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Abstract. Let A and B be modules, which are faithfully flat over their

endomorphism ring. The categories of A-solvable and B-solvable modules

coincide if and only if A and B are similar. While similar modules have

Morita equivalent endomorphism rings, the failure of the converse raises

the question which module-theoretic properties are shared by modules with

equivalent endomorphism rings. This paper addresses this question by inves-

tigating equivalences between full subcategories of the categories of A- and

B-solvable modules, respectively. In particular, every equivalence between

the category of A-solvable and the category of B-solvable modules is induced

by a Morita equivalence between EA and EB if A and B are faithfully flat

as modules over their endomorphism ring. Several examples show that these

results may fail without the faithfulness condition.

1. Introduction

Any attempt to obtain a satisfactory structure theory for large classes of
torsion-free abelian groups is hindered by the existence of pathological direct
sum decompositions, examples of which can be found in [9, Chapters 90 and 91].
Nevertheless, many properties of an abelian group A can be described in terms
of its endomorphism ring E = EA. This description frequently involves the func-
tors HA = Hom(A,−) and TA = − ⊗E A between the category Ab of abelian
groups and the categoryME of right E-modules. These functors form an adjoint
pair, and can be used most effectively when considering full subcategories of the
category of abelian groups, on which they induce a category equivalence with a
suitable full subcategory of ME . The largest full subcategory of Ab with this
property is CA, the category of A-solvable abelian groups. The concepts involved
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in the discussion of A-solvable abelian groups readily extend to categories of right
R-modules.

Since the class of torsion-free A-solvable groups need not be closed with re-
spect to quasi-isomorphism (see [4]), the perhaps most natural way to extend
the concept of A-solvability to the quasi-category of torsion-free abelian groups
is to consider the class ACA of almost A-solvable groups, whose elements are the
groups G for which the natural map θG : TAHA(G)→ G is a quasi-isomorphism.
Strongly indecomposable groups A and B of finite rank are quasi-isomorphic if
and only if ACA = ACB [3]. Naturally, the question arises whether similar con-
clusions can be drawn from the fact that CA = CB . Unfortunately, this is not the
case since CA = CB if A and B are near-isomorphic torsion-free abelian groups of
finite rank. Instead, the investigation of R-modules A and B for which CA = CB
leads to the discussion of similar modules (see [5] and [11] for details). Two right
R-modules A and B are similar if A is a direct summand of Bn and B is a direct
summand of Am for some m,n < ω. One obtains that two R-modules A and B,
which are faithfully flat as modules over their endomorphism ring, are similar if
and only if CA = CB . An example is given that this equivalence fails without the
faithfulness condition.

The fact that similar R-modules have Morita-equivalent endomorphism rings
raises the question which additional properties are shared by modules with equiv-
alent endomorphism rings. Section 3 describes when this equivalence occurs
(Proposition 3.1), and presents additional results related to this characteriza-
tion (Theorem 3.2 and Corollary 3.3). The final section addresses the question
under which conditions CA and CB are equivalent categories. It is shown that
every such equivalence is induced by a Morita-equivalence between EA and EB
(Theorem 4.1). However, faithfully flat R-modules A and B for which CA and CB
are equivalent need not be similar since there exist torsion-free abelian groups A
and B of rank 1 such that CA and CB are equivalent categories, but A and B are
not similar (Theorem 4.6).

2. Similar modules

Associated with HA and TA are natural maps θAN : TAHA(N) → N and φAM :
M → HATA(M) defined by θAN (α ⊗ a) = α(a) and [φAM (x)](a) = x ⊗ a for all
a ∈ A, x ∈ M , and α ∈ HA(M). The superscripts referring to A are omitted
unless it is not clear from the context which module is considered. If A is self-
small, then CA contains the class PA of A-projective modules. Here, an R-module
P is A-projective if it is a direct summand of an A-free module of the form ⊕IA.
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The smallest cardinality possible for I is the A-rank of P . A R-module M is
(finitely) A-generated if it is an epimorphic image of an A-projective module (of
finite A-rank).

It is a well-known fact ([5] and [11]) that similar modules have Morita-equivalent
endomorphism rings, but the converse fails in general since there exist non-
isomorphic subgroups A and B of Q with endomorphism ring Z. Clearly, such
groups A and B cannot similar. For torsion groups however, one obtains the
surprising

Proposition 2.1. The following are equivalent for torsion groups A and B:

a) A and B are similar.
b) A and B have Morita-equivalent endomorphism rings

Proof. It remains to show that A and B are similar if EA and EB are Morita
equivalent. There are n < ω and an idempotent e ∈ Mn(EA) such that EB ∼=
eMn(EA)e. Since Mn(EA) is the endomorphism ring of An, the group B′ = e(An)
is a direct summand of An with endomorphism ring eMn(EA)e. Hence, B′ ∼= B

by the Baer-Kaplansky-Theorem [9, Theorem 108.1], and B is A-projective of
finite A-rank. By symmetry, A and B are similar. �

Similar modules A and B share many homological properties. For instance, if
A is flat [(fully) faithful] as an EA-module, then the same holds for B. To see
this, suppose that A is flat as an EA-module, and consider a map φ : Bn → B.
Since B is A-solvable, ker φ is A-solvable by the flatness of A. But the class of
A-generated modules coincides with the class of B-generated modules. Hence, B
is flat as an EB-module by Ulmer’s Theorem [12]. The case that A is faithful is
treated in a similar way using the fact that A is faithful as an EA-module if and
only if every exact sequence ⊕IA→ A→ 0 splits.

