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including self-stabilization [121], failure detectors [89], and uses of cryptography in distributed computing[150].Why are impossibility results important for distributed computing? They help us understand the natureof distributed computing: what makes certain problems hard, what makes a model powerful, and howdi�erent models compare. They tell us when to stop looking for better solutions or, at least, which approacheswill not work. If we have a problem that we need to solve, despite an impossibility result, the impossibilityproof may indicate ways to adjust the problem speci�cation or the modelling of the environment to allowreasonable solutions. Impossibility results have also inuenced real systems, for example, the design ofnetwork �le systems [84], the architecture of fault tolerant systems for safety-critical applications [275], thedesign of programming languages [59], the speci�cations of group membership services [97], and the de�nitionand study of failure detectors and systems based on them [88]. Finally, trying to prove impossibility resultscan suggest new and di�erent algorithms, especially when attempts to prove impossibility fail. As John Cagewrote, \If someone says `can't', that shows you what to do" [82].We begin in Sections 2 and 3 with brief descriptions of the models, terminology, and problems that arediscussed throughout the paper. Section 4 discusses how to approach impossibility results and gives anoverview of the major proof techniques for impossibility results in distributed computing. The rest of thepaper presents a wide variety of results. Section 5 describes unsolvability results for the consensus problemand some similar process-coordination tasks. The use of impossibility results to study relationships betweendi�erent models is addressed in Section 6. A systematic approach to studying computability for distributedsystems is to characterize the models that can solve a particular problem. Alternatively, one can characterizethe set of problems solvable in a given model. Results of both these types are described in Section 7. Furthercharacterizations of problems solvable in speci�c models appear in Section 8, which discusses applicationsof topology to proving impossibility results in distributed computing. Section 9 examines the question ofwhether weak shared object types can become more powerful when they are used in combination with otherweak types. The next three sections consider complexity results. Each focuses on a di�erent complexitymeasure: space, time, and the number of messages. Section 13 discusses impossibility results for randomizedalgorithms. An index of problems and proof techniques appears at the end of the paper.This survey builds on Lynch's excellent survey paper, \A Hundred Impossibility Proofs for DistributedComputing" [233], which covers results up to 1989. A shorter, preliminary version of our survey, emphasizingresults from 1990 onwards, appeared in [137].2 ModelsThere are a number of very good descriptions of distributed models of computation, including motivationand formal de�nitions [47, 224, 234]. Here, we shall only briey mention some aspects of these models whichare necessary for the results we present.A distributed system consists of a collection of n processes that run concurrently. Each process executesa sequential algorithm and can communicate with other processes.There are di�erent ways processes can communicate. In message-passing models, processes send mes-sages to one another via communication channels. This is modelled by a graph, with processes representedby nodes, bidirectional channels represented by undirected edges, and unidirectional channels representedby directed edges. A correct channel behaves as a (FIFO) queue, with the sender enqueuing its messagesand the receiver dequeueing them. If the queue is empty, the receiver gets a special empty queue message.If message delivery is not instantaneous, the messages in the queue will not be immediately available to thereceiver.In shared-memorymodels, processes communicate by performing operations on shared data structures,called objects, of various types. The typewriter font is used to denote object types. Each type describesthe set of possible states of an object of that type, the set of operations that can be performed on the object,and the responses the object can return. At any time, an object has a state and, when a process performsan operation on the object, the object can change into a new state and return a response to the process. Forexample, a stack object stores a sequence of values in its state and supports the operations push and pop.A basic type of object is the register, which stores a value that can be read or written by all processes. Asingle-writer register is a restricted type of register to which only a single, �xed process can write.3



Similarly, only one �xed process can read from a single-reader register. A snapshot object stores anarray of values. Processes can scan the entire array to learn the value of every element in a single, atomicoperation and can update the value of individual elements. For each element in a single-writer snapshotobject, there is only one �xed process that can update it. An important class of object types are the read-modify-write (RMW) types [213]. A RMW operation updates the state of the object by applying somefunction, and returns the old value of the state. For example, the test&set operation is a RMW operationthat applies the function f(x) = 1, and fetch&add applies the function f(x) = x+1. Other RMW operationsinclude read and compare&swap. A RMW type is one where all permitted operations have this form.Consistency conditions describe how objects behave when accessed by several concurrent operations.One example is linearizability [181], which requires that operations appear to happen instantaneously atdistinct points in time, although they may actually run concurrently. Furthermore, the order in which theoperations appear to happen must be consistent with real time: if an operation terminates before anotheroperation begins, then it will occur earlier in the order. Many other consistency conditions have been studied[13, 16, 39, 149, 183, 186, 221, 255].A linearizable object type is deterministic if the outcome (i.e. the response and new state) of eachoperation with speci�ed input parameters is uniquely determined by the object's current state. Non-deterministic types may have more than one possible outcome for an operation in some states. Algorithmsthat use non-deterministic objects must work correctly for all possible outcomes.In randomized algorithms, a process may have many choices for its next step, but the choice is madeaccording to some probability distribution. Generally, for randomized algorithms, termination is requiredonly with high probability and one considers worst-case expected time, rather than worst-case time. Non-determinism in the shared objects (or other parts of the computing environment) makes problems harder tosolve, while allowing randomization in the algorithm can make problems easier to solve.Ordinarily, it is assumed that each process has a unique name, called its identi�er. Comparison-basedalgorithms only use identi�ers by comparing their values. Other algorithms may use process identi�ers toindex shared arrays or control which pieces of code are executed. An anonymous system is one in whichprocesses have identical code and do not have identi�ers.When a system is synchronous, all processes take steps at exactly the same speed. If the speed of eachprocess may vary arbitrarily during an execution, the system is asynchronous. Synchronous computationproceeds in synchronous rounds. In each round, every process takes exactly one step. Synchronous shared-memory systems have been studied extensively using the parallel random-access machine model (see [269])and mostly lie outside the scope of this survey. In synchronous message-passing models, messages sent in oneround are available to be received in the next round. Typically, in one step, a process dequeues one messagefrom each of its incoming channels and enqueues at most one message on each of its outgoing channels.Asynchronous computation is generally modelled by an adversarial scheduler that chooses the order in whichprocesses take steps. In one step, a process can either send a single message, receive a single message, oraccess a single shared object. Asynchronous algorithms must work correctly for every legal schedule. Inpartially synchronous or semi-synchronous models, processes may also run at di�erent speeds, butthere are bounds on the relative speeds of processes (and on message-delivery times for message-passingsystems).In synchronous systems, time is measured by the number of rounds. In asynchronous and partiallysynchronous systems, there are several ways to measure time [47, 234, 257]. The step complexity countsthe maximumnumber of steps taken by a single process. Work counts the total number of steps taken by allprocesses. Asynchronous computation can also be divided into asynchronous rounds, where a round endsas soon as every process has taken at least one step since the beginning of the round. The round complexitycan be less than step complexity, because some processes may take multiple steps per round.In message-passing systems, the total number of messages transmitted during an execution of an algorithmis an important measure of the algorithm's complexity. This is called its message complexity. Thebit complexity counts the total number of bits in these messages. Some algorithms with small messagecomplexity are, in fact, very ine�cient, because they send very long messages.Many di�erent kinds of faults are considered in distributed systems. Processes may fail and perhapsrecover, their states can become corrupted, or they can behave arbitrarily. The latter kind of fault is calledan arbitrary process fault or a Byzantine fault. An algorithm in a model with arbitrary process faultsmust work correctly no matter how faulty processes behave. This type of fault is useful for modelling4



malicious attacks or situations in which the faults that can occur are di�cult to characterize. Arbitraryprocess faults are not usually considered for shared-memory systems, since a faulty process can corrupt theentire shared memory. A crash failure is when a process fails by halting permanently.In an f-faulty system, there are at most f faulty processes, so an f-faulty system is f 0-faulty, for allf 0 � f . An algorithm that works correctly in an f-faulty system, i.e. can tolerate up to f process faults,is called f-resilient. Thus an f-resilient algorithm is f 0-resilient, for all f 0 � f . A wait-free algorithmensures that every non-faulty process will correctly complete its task, taking only a �nite number of steps,even if any number of other processes crash. Thus, in a system of n processes that are subject only to crashfailures, wait-freedom is the same as (n�1)-resilience. For randomized algorithms, wait-freedom means thatthe expected number of steps needed by a process to complete its task is �nite, regardless of the number offailures.Communication channels can also fail in many di�erent ways: They can crash or they can lose, delay,or duplicate messages, or deliver them out of order. One way to model a communication channel that canlose messages is to consider that the process at one endpoint fails to send or receive certain messages thatit is supposed to. Such a process is said to have an omission fault. Another way to model message lossesin synchronous message-passing systems is allow at most a certain number messages to be lost each round,but the communication channels on which these losses occurs may change from round to round. These arecalled dynamic omission faults. Finally, shared objects can fail to respond (i.e. crash), have their statescorrupted, or behave contrary to their type speci�cations.Throughout this paper, unless we state otherwise, we assume that all objects deterministic, linearizable,and non-faulty, all communication channels are non-faulty, all algorithms are deterministic, and processesonly have crash failures.Processes in a shared-memory distributed system are provided with some basic primitive objects thatthey can use to communicate with one another. Any other types of shared objects that a programmerwishes to use must be implemented from those primitives. Thus, one of the fundamental issues in the studyof distributed computing is determining the circumstances under which such implementations are possible.An implementation provides, for each process, a programme that it can execute to perform each possibleoperation on an object of the type being implemented. Before an execution of this programme terminates, itshould produce a response to the operation. In any legal execution where processes concurrently execute theprogrammes for various operations, the responses provided should satisfy the desired consistency conditions.For example, consider a linearizable implementation of an object. Then, for any execution, there exists alinear order of the simulated operations so that the correct responses for these operations are the same as inthe execution. Furthermore, if the programme for one operation has �nished executing before the executionof the programme for another operation begins, the latter operation comes later in the linear order. (See[234] for more formal de�nitions of implementations.) Examples of implementations can also be found in[47], including a series of wait-free implementations to construct snapshot objects from single-writer,single-reader registers. This means that the di�erent types of registers and snapshot objects areequivalent in terms of the wait-free solvability of problems using these objects.A related notion is that of a simulation of model A by model B. Intuitively, such a simulation describeshow any algorithm designed for a collection of processes in model A can be adapted so that a collectionof processes can execute it in model B. To distinguish the simulating processes from the simulated ones,we refer to the processes of model A as threads and the processes of model B as simulators wheneverwe describe simulations. The two models may be quite di�erent. For example, they might use di�erentcommunication media, have di�erent synchrony assumptions or permit di�erent numbers of faults. Usually,each simulator simulates the actions of one thread, but this is not always the case. The simulation shouldspecify the programme a simulator must execute to simulate a step of a thread, and also how the simulatorcan determine the outcome of the simulated step. In cases where a simulator simulates several threads, thesimulation should also describe how a simulator chooses which thread's step it should simulate next. Supposethe simulation is used to simulate an algorithm � designed for model A. For any execution of the simulationthat is legal in model B, there must exist a corresponding execution of � that is legal in model A such thatthe response to each step of each thread is identical to the response computed by the simulation.5



3 Distributed ProblemsIn this section, we de�ne a number of important and well-studied problems in the theory of distributedcomputing. Impossibility results concerning these problems will be presented in subsequent sections.3.1 ConsensusThe consensus problem is the most thoroughly investigated problem in distributed computing and it isused as a primitive building block for solutions to many distributed problems. Consensus is an exampleof a decision task, in which each process gets a private input value from some set and must eventuallyterminate after having produced an output value. The task speci�cation describes which output values arelegal for given input values. For consensus, there are two correctness properties that must be satis�ed:Agreement: the output values of all processes are identical, andValidity: the output value of each process is the input value of some process.In models where arbitrary faults may occur, these properties are weakened and apply only to correct pro-cesses, since one cannot guarantee anything about the behaviour of faulty processes. The de�nition of theconsensus problem was carefully designed so that it is extremely simple to state, yet captures much ofthe di�culty of designing algorithms that allow processes to solve problems cooperatively. In the binaryconsensus problem, all input values come from the set f0; 1g.Consensus is an excellent problem to use for a systematic study of solvability, since Herlihy [169] showedthat it is universal: a shared-memory system equipped with registers and objects that can solve wait-freeconsensus can implement any other object type in a wait-free manner.Object types can be classi�ed according to the ability of an asynchronous shared-memory distributedsystem to solve consensus using them. Speci�cally, the consensus number cons(T ) of a set of objecttypes T is the maximumnumber of processes for which wait-free consensus can be solved using any numberof objects in T and registers [169, 192]. The consensus number cons(T) of an object type T iscons(fTg). Suppose cons(T) < cons(T0). It follows from the de�nition of consensus numbers that T0 cannotbe implemented in a wait-free manner from objects of type T and registers (in a system of more thancons(T) processes). On the other hand, T has a wait-free implementation from objects of type T0 andregisters, for up to cons(T0) processes, by Herlihy's universality result. Thus, this classi�cation, called theconsensus hierarchy, gives a great deal of information about the relationships between di�erent modelsof asynchronous, shared-memory systems. However, the consensus number of an object type does notcompletely describe the power of a shared-memory model that provides objects of that type and registers.For example, there are object types T and T0 with consensus numbers 1 and n, respectively, such that 2-setconsensus (de�ned in Section 3.3) has a wait-free solution for 2n+ 1 processes using objects of type T andregisters, but not using only objects of type T0 and registers [267]. Thus the power of two types T andT0 can be incomparable in a system of more than max(cons(T); cons(T0)) processes.In randomized consensus, both the agreement and validity properties must be satis�ed, but thetermination condition is weaker: for any schedule, the expected number of steps taken by each non-faultyprocess must be �nite. This version of consensus can be solved in a wait-free manner by a randomizedalgorithm using only registers in an asynchronous system [98, 1]. Thus, for randomized computation, theconsensus hierarchy collapses into a single level.3.2 Approximate AgreementAllowing processes to disagree by a small amount results in a signi�cantly easier problem. In the approx-imate agreement problem, input and output values are real numbers. There is a tolerance parameter, �,known by all processes. The agreement and validity conditions of consensus are replaced by�-Agreement: the output values of all processes are within � of one another, andValidity: the output value of each process must lie between the minimum and maximum inputvalues. 6



In the case of arbitrary faults, the conditions constrain only the non-faulty processes and the validity conditionis strengthened to require all outputs to be within the range of inputs of correct processes, to ensure thatmalicious processes cannot cause arbitrary outputs. The convergence ratio � of an approximate agreementalgorithm is the worst-case ratio of the size of the range of the output values (of correct processes) to thesize of the range of the input values. If the size of the range of the input values is R, then � � �=R.Approximate agreement arises in algorithms for clock synchronization, where processes are assumedto have separate physical clocks that can start at di�erent times or can run at di�erent rates. The object ofclock synchronization is for processes to compute adjustments to their physical clocks so that the adjustedclocks of non-faulty processes remain close to one another and within the range of the physical clocks.3.3 Other Agreement ProblemsThe terminating reliable broadcast problem is a version of consensus where only one process, the sender,has an input which it must communicate to all other processes in the system. The agreement conditionis the same as for consensus, but the validity condition only requires that the output values of non-faultyprocesses must be the sender's input value, if the sender is non-faulty. This problem is also called Byzantineagreement. It is typically studied in synchronous systems when processes can have arbitrary faults, insteadof just crash failures. Relationships between consensus and terminating reliable broadcast in various message-passing models are discussed by Hadzilacos and Toueg [163]. For example, in synchronous models, theterminating reliable broadcast problem can be reduced to consensus by having the sender send its input toall other processes in the �rst round.Restricted versions of the terminating reliable broadcast and consensus problems in which all processesmust produce their output values in the same round are called simultaneous terminating reliable broad-cast and simultaneous consensus, respectively. Simultaneous consensus is also called coordinated at-tack. These problems are well-de�ned only for models in which processes run synchronously.A common assumption when solving problems in synchronous systems is that all processes start at thesame time. One problem that addresses this assumption is wakeup [142], where some number of processesmust detect when su�ciently many processes have begun taking steps. Another is the distributed �ringsquad problem, which requires that all processes execute a special \�re" command in the same round, eventhough they may start at di�erent rounds.There are close connections between consensus and other problems. One such problem is leader election,where there are no inputs, exactly one process (called the leader) must output 1, and all other processesmust output 0. If a system can solve consensus, then it can also solve leader election: each process uses itsown unique identi�er as an input to consensus, and processes agree on the identity of the leader. Conversely,if one requires that a process inform all others of its identity before proclaiming itself a leader, one can solveconsensus by using the leader's input value as the common output value. Thus, impossibility results for thetwo problems are closely related.The k-set consensus problem, introduced by Chaudhuri [92], is similar to the consensus problem, butrelaxes the agreement property. Instead of requiring that all output values are identical, it requires thatthe set of output values produced has cardinality at most k. Thus, consensus is the special case of k-setconsensus where k = 1.Many variants of the consensus and set consensus problems, with slightly di�erent agreement and validityproperties, have been studied [109, 138, 140, 163, 216, 234, 254]. One example is the commit problem. Itis a version of binary consensus, where the validity condition requires that, if any input value is 0, the outputvalue of each process must be 0 and, if all input values are 1 and there are no faults, the output value of eachprocess must be 1. This problem arises when maintaining consistency among several copies of a databaseas updates occur. In this case, the output value 1 denotes the commit to an update and the output value 0denotes that the update is to be aborted. The speci�cations of this problem allow any process to abort anupdate unilaterally.In the choice coordination problem [265], each process must choose the same shared option fromamong k alternatives. Each alternative has an associated shared object, but there are no global names forthe alternatives (or objects): each process has its own local names for them. In the group membershipproblem [97], processes must maintain a consistent view of a set containing process identi�ers as processesmake requests to add or remove their own identi�ers.7



3.4 Resource AllocationAn extremely well-studied distributed computing problem is mutual exclusion, introduced by Dijkstra[111]. It is an abstraction of the problem of sharing a resource, for example, a printer, to which processesneed temporary exclusive access. A process which has this access is said to be in the critical section ofits code. Processes may repeatedly compete for permission to access the resource. A correct algorithmensures that two or more processes are never simultaneously in their critical sections. There is also a livenessproperty,Deadlock Freedom: if some process wants the resource and no process has permission to accessit, then, eventually, some process will be given permission.Various fairness conditions have also been considered, for example,Lockout Freedom: if some process wants the resource, then, eventually, it will be given permission.The k-assignment problem [80] is a generalization of mutual exclusion in which there are k < n identical,named resources that may be requested by the n processes. Requesters must determine the name of one ofthe resources in such a way that no two processes choose the same resource at the same time.The dining philosophers problem [112] is another related resource allocation problem: the processesare arranged in a ring, each pair of adjacent processes share a resource, and each process sometimes requiressimultaneous exclusive access to both the resources it shares. Variants of this problem where a resourcecan be shared by more than two processes and processes may have di�erent sets of required resources havealso been considered [55, 91, 203].In the renaming problem, each participating process is initially given a unique identi�er from a largename space. They must all select unique identi�ers from a smaller name space. In order-preservingrenaming, the two name spaces are ordered and the identi�ers of the processes must have the same relativeorder in each. The renaming problem has applications in improving the e�ciency of algorithms: If analgorithm's complexity depends on the size of the name space, one can use renaming to reduce this sizebefore the algorithm is executed.Sometimes, the processes, themselves, are the resources that must be allocated. In the task assignmentproblem, each of the tasks in some set must be chosen by at least one process, with each process choosing atmost one task. A related problem is write-all, where a set of registers, each initially 0, must each havevalue 1 written to it by one or more of the n processes. This is a representative instance of the more generalproblem of ensuring that a set of idempotent tasks are all performed.4 Proving Impossibility ResultsThis section discusses issues that arise when proving impossibility results and a variety of proof techniques.In subsequent sections, we give many examples of results proved using these techniques and, in some cases,explain them more fully in the context of particular examples.To prove that no algorithm can solve a particular problem or solve it e�ciently, it is necessary to de�nethe model of computation and the class of allowable algorithms. These de�nitions will be used repeatedlyin proofs of impossibility. It will be apparent from many of the results in this survey that the di�culty ofmany problems depends on precisely which model is being used.Without a clear and precise de�nition of the model, ambiguities and subtle errors can arise. The useof formal models forces people to make their assumptions explicit. This helps to expose subtle di�erencesin assumptions, which often lead to many variations of models, with corresponding, di�erent results. Inturn, such results help us to understand our models better and to converge on good sets of assumptions[97]. In fact, some of the early papers containing impossibility results for distributed computing included theformulation of correctness conditions and directly led to the development of formal models for distributedcomputing [4, 79, 108, 235]. There is another bene�t to carefully stating the assumptions about the modelthat are necessary for the impossibility proof to work: once the assumptions are identi�ed, one can look foralgorithms that beat the impossibility result by operating in a model where one or more of the assumptionsdo not hold. 8



