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Abstract—A robust archived differential evolution 

algorithm is put forward by means of embedding a 

flexibility processing operator and an efficiency processing 

operator based on original DE and ADE. A special 

constraint-handling mechanism based on dynamic penalty 

functions and fitness calculation of individuals is adopted in 

the proposed method to deal with various constraints 

effectively, which is further extended by means of a 

flexibility processing operator so as to make it suitable for 

different type problems, including those with or without 

constraint(s) and those with continuous, discrete or mixed 

discrete-continuous variables. Furthermore, an archive of 

solutions is maintained during the evolutionary process so 

as to keep the useful information of previous solutions and 

local optima for the estimation of new solutions. Based on 

the archive of solutions, an iterative control operator and an 

efficiency processing operator are designed in the algorithm. 

The former guides the evolutionary process towards a 

promising search space, avoiding unnecessary and worthless 

search. The latter improves the local searching efficiency 

and the final searching quality. Experimental results based 

on a suite of six well-known optimization problems reveal 

that the proposed algorithm is robust, effective, efficient and 

suitable for different type global optimization problems. 

Index Terms—Global optimization, differential evolution, 

constraint handling, archived solutions, iterative control  

I. INTRODUCTION

Evolutionary computation technique is one of the most 
important optimization techniques. It has been 
successfully applied to a wide range of engineering 
optimization problems. As more and more difficult 
engineering optimization problems appear, always with 
objective functions being non-differentiable, non-
continuous, non-linear, noisy, and multi-dimensional or 
having many local minima and complex constraints 
because of various practical requirements, practicable and 
effective approaches to solve such problems are 
becoming unsatisfactory and insufficient. Therefore, 
more valuable work and research on evolutionary 
computation techniques for constrained optimization 
problems are urgent and significant. 

Because differential evolution (DE) [1,2] is a simple 
and powerful population-based stochastic search 
technique for solving global optimization problems over 
continuous spaces, and its effectiveness and efficiency 
have been successfully demonstrated in the last few years 

through a vast amount of applications [3], it becomes one 
of the most satisfying methods for solving such 
engineering problems [4,5]. However, DE method was 
originally proposed, in principle, to solve unconstrained 
optimization problems, hence we present a modified 
differential evolution with constraints handling for 
constrained optimization problems, i.e. the archived 
differential evolution (ADE) [6]. 

Dynamic penalty functions and fitness calculation of 
individuals for handling linear and non-linear constraints 
are adopted in ADE, and an archive of solutions is 
maintained in order that the best information of previous 
local optimums can be kept for the quality estimate of 
new solutions in the evolutionary process. Besides, an 
iterative control operator is designed in ADE based on the 
archive of solutions, which can make the search process 
adjusted and guided towards a promising search space. 

In our latest work and research on ADE, two operators 
are designed and introduced into the technique to make it 
more flexible and efficient for optimization tasks. The 
one for flexibility processing can make the approach 
suitable for different type optimization problems, 
including those with or without constraint(s) and those 
with continuous, discrete or mixed discrete-continuous 
variables. The other one for efficiency processing can 
reduce the quantity of total calculation and improve the 
quality of final solutions. 

This paper is organized as follows. In Section II, a 
review of related works on optimization and DE 
techniques is provided. In Section III, a brief description 
of the original DE algorithm is given. In Section IV, the 
description of our approach is presented in detail. The 
experimental design and obtained results are provided in 
Section V, and some conclusions are established in 
Section VI. 