Moreover, CA = CB if A and B are similar. To show this, observe that M ∈ CA
if and only if there exists an A-balanced exact sequence 0→ U → ⊕IA→M → 0
with SA(U) = U . Since A and B are similar, B is A-projective, and this sequence
is B-balanced. Moreover, ⊕IA is a B-projective module, and SB(M) = M .

The next result summarizes the basic properties of similar modules, and relates
the question which R-modules are similar to a given R-module A to the existence
of projective generators in MEA . As in [5], an R-module P is a progenerator of
MR if it is a finitely generated projective generator ofMR. Moreover, A⊥ denotes
the collection of all A-balanced exact sequences, i.e. all sequences of R-modules,
with respect to which A is projective.
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Proposition 2.2. The following are equivalent for self-small R-modules A and
B:

a) A and B are similar.
b) ⊕ωA ∼= ⊕ωB.
c) B ∼= TA(P ) for some progenerator P of MEA .
d) CA = CB and A⊥ = B⊥.

Proof. a) ⇒ c): Let P = HA(B). Since B is A-projective, it remains to show
that HA(B) is a generator ofMEA . However, Bn = A⊕A1 for some n < ω yields
that EA is a direct summand of the right EA-module HA(B)n, and hence HA(B)
is a progenerator.
c) ⇒ b): Since P is finitely generated and projective, P ∼= HATA(P ). Hence,

HA(B) is a progenerator of MEA , and one obtains ⊕I0HA(B) = EA ⊕M1 for
some finite index-set I0 and suitable EA-module M1. An application of TA gives
a decomposition of the form ⊕I0B ∼= A⊕A1.

Moreover, P ∼= HA(B) yields that there is a finite set J0 such that HA(B) ⊕
N1
∼= ⊕J0EA for some EA-module N1. Another application of TA yields a de-

composition B ⊕B1
∼= ⊕J0A.

Since A1 is a direct summand of ⊕I0B and B1 is a direct summand of ⊕J0A

with |I0|, |J0| < ℵ0, there is a countable index-set J1 with A1 ⊕ A2
∼= ⊕J1A

for some R-module A2. By symmetry, there is a countable index-set I1 with
A2 ⊕ A3

∼= ⊕I1B. Then, A ⊕ (A1 ⊕ A2) ⊕ A3
∼= (⊕I0B) ⊕ (⊕I1B). Inductively,

one obtains modules A1, A2, . . . and countable index-sets I1, I2, . . . and J1, J2, . . .

such that

i) A2n−1 ⊕A2n
∼= ⊕JnA

ii) A2n ⊕A2n+1
∼= ⊕InB.

Thus, Un = A⊕ (A1⊕ . . . A2n−1) is B-free, and Vn = Un⊕A2n is A-free for all n.
Since Vn+1/Vn ∼= ⊕JnA and Un+1/Un ∼= ⊕InB, one obtains that A ⊕ (⊕∞n=1An)
is isomorphic to both ⊕ωA and ⊕ωB.
b)⇒ d): Since the class of objects projective with respect to a given sequence

is closed under direct sums and direct summands, A⊥ = B⊥. If M ∈ CA, then
there is an A-balanced exact sequence 0→ U → ⊕IA→M → 0 with SA(U) = U .
Since A is B-projective, SB(U) = U , and the sequence is B-balanced.
d)⇒ a) : Since A is B-solvable, there is a B-balanced exact sequence ⊕IB →

A → 0 for some index-set I. But B ∈ CA yields SA(B) = B, and the sequence
splits since A⊥ = B⊥. By symmetry, B is A-solvable, too. Write ⊕IB = A⊕A1

for some index-set I, and let α : A → ⊕IB be the embedding associated with
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this decomposition. Furthermore, denote the projection of ⊕IB onto its ith-
component by πi, and let δi : A→ ΠIA be the embedding into the ith-coordinate.

If α(A) 6⊆ ⊕JB for all finite subsets J of I, then πiα(A) 6= 0 for infinitely many
i ∈ I. Without loss of generality, πiα(A) 6= 0 for all i ∈ I. For each i ∈ I, choose
ai ∈ A with πiα(ai) 6= 0. Since B is A-projective, there is a map φi : B → A

with φiπiα(ai) 6= 0. Define λ : A → ΠIA by λ(a) = (δiφiπiα(a))i∈I . Since
α(a) ∈ ⊕IB, one has πiα(a) = 0 for almost all i ∈ I, and λ ∈ Hom(A,⊕IA). By
the self-smallness of A, there is a finite subset J ′ of I with λ(A) ⊆ ⊕J ′A, which
contradicts the fact that λ(ai) not contained in ⊕J ′A for all i ∈ I \ J ′. Hence,
there is a finite J ⊆ I with α(A) ⊆ ⊕JB, and A has finite B-rank. �

Corollary 2.3. Let A and B be self-small R-modules which are faithful as mod-
ules over their endomorphism ring. Then, A and B are similar if and only if
CA = CB. �

However, the requirement that HA(B) is a progenerator of MEA is not strong
enough to guarantee that A and B are similar unless one also requires that B is
A-solvable. Moreover, CA and CB may coincide without A and B being similar if
A or B are not fully faithful over their endomorphism ring:

Example 2.4. a) Consider a torsion-free abelian group G of finite rank
whose endomorphism ring is the ring of lower triangular 2 × 2-matrices
over Z. Then, G = A⊕ B with EA = EB = Z. Since HomZ(A,B) ∼= Z,
it is a projective generator of Ab, but A and B are not similar since
HomZ(B,A) = 0.

b) Let A be an abelian group with Hom(A,Z) 6= 0. Then, every abelian
group is A-generated, and hence A-solvable. Moreover, A is flat as an
E-module by Ulmer’s Theorem [12]. If A and B are two abelian groups
with Hom(A,Z) 6= 0 6= Hom(B,Z) such that EA and EB are not Morita-
equivalent, then CA = Ab = CB. Hence, Theorem 4.1 and the equivalence
of a) and d) in Proposition 2.2 may fail if A and B are not faithful.