Models should be simple so as to be feasible to work with, interesting to work on, and applicable to avariety of real implementations. In choosing models, one should follow the dictum of Ludwig Mies van derRohe: \Less is more" [244]. When trying to establish an impossibility result, it is often helpful to simplify themodel as much as possible, while ensuring that the simpli�cations have not weakened the model, and thenprove impossibility in the streamlined model. Showing that the simpli�ed model can simulate the originalone is a good way to show that the model has not been weakened. Furthermore, impossibility results provedfor strong models are better than the same results proved for weak models. This is because an algorithmdesigned for one model automatically works in a stronger model, so an impossibility result for a strongermodel automatically applies to a weaker model.Impossibility results are always proved for a class of algorithms. A lower bound or unsolvability result for aclass trivially applies to any subclass. Sometimes, the proofs are easier for a restricted class of algorithms, forexample, comparison-based algorithms. Such proofs can help our understanding of the problem and provideinsight for more general results. If algorithms in a restricted class can simulate more general algorithms, thenimpossibility results proved for this restricted class also imply impossibility results for the more general class.For example, it is sometimes helpful to assume that each process remembers its entire history and sends thisinformation whenever it communicates with another process or writes to a register. Such algorithms arecalled full-information algorithms. A full-information algorithm can simulate an algorithm that is notof this form by having processes ignore some of the information they receive. Showing that a problem hasno full-information algorithm also automatically implies that it has no algorithm that uses more realisticresources, such as bounded message lengths or bounded size registers, and a limited amount of localcomputation in each step.Precise problem statements are just as important as precise descriptions of the model. Elegant, simpleproblem statements are much easier to use in impossibility proofs. Complex, specialized problems, even whenthey arise from real systems, are unlikely to be good choices. Instead, one needs to extract simple prototypeproblems, prove impossibility results about them, and then use (often simple) reductions from them to obtaincorresponding impossibility results for the original complex problem. Results about well-chosen problemsare more likely to be fundamental.Arriving at a good statement of a problem can be an iterative process. It is easy to make the problemstatement too strong, in which case impossibility results might hold for trivial reasons. (For example, considera problem that requires that every process requesting exclusive access to a shared resource eventually gets it,but does not say that, whenever a process has a resource, it must eventually release the resource.) It is alsoeasy to make the problem statement too weak, in which case, trivial counter-example algorithms can arise.(For example, requiring all processes to output the same value is easy if no other constraints are imposed:they can always simply output 0.) This iterative process may eventually lead to an interesting problemstatement and a corresponding impossibility result or algorithm. Assumptions that are not needed can beeliminated, so that the proof is based on the weakest possible set of requirements.Papers will often present algorithms for a di�cult version of a problem using a weak model of computation,and then prove matching complexity lower bounds for an easier version of the problem in a stronger modelof computation. Results stated in this way show that the complexity of the problem is insensitive to smallchanges in the model or problem statement. They can also point out aspects of the problems that are notimportant and features of the models that do not a�ect the solution.When faced with the question of whether or not a problem is solvable or e�ciently solvable in a particularmodel, one usually begins by trying to devise an algorithm. If this fails, one might start to look for animpossibility proof by trying to �nd a reduction from some other problem that is already known to be hard.This paper gives you many candidates. Another simple approach to proving impossibility is to show thatthe model of computation being considered is weaker than some model in which the problem is known tobe hard. These approaches usually provide some intuition about what makes the problem di�cult. One canthen alternate between working on an algorithm and trying to prove impossibility. If there are di�cultiesthat arise persistently, causing candidate algorithms to fail or perform ine�ciently, it might be possibleto produce an impossibility result by showing that these di�culties cannot be avoided by any algorithm.Similarly, if the same obstacle foils all attempts at an impossibility proof, it may suggest an algorithm thatcan exploit this loophole. 9



4.1 Proof TechniquesThere is one fundamental idea underlying all of the proofs of impossibility results for distributed computing:\the limitations imposed by local knowledge" [233]. In order to solve distributed computing problems,processes have to learn about the rest of the system. We get unsolvability results and lower bounds byshowing this is impossible, either outright or with a limitation on resources.A process may have incomplete knowledge of the system because it does not initially know the inputs ofother processes or because of asynchrony or faults. The process may not be able to learn about other partsof the system quickly because of the distance information must travel or limitations on the communicationmedium, such as the size of the shared memory.Indistinguishability is one way of formalizing this lack of knowledge. An important observation isthat, if processes see the same thing in two executions, they will behave the same way in both. A con�gu-ration describes a distributed system at some point during the execution of an algorithm: it consists of thestates of all processes and the state of the environment (i.e. the messages in transit for a message-passingsystem, or the states of all shared objects for a shared-memory system). Two con�gurations are said to beindistinguishable to a process if its local state is the same both con�gurations and the information that itcan access from the communication medium is the same in both con�gurations. When a sequence of stepscan be performed by a set S of processes starting from a particular con�guration, the sequence can also beperformed starting from any other con�guration that is indistinguishable to each process in S. Moreover,the two resulting con�gurations are indistinguishable to every process in S. If we can use indistinguishabilityto show that, for any algorithm, some process cannot distinguish two executions for which it must producedi�erent outputs, then we can conclude that no correct algorithm exists.One way to construct two indistinguishable executions in an asynchronous message-passing system isby stretching. Starting with a carefully chosen execution, the idea is to speed up some processes, slowdown others, and adjust message delivery times so that each process performs the same steps in the sameorder. In message-passing systems where all processes run at the same rate, shifting can be used instead:The operations of some processes are moved earlier, the operations of other processes are moved later, andmessage delivery times are adjusted appropriately.In a distributed system, there are often many executions that can arise and one algorithm must workcorrectly for all of them. Thus, for an unsolvability result, it su�ces to construct one incorrect execution.Similarly, for worst-case lower bounds, it su�ces to construct one execution which uses a lot of resources. Wethink of these executions as being constructed by an adversary. For example, in an asynchronous system,we use an adversarial scheduler to choose the order in which processes take steps. An adversary can alsochoose input values and decide when and where faults occur. The power of the adversary may be limited bythe de�nition of the model. For example, in an asynchronous system, a fairness condition might be imposedon the adversary requiring it to allocate an in�nite number of steps to every non-faulty process in everynon-terminating execution. In a partially synchronous system, the adversary must adhere to the bounds onthe speeds of the processes.An impossibility result obtained using a restricted adversary (i.e. one that can construct only a limitedset of executions) automatically implies the same result for more powerful adversaries. For this reason, it isbetter to prove a result using a restricted adversary. Furthermore, an appropriately chosen weak adversarycan clarify which aspects of the problem or model make the problem di�cult. The lower bound proofs forsimultaneous consensus discussed in Section 11.1 are good examples. Impossibility results with restrictedadversaries may also be easier to understand and have more elegant proofs (because there are fewer cases toconsider). The key to such proofs is coming up with the right adversary. One must discard any unnecessarycomplications while ensuring that the adversary is still strong enough to prove the desired result. Forexample, see the uni�ed unsolvability results for consensus in di�erent models in Section 5.2.In situations where there is a bound on the number of possible states of the shared memory, a badexecution can sometimes be found by considering a large number of di�erent reachable con�gurations. Thepigeonhole principle can be used to show that two of these con�gurations are indistinguishable to somegroup of processes. Then, an adversary can construct a sequence of steps of these processes starting at oneof these con�gurations, but which violates a correctness condition when started at the other. More generalcombinatorial arguments can also be used to prove the existence of bad executions. For example, onemight count the number of possible executions to show that two of them are indistinguishable if the space10



or time used is too small.Sometimes an adversary can construct executions in which a sequence of steps by a set of processes canbe hidden from the other processes, i.e. removing these steps from the execution yields a �nal con�gurationthat is indistinguishable to the other processes. For example, consider an execution in an asynchronoussystem where processes communicate through shared registers, such that, from some con�guration C, allsteps are performed by processes from a set P . If, immediately after C, the execution performs a write toeach register, then steps performed immediately before C by processes not in P will be hidden from theprocesses in P . More generally, a process covers an object in a con�guration if the process will write tothe object (or perform an operation that will obliterate any information previously stored in the object)whenever it is next allocated a step by the scheduler. In covering arguments, introduced by Burns andLynch [77], an adversary carefully constructs an execution ending in a con�guration where all the sharedobjects are covered. The adversary extends this execution with steps by certain processes. Then oneprocess covering each object performs its next step. These operations hide the extension of the executionfrom other processes. Speci�cally, the resulting con�guration and the con�guration obtained by performingthese operations immediately after the execution (without the extension) are indistinguishable to the otherprocesses. The adversary can then use this fact to construct a bad execution from one of these con�gurations.In anonymous shared-memory systems where processes communicate using registers, an adversary cantreat a group of processes with the same input values as clones, running them together in lock step. Theseprocesses always read the same values from the same registers and write the same values to the sameregisters so they remain in the same state as one another. No process in such a group can detect thepresence of any of its clones, so it has no knowledge of the size of the group and will behave as if the groupconsisted of it alone. Clones are useful in covering arguments, since an adversary can delay one process ofthe group just before it is about to write and use it to cover a register.Another way to �nd a bad execution for an algorithm is to paste together information from several execu-tions, started from di�erent, carefully selected initial con�gurations. An adversary chooses these executionsso that each process �nds certain pairs of the executions indistinguishable. Such proofs are called scenarioarguments. Sometimes, for reasons of clarity, these executions are described implicitly, by giving a simpleway of generating them in a (possibly di�erent) system.A chain argument is a particularly useful approach for agreement problems such as consensus. Considera chain (i.e. a sequence) of executions such that, for any two adjacent executions in the chain, the resultingcon�gurations are indistinguishable to some processes. If processes output di�erent values in the �rst andlast executions, then there must also be two adjacent executions in this chain where processes output di�erentvalues. This leads to a contradiction, since processes that cannot distinguish between these two executionsmust produce the same output values in both. Sometimes these chains are constructed inductively, and maybe quite long and complicated.Formal notions of knowledge can be used to show that, in a precise sense, common knowledge cannot begained in some asynchronous systems [166]. The structure of the proofs is similar to some chain arguments.Knowledge-based arguments are also used to show lower bounds on how fast common knowledge of certainfacts can be achieved in synchronous systems.The valency argument has become the most widely-used technique for proving that consensus andrelated problems are impossible in various models of distributed computing. It was introduced by Fischer,Lynch and Paterson [141] to prove that consensus is unsolvable in an asynchronous message-passing sys-tem, even when message delivery is reliable, if there is the possibility of even a single process failing (seeSection 5.1). Chor, Israeli and Li [98], Loui and Abu-Amara [230] and Herlihy [169] adapted the valencyargument to show impossibility results for several asynchronous shared-memory models (see Section 5.2).The proofs classify each con�guration of the system as either univalent, if all executions starting from thecon�guration produce the same output, ormultivalent, if there are at least two executions starting from thecon�guration that produce di�erent outputs. There are two parts to a valency argument. The �rst part isto show that every algorithm has a multivalent initial con�guration. This typically follows from the problemspeci�cations, often via a chain argument. The second part is to show that from every multivalent con�g-uration there is a non-empty execution that results in a multivalent con�guration. This is usually provedby contradiction. Attention is focused on the point in an execution where the outcome of the algorithm isdetermined. One assumes the existence of a critical con�guration, a multivalent con�guration such thatall con�gurations that can be reached from it are univalent. Then one argues, usually case by case, that11



any possible steps by processes after the critical con�guration will result in a contradiction of the de�nitionof the critical con�guration. These two parts imply the existence of an in�nite execution containing onlymultivalent con�gurations, which contradicts termination conditions of the problem. One must also ensurethe in�nite execution satis�es all fairness constraints of the model. Valency arguments have been adaptedto prove unsolvability results for shared-memory systems with non-deterministic objects and lower boundsin synchronous systems and for randomized algorithms.Symmetry arguments prove impossibility results by showing that several processes must performsimilar actions. Lewis Carroll gave a succinct example in 1872: \ `But if everybody obeyed that rule,' saidAlice, who was always ready for a little argument, `and if you only spoke when you were spoken to, andthe other person always waited for YOU to begin, you see nobody would ever say anything" [83]. Acentury later, Rosenstiehl, Fiksel and Holliger [272] used symmetry arguments in the context of distributedcomputing. These arguments are particularly useful for models with anonymous processes or for comparison-based algorithms. They can often be applied even when there are no faults in the system and when processesbehave synchronously. The proofs focus attention on processes that are in the same state (or, more generally,in states in which they behave the same way). The processes retain this property, provided they continueto receive the same (or su�ciently similar) information. For example, in a ring of anonymous processes,deterministic leader election is impossible, because there is no way to break initial symmetry [26]. Similararguments can be used to show the impossibility of solving resource-sharing problems, such as the diningphilosophers problem [266]. Lower bounds on time complexity can be obtained by starting with a highlysymmetric con�guration and bounding the rate at which the symmetry decreases. Each time one processmust send a message, an adversary can force all similar processes to send messages too, yielding good lowerbounds for message complexity. Some symmetry arguments designed for comparison-based algorithms canbe extended to more general algorithms using Ramsey theory techniques, provided process identi�ers orinput values can be chosen from a very large set.In networks, some lower bounds on message complexity rely on the observation that it takes manymessages to get information from one process to distant processes. These are called distance arguments.Similarly, it takes a long time to collect information from many di�erent processes in both message-passingand shared-memory systems. An information-theoretic approach begins by carefully de�ning a measureof information (e.g., the number of input values that inuence the state of the process at a given point intime). Then a recurrence is used to describe how much the information can increase in a process or sharedobject as a result of a single step. In synchronous models, information-theoretic arguments are complicatedby the unexpected ways such information can be acquired. For example, information can be conveyed fromone process to another by the fact that a message was not sent in a particular round. Cook, Dwork andReischuk [106] dealt with similar issues in the context of lower bounds for synchronous parallel computation.A systematic approach to understanding the computational power of di�erent models is to obtain simu-lations of some models by others. This allows results derived in one model to be extended to other models.For example, suppose that one system A can simulate another system A0. This means that any algorithmdesigned for system A0 can be converted into an algorithm that solves the same problem in A. Thus, aproblem that has been proved unsolvable in A, is also unsolvable in A0. Similarly, lower bounds in A implylower bounds in A0, although the bounds obtained for A0 may be smaller, depending on the e�ciency of thesimulation. As is the case for sequential computation, reductions from problems that are known to be hardor unsolvable are useful for obtaining additional impossibility results.The topology of geometric objects called simplicial complexes has been applied very e�ectively to obtainimpossibility results for distributed tasks. One can represent the computation of an algorithm by a complexcalled the protocol complex. It can be shown that all protocol complexes for a particular model ofcomputation have certain topological properties. One can also represent a distributed task by a map froma complex representing the possible inputs to a complex representing the possible outputs. When thereexists an algorithm to solve a given task in a given model, there is a decision map from the correspondingprotocol complex to the output complex, satisfying certain properties. Topological arguments can then beused to show that such decision maps cannot exist. This technique is described in greater detail in Section8. Giving a characterization of the set of solvable problems for a particular model is a good way to showunsolvability for many problems in a systematic way. Some important characterizations have been givenusing topological arguments. Others describe algebraic properties of functions that can be computed or12



objects that can be implemented. Some characterizations describe how the solvability of a problem dependson the set of allowable inputs: if the inputs are su�ciently restricted, an unsolvable problem may becomesolvable. One can also characterize the types of shared objects that can be used to solve a particularproblem.When proving one model is more powerful than another, constructive arguments are often e�ective.The idea is to construct a carefully tailored problem that is easy to solve in the �rst, but di�cult or impossibleto solve in the second. To prove impossibility results about a class of objects, it su�ces to construct anobject in the class that demonstrates the di�culty. Some lower bounds show there is no algorithm solvinga problem that works well on all networks. One way to do this is to construct a network, specially designedto have bad properties, which can be exploited by an adversary to force algorithms working on the networkto be ine�cient.A �nal important technique for the study of impossibility results is the construction of counter-examplealgorithms [233]. These are algorithms that are not necessarily practical, but they point out the limitationsof existing impossibility results, by �nding ways of circumventing them. They can also be counter-examplesto impossibility conjectures. In the same way that lower bounds tell us we should stop looking for betteralgorithms, counter-example algorithms tell us we should stop looking for better lower bounds.5 Unsolvability of Consensus and Other ProblemsOne of the earliest impossibility results in distributed computing concerns the two generals problem: aversion of consensus for two processes in a message-passing system where messages can be lost. Ordinaryconsensus is clearly unsolvable if all messages can be lost. So, in the two generals problem, the problemspeci�cation is weakened so that validity must hold for fault-free executions, but need not hold for executionswhere messages are lost. (Agreement and terminationmust still hold for all executions.) In 1978, Gray provedthat the two generals problem is unsolvable [154, 233]. The proof can be formalized as a chain argumentthat establishes the result even for synchronous systems. Suppose there is an algorithm for solving the twogenerals problem. Consider an execution with reliable message delivery in which both processes have initialvalue 0 and, hence, output 0. A chain of executions is constructed: each execution is obtained from theprevious one by removing the last message-receipt event (i.e. the message is lost). Each execution cannot bedistinguished from the previous one by the sender of the lost message. For the last execution in the chain,both processes have value 0, but no messages are received. Then add one additional execution to the chain:the �rst process has initial value 0, the second process has initial value 1 and no messages are received. Ineach execution, the two processes must output the same value. Since each pair of consecutive executionsin this chain is indistinguishable to one of the two processes, it follows that both processes must output 0in all executions in this chain. Similarly, there is a chain of executions that starts with an execution withreliable message delivery in which both processes have initial value 1 and ends with an execution in whichthe �rst process has initial value 0, the second process has initial value 1, and no messages are received.Both processes must output 1 in all executions in this chain. This is a contradiction, since the last executionin both chains is the same.5.1 Asynchronous Message-Passing ModelsThere is no 1-resilient solution to terminating reliable broadcast in asynchronous message-passing systems,even if only crash failures may occur: If the sender is very slow, the other processes must output theirvalues before any of them have received a message from the sender. An adversary can then ensure that thesender's input is a di�erent value. A similar adversary argument is used to prove that the commit problemis unsolvable in an asynchronous system, even if process crashes may only occur before the �rst step of anyexecution [291].Halpern and Moses [166] introduce formal notions of knowledge for the study of distributed systems.Using essentially the same chain argument as for the two generals problem, they show that, in a precisesense, common knowledge cannot be attained when message delivery is unreliable or there is no upperbound on the time for messages to be delivered. Then they prove that common knowledge is necessary forsimultaneous consensus. Hence, this problem is unsolvable unless message delivery is guaranteed within abounded amount of time. 13