II. RELATED WORK

Generally, an optimization problem can be formulated 
as

min ( )

( ) 0, 1,..., ,

. . ( ) 0, 1,..., ,

, 1,..., ,
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k

i i i
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g X j m

s t h X k n

l x u i D
 (1) 

160 JOURNAL OF COMPUTERS, VOL. 4, NO. 2, FEBRUARY 2009

© 2009 ACADEMY PUBLISHER

https://www.researchgate.net/publication/220290112_Empirical_analysis_of_self-adaptive_differential_evolution?el=1_x_8&enrichId=rgreq-557f389a-8177-4eb9-8bb7-1ee29d9c3f8b&enrichSource=Y292ZXJQYWdlOzIyMDQwNTY4MTtBUzoxMDQzOTg4NzczNjQyMzBAMTQwMTkwMjA0MDQyMw==
https://www.researchgate.net/publication/3418551_Stron_R_System_Design_by_Constraint_Adaption_and_Differential_Evolution_IEEE_Transactions_on_Evolutionary_Computation_3_22-34?el=1_x_8&enrichId=rgreq-557f389a-8177-4eb9-8bb7-1ee29d9c3f8b&enrichSource=Y292ZXJQYWdlOzIyMDQwNTY4MTtBUzoxMDQzOTg4NzczNjQyMzBAMTQwMTkwMjA0MDQyMw==
https://www.researchgate.net/publication/227242104_Price_K_Differential_Evolution_-_A_Simple_and_Efficient_Heuristic_for_Global_Optimization_Over_Continuous_Spaces_Journal_of_Global_Optimization_114_341-359?el=1_x_8&enrichId=rgreq-557f389a-8177-4eb9-8bb7-1ee29d9c3f8b&enrichSource=Y292ZXJQYWdlOzIyMDQwNTY4MTtBUzoxMDQzOTg4NzczNjQyMzBAMTQwMTkwMjA0MDQyMw==
https://www.researchgate.net/publication/4332650_An_Archived_Differential_Evolution_Algorithm_for_Constrained_Global_Optimization?el=1_x_8&enrichId=rgreq-557f389a-8177-4eb9-8bb7-1ee29d9c3f8b&enrichSource=Y292ZXJQYWdlOzIyMDQwNTY4MTtBUzoxMDQzOTg4NzczNjQyMzBAMTQwMTkwMjA0MDQyMw==
https://www.researchgate.net/publication/220403592_Differential_evolution_for_sequencing_and_scheduling_optimization?el=1_x_8&enrichId=rgreq-557f389a-8177-4eb9-8bb7-1ee29d9c3f8b&enrichSource=Y292ZXJQYWdlOzIyMDQwNTY4MTtBUzoxMDQzOTg4NzczNjQyMzBAMTQwMTkwMjA0MDQyMw==


where D is the number of design variables, 
X=(x1,x2,…,xD RD is the vector of solution, f is the 
objective function, m and n are the number of inequality 
and that of equality constraints respectively. gj and hk are 
linear or nonlinear real-value functions respectively. li

and ui are the lower and upper bounds of xi respectively, 
and they define the whole search space S RD.

The optimization problem formulated above is a 
constrained problem if m+n=0, otherwise the problem is 
an unconstrained one. Considering the constraint(s) of a 
constrained optimization problem, the feasible region can 
be defined as 

( ) 0 ( ) 0j kF X S g X h X . (2) 

Thus solutions of the problem concerned are separated 
into feasible ones in the feasible region and infeasible 
ones out the region. 

Many methods were originally proposed for 
unconstrained optimization problems, and were improved 
later by means of constraint-handling techniques for more 
difficult constrained optimization problems [7]. Original 
DE is one of those methods, which has been proposed 
and generally considered as a reliable, accurate, robust 
and fast optimization method for unconstrained 
continuous optimization problems [5] and since then it 
has attracted much attention and many new versions of it 
have been proposed and applied to practical optimization 
problems. Liu and Lampinen [8] reported that the 
effectiveness, efficiency and robustness of the DE 
algorithm are sensitive to the settings of the control 
parameters, and hence introduced a fuzzy adaptive 
differential evolution algorithm by using fuzzy logic 
controllers to adapt the search parameters for the 
mutation operator and crossover operator. Ali and Törn [9] 
introduced new versions of DE algorithm and suggested 
some modifications to the classical DE in order to 
improve its efficiency and robustness. They introduced an 
auxiliary population of individuals alongside the original 
population. Sun et al. [10] proposed a combination of DE 
algorithm and the estimation of distribution algorithm 
(EDA), which tries to guide the search towards a 
promising area by sampling new solutions from a 
probability model. Based on experimental results it has 
been demonstrated that the DE/EDA algorithm 
outperforms both DE and EDA algorithms. 