�

3. Morita-Equivalence

The first result of this section describes when two modules, which are faithfully
flat over their endomorphism ring, have equivalent endomorphism rings.

Proposition 3.1. Let R and S be rings. The following are equivalent for self-
small modules A ∈ MR and B ∈ MS which are faithfully flat as modules over
their endomorphism ring:
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a) EA and EB are equivalent rings.
b) There exist left-exact additive functors F : MR → MS and G : MS →
MR which commute with direct sums such that

i) There are natural transformations σ : TAHA → GF and ψ : TBHB →
FG.

ii) F and G induce a category equivalence between PA and PB.

Proof. a)⇒ b): Since EA and EB are equivalent rings, select a progenerator P
of MEB such that EEB (P ) = EA. Then, F̃ = − ⊗EA P defines an equivalence
between MEA and MEB whose inverse G̃ can also be presented as a tensor-
product involving a progenerator of MEA . Set F = TBF̃HA and G = TAG̃HB .
For every M ∈ MR, one obtains a natural isomorphism λHA(M) : HA(M) →
G̃F̃HA(M) and a natural morphism φ̃M : F̃HA(M) → HBTBF̃HA(M) induced
by the transformation φ : 1 → HBTB . Then σM = TAG̃(φ̃M )TA(λHA(M)) is
the desired transformation. Observe that φ̃M is an isomorphism whenever M is
projective.

Since A is flat as an EA-module, TA is an exact functor. Hence, F is left-exact
as a composition of the left-exact functor HA with two exact functors. Finally,
observe that HA, F̃ , and TB are equivalences between PA, PEA , PEB , and PB
respectively since A and B are self-small.
b) ⇒ a): In the first step, one shows that F(A) is self-small. Consider a

map α : F(A)→ ⊕n<ωF(A), and denote the embeddings into the nth-coordinate
by δn, while the projection onto the nth-coordinate is denoted by πn. Then,
G(⊕n<ωF(A)) together with the maps {G(δn)}n<ω is the coproduct of countably
many copies of GF(A) in PA since equivalences preserve coproducts. On the
other hand, the R-module ⊕ωGF(A) together with the coordinate embeddings
ηn also is a PA-coproduct of countably many copies of GF(A) since PA is a
full subcategory of MR, which is closed with respect to direct sums. Hence,
there is an R-module isomorphism λ : ⊕ωGF(A) → G(⊕ωF(A)). In particular,
the R-module coproducts are the coproducts in PA. Furthermore, G(δn) = ληn
yields G(⊕ωF(A)) = ⊕n<ωim G(δn). Since A is self-small, there is m < ω with
G(λ) ⊆ ⊕mn=1G(A), and hence G(πn)G(λ) = 0 for all n > m.

Because G is an equivalence between PB and PA, the module G(B) is A-
projective, and there is a split-exact sequence 0 → U → ⊕IA → G(B) → 0. In
the last paragraph, it was shown that the coproducts in PA are the coproducts
of R-modules. Consequently, F(⊕IA) ∼= ⊕IF(A), and the induced sequence
0 → F(U) ⊕I F(A) → FG(B) → 0 is exact. Therefore, B ∼= FG(B) is F(A)-
projective. Since F(A) is self-small, one obtains that B and F(A) are similar by
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arguing as in the proof of Proposition 2.2. However, similar modules have Morita
equivalent endomorphism rings. �

Let R and S be rings, and consider modules A ∈ MR and B ∈ MS , which
are faithfully flat as modules over their endomorphism ring. A module M ∈ CA
is A-B-Morita-invariant if HA(M)⊗E P ∈MB whenever P is a progenerator of
MEB such that EndEB (P ) = EA. The module M ∈ CA is A-Morita-invariant
R-modules if it is A-B-Morita-invariant for all possible B. The class of A-Morita-
invariant modules is denoted by MIA.

A R-module M is locally A-projective if every finite subset of M is contained in
an A-projective direct summand of M . The module M is κ-A-projective if every
subset X of M with |X| < κ is contained in an A-projective submodule of M .
Finally, M is A-torsion-free if every finitely A-generated submodule of M can be
embedded into an A-projective module of finite A-rank. Again, the references to
A are omitted if A = R.

Theorem 3.2. Let A ∈ MR and B ∈ MS be self-small modules, which are
faithfully flat as modules over their endomorphism ring.

a) The class of A-B-Morita invariant modules is closed with respect to finite
direct sums, extensions and A-generated submodules.

b) If EA is right and left Noetherian, then locally A-projective modules are
A-B-Morita-invariant.

c) If κ is a regular cardinal with |A|, |B| < κ, then every κ-A-projective
R-module is A-B-Morita-invariant.

d) If EA is an integral domain, then all A-torsion-free R-modules are A-A-
Morita-invariant.