A similar chain argument is used by Koo and Toueg [209] for studying asynchronous systems withtransient message losses (i.e. there is no in�nite execution where the same message is sent repeatedly alonga communication channel, but is never received). They show that, in this model, common knowledge can beachieved, but any algorithm that satis�es even a weak form of termination cannot guarantee any transfer ofknowledge. In particular, consensus is not solvable in this model.Fischer, Lynch and Paterson [141] developed the valency argument to give the �rst proof that 1-resilient(and, hence, wait-free) binary consensus is impossible in an asynchronous message-passing system withreliable message delivery. They considered a strong model where, in one atomic step, a process can receivea message (or �nd out that no messages are available for delivery), perform local computation, and send anarbitrary �nite set of messages to other processes. A lower bound in this model automatically applies tothe standard message-passing model. Here, we demonstrate the technique by proving the unsolvability ofwait-free binary consensus in a standard message-passing model with send steps and receive steps.Suppose a consensus algorithm has a critical con�guration C. (See Section 4.1 for the de�nitions of termsused in valency arguments.) Then, from C, there is a step s0 that leads to a univalent con�guration C0 fromwhich all executions output only 0 and a step s1 that leads to a univalent con�guration C1 from which allexecutions output only 1. Two di�erent possible cases for s0 and s1 are illustrated in Figure 1. The outputslabelled by ? cause contradictions no matter what value they have.
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because the adversary must ensure that this non-terminating execution has at most one failure and all otherprocesses take an in�nite number of steps. By examining a well-chosen problem, Fischer, Lynch and Patersonobtained an elegant impossibility result which was later adapted to prove results in many other models ofdistributed systems.In contrast to their impossibility result, Fischer, Lynch and Paterson also present an f-resilient consensusalgorithm, for f < n=2, provided faulty processes take no steps (i.e. crashes occur only before the �rst stepof any execution). This shows that it is not the occurrence of faults that makes consensus unsolvable in anasynchronous message-passing system, but, rather, it is the uncertainty of when these faults might occur.Dolev, Dwork and Stockmeyer [117] extended the work of Fischer, Lynch and Paterson by consideringhow the solvability of consensus is a�ected by �ve properties of a message-passing system: whether thereis a bound on relative process speed, whether there is an upper bound on message delivery time, whethermessages to each process are received in the order in which they were sent, whether a process can send morethan one message in a single step, and whether a process can receive and send in a single step. Using valencyarguments, they proved that certain combinations of these properties make 1-resilient or 2-resilient consensusunsolvable. They also provided wait-free consensus algorithms in models with the remaining combinationsof properties, and 1-resilient consensus algorithms for those models where they had proved the impossibilityonly of 2-resilient consensus. For example, wait-free consensus is solvable is an asynchronous system in whicha process can send and receive multiple messages in a single step and there is an upper bound on the messagedelivery time known to all processes. However, if this model is changed to allow arbitrary process faults,then Attiya, Dolev, and Gil [33] showed, using a valency argument, that consensus becomes unsolvable, evenif the validity condition is only required to hold when all processes are non-faulty and have the same inputvalue. Interestingly, if they replace validity with a non-triviality condition (i.e. two di�erent output valuescan occur), they show that any number of arbitrary process faults can be tolerated.Welch [297] shows how an asynchronous message-passing system can simulate a message-passing systemwith synchronous processes, but no bounds on message delivery time. Combined with the fact that 1-resilient consensus is unsolvable in the former model, this gives a di�erent proof that 1-resilient consensus isalso unsolvable in the latter model.5.2 Asynchronous Shared-Memory ModelsChor, Israeli and Li [98], Loui and Abu-Amara [230], Abrahamson [1], and Herlihy [169] adapted valency ar-guments to show that wait-free consensus is unsolvable for two processes that communicate using registers.Using slightly more complicated valency arguments, Loui and Abu-Amara extended this result to show that,for n > 2 processes, 1-resilient consensus is unsolvable when processes communicate using registers andthat 2-resilient consensus is unsolvable using shared-memory systems in which objects have only two states,for example, test&set objects. Herlihy proved that queues have consensus number 2. This line of researchwas carried further to give characterizations of the types of shared-memory objects that are capable of solvingwait-free consensus. See Section 7.2 for results of this type. Herlihy also showed that an array of registershas increased power if processes can access several elements of the array in a single atomic action: if a processcan atomically assign values to m > 1 di�erent elements, the consensus number becomes 2m � 2. This wasthe �rst example of an object type whose consensus number was greater than two but still �nite. Merrittand Taubenfeld [242] generalized this result to show that consensus can be solved in the presence of up to fcrash failures using such an array if and only if f � max(2m � 3; 0). They also gave a lower bound on thenumber of elements needed in the array to do so. Interestingly, if the m registers accessed by an atomicoperation must be adjacent in the array, Kleinberg and Mullainathan [208] have shown that the consensusnumber is 3, rather than 2m� 2, for all m � 3.In most cases, the part of a valency argument that shows no critical con�guration can exist amountsto showing that some process cannot always learn enough about which step was taken immediately afterthe critical con�guration to decide on an output value. For example, in Figure 1(b), the information aboutwhich step was performed �rst is destroyed by having process P crash. Sometimes, the adversarial schedulermust construct much more complicated executions to destroy this evidence. For example, consider Herlihy'sproof that three-process consensus cannot be solved using queues [169]. If two processes enqueue di�erentvalues onto a queue just after the critical con�guration, processes must be made to dequeue those values (aswell as all values that precede them in the queue) to ensure that the order of the enqueue operations cannot15



be determined. Other types of faults can also be used to conceal information about the �rst operation thatis performed after the critical con�guration. This approach is used by Jayanti, Chandra and Toueg [196] toprove impossibility results in models where objects, instead of processes, fail.Afek, Greenberg, Merritt and Taubenfeld [10] also studied models where objects can fail. They showedthat consensus is impossible when processes communicate using any types of objects, if half the processescan crash and the states of half the objects can become corrupted. Assuming an algorithm exists, the proofconstructs two reachable con�gurations that are indistinguishable to half the processes. Both are obtainedfrom an initial con�guration where half the processes have input 0 and half the processes have input 1. The�rst con�guration is obtained by running the processes with input 0 until they all produce output values,and then corrupting half the objects so that their states are reset to their initial states. The processes withinput 1 do not take any steps. The resulting con�guration is univalent with output 0, since the values outputby the processes with input 0 must be 0. To construct the second con�guration, the processes with input 0crash before taking any steps and the other half of the objects are corrupted so that their values are the sameas in the �rst con�guration. The second con�guration is univalent with output 1. But this is impossible,since the two con�gurations are indistinguishable to the processes with input 1.Moses and Rajsbaum [250] gave a uni�ed framework for proving impossibility results, based on thevalency argument, that applies to both synchronous and asynchronous systems using either message passingor shared memory. Their approach is to restrict the adversarial scheduler to a nicely structured subset ofthe possible executions. For example, they showed that consensus is unsolvable if processes communicateusing only single-writer registers, even when processes are guaranteed to be scheduled in slightlyasynchronous rounds where, in each round, at least n� 1 processes each write to a register and then readthe values written in that round by at least n � 2 other processes. Lubitch and Moran [231] also used arestricted set of runs to obtain a uni�ed way of proving the impossibility of f-resilient consensus in a varietyof models. Recall that a valency argument works by showing that every multivalent con�guration must havea multivalent successor, in order to construct an in�nite execution where no process ever produces an output.However, when studying f-resilient consensus, one must also show that the in�nite execution produced hasat most f failures. Lubitch and Moran's restricted scheduler ensures that this is automatically true. Otherattempts to unify impossibility results for di�erent models include the work of Herlihy, Rajsbaum and Tuttle[177] (see Section 8.4) and Gafni [146].Taubenfeld and Moran [292] used a valency argument to provide a general impossibility result for alarge class of problems in asynchronous systems with crash failures, where processes communicate usingregisters. In particular, they show that there is no f-resilient algorithm for the consensus problem restrictedto input vectors in which the number of 0's and the number of 1's di�er by at least f . This version of consensuscan easily be solved in an (f � 1)-faulty system: each process waits until it has learned the input values ofn� f + 1 processes and then outputs the majority value. Mostefaoui, Rajsbaum, and Raynal [252] recentlygave an e�ciently decidable characterization of the sets of input vectors for which f-resilient consensusalgorithms exist. They also extended their results to message-passing systems.Malkhi, Merritt, Reiter and Taubenfeld studied shared-memory systems with arbitrary process faultsusing access control lists, speci�ed by the programmer, specifying which processes can access each sharedobject [236]. These lists limit the extent to which arbitrary process faults can corrupt the shared memory,making it possible to solve some problems. They used a simple indistinguishability argument to show that,in this model, f-resilient consensus cannot be solved if n � 3f (using any type of object). However, ifn � 3f + 1, the problem is solvable using sticky bits and registers [241].5.3 Bounds on the Number of Faults in Synchronous Message-Passing ModelsIn synchronous models, consensus and related problems are solvable even when arbitrary process faults canoccur, provided there are not too many faults. The earliest papers proved that, in complete networks wherearbitrary process faults can occur, terminating reliable broadcast is solvable if and only if less than n=3processes can fail [116, 225, 260]. Scenario arguments are used to prove the lower bounds.The following version of the argument, by Fischer, Lynch and Merritt [140], shows that consensus isimpossible for three processes, P;Q and R, if one arbitrary process fault may occur. Suppose there is aconsensus algorithm for this system. Consider a system with six processes composed of two copies each ofP;Q and R, joined in a ring in the order P0; Q0; R0; P1; Q1; R1. (See Figure 2.) Let � be a scenario (i.e.16



an execution of this system) where P0; Q0 and R0 have input 0 and P1; Q1 and R1 start with input 1. Theoutput value of each process in � can be determined by considering another scenario that is indistinguishableto that process.
Q:1R:1 P faultyQ0:0 P1:1Scenario � R0:0Q1:1 Q:0Scenario �P:0 R faulty Scenario  R:1Scenario �P:0 Q faultyP0:0R1:1Figure 2: Scenarios for impossibility of consensus for three processes tolerating one arbitrary process faultLet � be an execution of the algorithm in a three-process system, consisting of P , Q and R, where eachprocess starts with input 0. Process R is faulty in �. It behaves in the same way towards P as R1 behavestowards P0 in �, and it behaves in the same way towards Q as R0 behaves towards Q0 in �. Then, the stepsperformed by P and Q in � are identical to the steps performed by P0 and Q0 in �. Since P and Q mustoutput 0 in �, P0 and Q0 must also output 0 in �. Similarly, by considering an execution  in a 3-processsystem where Q and R have input value 1 and P is faulty, one can show that Q1 and R1 must output 1 in �.Finally, consider another scenario � where P has input 0, R has input 1 and Q is faulty, sending the samemessages to P as Q0 sends to P0 and sending to R the messages Q1 sends to R1. Process P must output0 in �, since P0 outputs 0 in �, and R must output 1 in �, since R1 outputs 1 in �. This contradicts theagreement property for the execution �. The elegance of this argument lies in its ability to draw conclusionsabout the behaviour of processes without requiring any detailed analysis of exactly what those processes aredoing.This unsolvability result can be extended to systems with n � 3f processes, of which at most f can havearbitrary faults, via a reduction from the three-process case [225]. Each of the processes P , Q and R cansimulate disjoint sets of processes of size at most f . If one of P ,Q, or R fails, then at most f of the simulatedprocesses fail.The (vertex) connectivity of a network is the minimumnumber of nodes that must be removed so thatthe resulting network is disconnected. We consider the connectivity of the complete network of n nodes to ben. With only crash failures, f-resilient consensus is solvable if and only if the connectivity of the network isgreater than f [225]. To see why the impossibility result holds, suppose that f processes crash disconnectingthe network and the input values of processes within each component are identical, but di�erent from thosein some other component. For each non-faulty process P , any execution from this con�guration cannot bedistinguished by P from an execution that starts in the con�guration in which all processes have the sameinput value as P . This is because processes in di�erent components cannot communicate with one another.Hence, each process must decide its own input value, violating the agreement condition.With arbitrary process faults, a higher degree of connectivity is required to solve consensus: Dolev [116]proved, using a scenario argument, that there is an f-resilient algorithm for terminating reliable broadcastonly if the connectivity of the network is more than 2f . Fischer, Lynch and Merritt [140] gave a similar proofto show that consensus is solvable in the presence of f arbitrary faults only if the connectivity is greaterthan 2f . Dolev [116] gave an f-resilient algorithm for terminating reliable broadcast provided the networkhas connectivity more than 2f and more than 3f processes. Hence, these lower bounds are tight.These scenario arguments for arbitrary process faults have been extended to weak forms of terminatingreliable broadcast [216] and consensus [140], where validity applies only when all processes are non-faulty.17



Garay and Perry [148] observed that these results imply that, in f-faulty synchronous message-passingsystems where there are at most a arbitrary process faults and at most f � a additional processes that cancrash (without taking any steps), consensus is solvable if and only if the number of processes is greater thanf + 2a and the connectivity of the network is greater than f + a.Hadzilacos [160] studied the terminating reliable broadcast problem in synchronous message-passingmodels, where processes can crash and communication channels can fail by ceasing to deliver messages. Heproved that this problem is unsolvable, if there is a set of processes and communication channels which canall fail in the same execution and whose removal disconnects the underlying graph. This is done using areduction from 1-resilient terminating reliable broadcast in a line of three nodes: the middle node simulatesthe processes in the set, another node simulates the processes in one of the connected components thatresults from removing this set of processes and channels from the graph, and the last node simulates theremaining processes. Communication channels not in the set are simulated either within a process or byone of the two undirected edges in the line. A simple adversary argument is used to show that 1-resilientterminating reliable broadcast is unsolvable in a line of three nodes. Hadzilacos also gives a matching upperbound, showing that if no such set exists, then terminating reliable broadcast can be solved even if processesand communication channels may fail to send some of their messages.With partially synchronous communication, where there is an unknown upper bound on message deliverytime, and synchronous processes, Dwork, Lynch, and Stockmeyer [125] used a scenario argument to provethat binary consensus is unsolvable if f processes can crash and 1 < n � 2f : They consider an executionwhere half the processes have input value 0 and half have input value 1, communication between processeswith the same input value takes 1 unit of time, and communication between processes with di�erent inputvalues does not occur until both have produced their outputs. For n > 2f , they gave a consensus algorithmfor partially synchronous communication and processes that tolerates f or fewer omission faults. Thus, ifcommunication is partially synchronous, the number of faults that can be tolerated does not depend onwhether the faults are crashes or omissions, whether the processes are synchronous or partially synchronous,or whether the input domain is restricted in size. When communication is synchronous and processes arepartially synchronous, they show that consensus is solvable for any number of crash failures, but, using asomewhat more complicated scenario argument, prove that n � 2f is necessary for omission faults.Santoro and Widmayer [280] considered a synchronous message-passing model with dynamic omissionfaults. Speci�cally, at each round, the message broadcast by one (possibly di�erent) process might not bedelivered to some or all of the other processes. Using a valency argument, they prove that a variant ofconsensus is unsolvable in this model.The scenario proof illustrated in Figure 2 can also be used to show that the approximate agreementproblem is unsolvable in the message-passing model if there are f Byzantine faults and n � 3f [140]. Dolev,Lynch, Pinter, Stark and Weihl [119] gave algorithms for the synchronous case when n > 3f and for theasynchronous case when n > 5f . The latter result contrasts with the unsolvability of consensus for f = 1(Section 5.1).5.4 Anonymous SystemsSymmetry arguments can often be used to show that tasks are unsolvable in anonymous systems, evenwhen processes and communication are assumed to be completely reliable. For example, leader election isimpossible in an anonymous synchronous ring, where processes are arranged in a circle and each process cancommunicate only with its two neighbours [47, 234]. An easy induction shows that, at the end of each round,every process must be in the same state. Thus, if any process declares itself the leader, all other processes doso too, which would violate the de�nition of leader election. Similarly, in an asynchronous message-passingsystem, a round-robin schedule maintains symmetry among all the processes, if every message sent during around is delivered at the very end of that round. Johnson and Schneider [202] and Jayanti and Toueg [199]proved that the same is true for anonymous systems where processes communicate via registers. A versionof this symmetry argument was also used by Angluin [26] to show that leader election is unsolvable for yetanother anonymous model. Rabin and Lehmann [266] gave a nearly identical proof showing that processesin an anonymous ring cannot solve the dining philosophers problem. Boug�e [73] used similar arguments toshow the impossibility of leader election in various anonymous networks that have underlying graphs whichare su�ciently symmetric. 18



Randomization can sometimes be used to break symmetry. Thus, impossibility results that are provedusing symmetry arguments often break down when algorithms are allowed to be randomized. For example,to elect a leader in an anonymous ring of known size, all processes can choose random identi�ers, and electthe process with the smallest unique identi�er, if there is one [26]. (If there is no unique identi�er, thealgorithm is repeated.) This algorithm does have in�nite executions, but it will terminate with probability1. Some distributed tasks can be viewed as computing a function of n inputs, where the inputs are initiallydistributed, one to each process. Cidon and Shavitt [102] showed that many important functions cannotbe computed by randomized algorithms in a synchronous anonymous ring of unknown size. (See Section13.1.) Attiya, Snir and Warmuth [46] gave characterizations of the functions that can be computed onrings of anonymous processes for both synchronous and asynchronous models. Yamashita and Kameda [298]gave a characterization of the functions that can be computed in an asynchronous, reliable, anonymousnetwork, if processes know the network topology. For example, if a function is computable, then for anyautomorphism of the network graph, the corresponding permutation of input values cannot change the valueof the function. Boldi and Vigna [66, 67] gave a characterization when only partial knowledge about thenetwork topology is known: they assume that processes know only that the network graph comes from aknown set of possible graphs. Attiya, Gorbach, and Moran [40] gave similar characterizations for functionsand agreement tasks (i.e. decision tasks satisfying agreement) that can be computed in a reliable, anonymousshared-memory system where processes communicate via registers. All of these results rely heavily onsymmetry arguments.5.5 Clock SynchronizationAn important problem is to determine how closely clocks (of non-faulty asynchronous processes) can besynchronized when there is uncertainty in message delivery time. Each process knows the times (on itsown physical clock) at which its incoming messages arrive. All clocks are assumed to run at the same rate.Lundelius and Lynch [232] proved, using a shifting argument that, when the maximum and minimum timesfor message delivery on each edge can di�er by D, then there are executions in a complete network of nprocesses in which clocks of two di�erent processes di�er by at least 2D(1 � 1=n). To obtain these results,they �rst construct an execution with message delivery times within the allowable ranges. Then, for eachprocess Pi, its physical clock and the times at which its steps occur are shifted by some amount �i, withmessage delivery times still within the allowable ranges. These two executions are indistinguishable to allprocesses, so processes will adjust their clocks the same ways in both. However, the time between steps ofdi�erent processes will di�er in the two executions. This implies the lower bound on the guaranteed closenessof the synchronization of the clocks.Halpern, Megiddo, and Munshi [165] and Biaz and Welch [60] extended this work to arbitrary networks,with di�erent uncertainties in message delivery time on di�erent edges. Speci�cally, if the uncertainties aretreated as edge weights, then half the weighted diameter of the graph is a lower bound on the quality ofthe approximation that can be achieved. For some graphs, they gave a matching upper bound; for the rest,they showed this bound is tight to within a factor of 2. Halpern, Megiddo, and Munshi also proved thatrandomization does not help to solve this problem.Attiya, Herzberg, and Rajsbaum [41] consider the situation where upper bounds on message deliverytime might not exist, but other information is available, such as bounds on the di�erence in message deliverytimes for opposite directions of a link. They gave lower bounds on how closely clocks can be synchronized interms of how far the steps performed by each pair of processes can be shifted in time relative to one anotherin an execution.Scenario arguments have been used to obtain unsolvability results, similar to those in Section 5.3, for theclock synchronization problem when the physical clocks of the processes do not run at the same rate, butare bounded above and below by linear functions of real time. An algorithm must ensure that the adjustedclocks remain close to one another. In addition, adjusted clocks must also be bounded above and below bylinear functions of real time. Otherwise, the problem is trivial: For example, when the adjusted clock of eachprocess is proportional to the logarithm of its physical clock, the adjusted clocks will eventually become closeto one another, so clock synchronization can be achieved without any communication [118]. Dolev, Halpern,and Strong [118] proved that this version of clock synchronization is impossible in a network with uncertainty19



in message delivery times, if at least f of the processes can have arbitrary faults and n � 3f . If messagedelivery is always instantaneous, clock synchronization is also unsolvable for n � 3f , using essentially thesame proof. Algorithms for complete networks exist when n > 3f [296, 219]. Fischer, Lynch, and Merritt[140, 233] gave similar, simpler proofs of these unsolvability results and extended them to networks withconnectivity at most 2f . When the message delivery time on each link is a known, non-zero value, Fischer,Lynch, and Merritt [118] showed that, once clock synchronization has been achieved, it can be maintainedwith up to f arbitrary process faults if and only if the degree of every node in the network graph is atleast 2f + 1. If a process sends a message to a correct neighbour and waits for an acknowledgement, it candetermine how much real time has passed and increment its clock accordingly. The fact that a majorityof each process's neighbours are correct can be used to ensure that faulty processes do not cause correctprocesses to update their clocks incorrectly.If only crash failures can occur, Simons, Welch, and Lynch [285] observed that network connectivity ofat least f + 1 is required; otherwise the network can become disconnected. For (f + 1)-connected graphs,f-resilient clock synchronization algorithms exist, even when messages can be lost [118].Srikanth and Toueg [288] studied the accuracy of clocks with respect to real time in fault-free asynchronoussystems, where there is a known upper bound on message delivery time and the physical clocks are boundedabove and below by known linear functions of real time. They used a stretching argument to prove that it isimpossible to ensure that the adjusted clocks more closely approximate real time. Even if there are up to fprocesses with arbitrary faults, they show this accuracy with respect to real time can be achieved, providedthat n � 2f + 1. They also prove that n � 2f + 1 is necessary, even for a much weaker fault model in whichprocesses can only fail by having physical clocks that violate the assumed rate bounds.Patt-Shamir and Rajsbaum [259] and Fetzer and Cristian [135] obtain lower bounds on how closely clockscan be synchronized, if processes can only send synchronization information to one another by piggybackingon messages that are being used by the system for other purposes.5.6 Other ProblemsThere are many other distributed computing problems for which unsolvability results are known. For exam-ple, mutual exclusion is unsolvable in systems with unreliable processes for a very simple reason: a processthat crashes in its critical section prevents any further progress. In this section, we shall briey mentionsome other results. Section 7.3 discusses results that characterize solvable tasks in various models, whichcan be used to obtain unsolvability results for additional problems.Coan, Dolev, Dwork, and Stockmeyer [103] considered the distributed �ring squad problem. Usingscenario arguments, they proved bounds on the number of process faults that can be tolerated when processescan exhibit various types of timing faults.Topological arguments have been used to prove that wait-free set consensus is unsolvable in asynchronoussystems, except in the trivial case where every process can have a di�erent output value. This is discussedin more detail in Section 8.2. De Prisco, Malkhi and Reiter [109] studied the solvability of set consensuswith a number of di�erent versions of validity. Using reductions and simple adversary arguments, theyprove bounds on the number of crash and arbitrary process faults that can be tolerated. They also developalgorithms that show these bounds are tight for most cases.Bridgland and Watro [76] prove that there is no f-resilient solution to task assignment in message-passingsystems with fewer thanPfi=1d(f +1)=ie processes. They do this by explicitly constructing a bad executionwith the aid of the pigeonhole principle.Attiya, Bar-Noy, Dolev, Koller, Peleg and Reischuk [36] used a valency argument to show that, for anyasynchronous message-passing algorithm for renaming that tolerates one crash failure, the smaller namespace must contain at least n + 1 identi�ers. Herlihy and Shavit [179] later generalized this result usingtheir Asynchronous Computability Theorem (see Section 8.3). They said that an asynchronous renamingalgorithm that tolerates f crash failures in a shared-memory model using only registers (and, hence, inthe message-passing model) must have a name space of at least n + f identi�ers to choose from. Attiya,Bar-Noy, Dolev, Koller, Peleg and Reischuk [36] proved a lower bound for order-preserving renaming: thename space must contain at least 2f (n� f +1) identi�ers. Their proof considered executions where f of theprocesses run sequentially after the other n� f have halted. They showed that in such runs, the processesthat �nish early must leave large gaps between the identi�ers they choose, so that the processes that start20