In order to simplify the parameter setting, a self-
adaptive DE algorithm was proposed by Qin and 
Suganthan [11], where the choice of learning strategy and 
the two control parameters F and CR are not required to 
be pre-defined. During evolution, the suitable learning 
strategy and parameter settings are gradually self-adapted 
according to the learning experience. Teo [12] introduced 
a DE algorithm with a dynamic population sizing strategy 
called DESAP based on self-adaptation, where two 
versions of DESAP were implemented using absolute and 
relative encoding methodologies respectively for 
dynamically self-adapting the population size parameter. 
Becerra and Coello [13] proposed a cultural algorithm 
with a differential evolution population by using different 
knowledge sources to influence the variation operator of 

the differential evolution algorithm, and obtained their 
reported results at a relatively low computational cost 
with their proposed approach on solving constrained 
optimization problems. 

On constraint-handling techniques, Coello [7] provided 
a comprehensive survey of the most popular constraint-
handling techniques used with evolutionary algorithms 
(EAs), and each of these approaches is briefly described 
and discussed, indicating their main advantages and 
disadvantages. Takahama and Sakai [14] classified EAs 
for constrained optimization into several categories by the 
way the constraints are treated: (1) Constraints are only 
used to see whether a search point is feasible or not; (2) 
The constraint violation, which is the sum of the violation 
of all constraint functions, is combined with the objective 
function; (3) The constraint violation and the objective 
function are used separately and are optimized separately 
[15]; (4) The constraints and the objective function are 
optimized by multi-objective optimization methods [16]. 
Storn [2] proposed constraint adaptation, in which all 
constraints of the problem at hand are relaxed so that all 
individuals in the initial population become feasible, but 
the approach was not suitable for handling equality 
constraints. Lampinen [17] proposed another constraint-
handling technique as an extension for the DE algorithm 
for handling nonlinear constraint functions, and stated 
some rules for the replacement made during the selection 
procedure, which can be summarized as follows: (1) If 
both the compared solutions are feasible, the one with 
lower objective function value is better; (2) Feasible 
solution is better than infeasible; (3) If both compared 
solutions are infeasible, the parent is replaced if the new 
one has lower or equal violation for all the constraints. 

In 2000, Runarsson and Yao [18] introduced a 
stochastic ranking approach as a new constraint-handling 
technique to balance objective and penalty functions 
stochastically, and reported that the stochastic ranking 
approach is capable of improving the search performance 
significantly. In 2002, Lin et al. [19] used an augmented 
Lagrangian function with a multiplier updating method to 
solve constrained problems, where the penalty parameters 
could be automatically updated so as to obtain a near 
identical minimum solution despite wide variation in the 
initial penalty parameters. In 2006, Montes et al. [20] 
proposed a DE-based approach by allowing each parent 
to generate more than one offspring and using three 
selection criteria based on feasibility to deal with the 
constraints, but the approach was not able to solve 
problems with a dimensionality higher than 22 and more 
than 11 nonlinear equality constraints. Zielinski and Laur 
[21] handled constraints with a modified selection 
procedure based on a modified selection procedure 
employed for multi-objective optimization, which does 
not require additional parameters, but the method failed 
to reach the best known solutions for four functions of the 
given 24 test problems. 

In summary, all the methods above aimed principally 
at one special type of constrained or unconstrained 
optimization problems with continuous or discrete 
variables. Comparing to the existing research, our 
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Begin

G=0
    Initialization

For G=1 to Gmax

For j=1 to NP

            Select random integers r1 r2 r3 j (1,NP)
            Generate a random integer ir (1,D)
            For i=1 to D

If (randi,j[0,1]<CR or i=ir)
vi,j,G+1 = xi,r1,G + F·(xi,r2,G - xi,r3,G)

Else

vi,j,G+1 = xi,r1,G

End If

End For

            If Vj,G+1 is better than Xj,G

Xj,G+1 = Vj,G+1

Else

Xj,G+1 = Xj,G

End If

End For

End For

End

Figure 1. Differential evolution algorithm (model “DE/rand/1/bin”).

approach can solve different type problems, including 
those with or without constraint(s) and those with 
continuous, discrete or mixed discrete-continuous 
variables. Furthermore, our approach can find efficiently 
the global optima with good quality by means of archived 
solutions and newly designed operators. 

III. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) [1] is a floating-point 
encoding evolutionary algorithm for global optimization 
over continuous spaces. As with all evolutionary 
optimization algorithms, DE maintains and operates on a 
population of constant size. It creates new candidate 
solutions by combining the parent individual and several 
other individuals of the same population. A candidate 
replaces the parent only if it has better fitness value. 

Mutation and crossover operators are two important 
operators by which DE algorithm with different versions 
is differentiated and identified. A most popular model of 
basic differential evolution algorithm is the model 
“DE/rand/1/bin”, which is used throughout this work, 
where “DE” means differential evolution, “rand” 
indicates that individuals selected to compute the 
mutation values are chosen at random, “1” is the number 
of pairs of solutions chosen and finally “bin” means that a 
binomial recombination is used. 

The model “DE/rand/1/bin” is shown in Fig. 1, where 
G is the current generation number, Gmax is the maximum 
number of iterations that the algorithm may run, D is the 
number of decision variables, NP is the population size, 
CR is the real-valued crossover rate in [0,1], F is the 
mutation factor in [0,2], and xi,j is the ith decision variable 
of the jth individual in the population, rand[0,1] denotes a 
uniformly distributed random value in [0,1]. 

There are three basic components in this approach 
besides initialization, i.e. mutation, crossover and 
selection operators. Initial values are selected for control 
parameters NP, CR and F in the foremost initialization. In 
addition, the upper and lower bounds for each design 
variable are also defined, and a random value is selected 
within its boundaries for each design variable in an 
individual of the initial population P0 as follows, 

),(]1,0[0,, iiiiji lurandlx  (3) 

where i=1,…,D, j=1,…,NP, and randi[0,1] denotes a 
uniformly distributed random value in [0,1]. 

A feature of original DE algorithm is that three control 
parameters NP, CR and F are fixed during the 
optimization process. However, there still exists a lack of 
knowledge of how to find reasonably good values for the 
control parameters of DE for a given function [8]. 
Another important feature of the DE algorithm is the 
local criterion of the selection operator, which is efficient 
and fast. 

The efficiency and robustness of the DE algorithm are 
much more sensitive to the setting of control parameters 
F and CR than to the setting of NP. The parameter F

controls the amplification of differential variations, and 
the parameter CR controls the probability that a trial 
vector will be selected form the randomly chosen mutated 
vector instead of from the current vector. Generally, both 
F and CR affect the convergence rate and robustness of 
the search process. Their optimal values are dependent 
both on objective function characteristics and on NP.
Usually, suitable values for F, CR and NP can be found 
by experimentation after a few tests using different values. 
Practical advice on how to select values for the three 
control parameters can be found in [1]. 

IV. OUR APPROACH

We have put forward an archived differential evolution 
(ADE) for constrained optimization problems based on 
original DE, using a special dynamic penalty and fitness 
function for handling constraints and evaluating 
individuals, a modified selection and an archive of 
solutions for keeping the best solutions at any generation, 
and an iterative control operator for regulating and 
guiding the evolutionary process [6]. 

In order to improve the flexibility and efficiency of 
ADE, we propose a robust archived differential evolution 
(RADE) algorithm by means of embedding a flexibility 
processing operator and an efficiency processing operator 
in ADE algorithm. The flowchart of the improved 
approach, namely the robust archived differential 
evolution (RADE) algorithm, is illustrated in Fig. 2.  

A.  Flexibility Processing Operator 

Since that it is effective to use a dynamic penalty and 
fitness function for handling constraints and evaluating 
individuals in ADE, we modified this method as little as 
possible in order to fit it for different type problems 
without weakening its effectiveness and efficiency. 