Proof. Let P a progenerator of MEB with EEB (P ) = EA.
a) Observe that all functors involved commute with finite direct sums, and

that CA is closed with respect to finite direct sums.
Consider an exact sequence 0 → U → M → N → 0 in which U,N ∈ MIA.

Since A is faithfully flat as an EA-module, this sequence is A-balanced, and
an application of − ⊗EA P yields the exact sequence 0 → HA(U) ⊗EA P →
HA(M) ⊗EA P → HA(N) ⊗EA P → 0 in which the outer terms are elements of
MB . An application of TB gives the exact sequence 0 → TB(HA(U) ⊗EA P ) →
TB(HA(M) ⊗EA P ) → TB(HA(N) ⊗EA P ) → 0, in which TB(HA(M) ⊗EA P ) is
B-generated and TB(HA(N) ⊗EA P ) is B-solvable because of HA(B) ⊗EA P ∈
MB . Hence, the last sequence is B-balanced by the faithful flatness of A. The
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standard commutative diagram induced by the natural transformation φ yields
HA(M)⊗EA P ∈MB .

Let U be an A-generated submodule of a module M ∈MIA. Then, HA(U)⊗EA
P is isomorphic to a submodule of HA(M) ⊗EA P ∈ MB . Since B is faithfully
flat as an EB-module, MB is closed with respect to submodules.

b) Observe that being right or left Noetherian is a Morita-invariant property.
It suffices to establish that a right and left Noetherian endomorphism ring is
discrete in the finite topology, i.e. that there is a finite subset X of A such
that φ(X) = 0 yields φ = 0 for all φ ∈ E. Once this has been shown, HA

and TA induce a category equivalence between the locally A-projective groups
and the locally projective EA-modules [7], and the same holds for B. Then,
HA(M) ⊗EA P is a locally projective EB-module because a Morita equivalence
sends locally projective EA-modules to locally projective EB-modules.

Suppose that, for all finite subsets X of A, there is a non-zero φ ∈ EA with
φ(X) = 0. Then, there exist an ascending chain X1 ⊆ X2 ⊆ . . . of finite subsets
of A such that (Xn+1)∗ is a proper subset of (Xn)∗ where X∗ = {φ | φ(X) = 0}.
Since EA is left Noetherian, (Xn)∗ is finitely generated, say by α1, . . . αm. Then,
(Xn)∗∗ = ∩{ker α | α ∈ (Xn)∗} coincides with ker α1∩. . .∩ker αm. However, the
latter is the kernel of the map σ : A→ Am defined by σ(a) = (α1(a), . . . , αm(a)).
Since A is flat as an EA-module, ker σ is A-generated, and hence (X1)∗∗ ⊆
(X2)∗∗ ⊆ . . . forms a strictly ascending chain of A-solvable subgroups of A. If
this chain does not become stationary, it induces an infinite strictly ascending
chain HA((X1)∗∗) ⊆ HA((X2)∗∗) ⊆ . . . of right ideals of EA, whose existence
contradicts the fact that EA is right Noetherian.

c) Since |A| < κ, one obtains that every κ-A-projective module is A-solvable,
and HA(M) is a κ-projective EA-module. Because Morita-equi-
valence preserves κ-projectivity, HA(M) ⊗EA P is a κ-projective EB-module.
Then, the S-module TB(HA(M)⊗EA P ) is κ-B-projective and hence B-solvable.
Since A is faithfully flat as an EA-module, the natural map from HA(M)⊗EA P
into TBHA(HA(M) ⊗EA P ) is a monomorphism. Moreover, the latter is an ele-
ment of MB , and MB is closed with respect to submodules.

d) Let Q be the field of quotients of E, and consider a progenerator P of ME

whose E-endomorphism ring is E. The injective hull P̂ is a finitely generated
vector-space over the field Q, say P̂ ∼= Qn for some n < ω. Since E is the E-
endomorphism ring of P , and P is finitely generated, one obtains that Q is the
E-endomorphism ring of P̂ . On the other hand, the latter ring is isomorphic to
Matn(Q). Therefore, n = 1, and P is isomorphic to an ideal of E. Without loss
of generality, one may assume that P is an ideal of E. Since P is a progenerator
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of ME , one obtains that P is a faithfully balanced EE(PE)-E-bimodule. If α :
PE → PE is an E-map, then αβ(x) = βα(x) for all x ∈ P and β ∈ E since
E is commutative. Thus, α is an endomorphism of the left EndE(PE)-module
P . Hence, there is r ∈ E such that α(x) = xr for all x ∈ P . In particular, the
inclusion map ι : P → E is a bimodule-morphism.

Let M be an A-torsion-free R-module. Then, M is A-solvable, and HA(M) is a
torsion-free E-module. The map ι induces a sequence 0→ TorE1 (HA(M), R/P )→
HA(M) ⊗E P → HA(M) ⊗E E in which the last map is a right E-module map.
Since P is flat, HA(M)⊗EP is torsion-free, and TorE1 (HA(M), R/P ) = 0 because
E is an integral domain. Therefore, HA(M)⊗E P is isomorphic to a submodule
of HA(M) ∈ MA. Since A is faithfully flat as an E-module, MA is closed with
respect to submodules. Therefore, G ∈MI(A). �

However, the class of A-B-Morita-invariant modules need not be closed under
infinite direct sums of A-small families as the following example shows: Let A = Z
and B = 〈 1p | p a prime〉 ⊆ Q. Since EB = Z, choose P = Z as a progenerator
of Ab. Observe that Z/pZ ∈ MB for all primes p. However, ⊕pZ/pZ 6∈ MB

since TB(⊕pZ/pZ) ∼= ⊕pZ/pZ is not B-solvable because {Z/pZ | p a prime} is
not B-small.