running later can choose names from within the gaps. They also gave matching upper bounds on the size ofthe name space for renaming and order-preserving renaming.Once processes have determined their output values in an asynchronous, message-passing algorithm forrenaming, they must continue to take steps. This is because other processes that begin executing later needto communicate with them to �nd out which output values have already been taken. Using a game-theoreticcharacterization of solvable tasks (see Section 7.3), Taubenfeld, Katz, and Moran [291] proved that there isno f-resilient order-preserving renaming algorithm in an asynchronous message-passing system, for f � 2, ifthe processes are required to terminate. The impossibility result holds even if the faulty processes can onlycrash at the beginning of an execution, without taking any steps.The k-assignment problem was studied by Burns and Peterson [80], who used a valency argument to showthat, for f � l=2, there is no f-resilient solution in an asynchronous system where processes communicateusing registers.Chandra, Hadzilacos, Toueg, and Charron-Bost [87] extended the valency argument of Fischer, Lynch andPaterson [141] to show that the group membership problem is unsolvable in an asynchronous message-passingsystem with one crash failure, even if the algorithm must satisfy only rather weak correctness properties.There have been many systems that solve versions of the group membership problem using stronger models;see the survey by Chockler, Keidar and Vitenberg [97].Jayaram and Varghese [201] consider a message-passing model where message channels may drop packetsand each process may experience faults that reset its local memory to its initial state. Building on earlierwork by Fekete, Lynch, Mansour, and Spinelli [133], they showed that an algorithm in this model can bedriven into a global state that contains any combination of reachable local states. It follows easily thatproblems such as leader election and mutual exclusion are impossible in this model.Greenberg, Taubenfeld and Wang [155] studied the choice coordination problem in asynchronous systemswhere processes communicate using read-modify-write objects. Processes have identi�ers, although morethan one process may have the same identi�er. They showed that a wait-free solution exists if and onlyif the number of processes that share the same identi�er is less than the least non-trivial divisor of k, thenumber of alternatives from which processes must choose. The unsolvability result is proved using a simplesymmetry argument.6 Relationships Between ModelsResearchers in distributed computing have proposed a large variety of mathematical models of distributedsystems. One of the central goals of the theory of distributed computing is to understand the relationshipsbetween them. Which ones can solve more problems? Which ones can solve problems more e�ciently? Inthis section, we examine how impossibility results can address these questions and how the answers to thesequestions can give rise to new impossibility results.The most direct way to compare two di�erent models is to show that one can simulate the other. Forexample, a shared-memory system can simulate a message-passing system with the same number of processesby using a single-writer single-reader register that can be written to by P and read by P 0 to representa communication channel from P to P 0 [47, 292]. Then, as mentioned in Section 4.1, impossibility results forthis shared-memorymodel immediately imply impossibility results for the message-passing model. This givesan alternate proof of the unsolvability of 1-resilient consensus for n > 1 processes in asynchronous message-passing systems (Section 5.1), since this problem is unsolvable in asynchronous systems when processescommunicate using registers (Section 5.2). Simulations of shared-memory by message-passing models willbe discussed in Section 6.3.6.1 System SizeHere we describe some simulations between systems with di�erent numbers of processes that are used ina crucial way to establish impossibility results. For clarity, throughout this section, we call the simulatedprocesses threads and the simulating processes simulators.An easy observation is that an f-faulty system of n+� simulators, where n > f and � � 0, can simulatean f-faulty system of n threads, by employing only n of the simulators, each of which performs the actions of21



a di�erent thread. Similarly, an f-faulty system of n > f simulators can simulate an (f +�)-faulty systemof n + � threads. Each simulator performs the steps of a di�erent thread. The unsimulated threads areconsidered to be crashed processes.A more interesting simulation of shared-memory systems, by Chandra, Hadzilacos, Jayanti, and Toueg[86], shows how, for any n; n0 > f , an f-faulty system of n0 simulators can simulate an f-faulty asynchronoussystem of n threads. The simulators each try to perform steps of each of the threads, using a total of nregisters and n test&set objects in addition to the objects used by the threads. One test&set objectis associated with each thread. It is used as a lock to ensure that only one simulator at a time performs astep of that thread. The state of the thread is recorded in one of the registers. To perform a step of thethread, a simulator obtains its lock, reads the thread's state from the register, executes the next step onbehalf of the thread, and updates the state stored in the register. Then it releases the lock and proceedsto the next thread. If a simulator tries to perform a step of a thread, but does not get access to the lock, itcontinues with the next thread. The key observation is that each simulator crash causes the crash of mostone simulated thread. This is illustrated in Figure 3, where a p indicates that the speci�ed simulator hassimulated the step, and an � indicates that the simulator crashed while simulating the step. Because stepsof the threads may be performed at di�erent rates, the simulated system must be asynchronous.steps1 2 3 4 5 � � �T1 P1p P2p P1p P1p P1pT2 P1p P1p P3�threads ... ...Tn0 P3p P1p P2p P1pFigure 3: An illustration of an execution of Chandra, Hadzilacos, Jayanti and Toueg's simulationAny set of object types that has consensus number at least 2 can be used, together with registers, toimplement test&set objects [10] and, hence, perform Chandra, Hadzilacos, Jayanti and Toueg's simulation.This implies that if a set of object types can be used to solve f-resilient consensus among n processes, forsome n > f � 2, then it can be used to solve wait-free consensus among f + 1 processes, i.e. the consensusnumber of the set is at least f + 1. Note that, for f = 1, this result is false: Lo and Hadzilacos [226, 228]construct object types that can be used to solve 1-resilient consensus among n processes, for each n > 2, butcannot be used to solve wait-free consensus for two processes. The latter is proved using valency arguments,which had to be adapted to handle the non-determinism of some of their objects. A special case of this resultis that there are object types that can be used to solve 1-resilient consensus for n = 3 processes, but not forn� 1 = 2 processes. However, if a set of object types can be used to solve to solve 1-resilient consensus forn � 4 processes, those object types can also be used to solve 1-resilient consensus for n�1 processes. Lo andHadzilacos [228] proved this by using a non-wait-free implementation of test&set objects by registers toadapt the simulation.The BG simulation [70, 68] describes how an f-faulty system of n0 simulators (for any n0 > f) cansimulate an f-faulty asynchronous system of n threads, where both simulators and threads communicateusing only snapshot objects or, equivalently, registers [6, 22, 30]. A key element of the simulation is thesafe agreement subroutine. It satis�es the agreement and validity properties of the consensus problem, butmight not terminate. Every simulator simulates the steps of every thread, including steps where a threadreceives its input. This is done in parallel for all simulators and threads. The simulators use safe agreementto ensure that a simulated step has the same result in the simulations carried out by di�erent simulators.Each simulator visits the threads in round-robin order and tries to execute the next step of each thread itvisits. The safe agreement routine is designed so that if simulators are running several copies of the safeagreement routine in parallel, a simulator failure will block the simulation of at most one thread. Thisensures that, if the original algorithm was f-resilient, then the resulting algorithm will also be f-resilient.For a wide class of problems such as consensus, set consensus, and approximate agreement, a simulatorcan terminate if it observes a thread that has terminated, using the output of the thread as its own output.This allows impossibility results for such problems to be extended from one model to another using the BGsimulation. For example, as described in Section 8.2, there is no wait-free (i.e. k-resilient) k-set consensus22



algorithm for k + 1 processes that communicate using registers. Then, the BG simulation implies thatthere is no k-resilient k-set consensus algorithm for n processes, for any n > k. Similarly, from the fact thatwait-free consensus is unsolvable for two processes, it follows that f-resilient consensus is unsolvable whenn > f � 1.An (n; k)-set consensus object is designed to allow n processes to solve k-set consensus. Speci�cally,each of the n processes can perform a propose operation, which takes one input as an argument and returnsa value that satis�es validity (the value returned is an input of some propose operation to that object) andk-agreement (at most k di�erent values are ever returned). Suppose k0 � k and we wish to implement an(n0; k0)-set consensus object from (n; k)-set consensus objects and registers. One very simple way todo this is to divide the n0 processes into bn0=nc groups of size n and one group of size n0 mod n. Theneach group can use a di�erent (n; k)-set consensus object to produce at most k distinct outputs, exceptfor the last group, which will produce at most min(k; n0 mod n) distinct outputs. This simple approachworks, provided k0 � k bn0=nc+min(k; n0 mod n). It has been shown that no implementation is possible forsmaller values of k0 [69, 95]. This was done using an extension of the BG simulation that can be applied toalgorithms that use (n; k)-set consensus objects as well as registers: the results of propose operationsare determined using safe agreement.6.2 Timing AssumptionsAn important reason to study impossibility results is to establish that one model of computation is morepowerful than another. This is done by showing that a particular problem that can be solved in the �rstmodel either cannot be solved as e�ciently or cannot be solved at all in the second model. Here, we describesome impossibility results which were designed speci�cally to establish such separations between modelshaving di�erent assumptions on process speeds.Synchronous systems are known to be more powerful than asynchronous systems: It is possible to solvewait-free consensus in synchronous message-passing systems on complete networks (Section 5.3), but notin asynchronous shared-memory systems where processes communicate via registers (Section 5.2) or inasynchronous message-passing systems (Section 5.1). This separation between synchronous and asynchronousmodels was further re�ned by Dolev, Dwork and Stockmeyer [117], who examined which properties of themodel are needed for consensus to be solvable in a fault-tolerant way. (See Section 5.1.)Dwork, Lynch and Stockmeyer [125] showed that, when solving consensus in a message-passing model,some partially synchronous systems lie between synchronous and asynchronous ones: consensus can be solvedin the partially synchronous system, but the number of failures that can be tolerated is lower than in thefully synchronous model. (See Section 5.3.)One of the �rst separations between synchronous and asynchronous shared-memory systems was provedby Arjomandi, Fischer and Lynch [27], who considered the time required by algorithms in systems where nofaults can occur. They used a simple synchronization task called the session problem. A session consistsof a section of an execution in which a particular set V of n objects are each accessed at least once. The(s,n) session problem is to design an n-process algorithm such that any execution can be partitionedinto s sessions. It is assumed that each object can be accessed by at most b processes. There is a trivialsynchronous algorithm that solves the problem in s rounds: every process accesses a di�erent object andeach process performs s accesses. However, the same approach does not work in an asynchronous setting,because one process could perform its last access before some other process performs its �rst, resulting inan execution with a single session. They prove that, in an asynchronous system, 
(s logb n) rounds arerequired. (Recall that, in an asynchronous system a round is a segment of the execution where every processtakes at least one step.) This implies that a straightforward step-by-step and process-by-process simulationof an n-process synchronous system by an n-process asynchronous system necessarily increases the roundcomplexity by a factor of 
(logb n), assuming each object can be accessed by at most b di�erent processes.We sketch the proof of the lower bound. Consider a round-robin execution of any solution to the problem.Partition the execution into segments of blogb nc rounds each. We say that one step depends directly onan earlier step if they involve the same object or are performed by the same process. One step depends onan earlier one if there is a chain of such direct dependencies linking them. This notion of dependency isuseful for determining whether information could have propagated from one object to another. If two stepsdo not depend on one another, they can be reordered without any process noticing the change. For any23



particular step, the number of objects that have been accessed by steps that depend on that step increasesby a factor of at most b (roughly) in each round. It follows from the fact that the kth segment contains onlyblogb nc rounds that information cannot be propagated from object vk 2 V to some other object vk+1 2 V .Therefore, the steps within the segment can be reordered so that all accesses to vk+1 take place before allaccesses to vk and no process will notice the di�erence. For the reordered run, one can prove by inductionthat the kth session ends no earlier than the �rst access to vk in the kth segment. Suppose this is true forthe kth session. Then there is no access to vk+1 in segment k after the end of session k, so session k + 1cannot end before the �rst access to vk+1 in the next segment. It follows that at most one session ends ineach segment. Since the problem requires that at least s segments occur in the reordered run, the originalrun must have contained at least s segments and hence 
(s logb n) rounds.Similar techniques were used by Rhee and Welch [271] and by Attiya and Mavronicolas [34] to analyse thecomplexity of the session problem in other shared-memory and message-passing settings, including partiallysynchronous models. These results again established separations between the various models.Awerbuch [50, 51] proved a tradeo� between the time and the amount of communication necessary forasynchronous message-passing systems to simulate a round of a synchronous algorithm. This implies lowerbounds on the ability of an asynchronous system to simulate a synchronous system in a round-by-roundmanner. To prove the tradeo�, he considered specially constructed networks with many edges, but no smallcycles. During the simulation of a round, a node must receive information from each of its neighbours, eitherdirectly or via a chain of messages, before it knows that the round has been completed. If information travelsacross every edge in the graph, the number of messages used will be high. However, if no information travelsacross some edge, that information must instead travel along a lengthy path, since there are no short cycles.In this case, a large amount of time will be used.6.3 Consistency ConditionsAnother way in which models may di�er is in the way correctness is de�ned for objects when they areaccessed concurrently by di�erent processes. Linearizability (de�ned in Section 2) is a strong condition.Sequential consistency [221] is a weaker condition. Like linearizability, operations must appear to happeninstantaneously at distinct point in time and, for each process, the order in which its operations appear tohappen must be consistent with the order in which that process performed them. However, the ordering neednot respect the real-time order of pairs of operations performed by di�erent processes. Hybrid consistency[39] requires that some operations satisfy stronger consistency conditions than other operations. We now lookat lower bound results that were proved to show there exist implementations satisfying weaker consistencyconditions which are more e�cient than any implementation satisfying stronger conditions.Attiya and Welch [48] considered the problem of implementing registers, stacks and queues in afault-free message-passing model. They gave complexity separations between linearizable implementationsand sequentially consistent implementations. For example, if the time required for a message to travel fromone process to another is between d1 and d2, they used a shifting argument to show that, for any linearizableimplementation of registers, read and write operations have worst-case time bounds of at least (d2�d1)=4and (d2� d1)=2, respectively. Sequentially consistent registers, on the other hand, can be implemented sothat one of the two operations (read or write) requires no communication at all and hence incurs no delay,while the other operation runs in time 2d2.The basic idea for their lower bound proofs is similar to earlier work on clock synchronization lowerbounds [232]: If there is su�cient uncertainty about the length of time it takes for messages to be delivered,one can shift the execution of one process in time without any process noticing the di�erence. For example,suppose there is an execution where all message deliveries take time (d1+d2)=2. Consider the execution thatresults if process P 's steps are shifted, so that a step that took place at time t in the original run now takesplace at time t+ (d2 � d1)=2. The new run is still legal: the delivery time for each message sent to P is d2and the delivery time for each message sent from P is d1. Furthermore, the two runs are indistinguishableto all processes. Attiya and Welch show that, if the register operations are performed very quickly, itis possible to shift processes enough so that the linearization order (and hence the responses returned byprocesses) must be di�erent, and yet the executions are indistinguishable to the processes because the shiftis \hidden" by the uncertainty in message delays.Several papers used similar shifting arguments to give lower bounds on the implementations of various24



objects in fault-free partially synchronous message-passing systems. Mavronicolas and Roth [240] provedlower bounds for implementations of linearizable and sequentially consistent registers when process clocksare imperfectly synchronized. In their model, each process's clock runs at the same rate, but they may di�erfrom one another by a bounded amount. They also assumed that operations simulated on one register donot a�ect the way operations on other registers are simulated, and that each register is implemented inthe same way. Kosa [212] compared the costs of satisfying the di�erent consistency conditions for implement-ing objects that have operations satisfying certain algebraic properties, for example, operations that do notcommute with one another. Lower bounds are given for sequentially consistent implementations with per-fectly synchronized process clocks, for linearizable implementations with clocks that run at the same rate butare not synchronized, and for implementations that satisfy hybrid consistency using perfect clocks. Friedman[144] gave lower bounds for implementations of RMW objects and queues satisfying weak consistency,where, for each process P , there must be a linear order of all operations that gives the same responses andagrees with the actual order of P 's operations. Lower bounds for the other consistency models mentionedabove follow as corollaries.James and Singh [190] studied di�erences in the resilience of implementations of registers in an asyn-chronous message-passing system, where the implementations must satisfy di�erent consistency conditions.For example, in a linearizable implementation, one cannot guarantee that either read or write operationswill terminate if half the processes may fail. However, for sequentially consistent implementations, one canguarantee that either the read operations or the write operations (but not both) will be completed correctlyin the presence of any number of failures.Higham and Kawash [182] studied the mutual exclusion problem using registers that satisfy Goodman'sversion of processor consistency [15]. This means that, given an execution, it is possible to �nd, for eachprocess P , a linear ordering of P 's reads and the writes of every process that preserves the order of any twooperations done by the same process and gives the same results for each of P 's reads. Furthermore, the orderof the writes to each register must be the same in all of the linear orderings. Higham and Kawash provedthat any mutual exclusion algorithm for n > 1 processes must use at least one (multi-writer) register andn single-writer registers. A corollary is that (multi-writer) registers cannot be implemented fromsingle-writer registers in a model that only supports this consistency condition.6.4 Fault ModelsOne can consider models where the communicationmechanisms have varying degrees of reliability. Althoughit is easier to build systems that have weaker reliability guarantees, they are much harder to programme.This tension between ease of implementation and ease of use can be resolved if reliable versions of thecommunicationmedia can be implemented (e�ciently) in software, in a system where the unreliable versionsare provided. This approach is not possible in some cases, for example, when a certain problem is solvableusing the reliable model but not using the unreliable one.Unreliable communication channels cannot be used to implement reliable message delivery in many cases.This can be formalized by considering the sequence transmission problem, also called the end-to-endcommunication problem, where a sender has a sequence of messages that it wants to transmit to areceiver. In the simplest case, the sender and receiver are connected by an unreliable channel, along whichboth can send packets. If the channel crashes, no information can be transmitted. Packet loss, duplicationand reordering can all be tolerated using sequence numbers [289]. Unfortunately, sequence numbers causethe length of packet headers to grow without bound. However, Wang and Zuck [294] showed that anyprotocol tolerating both packet reordering and duplication requires unbounded sequence numbers. Afek,Attiya, Fekete, Fischer, Lynch, Mansour, Wang and Zuck [7] proved that any protocol tolerating bothpacket reordering and loss either requires unbounded sequence numbers or can cause the receiver to receivean unbounded number of packets per message. When there is a �xed bound on the size of packet headersand there is a �xed probability that any packet is delayed, Mansour and Schieber [238] proved lower boundson the number of packets that have to be sent as a function of the number of messages, matching knownupper bounds [7]. The alternating bit protocol [57, 215] uses a single-bit packet header: the least signi�cantbit of the sequence number. It tolerates both packet loss and duplication. Fekete and Lynch [132] provedthat there are no headerless protocols that tolerate packet losses, so the alternating bit protocol uses theshortest possible headers. When the sender and the receiver can fail by losing the information stored in25