Figure 2. Flowchart of the robust archived differential evolution 
algorithm. 
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So we consider all solutions as feasible ones when the 
optimization problem under consideration is an 
unconstrained optimization problem, and then the 
dynamic penalty function can be formulated as 

1

0, if 0,

( )
max 0, ( ) , otherwise.

m n

j

j

m n

p X
C G g X

 (4) 

where C is a adaptable penalty factor, G is the current 
generation number, m and n are the number of inequality 
and equality constraints respectively,  and  are dynamic 
penalty exponents, gj denotes inequality constraint(s) for 
constrained optimization, including those transformed 
from equality constraints by 

( ) 0,kh X  (5) 

where k={1,…,n},  is the tolerance allowed for equality 
constraints hk.

The fitness of each individual is calculated in the same 
way using the following formulation, 

V

max

( )
if ( ) 0

( ) 1
( )

( )
otherwise

( ) 1

f X
I p X

f X
fitness X

f X

f X

 (6) 

where p is the dynamic penalty function, f is the objective 
function, |f|max is the maximal objective value for all 
individuals in the current population, IV is the number of 
constraints violated for constrained optimization. 

As the value of p is equal to zero for all solutions of 
unconstrained optimization and feasible solutions of 
constrained optimization, the fitness of relevant 
individual in the evolutionary population is calculated all 
the same. As a result, the solutions for unconstrained 
optimization can be evaluated and selected well, like the 
feasible solutions for constrained optimization in ADE. 
Therefore, individuals in the evolutionary populations for 
constrained and unconstrained optimization can be 
evaluated and compared with each other by the criterion: 
The individual with a higher fitness value is better than 
another one. 

Considering discrete or mixed discrete-continuous 
variables in some optimization problems, a relevant 
processing module is embedded as a part of the flexibility 
processing operator, which goes into effect only if there 
is discrete variable(s). Supposing that xi is a discrete 
variable with multiples value of a constant c(c 0), it will 
be trimmed by the processing module as follows, 

'

1
1 ( ) , if ,

1
1 ( ) , if ,

, otherwise

i i
i i i i i

i i

i i
i i i i i i

i i

i

l x
c x u l x l

c u l

x u
x c x u l x u

c u l

x
c round

c

 (7) 

where li and ui are the lower and upper bounds of xi

respectively, x’
i is the value of trimmed xi, round denotes 

a function that returns the nearest integer of a given real 
number. 

Thus, continuous, discrete or mixed discrete-
continuous variable(s) can be efficiently generated and 
calculated altogether. 

B.  Selection, Archivism and Iterative Control 

The selection, archivism and Iterative control operators 
are same as those in ADE [6], so they are just described 
briefly here. 

The best individual at current generation is found out 
by means of comparison between individuals according 
to their fitness value, and then it is compared with the 
best one in the archive of solutions chosen and stored 
during the evolutionary process. If it wins, it will be 
stored as a new best solution in the archive. As a result, 
the archive keeps all best solutions in previous evolution 
for the following iterative control. 

Iterative control operator is realized based on the 
selection and archivism operators. When the Euclidian 
distance between the best individual and the mean 
individual at current generation is small than a given 
tolerance d, the best solution of current generation is then 
considered as one near a local optimum. If solutions are 
considered as ones near local optimums continuously for 
a given times, or the archive of solutions is not renewed 
continuously for another given times, the iterative control 
operator is performed once. 

C.  Efficiency Processing Operator 

The efficiency processing operator is in fact an 
efficient local search operator, which takes effect when 
the best local optimum is obtained. When the operator 
begins work, the evolutionary population with the best 
local optimum, denoted by Pbest, is utilized as the initial 
population, and the best individual in the current 
population is protected against mutation. 

The pseudo code of the efficiency processing operator 
is shown in Fig. 3, where Flag is a binary variable 
denoting whether the operator is put into action, P
denotes the evolutionary population, Ibest denotes the best 
individual in the current population. 