Theorem 3.2 yields that the class of A-Morita-invariant modules is closed with
respect to finite direct sums, A-generated submodules, and A-generated exten-
sions. Clearly, A-projective modules are A-Morita-invariant. However, there
may exist Morita-invariant modules which are not A-generated submodules of
A-projective since every locally A-projective module is A-Morita-invariant if EA
is right Noetherian.

Corollary 3.3. Every A-Morita-invariant group is torsion-free if A is a torsion-
free reduced abelian group whose endomorphism ring is a subring of a finite di-
mensional Q-algebra.

Proof. Suppose that there exist an A-Morita-invariant group G such that G[p] 6=
0 for some prime p. Then, G has a cocyclic summand C which is A-solvable,
and one may assume that G is cocyclic. Select an A-balanced exact sequence
0 → U

α→ P
β→ G → 0 in which P is A-projective and SA(U) = U . If A = pA,

then both U and P are p-divisible. If 0 6= x ∈ G[p], then x = β(y) for some y ∈ P .
Then, β(py) = px = 0, and there is z ∈ U with py = α(z) = pα(z′) for some
suitable z′ ∈ U . Since A is torsion-free, y = α(z′) which is not possible. Hence,
A 6= pA. Therefore, G[p] is an A-generated subgroup of G. In particular, Z/pZ
is A-Morita-invariant by the remarks preceding the corollary.
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By Corner’s Theorem, there is a torsion-free abelian group B of rank 2n with
EB = E where n = r0(E). Then, HA(Z/pZ) ∈MB . In particular, TBHA(Z/pZ)
is a p-bounded abelian group. Consequently, Z/pZ ∈ CA. Since B/pB ∼= (Z/pZ)n,
the group B/pB is B-solvable. Because B is faithfully flat as an E-module, the
sequence 0 → B

p→ B → B/pB → 0 is A-balanced. Hence, 0 → HB(B)
p→

HB(B) → HB(B/pB) → 0. Therefore, [rp(B)]2 = rp(E) < ∞. On the other
hand, rp(B) = rp(E) yields rp(E) = 1.

On the other hand, there is a torsion-free abelian group C with E(C) = E

such that rp(C) is infinite and C is faithfully flat as an E-module. Using the same
arguments as before, one obtains that Z/pZ is C-solvable. There is a subgroup
W of C with C/W ∼= Z/pZ. In particular, W is C-solvable, and one has an exact
sequence 0 → HC(W ) → HC(C) → HC(Z/pZ) → 0. However, pC ⊆ W yields
pHC(C) ⊆ HC(W ) and hence HC(C)/HC(W ) is an epimorphic image of E/pE.
Consequently, rp(HC(Z/pZ)) = rp(E) = 1. On the other hand,

rp(HC(Z/pZ)) = rp(Hom(C/pC,Z/pZ)) = 2rp(C) ≥ 2ℵ0 ,

a contradiction. �

4. Category Equivalences

In this section, F and G denote additive functors, which are defined on full
subcategories of module categories. If F and G are mutually inverses, then F
and G commute with respect to arbitrary direct sums provided they exist in the
subcategories.

Theorem 4.1. Let R and S be rings. The following conditions are equivalent
for self-small modules A ∈MR and B ∈MS which are faithfully flat as modules
over their endomorphism ring.

a) CA and CB are equivalent categories.
b) There exists a Morita-equivalence between MEA and MEB , which re-

stricts to an equivalence between MA and MB.

Proof. a)⇒ b): Suppose that the equivalence is given by two functors F : CA →
CB and G : CB → CA with corresponding natural transformations φ : GF → 1CA
and ψ : FG → 1CB .

The first step shows that F transforms exact sequences of R-modules with
entries from CA into exact sequences of S-modules. For this consider an exact
sequences 0 → C

α→ M
β→ N → 0 of R-modules with C,M,N ∈ CA. Then, α is

the CA-kernel of β because A is flat over its endomorphism ring (see [2]). Since F
preserves kernels, F(α) is the CB-kernel of F(β). However, the CB-kernel of F (β)



MODULES WITH MORITA-EQUIVALENT ENDOMORPHISM RINGS 675

coincides with its kernel as a S-module since B is flat over its endomorphism ring.

Hence, F(α) is one-to-one, and the sequence 0→ F(C)
F(α)→ F(M)

F(β)→ F(N) is
exact. Since S- and CB-cokernels need not coincide, it remains to show that F(β)
is onto as a S-module map. If H = im F(β), then H is B-solvable because it is
a B-generated submodule of the B-solvable module F(N) and B is flat over its
endomorphism ring. Moreover, F(β) induces an S-epimorphism β : F(M)→ H.
Observe that H ∼= F(M)/im F(α) yields that β is a CB-cokernel of F(α). Hence,
there is a CB-isomorphism δ : H → F(N) with δβ = F(β). Since δ is an S-
isomorphism, F(β) is onto as a S-module map.