their local memories, Fekete, Lynch, Mansour and Spinelli [133] proved that no protocol can tolerate packetlosses, even for an easier version of the problem where the sequence of messages can be output by the receiverin any order. For more general networks where packet losses can occur, Adler and Fich [5] proved lowerbounds on the size of packet headers necessary for sequence transmission when intermediate nodes do notstore information. Their lower bound is logarithmic in the number of simple paths between the sender andreceiver for many networks, including the complete graph, series-parallel graphs and �xed degree meshes,matching the upper bounds of an existing algorithm [122]. All of these lower bounds are proved usingadversary arguments. More speci�cally, an adversary constructs two executions that are indistinguishableto the receiver, but in which the sequence of messages to be transmitted is di�erent.It would be useful to automatically translate algorithms that tolerate crash failures into algorithms thattolerate the same number of more serious faults. For synchronous message-passing systems, the naturalapproach is to simulate the original algorithm in a round-by-round manner. Neiger and Toueg [256] gave around-by-round simulation of algorithms tolerating crash failures for models in which faulty processes canfail to send some of their messages. The resulting algorithms use twice as many rounds as the originalalgorithms. A similar simulation is possible for models in which f faulty processes can fail to send or receivemessages, provided n > 2f . They also proved that, for this model, a round-by-round simulation is impossibleif n � 2f and the simulation must simulate the faulty processes as well as the non-faulty ones. Bazzi andNeiger [58] showed the simulation is possible if it is not necessary to simulate the internal states of the faultyprocesses accurately, but the simulation must increase the time complexity by a factor of approximately2f=(n � f). They did this by giving a lower bound on the complexity of solving a broadcast problem in away that tolerates omission faults. Finally, one can consider the problem of translating to a model wherearbitrary process faults can occur. Such a translation is impossible if n � 3f , since consensus can be solvedin the presence of f crash failures, but not when f arbitrary process faults can occur. (See Section 5.3.)For n > 3f , Bazzi and Neiger [58] gave upper and lower bounds showing that the translation increases therunning time by a factor of two, three or four depending on the exact value of f .Jayanti, Chandra, and Toueg [196] showed how a 1-faulty system of m+ 2 simulators that communicateusing registers can simulate a 1-faulty system of two threads and m objects, in which one object may fail bydelaying its responses forever. The actions of each thread and object are simulated by a di�erent simulator.To simulate an operation on an object by a thread, the simulator of the thread writes the operation toa single-writer single-reader register, which is read by the simulator of the object. The simulatorof the object simulates the operation in its local memory and returns its response to the simulator of thethread via another single-writer single-reader register. Using this simulation, they prove that wait-free consensus for two processes is unsolvable in an asynchronous shared-memory system in which one objectmay fail. Speci�cally, if such an algorithm does exist and uses m objects, then m + 2 simulators can solve1-resilient consensus using the simulation, by having the output value from any completed thread writteninto a register, enabling all simulators to return that value. As discussed in Section 5.2, this is known tobe impossible.Stomp and Taubenfeld [290] gave a space lower bound for implementing reliable test&set objects fromunreliable ones.6.5 Other Separations Between ModelsChaudhuri and Welch [96] gave time and space lower bounds on the complexity of implementing multi-bit registers from single-bit registers. Jayanti, Sethi and Lloyd [197] established lower bounds on thespace complexity of implementing regular N -bit single-writer single-reader registers from lineariz-able single-bit single-writer single-reader registers. (A regular register is weaker than a lineariz-able one: the value returned by a read operation can be any one of the values that is stored in the registerat some time between the beginning and end of the read [223].) Valois [293] studied lower bounds on thenumber of read-modify-write objects needed to implement load-linked/store-conditional registers,in which a process's write operation succeeds in updating the state of the register only if the state has notchanged since that process's last read operation. Schenk [281] showed that approximate agreement can besolved faster using (multi-writer) registers than using single-writer registers. This result is describedin Section 11.2.Merritt and Taubenfeld [243] studied the di�erences in the power of systems equipped with objects that26



satisfy di�erent fairness guarantees. Sakamoto [277] studied how the power of a system depends on theknowledge that processes have, initially, about the network to which they belong, for example, its size.7 Deciding When Problems are SolvableBecause there are so many di�erent models of distributed systems, it would be useful to have a generaltechnique to determine whether a given model can solve a given problem, or implement a given data structure.Unfortunately, this is not possible in general.7.1 UndecidabilityJayanti and Toueg [200] proved that there is no algorithm that, given the description of an object type andan initial state, determines whether it has a wait-free implementation from registers. They use a reductionfrom the halting problem. Given a deterministic Turing machineM , they construct a type T(M ) whose statestores a con�guration of M and a Boolean ag. The object is initially in a state corresponding to M 's initialcon�guration on a blank input tape and the Boolean ag is false. The type T(M ) is equipped with a singleoperation. The operation updates the con�guration stored in the state by simulating one step of M andreturns 0 as long as M has not halted. The �rst operation applied to T(M ) after the simulated machine Mhas halted sets the ag to true and returns 1. Any operation on T(M ) after the ag is set returns 2.IfM halts on a blank tape, then T(M ) can be used to solve wait-free leader election (and hence consensus)for two processes: each process repeatedly accesses the object until it returns a non-zero value and the processthat receives the value 1 becomes the leader. This means registers cannot implement T(M ). However,if M never halts on a blank input tape, then T(M ) can be implemented using a register initialized to 0and having each operation applied to T(M ) replaced by a read of this register. It follows that one cannotdecide whether the type T(M ) can be implemented from registers. A similar construction can be used toshow that determining the consensus number of a given �nitely-speci�ed type is undecidable.Naor and Stockmeyer [253] showed that it is undecidable whether a task can be solved in a message-passing system in constant time in bounded-degree networks, although it is decidable whether a problemcan be solved within a given number of steps.Further undecidability results are described in Section 8.3.7.2 Decidability of Consensus NumbersFor some natural classes of types, decision procedures for consensus numbers do exist. They follow fromtheorems that characterize types in the class in terms of their consensus number.One such class consists of the read-modify-write (RMW) object types [213], de�ned in Section 2. Ruppert[274] gave a characterization of the RMW types that can solve wait-free consensus among n processes. Thecharacterization uses a restricted form of the consensus problem, called team consensus, where processesare divided into two teams and all processes on the same team receive the same input. A RMW type Thas consensus number at least n if and only if there is an algorithm for solving team consensus among nprocesses in which every process performs exactly one step on an object of type T. A valency argumentwas used to show the necessity of this condition: by examining the behaviour of processes as they each taketheir �rst step after the critical con�guration of a consensus algorithm, one can obtain the required one-stepalgorithm for team consensus. For �nite types, this condition is decidable.A similar characterization was also given for readable types [274], which allow processes to read the stateof the object without changing it. Together, these two classes of objects contain many of the most commonshared-memory primitives. These characterizations were used to prove unsolvability results for consensusin multi-object models [273] (where processes can access more than one shared object in a single atomicaction), following the work of Afek, Merritt and Taubenfeld [11].Recently, Herlihy and Ruppert [178] gave a characterization of deterministic one-shot types that cansolve wait-free consensus among n processes. A one-shot type is one that can be accessed only once by eachprocess. This characterization, too, is decidable for �nite types. A partial characterization is also given fornon-deterministic types. (See Section 9.2 for more on this result.)27



A natural open question is to obtain an algorithm that decides the consensus number of any type with�nite state set. An interesting special case would be to consider non-deterministic RMW and readabletypes. One might also be able to gain a better understanding of the relative power of di�erent types bycharacterizing the types that can solve other problems such as set consensus or implementing an object thatcan be used repeatedly to solve di�erent instances of consensus.7.3 Characterizing Solvable TasksThe preceding section describes attempts to characterize the models that can solve a particular importantproblem. Another way of systematically studying solvability is to characterize the problems that can besolved in a particular model.In the asynchronous message-passing model, Biran, Moran and Zaks [61], building on earlier work byMoran and Wolfstahl [249], gave a combinatorial characterization of the decision tasks that can be solved1-resiliently in an asynchronous message-passing system with crash failures. This characterization, describedbelow, is in terms of the task's vectors of input and output values (with one coordinate of the vectorscorresponding to each process).Suppose there is a 1-resilient message-passing algorithm to solve a given task for n processes. Let G(~x)denote the set consisting of all output vectors produced by the algorithm with input vector ~x. First, foreach input vector ~x, Biran, Moran and Zaks consider the similarity graph with vertex set G(~x) and edgesbetween any two vectors that di�er in exactly one coordinate. They prove this similarity graph is connectedusing a valency argument with slightly di�erent de�nitions: a con�guration C is univalent if all executionsfrom C lead to an output vector in the same connected component and multivalent otherwise. Secondly,they show that, if I is any set of input vectors that di�er only in coordinate j, then there is a set of outputvectors, one from G(~x) for each ~x 2 I, that di�er only in coordinate j. This follows from consideration ofthose executions in which process Pj is non-faulty, but takes no steps until all other processes have producedan output.Conversely, suppose there is a task for n processes such that there is a set G(~x) of allowable outputvectors for each input vector ~x, which has the following two properties: the similarity graph with vertexset G(~x) is connected, and if I is a set of input vectors that di�er only in coordinate j, then there is a setof output vectors, one from G(~x) for each ~x 2 I, that di�er only in coordinate j. Then Biran, Moran andZaks proved that there is a 1-resilient message-passing algorithm to solve the task. In later papers, they alsoshowed that determining whether a task has these properties is NP-hard for more than two processes [62],and gave very precise bounds on the round complexity of solving any task that satis�es them [63].Taubenfeld, Katz and Moran [291] gave a game-theoretic characterization of the tasks that can be solvedin a message-passing asynchronous system with f < n=2 crash failures that can only occur before processestake any steps. They consider tasks with and without termination requirements. They de�ne a two-playergame, where one player represents the algorithm and the other represents an adversarial scheduler. In eachround of the game, the adversary chooses the input values for some additional processes and the algorithmmust choose output values for those processes consistent with the output values chosen in previous rounds.The algorithm loses if no such choice is possible. The task is solvable if and only if the player representingthe algorithm has a winning strategy in this game. The characterization is constructive: a winning strategyfor the game yields an algorithm for the task.Chor and Moscovici [100] gave characterizations of tasks that can be solved in asynchronous models byf-resilient randomized algorithms that never produce an incorrect output. Their characterizations applyto message-passing systems for f < n=2 and to the shared-memory model where processes communicateusing registers. Although their results are not phrased in terms of game theory, the characterizations aresimilar to those described in the previous paragraph. In fact, it follows from the characterizations in thesetwo papers that a task is solvable by a deterministic message-passing algorithm tolerating f crash failureswhich occur before processes take any steps if and only if it is solvable by a randomized algorithm toleratingf crash failures [291].Attiya, Gorbach and Moran [40] gave a simple characterization of the tasks that are solvable in systemswhere asynchronous processes have no names, run identical programmes, do not know how many processesare in the system, and communicate using registers. The characterization (and the proof of its necessity)is similar in avour to the results by Biran, Moran and Zaks, described above.28



In an interactive task, each process receives a sequence of input values and must produce the outputvalue corresponding to its current input value before being given its next input value. A task is speci�edby giving the legal sequences of input and output vectors. Chor and Nelson [101] considered asynchronoussystems in which consensus is solvable and characterized the interactive tasks that can be solved in thesesystems. Their conditions ensure, among other things, that the set of allowable outputs does not depend onthe input values which have not yet been received. Herlihy's universality result [169] does not imply thatall interactive tasks can be solved, since the de�nition of an interactive task is quite general, and there aresome interactive tasks that cannot be viewed as a problem of implementing a linearizable object.8 TopologyPerhaps the most interesting development in the theory of distributed computing during the past decade hasbeen the use of topological ideas to prove results about computability in fault-tolerant distributed systems.The results described in this section include some powerful applications of topology in distributed computing,particularly for proving impossibility results. Other connections between topology and distributed computinghave been discussed in the literature (see [152, 157, 204, 268]).8.1 Simplicial ComplexesWe begin with some brief de�nitions of ideas from the topology of simplicial complexes. Several paperscontain good introductions to the connections between distributed computing and simplicial complexes[145, 173, 176].A d-dimensional simplex (or d-simplex) is a set of d+ 1 independent vertices. Geometrically, thevertices can be thought of as (a�nely) independent points in Euclidean space. A 0-simplex is a single point,a 1-simplex is represented by a line segment, a 2-simplex is represented by a �lled-in triangle, and so on. A(simplicial) complex is a �nite set of simplexes closed under inclusion and intersection. The dimension ofa complex is the maximum dimension of any simplex that appears in it. Examples of simplicial complexesappear in Figure 4.A vertex can be used to represent the internal state (or part of the internal state) of a single process. Ad-simplex whose vertices correspond to di�erent processes represents compatible states of d+1 processes. Asan example, consider the binary consensus problem for three processes, P;Q and R. The possible startingcon�gurations of an algorithm for this problem are shown in Figure 4(a). Each vertex is labelled by aprocess and the binary input value for that process. The complex consists of eight 2-simplexes arranged toform a hollow octahedron. Each 2-simplex represents one of the eight possible sets of inputs to the threeprocesses. The corresponding output complex in Figure 4(b) shows the possible outputs for the binaryconsensus problem. In the upper 2-simplex, all processes output value 0, while in the lower 2-simplex, allprocesses output value 1. Not all output simplexes are legal for every input simplex: by the validity conditionof consensus, if all processes start with the input value 0, then only the upper output simplex is legal.More generally, any decision task for n processes can be modelled in a similar way. The input complexI contains one (n � 1)-simplex for each possible input vector. The output complex O contains one simplexfor each possible output vector. A map � that takes each simplex S of I to a set of simplexes in O (labelledby the same processes) de�nes which output vectors are legal for each input vector.Simplicial complexes are used as a means of describing whether processes can distinguish di�erent con-�gurations from one another. In that sense, they are similar to, though more general than, the similaritygraphs of Biran, Moran and Zaks [61] discussed in Section 7.3. Nodes in those graphs correspond to (n� 1)-simplexes. The situation where two output vectors di�er in only one coordinate, which is modelled by anedge in a similarity graph, is represented in the complex by having the two simplexes share n� 1 commonvertices. Complexes can capture more information about the degree to which two con�gurations are similar:two simplexes that have d common vertices are indistinguishable to exactly d processes. This fact makescomplexes useful for studying f-resilient algorithms for any f , whereas similarity graphs are useful primarilywhen f = 1.Consider a wait-free algorithm for n processes that solves some task. One can de�ne a corresponding(n � 1)-dimensional protocol complex. Each vertex is labelled by a process and the state of that process29



R:1P:0 Q:0 R:0Q:1 P:1 R:1P:0 Q:0 R:0Q:1 P:1Figure 4: (a) Input complex and (b) output complex for three-process binary consensuswhen it terminates in some execution. Given any input vector and any schedule for the processes (as well asa description of the results of any coin tosses or non-deterministic choices), the �nal state of every processis determined. This �nal con�guration is represented by a simplex in the protocol complex.Each process must decide on an output value for its task based solely on its internal state information atthe end of the algorithm. This de�nes a decision map � that takes each vertex of the protocol complex to avertex of the output complex (labelled by the same process). Let S be a simplex of the protocol complex.Since S represents a con�guration of compatible �nal states for some set of processes, �(S) must be a simplexof the output complex, representing a compatible set of outputs for those processes. Furthermore, � must\respect" the task speci�cation: If S represents a con�guration reached by some execution whose inputscome from the simplex I of the input complex, then �(S) must be in �(I).The basic method of proving impossibility results using the topological approach can now be summarized.One uses information about the model to prove that any protocol complex has some topological propertywhich is preserved by the map �. The speci�cation of the task is used to show that the image of � cannothave the property, implying that no such map � can exist.For example, it can be shown that, in the asynchronous model where processes use registers to com-municate, any protocol complex (that begins from a connected input complex) is connected [179]. Theconnectivity property is preserved by any map �, since � maps simplexes to simplexes. As shown in Figure 4,the input complex for three-process binary consensus is connected. The image of � must include verticesin both triangles of the output complex, since the task speci�cation requires that, for any run where allprocesses get the same input value v, all processes output v. Thus the image of � is disconnected, and hencewait-free three-process binary consensus is impossible in this model.8.2 Set Consensus ResultsMuch of the inspiration for the early topological impossibility results came from Chaudhuri [92], who de�nedthe k-set consensus problem. She observed that Sperner's Lemma [287], a tool often used in topology, couldbe applied to study the task. In papers that �rst appeared at STOC in 1993, Borowsky and Gafni [70], Herlihyand Shavit [179] and Saks and Zaharoglou [279] independently proved, using versions of Sperner's Lemma,that k + 1 processes cannot solve wait-free k-set consensus in an asynchronous model using registers. Inaddition to proving the unsolvability of set consensus, these papers developed interesting techniques thatled to proofs of other results showing connections between distributed computing and topology. This is agreat example of the important role that lower bounds for a well-chosen problem can play in opening up newareas of research. Similar tools have also been used to provide lower bounds for the set consensus problemin a synchronous message-passing model [93]. Attiya reproved the impossibility of set consensus using moreelementary tools [35]. 30



Borowsky and Gafni's impossibility proof [70] used the protocol complex for k+ 1 processes, in the casewhere each process uses its process name as its input to the set consensus problem. They introduced theimmediate snapshot model. In this model, processes communicate using a single-writer snapshotobject. Although processes run asynchronously, there are restrictions placed on the adversarial scheduler.They showed that this model can be simulated by the asynchronous model where processes communicate viaregisters; the opposite simulation is trivial. They restrict attention to full-information algorithms, whereeach process repeatedly scans the snapshot object and updates its element by appending the result of thescan. With these simpli�cations of the model, Borowsky and Gafni showed that protocol complexes have avery regular form. This allowed them to apply a variant of Sperner's Lemma to prove that, for some simplexof any protocol complex, each of the k + 1 processes outputs a di�erent value. Using the BG simulationtechnique, described in Section 6.1, they extended the unsolvability result for wait-free k-set consensus tothe f-resilient setting, for f � k.The impossibility proof by Saks and Zaharoglou [279], which uses point-set topology, has a di�erentavour from the other results described in this section. They use a simpli�ed model similar to that ofBorowsky and Gafni, and consider the space of all (�nite and in�nite) schedules. They de�ned a set ofschedules to be open if they can be recognized by some algorithm (i.e. there is an algorithm where at leastone process eventually writes \accept" if and only if the execution is following a schedule in the set). Theyproved that this collection of open sets de�nes a topology on the space of all schedules. Now, suppose a k-setconsensus algorithm exists for k+1 processes (where each process has its name as its input). Then the set Diof schedules in which some process outputs the value i is an open set, and it does not contain any schedulewhere i does not take any steps. These facts can be used, together with a version of Sperner's Lemma,to show that there is a schedule contained in \iDi. In this schedule, the processes output k + 1 di�erentvalues, which contradicts the correctness of the algorithm. An interesting direction for future research is toinvestigate the structure of this topological space of schedules. Perhaps theorems from point-set topologycould then be applied to prove other results in distributed computing.8.3 The Asynchronous Computability TheoremThe third paper that proved impossibility of k-set consensus has since been developed into a more generalresult that characterizes the tasks that can be solved in a wait-free manner using registers. Herlihy andShavit [179] proved that a task is solvable if and only if it is possible to subdivide the simplexes of the inputcomplex into smaller simplexes (with any newly created vertices being appropriately labelled by processes)that can then be mapped to the output complex. This mapping � must satisfy properties similar to thoseof a decision map �. It must preserve the process labels on the vertices, map simplexes to simplexes, and itmust respect the task speci�cation: if a simplex I of the input complex is subdivided into smaller simplexes,the smaller ones must all be mapped to simplexes in �(I). This characterization is called the AsynchronousComputability Theorem. It reduces the question of whether a task is solvable to a question about propertiesof the complexes de�ned by the task speci�cation. A key step in proving the necessity of the condition is avalency argument that shows the protocol complexes in this model contain no holes. Although the conditionused in the characterization is not decidable (see below), the theorem provides insight into the set of solvabletasks and can be used to study particular tasks. For example, to prove the impossibility of set consensus,Herlihy and Shavit show (using Sperner's Lemma) that no mapping � can exist for the set consensus task.The paper also gives results on the impossibility of renaming.Gafni and Koutsoupias [147] used the Asynchronous Computability Theorem to show that it is undecid-able whether a given task has a wait-free solution using registers, even for �nite three-process tasks. Theyuse a reduction from a problem known to be undecidable: loop contractibility, where one must decidewhether or not a loop on a 2-dimensional simplicial complex can be contracted, like an elastic band, to apoint while staying on the surface of the complex. Suppose the input complex (for three processes) is simplya 2-simplex. Given a loop on a 2-dimensional output complex, they de�ne a task that requires the boundaryof the input simplex to be mapped to the loop by the function � of the Asynchronous Computability The-orem. This map � can be extended to the whole (subdivided) input simplex if and only if the loop can becontracted. This undecidability result contrasts with Biran, Moran and Zaks's characterization of tasks thatcan be solved 1-resiliently, which is decidable for �nite tasks [61] (see Section 7.3). Herlihy and Rajsbaum[174] extended the undecidability result to other models.31



