print images of two different persons are shown in Fig. 9. In Fig. 10, four dominant magnitudes (D1, D2, D3, and D4) obtained from all the modules of the sample palm-print image is divided into 30 segments. It is found that the first dominant magnitudes. The characteristics of all other dominant magnitudes, in comparison to other dominant magnitudes. The characteristics of all other dominant magnitudes, in comparison to those of (D1), remain almost similar. An analogous behavior is obtained for Person 2 of Fig. 9. It is evident from the figure that D1 is the most significant among all the dominant magnitudes and thus, it is sufficient to consider only D1 as a desired feature, which also offers an advantage of reduced feature dimension. For a palm-print image of dimension $N \times N$ with M number of segments (with dimension $n \times n$), considering only D1 will reduce the length of feature vector from $M \times n \times n$ to M, an order of n^2 reduction. Computing D1 in each narrow-width band of a palm-print image, the proposed feature vector is obtained.

FIGURE 9: Sample palm-print images of two persons

Next, we present an experimental result in order to demonstrate the advantage of extracting the

dominant feature (D1) from the segments of a palm-print image instead of considering the entire image as a whole. In Fig. 11, centroids of the dominant features obtained from several sample palm-print images of two different persons (as appeared in Fig. 9) are shown considering two different cases: (i) when features are extracted considering the entire palm-print image as a whole and (ii) when features are extracted from each segment separately. It is observed from the figure that, in the first case, the distance between the feature-centroids is extremely small, which strongly discourages to extract a single global variation pattern from the entire image at a time. However, the large between-class-separability in the second case supports the proposed feature selection algorithm, which extracts the features from the entire image considering each local zone separately.

It is observed that a significant variation may occur in the palm-print images of a single person taken under different conditions. In view of demonstrating the effect of such variations on the proposed dominant features, we consider five sample palm-prints for each of the two persons as appeared in Fig. 9. In Fig. 12, the proposed dominant features obtained from different segments of all the sample palm-prints of two different persons are shown. For each person, the centroid of the proposed feature vectors is also shown in the figure (in thick continuous lines). It is to be

noted that the feature centroids of the two different persons are well-separated even though the major lines of the two palm-print images are quite similar considering the pattern and position. It is also observed that a low degree of scattering exists among the features around their corresponding centroids. Hence, the dominant features extracted locally within a palm-print image offer not only a high degree of between-class separability but also satisfactory within-class compactness.

FIGURE 10: Proposed dominant magnitude-features corresponding to palm-prints shown in Fig.

FIGURE 11: Centroids of dominant features corresponding to palm-prints shown in Fig. 9

FIGURE 12: Variation of dominant features with segments for several palm-print images of two persons corresponding Fig. 9

3.4 Feature Dimensionality Reduction

For the cases where the acquired palm-print are of very high resolution, even after selection of dominant features from the small segments of the palm-print image, the feature vector length may still be very high. Further dimensionality reduction may be employed for reduction in computational burden.

Principal component analysis (PCA) is a very well-known and efficient orthogonal linear transformation [12]. It reduces the dimension of the feature space and the correlation among the feature vectors by projecting the original feature space into a smaller subspace through a transformation. The PCA transforms the original *p*-dimensional feature vector into the *L*-dimensional linear subspace that is spanned by the leading eigenvectors of the covariance matrix of feature vector in each cluster (*L*<*p*). PCA is theoretically the optimum transform for given data in the least square sense. For a data matrix, X^{T} , with zero empirical mean, where each row represents a different repetition of the experiment, and each column gives the results from a particular probe, the PCA transformation is given by:

$$Y^{T} = X^{T} W = V \Sigma^{T}$$
⁽²⁾

where the matrix Σ is an $m \times n$ diagonal matrix with nonnegative real numbers on the diagonal and $W\Sigma V^T$ is the singular value decomposition of X. If q sample palm-print images of each person are considered and a total of M dominant DFT coefficients are selected per image, the feature space per person would have a dimension of $q \times M$. For the proposed dominant spectral features, implementation of PCA on the derived feature space could efficiently reduce the feature dimension without losing much information. Hence, PCA is employed to reduce the dimension of the proposed feature space.