In the next step, one establishes that B and F(A) are similar. For this, consider
an exact sequence 0 → U → ⊕IB → F(A) → 0 of S-modules in which U is B-
solvable. It induces the exact sequence 0 → G(U) → G(⊕IB) → GF(A) → 0,
which splits since GF(A) ∼= A is faithfully flat over its endomorphism ring and
GF(⊕IB) is A-solvable. Hence, FGF(A) ∼= F(A) is B-projective as a direct
summand of FG(⊕IB) ∼= ⊕IB. A similar argument shows that B is F(A)-
projective using an exact sequence of the form 0 → V → ⊕JA → G(B) →
0. Then, B and F(A) are similar by Proposition 2.2. Hence, HB(F(A)) is a
progenerator of MEB once one has established that F(A) is self-small:

Let λ : F(A) → ⊕ωF(A) be a S-module-map such that πnλ 6= 0 for inf-
initely many n < ω where πn : ⊕ωF(A) → F(A) is the projection onto the
nth-coordinate. Then, G(λ) : GF(A) → G(⊕ωF(A)) satisfies G(πn)G(λ) 6= 0 for
infinitely many n < ω. Observe that the embeddings δn : F(A) → ⊕ωF(A)
into the nth-coordinate have the property G(⊕ωF(A)) = Σn<ωim G(δn) since
G(⊕ωF(A)) is the CB-coproduct of {G(δn)}n<ω. This sum is direct because
G(πn)G(δm) = δnm where δnm = 0 if m 6= n and δnm = 1 if n = m. Since
A ∼= GF(A), there is n0 < ω with G(λ)(A) ⊆ Σn0

k=0im G(δk) by the self-smallness
of A. Therefore, G(πn)G(λ) = 0 for all n > n0.

The desired equivalence between MEA and MEB is obtained by observing
that EA operates on P = HB(F(A)) by φ ∗ x = [HB(F(φ))](x), and that the
assignment φ→ HB(F(φ)) defines a ring isomorphism between EA and EEB (P )
since HBF is an equivalence between CA andMB with inverse TBG. For reasons
of simplicity, identify EA with the EB-endomorphism ring of P . Since P is a
progenerator of MEB , one obtains from [5, Theorem 17.8] that P is a faithfully
balanced EA-EB-bimodule which is finitely generated and projective as a left EA-
module. Moreover, P is a generator of EAM by [5, Lemma 17.7]. By Morita’s
Theorem [5, Theorem 22.4], the functors F̃ : MEA → MEB and G̃ : MEB →
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MEA defined by F̃ = −⊗EAP and G̃ = HomEB (P,−) are an equivalence between
MEA and MEB .

Let FA be the full subcategory of CA whose objects are the A-free modules.
For F1 = ⊕IA and F2 = ⊕JA in FA, one has

TBF̃HA(Fi) = TB(HA(Fi)⊗EA P ) =

HA(Fi)⊗EA TBHB(F(A)) ∼=nat HA(Fi)⊗EA F(A)

where the EA-module-structure of F(A) is defined by r ∗ x = F(r)(x) for all
x ∈ F(A) and r ∈ EA. If ei : A→ F1 and fj : A→ F2 denote the embeddings into
the ith- and jth-coordinate respectively, then {ei}i∈I ⊆ HA(F1) and {fj}j∈J ⊆
HA(F2) are EA-bases. Define a map

η1 : HA(F1)⊗EA F(A)→ F(F1)

by η1((Σi∈Ieiri)⊗x) = Σi∈IF(ei)[F(ri)](x). Observe that η1 and η2 are S-module
maps since F(A) and F(Fi) carry a right S-module-structure, see e.g. [10]. Since
every x ∈ HA(F1) ⊗EA F(A) can be written as x = Σnj=1(Σi∈Ieitij) ⊗ xj =
Σi∈Iei ⊗ yi where yi = Σnj=1F(tij)(xi), one obtains η1(x) = Σi∈IF(ei)yi. Since
F(e1) is one-to-one, η1 is an isomorphism. In a similar way, one obtains an
isomorphism η2 : HA(F2)⊗EA F(A)→ F(F2).

If φ : F1 → F2, then, for each i ∈ I, there are rij ∈ EA with rij = 0 for
almost all j ∈ J such that HA(φ)(ei) = Σj∈Jfjrij . Furthermore, φ(Σi∈Iei(ai)) =
Σj∈Jfj(Σi∈Irij(ai)) for all ai ∈ A with ai = 0 for almost all i. Since F(F1) =
Σi∈I im F(ei), one obtains F (φ)(Σi∈IF(ei)(xi)) = Σj∈JF(fj)(Σi∈IF(rij)(xi))
for all xi ∈ F(A) such that xi = 0 for almost all i ∈ I. Moreover, the diagram

HA(F1)⊗EA F(A)
φ⊗1F(A)−−−−−−→ HA(F2)⊗EA F(A)

o




y
η1 o





y
η2

F(F1)
F(φ)−−−−→ F(F2)

commutes since

F(φ)η1(ei ⊗ xi) = F (φ)(F(ei)(x)) = Σj∈JF(fj)[F(rij)](xi).

while

η2(HA(φ)⊗ 1F(A))(ei ⊗ xi) = η2(Σj∈Jfjrij ⊗ xi) = Σj∈JF(fj)[F (rij)](xi).

The standard arguments from homological algebra show that η1 and η2 do not
depend on the chosen embeddings {ei}i∈I and {fj}j∈J . Hence, TBF̃HA and F
are naturally equivalent when restricted to FA.
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But F̃HA(F ) is B-projective for each A-free module F , and HBTB is naturally
equivalent to 1PEB where PEB is the category of projective right EB-modules.
Therefore, F̃HA is naturally equivalent to HBF on FA. Once it has been shown
that this equivalence can be extended to CA, then for all M ∈ MA, the module
TA(M) is A-solvable, and

M ⊗EA F(A) ∼= HATA(M)⊗EA F(A) ∼= HBF(TA(M)) ∈MB .