D.  Parameter Setting 

Parameter setting in the improved approach (RADE) is 
similar to that in ADE, which is listed with some 

While (G<Gmax) and (Flag=Ture)
PG = Pbest

For j=1 to NP

If (randj[0,1]<CR) and (j Ibest)
            Select random integers r1,r2,r3 (1,NP)

Vj,G+1 = Xr1,G + F·(Xr2,G - Xr3,G)
Else

Vj,G+1 = Xj,G

End If

        If Vj,G+1 is better than Xj,G

Xj,G+1 = Vj,G+1

Else

Xj,G+1 = Xj,G

End If

End For

G=G+1
End While

Figure 3. Pseudo code of the efficiency processing operator. 
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Figure 4. The average function values and their standard deviation 
over generations for unconstrained optimization problems 

suggestions as follows: 
(1) Population size NP takes a default value of 10×D.

Larger sizes of population may be adopted, but such 
values are recommended only for very hard problems if 
one can afford the extra computational cost.  

(2) Maximum number of iterations Gmax may be set to 
100 or 200 generations for easy problems. We suggest 
setting this parameter to 500 for most problems. 

(3) F and CR can be set following the suggestions in 
[1]. Their default values in RADE are F=0.8 and CR=0.9.

(4) Default values for C,  and  in the dynamic 
penalty function are C=0.5, =2 and =2, and the default 
values for  and d are both set to 0.001.  

V. NUMERICAL EXPERIMENTS

To validate our approach, we adopted six well-known 
optimization problems, including two unconstrained 
problems [22], two constrained problems with continuous 
variables and two constrained problems with mixed 
discrete-continuous variables [23]. The main 
characteristics of the six optimization problems are 
summarized in Table I, where LI is the number of linear 
constraints, NI is the number of nonlinear constraints, and 
ND is the number of discrete variables. 

Since our approach is expected to be robust, there is no 
need for us to spend too much effort in performing a very 
thorough parameters fine-tuning, and therefore we set the 
parameters used by our approach for all selected 
problems as follows: F=0.8, CR=0.9, C=0.5, =2, =2, 
= d=0.0001, NP=10×D.

A.  Unconstrained Problems 

In order to investigate the performance of our approach 
(RADE) on unconstrained optimization problems and 
compare it with the dynamic clustering based differential 
evolution (DCDE) [24], differential evolution (DE) [1], 
particle swarm optimization (PSO) [25], improved PSO 
(IPSO) [22] and genetic algorithm (GA) [26] in terms of 
the accuracy and the frequency of finding optimal 
solutions within 2000 function evaluations (FES), we 
performed 30 independent runs for the unconstrained 
problems P1 and P2 with the maximum number of 
iterations set as Gmax=100. Thus the maximum FES is 
NP×Gmax=2000 for the two unconstrained problems 
solved with our approach. The average best function 
values (AB) found and the success rate (SR) are shown in 

Table II, and the average function values (Avg. Val.) and 
their standard deviations (Std. Dev.) over generations are 
illustrated in Fig. 4. The best, the mean and the worst 
objective values for P1 are all -2.00000, and for P1 they 
are all -186.7309. The standard deviations of the best 
objective values in 30 runs are zeros for both P1 and P2. 

It can be seen from Table II that RADE and DCDE 
outperform any other method in terms of the average best 
function values and success rate in 30 runs within 2000 
function evaluations. Furthermore, Fig. 4 shows that the 
average best function values found by the proposed 
method is approaching steadily theoretical global minima 
along with the increasing generations, and the final 
optima obtained are very close to theoretical global 
minima. That is to say, the proposed approach can find 
solution of unconstrained optimization problems with 
higher quality than the traditional DE, PSO, IPSO and 
GA. 

B.  Constrained Problems with Continuous Variables 

The problems P3 and P4 are constrained problems with 
continuous variables, and 30 independent runs for each of 
them were performed with Gmax=200. The results 
obtained by our approach (RADE) are compared with 
that obtained by other five state-of-the-art approaches: the 
archived differential evolution (ADE) [6], the co-
evolutionary differential evolution (CDE) [23], GA with 

TABLE I. 
SUMMARY OF SIX OPTIMIZATION PROBLEMS

Prob. 
Number 

of
variables 

Objective
function 

LI NI ND 
Prob. no. 

in ref. 

