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Abstract

A large number of biomedical and surveillance applications target at iden-
tifying specific events from sensor recordings. These events can be defined
as rare and relevant occurrences with a limited duration. When possible,
human annotation is available and developed techniques generally adopt the
standard recognition approach in which a statistical model is built for the
event and non-event classes. However, the goal is not to detect the event in
its complete length precisely, but rather to identify the presence of an event,
which leads to an inconsistency in the standard framework. This paper pro-
poses an approach in which labels and features are modified so that they are
suited for time event detection. The technique consists of an iterative pro-
cess made of two steps: finding the most discriminant segment inside each
event, and synchronizing features. Both steps are performed using a mu-
tual information-based criterion. Experiments are conducted in the context
of audio-based automatic cough detection. Results show that the proposed
method enhances the process of feature selection, and significantly increases
the event detection capabilities compared to the baseline, providing an abso-
lute reduction of the revised event error rate between 4 and 8%. Thanks to
these improvements, the audio-only cough detection algorithm outperforms
a commercial system using 4 sensors, with an absolute gain of 26% in terms
of sensitivity, while preserving the same specificity performance.
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1. Introduction

This paper addresses the problem of automatic event detection from time
series. A proper method for event detection is of interest in various biomedi-
cal, surveillance and signal-based applications involving a sensor-based mon-
itoring of any phenomenon. These applications encompass the characteriza-
tion of molecular events [1], cough detection [2], monitoring of biomedical
measures (sleep apnea [3], muscle activity [4], etc.), seismic event detection
[5], [6], anomaly detection [7], meteorological changes, traffic regulation [8],
or event detection in social streams [9]. This paper proposes a new method
of event detection based on mutual information in the context of supervised
learning. The problem positioning is more precisely presented in Section
1.1. Since the validity of the proposed approach is illustrated in the frame of
audio-based cough detection, the background on this issue is given in Section
1.2. The structure of the paper is finally described in Section 1.3.

1.1. Temporal Event Detection

The detection of events from time series data is a problem which gained
interest from the research community [10], [11], [12]. In most cases, studies
refer to the issue of unsupervised event detection, in which the underlying
phenomenon is ill-understood, making human annotation impossible [10],[13].
In such a context, the goal is to identify the time points at which the system
behavior change occurs. This is referred to as the change-point detection
problem [10]. This is typically achieved by considering probability distribu-
tions from data in the past and present intervals, and by inspecting whether
these two distributions are significantly different [12]. Semi-supervised learn-
ing has also been addressed in [14] for the detection of rare and unexpected
events. This method can be applied when collecting a sufficient amount of
labeled training data for supervised learning is practically infeasible (e.g. be-
cause manually annotating such a large corpus would be too time-consuming,
and consequently too expensive).

On the other hand, there is a large number of applications for which hu-
man annotation is available and which target at identifying specific events
from sensor recordings [2], [5], [8]. Events can then be defined as rare and
relevant occurrences, generally with a limited duration. For such an issue,
vectors of features characterizing the signal are extracted at a constant sam-
pling rate. More precisely, the signal is windowed in so-called frames where a
short-term analysis is performed [15]. For each frame, a set of characteristics
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(also called features, measurements or attributes) are extracted. The whole
signal is analyzed by shifting the frames by a constant delay, consecutive
frames possibly overlapping [15]. Based on these sequences of frames, devel-
oped techniques generally adopt the standard approach in which a statistical
model is built for each class to be identified (presence or not of an event)
[16]. This approach nonetheless suffers from a main drawback: models built
at learning stage are based on the whole event duration. However, the goal is
not to detect the event in its complete length precisely, but rather to identify
the presence of an event, i.e. to detect an event trigger.

This induces a dramatic change from the typical training formalism: in-
stead of building models so as to minimize the error rate at the frame level,
the supervised learning has to focus on the detection ability at the event level.
An extreme case to illustrate this concept would be a classification system
which identifies correctly only one single frame among the several contained
in each event. In the conventional framework, this would be characterized
by low performance since the majority of the frames contained in the event
are missed, although it leads to a perfect discrimination at the event level
since the event has been properly detected.

In parallel, measures derived from the Information Theory [17] have been
extensively used in machine learning. Among others, the usefulness of Mutual
Information (MI) for selecting the most relevant features in a given classifica-
tion task has been proven [18]. This efficiency is nonetheless also impaired if
the traditional formalism aiming at detecting events in their whole duration
is considered. Indeed, the relevance of a feature at the frame level does not
necessarily imply its relevance at the event level, and vice versa.

The goal of this paper is precisely to investigate how MI can be used to
alleviate the aforementioned drawbacks by localizing the relevant regions of
interest in each event and by synchronizing features. Some concepts of the
proposed approach and all our experimental results will be illustrated in the
context of a particular application: audio-based cough detection.