By symmetry, G̃ :MB →MA is the inverse to F̃ .
Given an A-solvable module M , there are A-balanced exact sequences 0 →

U → F1 → M → 0 and 0 → V → F2 → U → 0 such that F1 and F2 are A-free,
and U and V are A-solvable since A is faithfully flat as an EA-module. By what
has been shown, F carries these sequences into exact sequences of S-modules
which are B-balanced because B is faithfully flat as an EB-module. Hence, the
exact sequence F2 → F1 →M → 0 remains exact after an application of HBF or
(−⊗EA P )HA since P is a projective EA-module. One obtains the commutative
diagram

HBF(F2) −−−−→ HBF(F1) −−−−→ HBF(M) −−−−→ 0

o




y
η2 o





y
η1 o





y
ηM

F̃HA(F2) −−−−→ F̃HA(F1) −−−−→ F̃HA(M) −−−−→ 0

with induced isomorphism ηM . Observe that the bottom-row is exact since the
functor − ⊗EA F(A) is exact because P is a projective EA-module. To see that
η is naturally, choose N ∈ CA and a morphism φ : M → N . There is an exact
sequence P2 → P1 → N → 0 with P1 and P2 A-free. By the faithful flatness of A
as an EA-module, one obtains a commutative diagram

F2 −−−−→ F1 −−−−→ M −−−−→ 0




y
φ2





y
φ1





y
φ

P2 −−−−→ P1 −−−−→ N −−−−→ 0

for suitable maps φ1 and φ2. The standard arguments can now be used to show
that ηM is natural and independent of the chosen A-free resolutions.
b) ⇒ a): Set F = TB(− ⊗EA P )HA where − ⊗EA P is the given Morita-

equivalence inducing an equivalence between MA and MB . �

Corollary 4.2. Let A and B as in Theorem 4.1. If F : CA → CB is a category
equivalence, then there is a progenerator P ofMEB with EA ∼= EEB (P ) such that
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the diagram

CA
F−−−−→ CB





y
HA





y
HB

MEA

−⊗EAP−−−−−→ MEB

commutes.

In particular, the Morita equivalence of EA and EB in the last result guarantees
the following:

• If A is a generalized rank 1 group, then so is B.
• If EA is right Noetherian (right hereditary, right semi-hereditary, right

strongly non-singular), then the same holds for EB .

On the other hand, Z[x] contains an ideal I which is generated by 2 elements,
but is not projective. Therefore, Mat2(Z[x]) is not a right p.p.-ring, although
Z[x] is. Select a self-small group A with EA = Z[x] which is faithfully flat as an
EA module to obtain examples of groups A and B = A⊕ A such that E is right
p.p., but E(B) is not. Therefore, being a right p.p. ring is a property which is
not preserved under Morita-equivalence.

Corollary 4.3. Let R and S be ring. Suppose A ∈ MR and B ∈ MS are self-
small modules which are faithfully flat over their endomorphism ring and have
the property that CA and CB are equivalent via a functor F .

a) The classes of finitely A-generated, A-torsionless, locally A-projective, A-
presented, A-torsion-free, and weakly A-solvable groups are equivalent to
their B-counterparts under F .

b) If M ∈ CA, then A-p.d.M = B-p.d.F (M).

�

Example 4.4. If R and S are Morita-equivalent rings with associated category
equivalences F : MR → MS and G : MS → MR, then CA and CF(A) are
equivalent for all A ∈MR.

Proof. Let M be A-solvable module, and consider an A-balanced exact sequence
0 → U → ⊕IA

β→ M → 0 in which U is A-generated. There is an epimorphism
⊕JA → U → 0. Applications of F induce the exact sequences 0 → F(U) →
F(⊕IA) → F(M) → 0 and F(⊕JA) → F(U) → 0. Moreover, if φ : F(A) →
F(M), then there is ψ : GF(A) → GF(⊕IA) such that GF(β)ψ = G(φ). Apply
F once more. �
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Clearly, Theorem 4.1 applies if A andB are similarR-modules, as is for instance
demonstrated by the next result:

Corollary 4.5. Let A and B be torsion abelian groups. Then, CA and CB are
equivalent if and only if A and B are similar.

Proof. By Proposition 2.1, torsion groups with Morita-equivalent endomor-
phism rings are similar. �

However, there exist R-modules A and B which are not similar, but for which
CA and CB are equivalent categories. The construction of such modules is based
on the following description of MA in case that A is a torsion-free abelian group
of rank 1. Let π(A) = {p | A = pA}, and consider a non-zero a ∈ A. The
set σa(A) = {p | 0 < hAp (a) < ∞} is uniquely determined up to equivalence
of sets by A [9]. Denote the equivalence class of σa(A) by σ(A). Observe that
E = Z[ 1

p | p ∈ π(A)].

Theorem 4.6. Let A be a subgroup A of Q, and 0 6= a ∈ A. An E-module M is
in MA if and only if M [p] = 0 for all but finitely many p ∈ σa(A).

Proof. Firstly, observe that every E-module M has the property that M [p] = 0
for all primes p ∈ π(A). Otherwise, write M ∼= F1/F2 where F1 and F2 are free
E-modules. There is x ∈ F1 \ F2 such that px ∈ F2 for some p ∈ π(A). Since
E = pE, there is z ∈ F2 with px = pz since p ∈ π(A). One obtains x = z, which
is not possible. Hence, tM = ⊕p 6∈π(A)Mp.