P1 2 nonlinear 0 0 0 RA in [22] 

P2 2 nonlinear 0 0 0 SH in [22] 

P3 4 nonlinear 2 5 0 g07 in [23] 

P4 3 nonlinear 1 3 0 g08 in [23] 

P5 6 quadratic 0 1 3 g06 in [23] 

P6 4 nonlinear 3 1 2 Ex.9 in [23]

TABLE II. 
THE AVERAGE BEST FUNCTION VALUES AND THE SUCCESS RATE FOR 

UNCONSTRAINED OPTIMIZATION PROBLEMS

P1 P2 
Method 

AB SR AB SR 

RADE -2.0000 100% -186.7309 100% 

DCDE -2.0000 100% -186.7309 100% 

DE -2.0000 98% -180.7100 78% 

PSO -1.9702 100% -180.3265 98% 

IPSO -1.9940 98% -186.7274 100% 

GA -1.9645 84% -182.1840 98% 
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Figure 5. The average function values and their standard deviation 
over generations for constrained problems with continuous variables.

co-evolution model (GACO) [27], GA with dominance-
based tournament selection (GADTS) [28] and co-
evolutionary particle swarm optimization (CPSO) [29]. 
The results by comparison in terms of the standard 
deviation (Std. Dev.), the best, the mean and the worst 
objective values are summarized in Table III, and the 
average function values and their standard deviation over 
generations are illustrated in Fig. 5.  

As shown in Table III, the worst solution and the 
standard deviation found by RADE for P4 are little worse 
than that obtained by ADE, but the reverse are true for P3. 
Therefore, the RADE is similar to ADE on the 
performance of solving constrained optimization 
problems with continuous variables, but better than any 

other method in all terms listed. In addition, it can be seen 
from Fig. 5 that the average function values decrease 
rapid at foremost 40 generations, and the standard 
deviations for both P3 and P4 decrease to almost zero 
soon afterwards, which means that the proposed method 
performs well in convergence speed and accuracy for 
constrained optimization problems with continuous 
variables.  

C.  Constrained Problems with Mixed Variables 

The problems P5 and P6 are constrained problems with 
mixed discrete-continuous variables, and 30 independent 
runs for each of them were carried out with Gmax=300.
The results obtained by our approach (RADE) are 
compared with that obtained by other six state-of-the-art 
approaches: the co-evolutionary differential evolution 
(CDE) [23], the homomorphous mapping (HM) [30], 
stochastic ranking (SR) [18], GA with co-evolution 
model (GACO) [27], GA with dominance-based 
tournament selection (GADTS) [28] and co-evolutionary 
particle swarm optimization (CPSO) [29]. The results by 
comparison in terms of the standard deviation (Std. Dev.), 
the best, the mean and the worst objective values are 
listed in Table IV, form which it can be seen that the 
results obtained by RADE is almost perfect for P5, 
similar to the solutions obtained by CDE, SR and 
GADTS, but better than that found by HM. The best, the 
mean and the worst solutions found by RADE for P6 is 
slightly worse than that by CDE, but obviously better 
than that by GACO, GADTS and CPSO. Besides, the 
standard deviation of final solutions obtained by RADE 

TABLE IV. 
THE RESULTS BY COMPARISON FOR CONSTRAINED OPTIMIZATION PROBLEMS WITH MIXED DISCRETE-CONTINUOUS VARIABLES. NA=NOT AVAILABLE.

P5 P6 
Method 

Best Mean Worst Std. Dev. Best Mean Worst Std. Dev. 