3.5 Distance Based Classifier

In the proposed method, for the purpose of recognition using the extracted dominant features, a distance-based similarity measure is utilized. The recognition task is carried out based on the distances of the feature vectors of the training palm-images from the feature vector of the test palm-image. Given the ^m-dimensional feature vector for the ^k-th sample image of the ^j-th person be { $\gamma_{jk}(1), \gamma_{jk}(2), \ldots, \gamma_{jk}(m)$ } and a test sample image *f* with a feature vector

 $\{v_f(1), v_f(2), \dots, v_f(m)\}$, a similarity measure between the test image f of the unknown person and the sample images of the *i*-th person, namely *average sum-squares distance*, *D*, is defined as

$$D_{j}^{f} = \frac{1}{q} \sum_{k=1}^{q} \sum_{i=1}^{m} |\gamma_{jk}(i) - \nu_{f}(i)|^{2},$$
(3)

where a particular class represents a person with q number of sample palm-print images. Therefore, according to (3), given the test sample image f, the unknown person is classified as the person j among the p number of classes when

$$D_{j}^{f} \leq D_{g}^{f}, \forall j \neq gand \forall g \in \{1, 2, \dots, p\}$$

$$\tag{4}$$

4. EXPERIMENTAL RESULTS

Extensive simulations are carried out in order to demonstrate the effectiveness of the proposed method of palm-print recognition using the palm-print images of several well-known databases. Different analyses showing the effectiveness of the proposed feature extraction algorithm have been shown. The performance of the proposed method in terms of recognition accuracy is obtained and compared with those of some recent methods [9, 13].

4.1 Palm-print Databases

FIGURE 14: Sample palm-print images from the IITD database after cropping

FIGURE 15: Sample palm-print images from the PolyU database

FIGURE 16: Sample palm-print images from the PolyU database after cropping

In this section, palm-print recognition performance obtained by different methods has been presented using two standard databases, namely, the PolyU palm-print database (version 2) [14] and the IITD palm-print database [15]. In Figs. 13 and 15, sample palm-print images from the PolyU database and the IITD database are shown, respectively. The PolyU database (version 2) contains a total of 7752 palm-print images of 386 persons. Each person has 18 to 20 different sample palm-print images taken in two different instances. The IITD database, on the other hand, consists a total of 2791 images of 235 persons, each person having 5 to 6 different sample palm-print images for both left hand and right hand. It can be observed from Figs. 13 and 15 that not all the portions of the palm-print images are required to be considered for feature extraction [2]. The portions of the images containing fingers and the black regions are discarded from the original images to form the regions of interest (ROI) as shown in Figs. 14 and 16.

4.2 Performance Comparison

In the proposed method, dominant spectral features that are obtained from all the modules of a particular palm-print image are used to form the feature vector of that image and the recognition task is carried out on the reduced feature space as described in Section 3.5. The experiments were performed following the leave-one-out cross validation rule. For simulation purposes, the module size for the PolyU database and the IITD database has been chosen as 20x20 pixels and 15x15 pixels, respectively. For the purpose of comparison, recognition accuracy obtained using the proposed method along with those reported in [9] and [13] are listed in Table 1. It is evident from the table that the recognition accuracy of the proposed method is comparatively higher than

those obtained by the other methods. The performance of the proposed method is also very satisfactory for the IITD database (for both left hand and right hand palm-print images). An overall recognition accuracy of 99.91% is achieved.