Now suppose that M ∈ MA, and assume that M [p] 6= 0 for infinitely many
p ∈ σa(A). Since A is flat as an E-module, TA(Mp) is the p-torsion subgroup of
the A-solvable group TA(M) for all primes p. Furthermore, A/pA ∼= Z/pZ for
all primes p 6∈ π(A) yields that TA(tM) is A-generated, and hence A-solvable.
Since TA(tM) ∼= ⊕p 6∈π(A)TA(Mp), the family {TA(Mp) | p 6∈ π(A)} is A-small,
i.e. for every map α : A → ⊕p 6∈π(A)TA(tM), one has πpα = 0 for almost all
p 6∈ π(A) where πp : TA(tM) → TA(Mp) is the projection induced by tM =
⊕p 6∈π(A)Mp. However, 0 < hAp (a) < ∞ for all primes p ∈ σa(A) yields that A
contains a subgroup U such that A/U ∼= ⊕p∈σa(A)Z/pZ. Therefore, one can find
a monomorphism α′ : A/U → TA(tM) such that πpα′ 6= 0 for all p ∈ σa(A) for
which M [p] 6= 0, a contradiction. Consequently, TA(Mp) = 0 for almost all primes
p ∈ σa(A). Since A is faithfully flat as an E-module, Mp = 0 for all but finitely
many of these primes.

Conversely, consider an E-module M such that M [p] = 0 for all but finitely
many primes p ∈ σa(A). Then, there is an exact sequence 0 → TA(tM) →
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TA(M) → TA(M/tM) → 0. Since the class of A-solvable groups is closed with
respect to A-generated extensions, TA(M) is an A-solvable group once one has
shown that TA(tM) and TA(M/tM) are A-solvable. Then, HATA(M) ∈MA, and
the natural map φM : M → HATA(M) is a monomorphism since A is faithfully
flat as an E-module [2]. Furthermore, MA is closed with respect to submodules
whenever A is a faithfully flat E-module, and hence M ∈MA [2].

Write tM = N⊕Mp1⊕. . .Mpm where p1, . . . , pm are the primes p ∈ σa(A) with
M [p] 6= 0. It suffices to show that a p-group is A-solvable whenever p 6∈ π(A).
By [6, Theorem 1.4], hAp (a) < ∞ for all p 6∈ π(A) yields A/pnA ∼= Z/pnZ for all
n < ω. Hence, every p-group K is A-generated. Moreover, φ(A) ∼= Z/pnZ for
some n < ω whenever φ ∈ HA(K). Therefore, every finitely A-generated subgroup
of K is finite, and hence A-solvable. Consequently, K itself is A-solvable. Hence,
every TA(Mp) is A-solvable for all primes p. Since CA is closed with respect to
direct sums of A-small families, TA(tM) is A-solvable once one has shown that
{TA(Mp) | p 6∈ σa(A)} is A-small.

Consider a map α : A → ⊕p 6∈σa(A)TA(Mp), and let π1 = {p 6∈ σa(A) | πpα
6= 0}. Then, ker α contains a non-zero b. For each p ∈ π1, there is cp ∈ A

such that 0 6= α(cp) ∈ M [p]. Hence, pcp ∈ ker α, and there are relatively prime
integers mp and np with mppcp = npb. However, np = pkp yields mpcp = kpb.
Consequently, mpα(cp) = 0 from which one obtains the contradiction α(cp) = 0
since α(cp) ∈ M [p] and p does not divide mp. Thus, p does not divide np, and
hAp (b) > 0 whenever p ∈ π1. Consequently, π1 ⊆ σb(A) \ σa(A). Since the latter
set is finite, the same holds for π1. Furthermore, if H is any torsion-free A-
generated group, and U is a finitely A-generated subgroup of H, then there is an
exact sequence 0 → V → Am → U → 0 for some m < ω. Because of [9, Lemma
86.8], V is a direct summand of Am, and U is A-projective. Therefore, every
finitely A-generated subgroup of H is A-solvable, and the same holds for H. �

Corollary 4.7. Let A and B be subgroups of Q.

a) A and B are similar if and only if A ∼= B.
b) CA and CB are equivalent if and only if π(A) = π(B) and σ(A) = σ(B).

Proof. a) is obvious.
b) Suppose that CA and CB are equivalent. Since EA and EB are Morita-

equivalent subrings of Q, they are equal, and hence π(A) = π(B). Moreover,
every Morita-equivalence between MEA and MEB has to be the identity functor.
By Theorem 4.1, MA = MB . But then σ(A) = σ(B). Conversely, observe
CAM̃A =MB C̃B . �
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It is easy to construct subgroups A and B of Q that either have incomparable
types or satisfy type(A) < type(B) and have the properties σ(A) = σ(B) and
π(A) = π(B) = ∅: For instance, let π1 and π2 be infinite disjoint subsets of
the set of primes, and consider the subgroups A1 = Z1 + 〈 1p | p ∈ π1 ∪ π2〉,
A2 = Z1 + 〈 1p | p ∈ π1〉 + 〈 1

p3 | p ∈ π2〉 and B = Z1 + 〈 1
p2 | p ∈ π1 ∪ π2〉 of Q.

Then, σ(A1) = σ(A2) = σ(B) and π(A1) = π(A2) = π(B) = ∅. Observe that
type(A1) < type(B), while A2 and B have incomparable types.
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