1.2. Automatic Cough Detection

Cough is the commonest reason for which patients seek medical advice
to the general practitioner (around 20% of consultations for children below 4
years old), the paediatrician and the pneumologist (for whom chronic cough
represents one third of consultations). The impact of cough, notably chronic
coughing, on life quality can be important [19].
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In order to evaluate the cough severity, a subjective assessment is possible
by making use of cough diaries, quality-of-life questionnaires or relying on
a visual analog scale [20]. However, it has been shown that the subjective
perception of cough is only slightly correlated with objective measurements
of its severity [21]. Medical literature on this topic therefore underlines the
lack of a tool allowing the automatic, objective and reliable quantification of
this symptom [19]. This latter step is notably required prior to any correct
evaluation of possible treatments.

Some approaches have been recently proposed to address the automatic
detection of cough [2]. These systems generally couple various sensors to the
audio signal [2]: accelerometer, chest impedance belt, contact microphone,
ECG, respiratory inductance plethysmography etc. Although reported re-
sults are encouraging, there is currently neither standardized methods nor
adequately validated, commercially available and clinically acceptable cough
monitors [19], [2]. Besides, following the patient in ambulatory and 24h-long
conditions (while preserving his daily habits) remains an open problem. As
a result, cough quantification in the majority of hospitals is still nowadays
performed by a tedious task of manual counting from audio recordings, or
for validation by comparison using simultaneous video recordings.

For respiratory physiologists, cough is three-phase expulsive motor act
characterized by an inspiratory effort, followed by a forced expiratory effort
against a closed glottis and then by opening of the glottis and rapid expiratory
airflow [19]. As shown in Figure 1, the acoustics of the cough sound is
manifested by three phases, where the last one is optional [22]: an explosive
phase, an intermediate period whose characteristics are similar to a forced
expiration, and a voiced phase. At this point, it can then be understood
that even for the detection of short events like cough: i) it might not make
sense to try to detect the cough event in its complete duration, ii) as the
signal properties vary across the duration of an event, the segments where
features are particularly discriminative may not coincide. For example, some
features might be relevant for detecting the explosive phase, while others
would characterize the voiced phase. This might be particularly true when
features arise from different sensors which might not be synchronous. This
paper aims at addressing both of these issues.

1.3. Structure of the paper

This paper is structured as follows. Section 2 describes the proposed
approach based on information localization inside events, and feature syn-
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Figure 1: Waveform of a typical cough sound with three phases.

chronization. The experimental protocol is detailed in Section 3. Results
of our evaluation are reported in Section 4 and the paper is concluded in
Section 5.

2. Proposed Approach

The general workflow of the proposed approach is presented in Figure 2.
The method starts with a sequence of feature vectors and with the initial
event labels (resulting from the manual annotation). The algorithm consists
of an iterative process aiming at localizing the relevant information inside
the events, and at synchronizing features with each others and with labels.
The motivation behind these steps is the following. First of all, the relevant
segments of the events, i.e the portions of events which are the most distin-
guishable from other classes, are only a partial component of the whole event
duration and have to be located. Secondly, features extracted from the time
signal may characterize different aspects of this latter signal, which may oc-
cur at different instants. Besides, in some applications, features might even
arise from various sensors, which strengthens this issue. For these reasons,
features have to be synchronized such that their relevant segments emerge
at the same time, which is expected to enhance the event discrimination
capabilities of the classifier.

2.1. Feature Synchronization

As aforementioned, the period where a feature is particularly discrimina-
tive may not perfectly coincide with the class label indicating the presence of
an event. Therefore, each feature must be synchronized with the class labels
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Figure 2: Workflow of the proposed approach.

by applying a certain delay. Denoting Ci the class labels at iteration i, the
sequence of the jth feature, noted Xj, is synchronized with a delay dij such
that:

dij = arg max
d
I(Xj(d);Ci), (1)

where Xj(d) represents the feature sequence Xj on which a delay of d
frames has been applied (with regard to the initial features). The mutual
information I(Xj;Ci) between Xj and the classes Ci can be computed as
[17]:

I(Xj;Ci) =
∑
xj

∑
ci

p(xj, ci) log2

p(xj, ci)

p(xj)p(ci)
(2)

and can be viewed as the amount of information that feature Xj conveys
about the considered classification problem, i.e. the individual discrimination
power of this feature alone.

The goal of this step is then to find the optimal delays to apply to each
feature so as to maximize its discrimination power. Figure 3 shows the evo-
lution of the normalized MI as a function of the applied delay for a particular
feature used in our cough detection application. In this case, MI is normal-
ized by division with the entropy of the classes, such that it is bounded to
1 for a perfect classification [17], [23]. In the illustration of Figure 3, it can
be observed that shifting the feature sequence by 3 frames in the past gives
a normalized MI reaching 0.21, providing a clear improvement compared to
the initial case where a value of only 0.14 is obtained.