Havlicek [167] used the Asynchronous Computability Theorem to identify a condition that is necessaryfor a task to have a wait-free solution using registers. This condition is computable for �nite tasks.Several researchers have presented characterizations similar to the Asynchronous ComputabilityTheorem.These alternative views give further insight into the model, and the proof techniques are quite di�erent insome cases. Herlihy and Rajsbaum [172] showed how to prove impossibility results in distributed computingusing powerful ideas developed in the homology theory of simplicial complexes. They discussed models wherethe shared memory consists of registers, or of registers and set consensus objects. They reprovedimpossibility results for the set consensus problem, and gave some new results for the renaming problem.Attiya and Rajsbaum [44] used purely combinatorial arguments to develop a characterization of tasks solvableusing registers, similar to the Asynchronous Computability Theorem. In particular, they showed that theprotocol complexes for a simpli�ed model have a very regular form.Borowsky and Gafni [72] gave an elegant proof of a version of the Asynchronous Computability Theoremwithout using topological arguments. They introduced the iterated immediate snapshot model andprove that it is capable of solving the same set of tasks as the ordinary register model. They proved theequivalence of the models by giving algorithms to simulate one model in the other [71, 72]. The protocolcomplex of a (full-information) algorithm in their simpli�ed model is a well-understood subdivision of theinput complex. Thus, a problem is solvable in either model if and only if there is a decision map from asubdivision of this form to the output complex that respects the task speci�cation.Hoest and Shavit [185] used topological techniques to determine the time complexity of approximateagreement in a generalization of Borowsky and Gafni's iterated immediate snapshot model. Essentially,they related the time complexity of the task to the degree to which the input complex must be subdividedbefore one can map it to the output complex. For this problem, the number of subdivisions required canbe computed very precisely. Although, in terms of computability, their model is equivalent to the standardasynchronous model containing only registers, their complexity results do not carry over. Much workremains to �nd additional ways of applying topology to prove complexity lower bounds.8.4 Solving Tasks With Other TypesHerlihy and Rajsbaum [171] undertook a detailed investigation of the topology of set consensus. They gaveconditions about the connectivity of protocol complexes that are necessary for the solution of set consensus.They also described connectivity properties of the protocol complexes in a model where the primitive objectsare set consensus objects and registers. They later used this work to give a computable characterizationof tasks that can be solved f-resiliently in various models that allow processes to access consensus or setconsensus objects [174]. The characterization uses topological tools but also builds on the characterizationgiven by Biran, Moran and Zaks (see Section 7.3) for systems using only registers.Herlihy and Rajsbaum [175] also considered an interesting class of decision tasks, called loop agreementtasks [174]. Using topological properties of the output complexes, they describe when one loop agreementtask can be solved using registers and a single copy of an object that solves a di�erent loop agreementtask.Herlihy, Rajsbaum and Tuttle [177] used the topological approach to give uni�ed proofs of impossibilityresults for set consensus in several message-passing models with varying degrees of synchrony. The key ideain this paper is that protocol complexes for several of the commonly studied models can be represented asunions of one type of simple building block.A desirable goal is a better understanding of the structure of protocol complexes for di�erent models. Theprotocol complexes tend to be quite complicated, but to obtain impossibility results, it is often su�cient toprove that they have certain properties, without fully describing their form. Restrictions on the adversarialscheduler can also simplify the structure of protocol complexes, making them easier to study while simulta-neously strengthening any lower bounds obtained. Most of the research has focused on one-shot objects ortasks; extensions of these techniques to long-lived objects is a subject of current research.9 RobustnessThe consensus number of an object type provides information about the power of a system that has objectsof that type and registers. However, the classi�cation of individual types into the consensus hierarchy32



does not necessarily provide complete information about the power of a system that contains several di�erenttypes of objects: it is possible that a collection of weak types can become strong when used in combination.The hierarchy is robust (with respect to a class of object types) if it is impossible to obtain a wait-freen-process implementation of a type at level n of the hierarchy from a �nite set of types that are each atlower levels. Robustness is a desirable property since it allows one to study the synchronization power of asystem equipped with several types by reasoning about the power of each of the types individually.This issue of robustness was �rst addressed by Jayanti [192, 194]. His impossibility results, discussed inSection 9.1, were instrumental in clarifying the de�nition of consensus number. Jayanti [191] provides a gooddescription of early work on the robustness question. Work on this topic has produced some very interestingproofs, bringing together ideas discussed in Sections 5, 6, 7 and 8.9.1 Non-Robustness ResultsA variety of non-robustness results have been proved during the past decade. Typically, one de�nes a pairof objects that are tailor-made to work together to solve consensus easily. To complete the proof, one mustshow that each of the types, when used by themselves, cannot solve consensus.Recall that the de�nition of the consensus number of a type T is the maximumnumber of processes thatcan solve wait-free consensus using any number of objects of type T and registers. Some of the earlyresults on the robustness question showed that the hierarchy is not robust under slightly di�erent de�nitionsof consensus number. Cori and Moran [107] and Kleinberg and Mullainathan [208] showed the hierarchyis not robust if only one object of type T (and no registers) can be used, Jayanti proved non-robustnessresults for the case where one object of type T and any number of registers can be used [192], and for thecase where any number of objects of type T (but no registers) can be used [194]. These results are, inpart, responsible for the choice of the now-standard de�nition of consensus number.One of Jayanti's proofs [192] used an interesting simulation technique. He de�ned a simple object type,called weak-sticky. It is possible to solve wait-free consensus among n processes using registers and n�1weak-sticky objects, but it is not possible using fewer weak-sticky objects. He proved this by giving animplementation of weak-sticky from registers that is not wait-free but has the property that at mostone operation on the object will fail to terminate. We illustrate his lower bound proof for the case wheren = 3. Suppose there is a wait-free consensus algorithm for three processes that uses a single weak-stickyobject and registers. One could replace the weak-sticky object by the implementation from registers.Then, if at most one process can fail and at most one process's operation on the weak-sticky object failsto terminate, at least one non-faulty process can complete the algorithm and write its output in sharedmemory. All non-faulty processes can then return that value. This yields a 1-resilient consensus algorithmfor three processes using only registers, which is impossible (see Section 5.2). The use of \imperfect"implementations to prove impossibility results is also discussed in Section 6.1.The robustness question is somewhat more complicated for the standard de�nition of consensus numbers:although the hierarchy is not robust for all object types, the robustness property does hold for some classesof objects.A number of objects have been constructed that violate the robustness property [85, 86, 245, 263]. Theobjects used in these constructions allow the response to an operation to depend on the identity of theprocess that invoked the operation.Schenk [282, 283] proved that the consensus hierarchy is not robust by considering a type with unboundednon-determinism, i.e. an operation may cause an object to choose non-deterministically from an in�nitenumber of possible state transitions. In this case, he said an algorithm is wait-free if the number of stepstaken by a process must be bounded, where the bound may depend on the input to the algorithm. For objectswith bounded non-determinism, this de�nition of wait-freedom is equivalent to the usual requirement thatevery execution is �nite. Lo and Hadzilacos [227] improved Schenk's result by showing that the hierarchy isnot robust even when restricted to objects with bounded non-determinism.Schenk de�ned two types, called lock and key. The key object is a simple non-deterministic objectthat can easily be used to solve the weak agreement problem: All processes must agree on a commonoutput value and, if all processes have the same input value, the output value must di�er from it. He used acombinatorial argument to show that, for any consensus algorithm using keys and registers, there existsa �xed output value for each key which is consistent with every execution. This allows all the key objects33



to be eliminated, which is impossible, unless cons(key) = 1.The lock object was specially constructed to provide processes with a solution to the consensus problemif and only if processes can \convince" the object that they can solve weak agreement. The lock object non-deterministically chooses an instance of the weak agreement problem and gives this instance to the processesas a challenge. It then reveals the solution to the original consensus problem if and only if processes providethe lock object with a correct solution to the challenge. (The idea of de�ning an object that only providesuseful results to operations when it is accessed properly, in combination with another type of object, wasoriginated by Jayanti [194] and is common to many of the non-robustness proofs.) If processes have accessto both a lock and key object, they can use the key to solve the lock's challenge and unlock the solution toconsensus. Thus, cons(flock; keyg) = 1. Schenk used a type of valency argument developed by Lo [226],to show that weak agreement and, hence, consensus for two processes cannot be solved using only locksand registers.9.2 Robustness ResultsAlthough the consensus hierarchy is not robust in general, the practical importance of the non-robustnessresults is unclear, since the objects used in the proofs are rather unusual. The hierarchy has been shown tobe robust for some classes of objects that include many of the objects commonly considered in the literature.A consensus object is an object that is speci�cally designed to solve consensus. It supports one operation,propose, which has one argument (an input value to the consensus problem being solved). All proposeoperations to the same consensus object in an execution return the same value (the output value), whichmust be one of the values proposed. An m-consensus object is a restricted form that allows only m proposeoperations to be performed. Chandra, Hadzilacos, Jayanti and Toueg [86] showed that m-consensus objectscannot be combined with any objects that have consensus number n to solve consensus among more thanmax(m;n) processes.Ruppert [274] showed that the consensus hierarchy is robust for the class of all RMW and readable types.The proof uses the characterization of the types that can be used to solve consensus for n processes, describedin Section 7.2. It is easy to show, using a valency argument, that any consensus algorithm for n processesbuilt from such objects must use one object whose type satis�es the conditions of the characterization.Therefore, n-process consensus can be solved using only that type and registers.Herlihy and Ruppert [178] used the topological approach to characterize the one-shot types that canbe combined with other types to solve consensus. (A one-shot object is one that can be accessed at mostonce by each process.) The characterization applies to non-deterministic types, provided the number ofpossible responses to any invocation is �nite. They de�ned a kind of connectivity property, called k-solo-connectivity, of the simplicial complexes associated with the invocations that can be invoked on an objectof type T and the responses that the object can return. They showed that there is a type B such thatcons(B) < k, but cons(fT; Bg) � k if and only if T is not k-solo-connected. The key tool in showing the\only if" direction of the proof is a simulation technique that builds on the BG simulation (see Section 6.1).Assuming T is k-solo-connected, the simulation allows a k-process consensus algorithm built from objectsof types T, B and register to be simulated using only objects of type B and registers. This means thatif cons(fT; Bg) � k then cons(B) � k too. The other direction is a generalization of the non-robustnessresults [227, 283] described above. It follows from Herlihy and Ruppert's characterization that the class ofdeterministic one-shot types is robust.The robustness result for readable and RMW types used two important properties: such objects aredeterministic and their state information can be accessed in some simple way by each process. The robustnessresult for one-shot types used a similar property: when accessing a one-shot object, a process gets, in asingle operation, all of the state information that it will ever be able to obtain directly from the object. Canrobustness results be extended to other natural classes of types that do not have these kinds of properties?By �nding the line that separates those types that can be combined with others to violate robustness fromthose that cannot, we gain insight into the way that types behave when used together in complex systems.34



10 Space Complexity Lower BoundsSome lower bounds on space complexity are concerned with the number of shared objects required to solvea problem. Others tell us how large the shared objects must be.One early space lower bound is due to Rabin [265]. He considered choice coordination among two choices,each of which is identi�ed with one read-modify-write object, and proved that no deterministic asynchronousalgorithm can solve this problem unless the objects have at least 3pn=2 di�erent possible states. His proofuses combinatorial and graph-theoretic techniques to construct a bad execution.Burns, Jackson, Lynch, Fischer, and Peterson [79] considered deterministic solutions to the mutualexclusion problem using one shared object. They proved lower bounds on the size of the object for di�erentfairness conditions. For algorithms with lockout freedom, the object must have 
(pn) di�erent states. Astronger condition, bounded bypass, requires n di�erent states. Since they gave an algorithm with lockoutfreedom that uses n=2+O(1) states, this shows that bounded bypass is a strictly stronger condition. They alsogave algorithms with bypass bound 2 that use n+O(1) states. The lower bound shows that these algorithmsfor mutual exclusion with bounded bypass are optimal to within a small additive constant. However, forlockout freedom, matching upper and lower bounds for space complexity are not known.The proof of the lower bound for bounded bypass uses the pigeonhole principle: if the object has aninsu�cient number of states, there are two con�gurations in which di�erent sets of processes want to accessthe resource, yet the con�gurations are indistinguishable to the processes in one set. Then it is possible toconstruct an execution from one of these con�gurations in which processes from this set enter the criticalsection many times, but no other processes do. Hence, from the other con�guration, there is an analogousexecution in which some other process that wants the resource is forced to wait. Versions of this proof appearin both [234, Theorem 10.41] and [47, Theorem 4.3]. Similar ideas can be used to prove the 
(pn) lowerbound for lockout freedom [234, Theorem 10.44].Burns and Lynch [77, 234] introduced covering arguments to prove that any mutual exclusion algorithmfor n � 2 processes that communicate using registers uses at least n registers, no matter how largethe registers are. First they consider the situation where some process P begins to want the sharedresource and is given steps exclusively until it obtains the resource. They show that, during this sequenceof steps, P must write to some register not covered by any other process; otherwise they can constructan execution in which P and some other process have the shared resource simultaneously. Next, they showhow to construct executions which result in con�gurations that have successively more covered registers,yet are indistinguishable (to the other processes) from con�gurations in which no process has or wants theshared resource. Their lower bound is optimal, matching the number of registers used by known mutualexclusion algorithms [220, 222].Fich, Herlihy, and Shavit [136] considered a very weak termination condition, non-deterministic solotermination: at any point, if all but one process fails, there is an execution in which the remainingprocess terminates. In particular, wait-free and randomized wait-free algorithms satisfy non-deterministicsolo termination. They proved that 
(pn) registers are needed by any asynchronous algorithm for n-process consensus that satis�es this property. They began by considering the case where processes areanonymous. They showed that, if the number of processes is su�ciently large compared to the number ofregisters, it is possible, using clones, to construct an execution in which both 0 and 1 are output. A cloneof a process P starts in the same initial state as P and runs in lock step with P until it covers a certainregister that P writes to. In their proof, they constructed multivalent con�gurations from which there is anexecution by one set of processes that output 0 and an execution by a disjoint set of processes that output 1.These executions both begin by having processes write to the registers they cover. If the processes in oneof these executions only write to the registers covered by the other set of processes, these executions can becombined to obtain an execution in which some processes output 0 and some output 1. Otherwise, one canobtain another such multivalent con�guration in which more registers are covered. For non-anonymousprocesses, this idea is combined with a new method of cutting and combining executions. Because consensusis a decision task, the proof is more di�cult than for mutual exclusion, where processes can repeatedly requestexclusive access to the critical section. Although there are algorithms for randomized wait-free consensusamong n processes that use O(n) registers of bounded size [28], it remains open whether this is optimal.Fich, Herlihy, and Shavit extended their lower bound to algorithms using historyless objects, objectswhose state depends only on the last non-trivial operation applied to them. (Some examples of historyless35



types are register, swap, and test&set.) They showed that 
(pn) historyless objects are necessary forrandomized wait-free implementations of objects such as compare&swap, fetch&increment, and boundedcounters in an n-process system. Jayanti, Tan and Toueg [198] used a simpler covering argument to provethat n � 1 historyless objects are necessary for randomized wait-free implementations of objects such ascompare&swap, fetch&increment, and bounded counters. In addition to historyless objects, their lowerbound applies to resettable consensus objects. Such an object can be used to repeatedly solve di�erentinstances of consensus through the use of a reset operation that puts the object back to its initial state.Attiya, Gorbach and Moran [40] used the covering technique to prove lower bounds in a fault-free,asynchronous, anonymous system, where processes communicate via registers. They showed that 
(logn)shared registers (and 
(logn) rounds) are required for n processes to solve consensus in this model. Moran,Taubenfeld and Yadin [247] also used a covering argument to prove that any wait-free implementation ofa mod m counter for n processes from objects with only two states must use at least min(n+12 ; m+12 ) suchobjects.The non-robustness proofs of Kleinberg and Mullainathan [208] and of Jayanti [192], discussed in Section9.1, include space lower bounds which show that wait-free consensus is impossible using a small number ofobjects of certain types. Kleinberg and Mullainathan [208] also considered objects which can be read andpairs of which can have their contents swapped. Using graph theory together with some indistinguishabilityarguments, they proved that to solve consensus among n processes using these objects and registers, atleast n+ 1 of these objects are necessary.Saks, Zaharoglou and Cori [278] studied the problem of implementing a list that contains one elementfor each process and supports two operations: report, which returns the entire list, and move-to-front, whichmoves the element belonging to the process to the front of the list. Such a list might be used for schedulingdecisions based on the order in which the processes started executing their current jobs. They proved thatif the only objects available for the implementation are one single-writer multi-reader register perprocess, then the average size of each is 
(log2 n) bits. The proof makes use of the fact that, in a systemof n processes, if the element belonging to some process is at the end of the list and that process takes nosteps, the algorithm behaves like a solution to the problem for n� 1 processes. This observation leads to arecurrence that bounds the space needed by n processes in terms of the space needed by n�1 processes. Theyalso show that there is a matching upper bound when no operations are concurrent with any move-to-frontoperation.Much work remains to obtain space complexity lower bounds for other problems and in models with morepowerful objects.11 Time Complexity Lower BoundsTime complexity is usually measured by the number of rounds required for a system to solve a problem, orby the number of steps an individual process must take. This section surveys time complexity lower boundsfor a variety of problems.11.1 Agreement ProblemsThe �rst signi�cant lower bound on time complexity for a distributed problem was proved for terminatingreliable broadcast in a synchronous message-passing model where up to f arbitrary process faults can occur.Using a chain argument, Fischer and Lynch [139] showed that at least f +1 rounds are required. The boundalso holds in models where processes can use cryptographic primitives to authenticate messages [110, 115],although the chain arguments are more complicated. In fact, Dolev, Reischuk, and Strong [114] proved thatevery algorithm has executions with at least min(b+2; f +1) rounds in which b � f arbitrary process faultsactually occur.When only crash failures occur, Hadzilacos [159] and Lamport and Fischer [218] were able to prove thatmin(f + 1; n� 1) rounds are necessary for solving f-resilient terminating reliable broadcast, even if at mostone process can crash in each round. A version of the proof, which uses a chain argument, is given in [234,Section 6.7] and [47, Section 5.1.4] to prove that min(f + 1; n � 1) rounds are needed for consensus in asynchronous message-passing system with f crash failures. The chain is constructed implicitly and is very36



long. Babao~glu, Stephenson and Drummond [54] proved similar lower bounds for solving terminating reliablebroadcast using broadcast primitives that are prone to faults.Aguilera and Toueg [14] and Moses and Rajsbaum [250] used valency arguments to obtain considerablysimpler proofs of the lower bound on the number of rounds for consensus. At each round, to ensure multiva-lence, the adversary causes one process to crash. This can continue only so long as there remains a processto crash.Dolev, Reischuk, and Strong [114] used a chain argument to prove that, for simultaneous terminatingreliable broadcast, if up to f arbitrary process faults can occur, then at least f + 1 rounds are necessary,even for the execution in which no faults occur. Using a knowledge-based approach, Dwork and Moses [126]studied simultaneous consensus in the synchronous message-passing model with crash failures. They gavematching upper and lower bounds on the number of rounds needed to achieve simultaneous consensus in anexecution in terms of the pattern of failures that occur in the execution. Their lower bound applies even tothe weak version of the problem, where validity is required only when no faults occur. Interestingly, theyshowed that if validity is replaced by a non-triviality condition that requires that there is an execution inwhich processes decide 0 and an execution in which processes decide 1, the problem can be solved in tworounds. However, this algorithm does not extend to the stronger model in which at most one process cancrash in each round.Moses and Tuttle [251] extended Dwork and Moses' bounds on the number of rounds for obtainingsimultaneous consensus to a large class of related problems and to models in which faulty processes can failto send or receive some of their messages. When all faulty processes only fail to send certain messages orwhen all faulty processes only fail to receive certain messages, they showed that processes can determinewhen to decide using a polynomial amount of local computation. However, if faulty processes can fail to sendsome messages and fail to receive some messages, they proved that, unless P = NP , there is no algorithmfor these problems in which processes can decide at the earliest possible round in every execution using onlya polynomial amount of local computation.Inoue, Moriya, Masuzawa, and Fujiwara [187] considered the problem of clock synchronization in syn-chronous shared-memory systems with single-writer registers. Any number of processes may fail totake a step in a round (and so do not advance their clocks). Their requirement is that those processes whichhave been non-faulty for su�ciently many rounds must agree exactly on the value of their clocks. Theyproved that at least n�1 rounds are required from the time a process last failed to take a step until its clockvalue is guaranteed to agree. To do so, they considered two executions that are indistinguishable to someprocess for n � 2 rounds, but in which that process must have di�erent clock values to be correct. Theyalso gave an algorithm in which all processes that have taken steps for 
(n) consecutive rounds will agreeon their clock values.Attiya, Dwork, Lynch, and Stockmeyer [38] used valency arguments to give lower bounds on the timerequired to solve consensus in a partially synchronous message-passing model with crash failures, wheremessages are delivered within time d and there is a bound, r, on the ratio of process speeds. They proved thatthe worst-case running time of an f-resilient consensus algorithm is at least (r+f�1)d. Attiya and Djerassi-Shintel [37] used similar techniques to prove an 
( rdnn�f ) lower bound for the consensus problem in a partiallysynchronous model where up to f processes experience timing faults: they continue to execute the algorithm,but may not satisfy the timing assumptions of the model. They also proved lower bounds for set consensusand renaming in this model. Alur, Attiya and Taubenfeld [18] considered wait-free consensus in partiallysynchronous models where processes can experience crash failures and communicate using registers. Theyproved that each process requires �( U logUlog logU ) time, where U is an (unknown) upper bound on the timebetween steps of a process. To do this, they carefully assign times, consistent with the parameter U , to thesteps of any su�ciently long asynchronous execution.Afek and Stupp [12] obtained complexity results from computability results by using a simulation. Theyconsidered the problem of electing a leader in a system of n processes using registers and one compare&swapobject that can store one of v di�erent values, and proved that some process must take 
(logv n) steps.Given such a leader election algorithm in which no process ever takes more than d steps, they showed howbn=(d+ 1)c simulators can simulate the n threads, using only registers, and thereby solve (v � 1)d-setconsensus. In the simulation, di�erent simulators may actually simulate di�erent executions of the leaderelection algorithm. However, the number of di�erent simulated executions is at most (v � 1)d, so thesimulators will output at most (v � 1)d di�erent values. The lower bound on d follows from the fact that37