Method	Recognition Accuracy
Proposed method	99.94%
Method [9]	97.50%
Method [13]	98.00%

TABLE 1: Comparison of recognition accuraci	es.
---	-----

5. CONCLUSIONS

In the proposed palm-print recognition scheme, instead of operating on the entire palm-print image at a time, dominant spectral features are extracted separately from each of the modules obtained by image-segmentation. It has been shown that because of modularization of the palm-print image, the proposed dominant spectral features, that are extracted from the sub-images, attain better discriminating capabilities. The proposed feature extraction scheme is shown to offer two-fold advantages. First, it can precisely capture local variations that exist in the major and minor lines of palm-print images, which plays an important role in discriminating different persons. Second, it utilizes a very low dimensional feature space for the recognition task, which ensures lower computational burden. For the task of classification, a Euclidean distance based classifier has been employed and it is found that, because of the quality of the extracted features, such a simple classifier can provide a very satisfactory recognition performance and there is no need to employ any complicated classifier. From our extensive simulations on different standard palm-print databases, it has been observed that the proposed method, in comparison to some of the recent methods, provides excellent recognition performance.

ACKNOWLEDGEMENT

The authors would like to express their sincere gratitude towards the authorities of the Department of Electrical and Electronic Engineering and Bangladesh University of Engineering and Technology (BUET) for providing constant support throughout this research work.

6. REFERENCES

- [1] A. Jain, A. Ross, and S. Prabhakar, "An introduction to biometric recognition," IEEE Trans. Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 4 20, 2004.
- [2] A. Kong, D. Zhang, and M. Kamel, "A survey of palmprint recognition," Pattern Recognition, vol. 42, pp. 1408–1418, 2009.
- [3] A. Kong, D. Zhang, and G. Lu, "A study of identical twins palmprint for personal verification," Pattern Recognition, vol. 39, pp. 2149–2156, 2006.
- [4] C. Han, H. Cheng, C. Lin, and K. Fan, "Personal authentication using palm-print features," Pattern Recognition, vol. 36, pp. 371–381, 2003.
- [5] X. Wu, D. Zhang, and K. Wang, "Palm line extraction and matching for personal authentication," IEEE Trans. Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 36, no. 5, pp. 978 –987, 2006.
- [6] X. Wu, K. Wang, and D. Zhang, "Fuzzy direction element energy feature (FDEEF) based palmprint identification," in Proc. Int. Conf. Pattern Recognition, vol. 1, 2002, pp. 95–98.

- [7] S. Kung, S. Lin, and M. Fang, "A neural network approach to face\$/\$/palm recognition," in Proc. IEEE Workshop Neural Networks for Signal Processing, 1995, pp. 323–332.
- [8] T. Connie, A. Jin, M. Ong, and D. Ling, "An automated palmprint recognition system," Image and Vision Computing, vol. 23, pp. 501–515, 2005.
- [9] M. P. Dale, M. A. Joshi, and N. Gilda, "Texture based palmprint identification using DCT features," in Proc. Int. Conf. Advances in Pattern Recognition, vol. 7, 2009, pp. 221–224.
- [10] W. Li, D. Zhang, L. Zhang, G. Lu, and J. Yan, "3-D palmprint recognition with joint line and orientation features," IEEE Trans. Systems, Man, and Cybernetics, Part C, vol. 41, no. 2, pp. 274 – 279, 2011.
- [11] R. C. Gonzalez and R. E. Woods, Digital Image Processing. plus 0.5em minus 0.4emBoston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1992.
- [12] I. Jolloffe, "Principal component analysis," Springer-Verlag, Berlin, 1986.
- [13] J. Lu, Y. Zhao, and J. Hu, "Enhanced gabor-based region covariance matrices for palmprint recognition," Electron. Lett., vol. 45, pp. 880–881, 2009.
- [14] "The Hong Kong Polytechnic University (PolyU) 2D 3D Palmprint Database." [Online]. Available: http://www4.comp.polyu.edu.hk/~biometrics/
- [15] "IIT Delhi Touchless Palmprint Database." [Online]. Available: http://web.iitd.ac.in/~ajaykr/Database_Palm.htm