RADE -1.000000 -1.000000 -1.000000 0.000000 6059.714343 6062.795598 6090.526263 9.401573 

CDE -1.000000 -1.000000 -1.000000 0.000000 6059.7340 6058.2303 6371.0455 43.0130 

HM -0.999999 -0.999135 -0.991950 NA NA NA NA NA 

SR -1.000000 -1.000000 -1.000000 0.000000 NA NA NA NA 

GACO NA NA NA NA 6288.7445 6293.8432 6308.1497 7.4133 

GADTS -1.000000 -1.000000 -1.000000 0.000000 6059.946341 6177.253268 6469.322010 130.929702 

CPSO NA NA NA NA 6061.0777 6147.1332 6363.8041 86.4545 

TABLE III. 
THE RESULTS BY COMPARISON FOR CONSTRAINED OPTIMIZATION PROBLEMS WITH CONTINUOUS VARIABLES

P3 P4 
Method 

Best Mean Worst Std. Dev. Best Mean Worst Std. Dev. 

RADE 1.724852 1.724852 1.724853 1.8711E-07 0.012665 0.012667 0.012680 3.7033E-06 

ADE 1.724852 1.724852 1.724856 6.5732E-07 0.012665 0.012665 0.012666 6.9647E-08 

CDE 1.733461 1.768158 1.824105 0.022194 0.0126702 0.012703 0.012790 0.000027 

GACO 1.748309 1.771973 1.785835 0.011220 0.0127048 0.012769 0.012822 0.000039 

GADTS 1.728226 1.792654 1.993408 0.074713 0.0126810 0.0127420 0.012973 0.000059 

CPSO 1.728024 1.748831 1.782143 0.012926 0.0126747 0.012730 0.012924 0.000052 
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Figure 6. The average function values and their standard deviation 
over generations for constrained problems with mixed variables. 

for P6 in 30 runs is better than that obtained by CDE, 
GADTS and CPSO, which means the proposed method 
outperforms the three approaches in stability. 

The evolving process of the average function values 
(Avg. Val.) and their standard deviation (Std. Dev.) over 
generations are illustrated in Fig. 6, from which it can be 
seen that RADE can converge to the global optima 
quickly and steadily for the two constrained optimization 
problems with mixed discrete-continuous variables. 

Moreover, the maximum FES in RADE is NP×Gmax,
which varies with the settings of the population size and 
the maximum number of generations. Thus the maximum 
FES is 6×10×300=18000 for P5 and 4×10×300=12000 
for P6 by our proposed approach, while the number of 
FES is 204800 for P5 by CDE in [23] and 200000 for P6 
by CPSO in [29]. 

Based on the above simulation results and comparisons, 
it can be concluded that RADE is efficient, robust, and 
suitable for unconstrained or constrained problems with 
continuous, discrete or mixed discrete-continuous 
variables. 

VI. CONCLUSION

A Robust archived differential evolution (RADE) for 
optimization problems was proposed based on the 
original DE and ADE. The main features of RADE can 
be summarized as follows: 1) using a new constraint-
handling technique based on the dynamic penalty 
function and the fitness function of individuals to deal 
with various constraints effectively; 2) maintaining an 
archive of solutions to make use of the information of 
previous solutions and local optima for the estimation of 
new solutions; 3) avoiding unnecessary and worthless 
search and speeding up the total convergence by taking 
advantage of an iterative control operation based on the 
archive of solutions; 4) extending the applicability of this 
method by means of a flexibility processing operator, 
which makes the approved method suitable for different 
type problems, without weakening its effectiveness and 
efficiency; 5) enhancing the local searching efficiency 
and improving the final searching quality by means of  an 
efficiency processing operator. 

Simulation results based on a set of six well-known 
optimization problems and comparisons with previously 
reported results demonstrated the effectiveness, 
efficiency, applicability and robustness of the proposed 
RADE. Because of the contribution of archived solutions, 
the flexibility processing operator, the iterative control 
operator and efficiency processing operator, RADE 
performed better than or similar to any other state-of-the-
art approaches referred in terms of the searching ability, 
quality and efficiency. 

Despite of the encouraging results with the current test 
problems, only a few conclusions are justified concerning 
the effectiveness, efficiency and robustness of the 
proposed method due to the limited size of the test 
problem set. As part of our future work, we are 
considering the application of our method to more 
engineering problems. 
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