registers alone cannot solve set consensus when (v � 1)d < bn=(d+ 1)c (see Section 8.2).11.2 Approximate AgreementAttiya, Lynch, and Shavit [42] proved that any wait-free approximate agreement algorithm with convergenceratio at most 1=2, for n processes that communicate using single-writer registers (of unbounded size),has a failure-free execution in which no process decides the value of its output before round log2 n. Theydo this by obtaining an upper bound on the number of processes that can inuence the state of a particularprocess during the �rst t rounds of a round-robin execution. Then they show that if a process P is notinuenced by another process P 0, it cannot decide; otherwise, there is another execution which is indistin-guishable to P in which P 0 runs to completion before the other processes begin and outputs an incompatiblevalue.For wait-free two-process approximate agreement using registers, Herlihy [168] used a valency argumentto prove that a process has to take 
(log 1� ) steps in the worst case, where � is the convergence ratio. Schenk[281] proved that any algorithm for this problem using objects of consensus number one must have a chainof at least 1=� di�erent �nal con�gurations, where adjacent con�gurations are indistinguishable to one ofthe processes. From this result, he used a combinatorial argument to obtain a tradeo� between the numberof steps taken by a single process and the number of rounds in the execution: If the worst-case numberof steps is at most k, then the worst-case number of rounds is at least 
(log2k 1� ). For single-writerregisters, this tradeo� was �rst obtained by Attiya, Lynch, and Shavit [42]. Schenk used a di�erentcombinatorial argument to prove that any wait-free approximate agreement algorithm for n processes thatuses b-bit registers must take 
((log 1� )=b) rounds and use 
((log 1� )=b) registers. The proof considersthe amount of information a process needs to determine its output value after all the other processes havedecided.Schenk also gave an algorithm using 1-bit registers that matches his lower bounds for b = 1. Togetherwith Attiya, Lynch, and Shavit's log2 n lower bound for single-writer registers, this implies that anywait-free implementation of registers from single-writer registers has round complexity 
(logn).However, there is a large gap between this lower bound and the best known implementation [164]. It alsoremains open whether approximate agreement can be solved in fewer rounds using larger registers.As described in Section 8.3, Hoest and Shavit [185] used the topological approach to study the complexityof solving approximate agreement in the iterated immediate snapshot model.Dolev, Lynch, Pinter, Stark and Weihl [119] considered approximate agreement in message-passing mod-els with f arbitrary process faults. Speci�cally, they obtained lower bounds for the convergence ratio ofsynchronous one-round algorithms and asynchronous single-phase algorithms, in which processes share theirinput values and then, based on this information, choose their output values. Fekete [130] gave lower boundson the convergence ratio of any synchronous algorithm, as a function of the number of rounds, for crash fail-ures and arbitrary process faults. Fekete [131] also gave a lower bound of d(n� f)=fe�r on the convergenceratio for r-round algorithms in an asynchronous message-passing model where up to f faulty processes couldomit sending some of their messages. Note, if f � n=2, this says that the convergence ratio is at least 1,implying that approximate agreement is impossible. Plunkett and Fekete [264] gave a lower bound on theconvergence ratio for single-round algorithms that tolerate a variety of faults.11.3 The Complexity of Universal ConstructionsHerlihy's universality result [169], discussed in Section 3, and subsequent papers [8, 90, 170, 200], provideuniversal constructions, which automatically give a wait-free distributed implementation of any objecttype, using su�ciently powerful shared-memory primitives. Jayanti [193, 195] has studied some of thelimitations of this approach to providing implementations. He showed that a process that performs a wait-free simulation of an operation using a universal construction requires 
(n) steps of local computation inthe worst case, where n is the number of processes [193]. This bound does not depend on the nature of thecommunication between processes, and even holds in an amortized setting. The key idea in the proof is thedesign of an object type that conspires with the scheduler to reveal as little information about the behaviourof the object as possible. This ensures that each process, simulating a single operation op, must do somecomputation for each simulated operation that precedes op. The bound is tight [169].38



Jayanti [195] also proved a lower bound of 
(logn) on the number of shared-memory operations that mustbe performed by a universal construction in the worst case. This bound applies to a shared-memory modelthat has quite powerful primitive types of objects and holds (for expected complexity) even if randomizationis permitted. Jayanti proved the bound by considering the wakeup problem and studying how informationpropagates through the system. Roughly speaking, each shared-memory operation at most doubles the sizeof the the set of processes that are known (by some process or memory location) to have woken up. Thislower bound is also tight [8].11.4 CountingIn the counting problem, processes atomically increment a counter and get the current value of the counterin response. Counting is useful for sharing resources, implementing timestamps, and other applications.Moran and Taubenfeld [246] studied counting modulom in the context of asynchronous systems equippedwith single-bit read-modify-write objects. Even for a very weak correctness requirement, they show that mmust be a divisor of 2T , where T is the worst-case running time of the increment operation. It follows thatthe running time is at least log2m, and also that the problem is impossible if m is not a power of two. Thekey idea of the proof is to create executions where, for some t < T , 2t processes are hidden: the executioncannot be distinguished by the other processes from one where the hidden processes take no steps. Wheneverone hidden process ips a bit, another process ips it back before any non-hidden process can see it. Ifprocesses are to return the correct answer, it must be that m divides 2t, so that processes do not need todistinguish the two runs. Similar ideas were used by Moran, Taubenfeld and Yadin [247] to obtain spacelower bounds (see Section 10).Herlihy, Shavit and Waarts [180] proved that the number of steps to execute increment is 
(n=c), wherec is the maximum number of processes that access any particular object in any execution of the algorithm.They looked at the sequences of objects accessed by di�erent processes in certain runs and showed that thesesequences must contain common objects to avoid having both processes return the same value. It followsthat a sequence must contain at least ln�1c�1 m objects to ensure that it intersects the sequence of every otherprocess. Dwork, Herlihy and Waarts [124] obtained a tradeo� for consensus using a similar proof.11.5 Other Time Complexity Lower BoundsBuilding on their earlier work [61] (see Section 7.3), which characterized the tasks that can be solved in anasynchronous message-passing model with at most one crash failure, Biran, Moran, and Zaks [63] gave tightupper and lower bounds on the number of rounds needed for tasks that are solvable in this model.Chaudhuri, Herlihy and Tuttle [94] showed that 
(logn) rounds are required in a synchronous message-passing system for any wait-free comparison-based algorithm to break symmetry. As an algorithm runs, aprocess may get information about the identi�ers of other processes in the system and store this informationin its local state. For comparison-based algorithms, two processes will behave in the same way as long astheir identi�ers have the same relative order compared to each of the identi�ers they have learned about. Ineach round, they showed how an adversary can kill a constant fraction of the remaining processes to ensurethat all surviving processes remain in indistinguishable states. This establishes a general 
(logn) lowerbound for problems, such as leader election, that require di�erent processes to perform di�erent actions.Peleg and Rubinovich [261] showed that the time required to construct a minimum spanning tree in asynchronous message-passing system is 
(pn=(B logn)), where B is the maximum number of bits that canbe transmitted in a single message. Their result holds for networks of diameter 
(logn). Lotker, Patt-Shamir and Peleg [229] later showed that an 
( 3pn=B) bound holds even for graphs of diameter 4 usingsimilar techniques. Both results are proved by considering a speci�c network of small diameter where theconstruction of a minimum spanning tree requires a large amount of information to be transmitted fromone part of the network to another. Although there is a short path that connects the two parts (since thediameter is small), the bound on message size ensures that transmitting all the information along this pathwould take a long time. Transmitting the information along other paths also takes a long time, since thosepaths are much longer.Several papers have studied the time complexity of wait-free implementations of snapshot objects, whichare convenient for programmers to use, from registers, which are more commonly provided in real sys-39



tems. Israeli and Shirazi [188] considered the implementation of a single-writer snapshot object fromsingle-writer registers and showed that 
(n) steps are required to update an element. Speci�cally,given any implementation with small enough update time, they show how an adversary can construct twoindistinguishable executions that each contain a scan which should return di�erent results. Jayanti, Tanand Toueg [198] used a covering argument to show that 
(n) steps are needed for scans, even when theimplementation only has to be non-blocking and can use registers. Fatourou, Fich and Ruppert [128, 129]considered the problem of implementing a snapshot object with m elements in a wait-free manner frommulti-writer registers. When n > m+ 1, at least m registers are required. They used covering argu-ments to prove that, for any implementation that uses this many registers, the scan requires 
(mn) stepsin the worst case. This bound is tight. They also proved that 
(pmn) steps are required to perform a scanin an implementation that uses any number of single-writer registers in addition to the m registersIn some applications, processes typically execute their operations when no other processes are running.Although algorithms are required to be correct regardless of how many processes run simultaneously, it maybe that the important measure of performance is contention-free complexity, the maximum complexityover all possible solo executions. Alur and Taubenfeld [19] gave the �rst lower bounds for contention-free timecomplexity. They proved that any asynchronous algorithm solving mutual exclusion using only registershas a solo execution that takes 
( lognb+log logn) steps, where b is the number of bits per register. They showed,using a combinatorial argument, that if all solo executions take fewer steps, then there are two processeswhose solo executions are similar enough that they can be interleaved without either process noticing thepresence of the other, so that both processes enter the critical section at the same time. There do existmutual exclusion algorithms using O(logn)-bit registers that have O(1) contention-free complexity [217],matching the lower bound for b 2 �(logn). Alur and Taubenfeld also showed that some solo executionmust access 
(q lognb+log logn) di�erent registers. In the same paper, they gave simple lower bounds on thecontention-free complexity of solving the renaming problem, using di�erent types of single-bit read-modify-write objects.In some systems, shared objects are stored at di�erent processes and a process can access locally storedshared objects at a signi�cantly lower cost than remotely stored shared objects. Anderson and Yang [21]proved a necessary tradeo� for mutual exclusion between the number of accesses to remote shared objectsperformed by processes and the contention (the maximum number of processes that can simultaneouslyaccess the same object). The proof uses a combinatorial argument that allows an adversary to construct along execution if the contention is always low. Anderson and Kim [23] have improved this result to obtain alower bound on time complexity (that does not depend on the contention). Speci�cally, they prove that ina system of n processes, some process must perform 
(logn= log logn) critical events (for example, certainaccesses to registers or compare&swap objects) to enter and exit its critical section. This is very close tothe known O(logn) upper bound. Furthermore, there are a number of signi�cant technical di�culties inremoving the dependence on contention that make the proof very interesting.12 Message and Bit Complexity Lower BoundsIn systems where processes communicate by sending messages to one another, the total number of messagesand the total number of bits transmitted by an algorithm are useful measures of the algorithm's complexity.In this section, we describe lower bounds on the message and bit complexities of various problems.12.1 Computation in a RingMany of the early message complexity lower bounds were proved expressly for ring networks, where processesare arranged in a circle. Two properties of rings are used to prove strong lower bounds. Firstly, 
(n) messagesmust be sent to transmit information from a process to the diametrically opposite process. Secondly, thehigh degree of symmetry of a ring can be exploited to show strong lower bounds on message complexity:before the symmetry is broken, whenever a process sends a message, many other processes must do likewise.Thus, although a ring is a very simple network, and hence suitable for lower bound proofs, it is not so simplethat problems become easy to solve. This makes the ring a good candidate when one is looking for theworst-case network topology for a problem, and a good starting point for lower bound proofs.40



There are a number of modelling issues to be considered when studying ring lower bounds: the processesmay operate synchronously or asynchronously, communication may be bidirectional or unidirectional, pro-cesses may either have distinct identi�ers or be anonymous, and processes may or may not initially know thesize of the ring. In the case of a bidirectional ring, processes may or may not initially know which directionis clockwise. For each of these �ve choices, the latter option makes problems harder (or at least no easier)to solve, so lower bounds for the former automatically apply to the latter.In a unidirectional ring, one crash failure of a process or communication channel makes it impossible forsome processes to communicate information to processes further along the ring. Similarly, in a bidirectionalring, two crash failures can disconnect the network. Thus, when studying rings, one generally assumes thatthe system is reliable.Burns [78] showed a worst-case lower bound of 
(n logn) messages for leader election among n processesin an asynchronous bidirectional ring, if processes do not initially know n, but do have distinct identi�ers. See[47, Section 3.3.3] for a discussion of his inductive proof, which generates a costly execution for n processesby pasting together a pair of costly executions for n=2 processes that have no communication across oneedge. Bodlaender [64] proved, using a combinatorial argument, that the 
(n logn) bound holds even for theaverage message complexity (taken over all assignments of identi�ers to processes) when processes know thering size and have distinct identi�ers drawn from a set of size (1 + �)n, for � > 0. He also showed how toextend this result to randomized algorithms. Pachl [258] gave a similar proof of an 
(n logn) lower boundon expected message complexity for randomized algorithms that allow a constant probability of error on aunidirectional ring of unknown size, where processes have distinct identi�ers.Higham and Przytycka [184] used a weighted measure of message complexity, where some edges are moreexpensive to use than others (cf. [52]). Using this complexity measure, they obtained a generalization ofthe lower bound for leader election in an asynchronous, unidirectional ring when processes have distinctidenti�ers.The solitude veri�cation problem is to determine whether there is exactly one process with inputvalue 1. It is closely related to the leader election problem. It can be used to verify that a leader has beenelected and, in a unidirectional ring with a leader, solitude veri�cation can be performed with O(n) bittransmissions. Hence, !(n) lower bounds for solitude veri�cation imply the same lower bounds for leaderelection.When the ring size is only known to within a factor of 2, i.e. N � n � 2N , for some N , and processeshave distinct identi�ers chosen from a universe of size s � 2N , Abrahamson, Adler, Gelbart, Higham, andKirkpatrick [2] proved that the average (over all possible assignments of identi�ers to processes) expectedbit complexity of randomized solitude veri�cation on asynchronous unidirectional rings is in 
(n log(n=s)).Their proof uses the pigeonhole principle combined with a scenario argument. They also provided a leaderelection algorithmwith O(n log s) expected bit complexity for unknown ring size, matching their lower boundwhen s � n1+� for some constant � > 0. If processes are anonymous, but ring size is known to within afactor of 2, they gave another randomized leader election algorithm that uses O(n logn) expected bits ofcommunication. They showed that this algorithm is optimal by proving a lower bound of 
(n log�) whenN � n � N +� for some N and each identi�er can be assigned to at most two processes.Abrahamson, Adler, Higham, and Kirkpatrick [4] obtained tight bounds for the bit complexity of solitudeveri�cation on asynchronous unidirectional rings of anonymous processes allowing randomization and aconstant probability of error. Their bounds do not depend on whether the error is one-sided or two-sidedor whether deadlock can occur, but do depend on the processes' knowledge of the ring size and whether theprocesses must know when the algorithm has terminated. For example, if the ring size n is known and allprocesses must output the answer, they proved that any algorithm solving solitude veri�cation with errorprobability � > 0 has expected bit complexity �(nmin(plogn;plog log(1=�))). They used sophisticatedscenario and symmetry arguments to obtain their lower bounds on the expected number of bits transmitted.Their technique considered a con�guration having exactly one process with input value 1 and for which,with high probability, only a small number of bits are transmitted. They showed that there must be ashort sequence of bits that are transmitted along a particular link with reasonably high probability. Then byremoving, replicating, and splicing parts of the ring, they were able to construct another con�guration havingmore than one process with input value 1 on which the algorithm errs with unacceptably high probability.A more general problem related to leader election is for processes to compute a function of their inputvalues. Once a leader has been elected, that leader can initiate a message which will travel around the ring41



gathering all the inputs. When the message returns to the leader, it computes the function locally, and thendistribute the answer to the other processes using n � 1 additional messages. On the other hand, leaderelection can be solved by computing the maximum, using the (distinct) process identi�ers as input valuesand electing the process with the largest input value. There are deterministic algorithms for computing themaximum of the input values in an asynchronous unidirectional ring using O(n logn) messages [113, 262],so leader election has the same complexity. Thus having randomness or bidirectional links does not help toelect a leader in an asynchronous ring where processes have distinct identi�ers.To compute a function on a ring of anonymous processes, the function value must be the same whenthe inputs are cyclically permuted around the ring. Attiya, Snir and Warmuth [46] studied the problemof computing a Boolean function of input values in an anonymous bidirectional ring of known size, whereprocesses begin in identical states and do not know which direction is clockwise. Any function that iscomputable in this model can be computed using O(n2) messages: every process sends its input around thering. They showed most functions that are computable in this setting do require �(n2) messages, using asymmetry argument. Duris and Galil [123] gave an 
(n log� n) bound on the number of messages neededfor any non-constant function. Moran and Warmuth [248] showed this bound is tight for some functionsand proved that the bit complexity must be 
(n logn) for any non-constant function. They also constructeda family of non-constant functions that can be computed within these bounds. Their lower bound on bitcomplexity was generalized by Bodlaender, Moran and Warmuth [65] to apply to networks where processeshave distinct identi�ers. For randomized computation on a unidirectional anonymous ring, Abrahamson,Adler, Higham, and Kirkpartrick [3] proved that 
(nplogn) bits must be transmitted for computing anynon-constant function and showed that this bound is tight for some functions. Their lower bound holdseven when algorithms may become deadlocked or fail to terminate with high probability: They show that anerroneous computation can be obtained by cutting and splicing parts of an accepting computation in whichtoo few bits are transmitted. Attiya and Snir [45] gave an 
(n logn) bound on the number of messages forcomputing, in an anonymous ring, a function (such as exclusive or) whose output value is not determined bya short subsequence of the input values. Their bound applies to the average, over all inputs, of the numberof messages sent in the worst-case execution for that input. They also give related lower bounds for theexpected complexity of randomized algorithms. Similar results are known for non-anonymous rings [64].If the function to be computed has the range f0; 1g, we can think of the problem of computing thefunction as a problem of recognizing strings in a language, namely those that produce the output value1. Each process begins with one character of the input string (in order around the ring). Mansour and Zaks[237] studied this problem in a ring of unknown size with a distinguished leader. The obvious algorithmwhich has the leader send one message all the way around the ring to gather the entire string uses �(n)messages, which is clearly optimal for non-trivial languages. However this algorithm transmits messagescontaining a total of �(n2) bits. Mansour and Zaks studied whether the bit complexity can be improved.They gave an elegant proof that the bit complexity of the problem is O(n) if and only if the language isregular. If the language is not regular, 
(n logn) bits are necessary, which establishes an interesting gap.Lower bounds for synchronous rings generally rely on symmetry arguments. A highly symmetric con�g-uration of an algorithm is one that contains many processes in the same state. The �rst step of the proof isto carefully design one or more initial con�gurations that have a high degree of symmetry (for example, bychoosing the identi�ers so that comparison-based algorithms cannot tell apart sections of the ring). One thenshows that, in order to solve a problem, processes must reduce the level of symmetry by communicating withone another. The message complexity lower bounds take advantage of the fact that, whenever a message issent by one process, it is also sent by all other processes in the same state.Frederickson and Lynch [143] showed that any comparison-based leader election algorithm in a bidirec-tional synchronous ring requires 
(n logn) messages. For simplicity, consider the case where n is a power of2. They designed an assignment of identi�ers to processes so that, for any segment of the ring of length 2i,there are n=2i segments that look identical to any comparison-based algorithm. Consider a process in onesuch segment and another process in the corresponding location in another segment. These two processes willbe in identical states until information is propagated to one of them from outside its segment. If a processwishes to propagate information to its neighbour that will be useful in distinguishing the two segments, itmust either send a message to its neighbour, or it can remain silent while the corresponding process in theother segment sends a message to its neighbour. Frederickson and Lynch keep track of the longest distancesacross which information has been propagated in this way. Doubling this quantity from 2i to 2i+1 requires42



messages to be sent in 2i rounds. However, each time one message is sent, it will be sent simultaneouslyby n=2i+1 other processes embedded in indistinguishable segments. This gives a total of n=2 messages todouble the maximumdistance that information has been propagated. The 
(n logn) bound follows from thefact that information must eventually be propagated at least halfway around the ring to ensure symmetryis broken and exactly one leader is elected.Using Ramsey theory, Frederickson and Lynch extend their 
(n logn) lower bound from comparison-based algorithms to arbitrary time-bounded algorithms, provided the process identi�ers are chosen from asu�ciently large set. They also give a leader election algorithm for a synchronous unidirectional ring thatallows process identi�ers to be arbitrary integers and sends only O(n) messages, but can take a very largenumber of rounds. There is also a randomized leader election algorithm for anonymous synchronous ringswith expected message complexity O(n), provided processes know the ring size n [189].Attiya, Snir and Warmuth [46] used similar ideas to prove that computing most functions in a synchro-nous, bidirectional, anonymous ring requires 
(n logn) messages. Attiya and Mansour [43] built on theseresults to prove lower bounds in this model on the number of messages required for recognizing strings in alanguage.This section describes many 
(n logn) lower bounds for computation in rings. However, the lower boundsdo not subsume one another, because of di�erences in models or in the measures of complexity used. Theproblem of unifying these results remains open: perhaps one strong lower bound for ring computation wouldimply all the others. Such a result would improve our understanding of the lower bounds.12.2 Other Network TopologiesConsider the terminating reliable broadcast problem in a fault-free message-passing model, where n processesare arranged in a connected network with m message channels. Every process except the sender must receiveat least one message in a fault-free execution, so at least n � 1 messages are necessary. If processes do nothave any information about the topology of the graph, every edge must be traversed to ensure that thereis no node \hiding" in the middle of the edge, so at least m messages are necessary. A simple oodingalgorithm shows that m messages are su�cient. If each process knows the identities of its neighbours, depth�rst search uses �(n) messages. However, the messages transmitted may become very large: In order toensure that the algorithm sends only one message to each node, a list of previously reached nodes is addedto the message so that the algorithm can tell when it is unnecessary to forward the message to some of itsneighbours. Awerbuch, Goldreich, Peleg and Vainish [53] analysed the message complexity of this problemfor the case where messages must be of bounded length. Their lower bounds apply to synchronous systems,but they also give matching upper bounds for asynchronous networks, thereby establishing tight upper andlower bounds for both models. They showed that if each process knows the identities and arrangementof processes within a radius of �, then �(min(m;n1+�(1)=�)) messages are required. When � = 1, �(m)messages of bounded-size are required. Their lower bound is for comparison-based algorithms, but thisrestriction can be removed using Ramsey theory [233].Korach, Moran and Zaks [210, 211] considered complete networks of synchronous processes with no faults,where processes do not know which of their channels is connected to which process. They proved that 
(n2)messages are required to �nd a minimum spanning tree of the network, even if only edge weights 0 and 1 canoccur. If an algorithm uses too few messages, they use a combinatorial argument to show that the weightson some the edges not used by the algorithm can be changed to obtain a network with a di�erent minimumspanning tree. However, the algorithm cannot distinguish the new network from the original one. They alsogave an 
(n2=k) bound for �nding a spanning tree of degree at most k. Korach, Moran and Zaks de�ned theclass of global problems and generalized their work to obtain lower bounds on message complexity for anyproblem in this class. A problem is global if, for any algorithm that solves the problem, each execution of thealgorithmmust use a set of edges that spans the network. Leader election, broadcast and the construction ofa spanning tree are examples of global problems. Their proof is an adversary argument, where the adversarychooses the round at which each process begins execution and chooses which edge a process obtains whenit tries to send a message an unused incident edge. As the adversary constructs an execution, it keeps trackof the size of the largest connected component in the subgraph induced by edges that have been used sofar. Suppose at least m(k) messages must be sent to obtain a component of size k. How many messages arerequired to get a component of size 2k+1? The adversary �rst has the algorithm construct two components43



of size k, using at least 2m(k) messages. If any process in one of the two large components then starts sendingmessages across unused edges, the adversary can direct the �rst k of them into the other large component.So at least k + 1 messages must be sent before any vertex outside the two large components is discovered.Thus, a total of 2m(k) + k + 1 messages are needed to construct a component of size 2k + 1. The lowerbound of 
(n logn) messages follows from the fact that all n processes must belong to the same componentat the end of the execution. Korach, Moran and Zaks also provide a similar proof of an 
(n2) lower boundfor certain matching problems.Afek and Gafni [9] gave a tradeo� between time and message complexity for leader election. Singh [286]showed a stronger tradeo� between time and message complexity for asynchronous networks. Reischuk andKoshors [270] looked at global problems in arbitrary networks. They showed that if processes initially knowthe identi�ers of only their immediate neighbours, 
(m) bounded-size messages are required, where m is thenumber of edges in the network graph.Goldreich and Sneh [151] studied the problem of computing a function of the processes' input values inan asynchronous system. The processes communicate using unidirectional channels which can experiencecrash failures, but it is assumed that the network remains strongly connected. They construct a graph withn vertices and m edges for which the problem of computing any function that depends on all of its inputsrequires 
(mn=polylog(n)) messages. This means that the naive O(mn) algorithm in which every processsends its input value to every other process by ooding the network is close to optimal. A combinatorialargument is used to show that, if every message that a process P can send causes fewer than m=polylog(n)other messages to be sent around the network, the adversary could crash some edges of the graph to ensurethat no new information ever gets back to P . Their proof continues by showing how an adversary canconstruct a bad schedule. The adversary �rst schedules one message fromP that causes at leastm=polylog(n)other messages to be sent. When all of these messages have been delivered, the adversary allows P to sendanother message, which again must trigger m=polylog(n) further messages. They show that this can berepeated n=polylog(n) times.Wattenhofer and Widmayer [295] studied the counting problem in an asynchronous message-passingenvironment. They consider executions where each of the n processes executes one increment operation. Acentralized solution would have a single process keep track of the value of the counter. However, this requiresone process to send and receive n messages during the execution. A solution where the work performed ismore evenly distributed is desirable. They showed that it is not possible to create an algorithm where everyprocess sends and receives O(1) messages: in fact, even if no two increments are allowed to run concurrently,they show how to construct an execution in which one process will send or receive a total of 
(logn= log logn)messages. The key observation used to obtain the lower bound is that each increment must �nd out aboutthe previous increment via some chain of messages. The adversary greedily chooses which increment toschedule next so that this chain is long.Dwork and Skeen [127] considered the commit problem in the synchronous network model where processesmay experience crash failures. They showed that there must be a chain of messages from each process P toeach other process Q in the failure-free execution where every initial value is 1. Otherwise, one can constructan execution where P 's initial value is 0, but Q still decides 1, by killing any process as soon as it hears(directly or indirectly) from P . It follows that at least 2(n � 1) messages are required in the failure-freeexecution. This result was reproved using formal notions of knowledge by Hadzilacos [161]. Segall andWolfson [284] generalized Dwork and Skeen's argument to give a lower bound on the number of messagehops needed for solving the commit problem among a subset of processes in a network.Amdur, Weber and Hadzilacos [20] studied the terminating reliable broadcast problem in a synchronoussystem where up to f of the processes may experience crash failures. In each round, each process may send amessage to any set of processes. They showed that at least d(n+ f � 1)=2e messages must be used in one ofthe failure-free executions, and this result is tight. Hadzilacos and Halpern [162] proved similar tight resultsfor other kinds of faults. For the case of arbitrary process faults, they proved �(nf) messages are used insome failure-free execution. Dolev and Reischuk [120] gave a similar proof of this result. Both papers alsoderived bounds for the situation where processes may use authenticated messages to combat arbitrary processfaults. The lower bounds also apply to the consensus problem because of the simple reduction mentioned inSection 3.3.We illustrate the technique used for these lower bounds by proving the a similar bound for consensusin a system with arbitrary process faults [120, 162]. Consider an algorithm for n processes that tolerates f44



faulty processes. Let Ei be the execution where all processes are correct and begin with input i. Suppose thetotal number of processes with which some process P communicates directly either in E0 or E1 is at mostf . Consider an execution where those processes are faulty and P has input 0 while all other processes haveinput 1. If the faulty processes behave towards P as they do in E0, and towards the rest of the processes asthey do in E1, P must decide 0, and the other correct processes must decide 1, violating agreement. Thus,for each process P , the set of processes with which P communicates either in E0 or in E1 must contain atleast f + 1 processes. It follows that one of the two executions uses at least n(f + 1)=4 messages.13 Randomized ComputationAdding randomness to a model can increase its computational power. For example, it is possible to breaksymmetry by having processes ip coins. Thus an unsolvability result for a deterministic model that wasproved using a symmetry argument might not be valid for a randomized model. Note that there will still besome execution where symmetry is never broken, namely the execution where all processes generate exactlythe same in�nite sequence of coin ips. However, the probability of this happening is 0. Thus, one mightonly require a randomized algorithm to terminate with probability 1 instead of requiring termination in allexecutions. A stronger condition requires that the expected time until termination is �nite. Randomizedconsensus di�ers from consensus in exactly this way, making it easier: As discussed below, randomized con-sensus can be solved by a randomized algorithm that tolerates up to dn=2e�1 crash failures, but consensus isunsolvable in asynchronous message-passing systems with just one crash failure. When considering random-ized algorithms, correctness conditions can also be modi�ed, allowing incorrect outputs, but requiring thatthe probability of such errors is very small. Gupta, Smolka and Bhaskar's survey [158] is a good introductionto the use of randomization in the design of distributed algorithms.More powerful models combined with weakened problem speci�cations make proving impossibility resultsmore di�cult than for deterministic models. However, a variety of unsolvability results and lower boundsfor randomized algorithms do exist. These are discussed in the remainder of this section.13.1 Unsolvability ResultsAn impossibility result for the terminating reliable broadcast problem in a randomized synchronous message-passing system was presented by Graham and Yao[153]. They considered algorithms for three processes, oneof which may behave arbitrarily. In particular, the action of the faulty process at each round can dependon the messages sent by the other processes during that round. They showed that no algorithm can achieveagreement and validity with probability greater than (p5 � 1)=2, where the probability is taken over therandom choices made by the processes during executions chosen by an adversary. The proof is a detailedscenario argument, where the views of a process in two scenarios are indistinguishable in the sense that theyare identical random variables. They also obtain an algorithm that achieves their bound.Bracha and Toueg [74] considered the problem of solving consensus in an asynchronous message-passingsystem. As described in Section 5.1, this cannot be done using a deterministic algorithm that is resilient toeven one crash failure. They showed an f-resilient randomized algorithm (which never errs and terminateswith probability 1) exists if and only if f < n=2. We sketch a simpler proof of the unsolvability result.First consider the case of two processes, P and Q, one of which may fail. The standard type of valencyargument shows the existence of an in�nite execution, but this is insu�cient to show that no randomizedconsensus algorithm can exist, since there may be in�nite executions that occur with probability 0. Thus,modi�ed de�nitions of valency are used for this proof: a con�guration is solo-univalent if all terminatingsolo executions from C lead to the same decision value; otherwise, the con�guration is solo-multivalent. Anyinitial con�guration where processes have di�erent inputs is solo-multivalent. To derive a contradiction, wenow prove that no con�guration of a consensus algorithm can be solo-multivalent. Suppose C is a solo-multivalent con�guration. Then there exist solo executions �P by P and �Q by Q starting from C thatlead to di�erent decision values dP and dQ. Now consider an execution from C where P �rst executes �P(and decides dP ), and then Q executes �Q (and decides dQ). By inde�nitely delaying any messages sentduring �P , one can ensure that this execution is legal. But this execution violates the agreement propertyof consensus algorithms. The result for n processes can be obtained by a reduction: if an dn=2e-resilientalgorithm for n processes exists, then a 1-resilient algorithm for two processes could be constructed by having45



P simulate dn=2e processes and Q simulate the other bn=2c processes. Bracha and Toueg [74] also showedthat n-process consensus can be solved in this model in a way that tolerates f arbitrary process faults if andonly if f < n=3.Coan and Welch [105] proved there are no f-resilient algorithms for the commit problem in partiallysynchronous systems of n � 2f processes, where non-faulty processes must eventually terminate with proba-bility 1. They do this by explicitly constructing bad executions. They also prove that the expected numberof steps taken by each process cannot be bounded. This proof uses a valency argument that allows theconstruction of many long executions leading to multivalent con�gurations.Angluin [26] showed that if the ring size is known only within a factor of two, then even randomizedalgorithms cannot elect a leader in a synchronous, anonymous ring. Suppose there exists such an algorithm.Consider some terminating execution for a ring of n processes that occurs with probability p > 0. Weconstruct an execution in a ring of 2n processes formed by cutting the original ring and pasting two copiestogether. With probability p2, each pair of diametrically opposite processes will take exactly the same stepsas the corresponding process in the n-process ring did. Since one process declared itself the leader in then-process ring, two processes will do so at the end of the execution in the larger ring, which means thealgorithm errs with non-zero probability. As mentioned in Section 5.4, there are randomized algorithms toelect a leader in an anonymous ring of known size. It follows that no randomized algorithm can determine thenumber of processes in an anonymous ring of unknown size. Cidon and Shavitt [102] used similar argumentsto prove the impossibility of computing a large class of functions (including ring size and exclusive or) inan anonymous, synchronous ring of unknown size. Their proof applies even to randomized algorithms thatterminate correctly with probability 1, provided they have bounded average message complexity.Chor and Moscovici [100] characterized the tasks that are solvable by f-resilient randomized algorithms.(See Section 7.3.)13.2 Complexity Lower BoundsRandomized consensus is solvable in the asynchronous shared-memory model where processes communicateusing registers and can ip coins. There are wait-free algorithms for randomized consensus among nprocesses that perform O(n2 logn) expected work [75] and wait-free algorithms where the expected numberof operations performed by each process is O(n log2 n) [32]. Most algorithms for randomized consensus arebased on collective coin ipping, which is a way of combining many local coin ips into a single global coinip. However, there is a complication: a malicious adversary can destroy some of the local coins after theyare tossed but before they are used. The goal of a collective coin ip algorithm is to limit the degree towhich the adversary can inuence the outcome of the global coin ip.Aspnes proved that any f-resilient algorithm for randomized consensus performs 
(f2= log2 f) local coinips (and, hence, work) with high probability [29]. His result applies to asynchronous shared-memory systemswhere processes communicate using only registers, as well as to all models that can be deterministicallysimulated by such a model, including asynchronous message-passing systems and asynchronous shared-memory systems with snapshot objects. The proof of his lower bound has two parts. One is a lower boundon the number of local coin ips needed to prevent an adversary from having too much inuence on theoutcome of a collective coin ip. The other is an extension of the valency argument to the randomizedsetting to show that an algorithm either performs a collective coin ip with small bias or spends lots of localcoin ips to avoid doing so. Aspnes introduces the notion of an a-univalent con�guration, a con�gurationfrom which an adversary scheduler can cause the algorithm to produce the output value a with su�cientlyhigh probability. Then a bivalent con�guration is both 0-univalent and 1-univalent and a nullvalentcon�guration is neither. He shows that, with high probability, an adversary scheduler can force anyalgorithm into a bivalent or nullvalent con�guration from its initial con�guration or whenever a local coinip is performed. He also proves that a bivalent con�guration always leads to a nullvalent con�guration orto a con�guration in which a local coin ip can be scheduled next. Finally, in nullvalent con�gurations, heshows that the coin ipping lower bound applies. A polylogarithmic gap remains between the upper andlower bounds for the amount of work to solve randomized consensus in asynchronous models.Bar-Joseph and Ben-Or [56] extended Aspnes's result to synchronous message-passing systems, obtaininga lower bound of 
(f=pn logn) rounds (with high probability) for f-resilient randomized consensus amongn processes. They also gave a matching upper bound in this model. In contrast, for deterministic algorithms,46



f + 1 rounds are needed (see Section 11.1).If the power of the adversary scheduler is restricted so that its choices can only depend on the actions ofthe processes (and cannot depend directly on the outcome of coin ips), then faster algorithms are possible:there is a randomized consensus algorithm using registers with expected O(logn) operations performedper process [49]. For message passing, even expected constant time randomized consensus algorithms havebeen achieved against weak adversaries, for asynchronous systems with omission faults [99] and synchronoussystems with arbitrary process faults [134], tolerating a constant fraction of faulty processes. Chor, Merritt,and Shmoys [99] also obtained an upper bound on the probability of early termination in a synchronousmessage-passing system with crash failures. They did this by proving that, if the probability is too high,there is some input for which the chain argument used in the deterministic time lower bound applies.Russell, Saks, and Zuckerman [276] proved lower bounds on the time to generate a shared coin ip thathas a positive constant probability of being heads and a positive constant probability of being tails, evenwhen arbitrary process faults can occur. The probability is taken over the random choices made by non-faulty processes. Speci�cally, they consider n-process synchronous algorithms with r(n) rounds, where, ateach round, each non-faulty process ips a fair coin and broadcasts the outcome to the other processes. Theyshow that, if r(n) � (12 � �) log� n, for some constant � > 0, then the algorithm is not 
(n)-resilient. Theyalso provide a tradeo� between the number of faulty processes and the number of rounds. These results areobtained by bounding the inuence of random sets of variables on the value of Boolean functions. Collectivecoin ipping can be reduced to leader election using one additional round in which the chosen leader, ifnon-faulty, ips a fair coin and broadcasts it to all other processes. Thus their lower bounds also apply toleader election, where the probability of causing a faulty process to be leader must be bounded by someconstant less than 1.Coan and Dwork [104] obtained a lower bound on the number of rounds necessary for any randomizedsynchronous message-passing algorithm to solve simultaneous consensus when up to f processes can crash.More speci�cally, they proved that f + 1 rounds are required in any execution in which at most r processescrash by round r, for all r � f . They did this by showing how to transform any randomized algorithmfor this problem into a deterministic algorithm for the same problem and then applying results discussed inSection 11.1. They also obtained a similar lower bound for the distributed �ring squad problem by reducingit to simultaneous consensus.The write-all problem is to set n registers, all initially 0, to 1. It has been used for the construction ofe�cient wait-free algorithms [24, 156] and as the basis of step-by-step simulations of fault-free synchronousshared-memory systems by shared-memory systems with crash failures or asynchrony [24, 205, 239, 206].Buss, Kanellakis, Ragde, and Shvartsman [81] proved that any randomized asynchronous algorithm forthis problem that uses n processes, at most half of which can crash, must perform 
(n logn) writes tothese registers. In a fault-free synchronous shared-memory model, write-all can be solved by having nprocesses each write 1 to a di�erent register, with work n. Hence, there is a complexity separation betweensynchronous and randomized asynchronous fault-free shared-memory models. The idea of their proof is thatan adversary schedules the processes to run until each covers one of the n registers. Among the registerswith value 0, the adversary chooses the half which have the fewest processes covering them and schedulesthe n=2 or more processes which cover other registers to perform their writes. This can be repeatedlog2 n times, each time reducing the number of registers with value 0 by at most a factor of 2. Theyprovide a matching deterministic upper bound when processes can communicate using snapshot objects.Against restricted adversaries whose choices cannot depend directly on the outcome of coin ips, there isa randomized algorithm using registers that performs O(n(logn)3) work with high probability [31]. Forany � > 0, there is also a deterministic algorithm using only registers that performs O(n1+�) work [25].However, it is an open question whether there is a deterministic algorithm for the write-all problem thatuses only registers and performs n(logn)O(1) total operations.The write-all problem has also been considered in the synchronous shared-memory model withfaulty processes. Kanellakis and Shvartsman [205] showed that the work complexity of the problem is�(n logn= log logn) using snapshot objects and give an algorithm that does O(n(logn)2= log logn) workusing only registers. Kedem, Palem, Raghunathan, and Spirakis [207] improved the lower bound usingregisters to 
(n logn) expected work for randomized algorithms. Martel and Subramonian [239] showedthat this expected lower bound on work could be obtained using a restricted adversary. These lower boundsare obtained by reduction from the problem of computing the or of n bits. To prove a lower bound for47



computing or, they derived an upper bound (via a recurrence) on the number of processes at time t thatare a�ected when some input bit is ipped, starting from the input con�guration where all inputs are 0.Kanellakis and Shvartsman [206] give a more detailed discussion of the write-all problem and other relatedproblems.The randomized space complexity for the mutual exclusion problem was considered by Kushilevitz,Mansour, Rabin, and Zuckerman [214] when a single read-modify-write object is used to provide a fairrandomized solution. They proved a lower bound on the size of the object. Speci�cally, 
(log logn) bitsare necessary. They also proved that their lower bound is tight, in contrast to the deterministic case, where�(logn) are necessary, as discussed in Section 10. For weaker fairness conditions, they obtain smaller lowerbounds that depend on the number of processes accessing the critical section in a mutually exclusive manner.Their proofs are based on an analysis of Markov chains.Allenberg-Navony, Itai, and Moran [17] and Bodlaender [64] discuss circumstances under which lowerbounds on the average-case complexity of deterministic distributed algorithms (where the average is takenover a probability distribution on the inputs) give rise to lower bounds on the expected complexity ofrandomized distributed algorithms. Their work extends Yao's minimax principle [299], which applies tosequential and parallel computation. Using this technique, they obtain lower bounds on the expected messagecomplexity of �nding the maximum process identi�er in bidirectional rings of processes.Several of the message complexity lower bounds for rings discussed in Section 12.1 apply to randomizedalgorithms.14 ConclusionsThis survey has presented many impossibility results in distributed computing and di�erent techniques forproving them. This research topic has proved to be an interesting and fruitful one over the past two decades.Stronger impossibility results can be proved in distributed computing than in most other areas of computerscience, because of the limitations imposed by local knowledge. We hope this survey will inspire and enablemore people to contribute new impossibility results for distributed computing problems and new techniquesfor obtaining them.AcknowledgementsWe are indebted to Nancy Lynch for allowing us to use ideas and material from her survey paper [233]. Wethank Maurice Herlihy and Vassos Hadzilacos for enlightening discussions. The anonymous referees providedmany very helpful comments. Our work was supported by the Natural Sciences and Engineering ResearchCouncil of Canada and by Communications and Information Technology Ontario. A part of this work wasdone while Eric Ruppert was visiting Brown University.References[1] Karl Abrahamson. On achieving consensus using a shared memory. In Proceedings of the 7th AnnualACM Symposium on Principles of Distributed Computing, pages 291{302, 1988.[2] Karl Abrahamson, Andrew Adler, Rachel Gelbart, Lisa Higham, and David Kirk-patrick. The bit complexity of randomized leader election on a ring. SIAM Journal on Computing,18(1), pages 12{29, February 1989.[3] Karl Abrahamson, Andrew Adler, Lisa Higham, and David Kirkpatrick. Randomizedfunction evaluation on a ring. Distributed Computing, 3(3), pages 107{117, July 1989.[4] Karl Abrahamson, Andrew Adler, Lisa Higham, and David Kirkpatrick. Tight lowerbounds for probabilistic solitude veri�cation on anonymous rings. Journal of the ACM, 41(2), pages277{310, March 1994. 48
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