2.2. Information Localization

The key idea of the information localization step is to find the optimal
duration of the relevant segments inside the events such that the discrimina-
tion abilities of the feature set are maximized. As in Section 2.1, we would
like this step to be independent of any classifier and to rely only on measures
derived from the Information Theory. Unfortunately, computing MI from
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Figure 3: Illustration of feature synchronization for a particular feature used in our cough
detection application.

data requires the estimation of probability densities, which cannot be accu-
rately done in high dimensions. This is why the great majority of MI-based
methods use measures based on up to three variables (two features plus the
class label).

Therefore a MI-based assessment of the relevance of a feature set whose
cardinality is higher than 2 is impossible to achieve accurately in practice,
as it would require a prohibitive amount of data. For this reason, several
strategies (mainly of feature selection) have been proposed to deal with the
issue of redundancy management, i.e to estimate the redundancy and the
amount of new relevant information of a given feature with an existing feature
subset [18], [23].

In this paper, we use as feature selection method the following algorithm
which is known [23] to provide among the best feature selection results. Let
us denote F={X1,X2,...,XN} the initial set of N features, and Sk the selected
subset (with Sk ⊆ F ) of k features at step k. The method is a greedy algorihm
which starts from an empty set and which selects at each step k the feature
Yk maximizing:

Yk = arg max
Xp∈F\Sk−1

[I(Xp;C)− max
Yq∈Sk−1

I(Xp;Yq;C)], (3)

where I(Xp;C) is the relevant information brought by feature Xp sepa-
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rately (i.e independently of any other feature), and where I(Xp;Yq;C) is the
redundancy of relevant information between features Xp and Yq and can be
developed as:

I(Xp;Yq;C) =∑
xp

∑
yq

∑
c

p(xp, yq, c)· log2

p(xp, yq)p(xp, c)p(yq, c)

p(xp, yq, c)p(xp)p(yq)p(c)
(4)

In other words, the algorithm considers that the redundancy between Xp

and the selected subset Sk−1 is dominated by the most redundant feature in
it.

In a similar spirit, we can consider in the following that, working with a
set SM of M features, the Relevant Information RI(Xp, C, SM) brought by
feature Xp (contained in SM) with regard to other selected frames can be
expressed as:

RI(Xp, C, SM) = I(Xp;C)− max
Ym∈SM\{Xp}

I(Xp;Ym;C), (5)

In this context, information localization inside the events is made at itera-
tion i by fixing the duration of the class labels Ci such that the discrimination
of these events is optimal:

Ci = arg max
C

M∑
m=1

RI(Xm, C, SM). (6)

In other words, the idea is to set the duration of the new labels at iteration
i in a way such that the discrimination abilities of the selected feature set
SM are optimized. Finally, it is worth noticing that the sum involved in
Equation 6 does not make sense in the absolute (as this sum might excess
H(C)) but allows a comparative evaluation between various feature sets (of
the same cardinality), or between class labels as it is the case here.

2.3. Iterative Process

As depicted in Figure 2, starting from the initial non-synchronized fea-
tures and manually-annotated class labels, an iterative process is used by
repeating the steps of feature synchronization and information localization
as explained here above. This is done untill convergence is reached for the
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label duration. According to our experiments, this was always achieved in
less than 3 iterations. No divergence or oscillation between two or more pos-
sible solutions were observed. Note that common schemes used in non-linear
optimization to prevent these issues can be applied here straightforwardly.

3. Experimental Protocol

We here detail the protocol used throughout our experiments led in the
context of audio-based cough detection. The database is first described in
Section 3.1. The recognition framework is presented in Section 3.2. First a
large variety of audio descriptors is extracted (Section 3.2.1), among which
only the most relevant will be selected as explained in Section 3.2.2. Finally
Section 3.2.3 provides details about the methodology used for classification
and assessment. Methods compared in our results are summarized in Section
3.3, and metrics employed in our evaluation are introduced in Section 3.4.

3.1. Database

The study population was divided into two groups. The first set (A)
included 22 healthy subjects (9 Male, mean age±SD: 22.8 ± 2.44 ,range:
20− 28). The second set (B), consisting of 10 additional healthy subjects (5
Male, mean age±SD: 23±1.45, range: 22−26) was designed to compare our
system to the commercially available KarmelSonix cough counter [24]. It is
worth noting that these recordings were made across several sessions and in
different rooms.

The aim of the database was to record various cough sounds but also
some other sounds which are typically confused with cough. The participants
followed a standardized protocol performed in three different situations, as
detailed in Table 1: (a) sitting down in a quiet environment, (b) sitting down
in a noisy environment and (c) climbing on/going down of a stepladder.

This protocol was inspired by the one used to develop and evaluate the
Karmelsonix system [24], with the addition of coughs at low and intermedi-
ate pulmonary volume as these kinds of cough are more difficult to detect
for automatic cough counters. All recordings have been precisely manually
annotated by a trained observer. In total, the database contains 2338 coughs
(among which 864 are from fits of coughing), 289 forced expirations, 479
throat clearings, 289 laughters, for a total duration of 237 minutes. Note
that slight deviations were observed from the strict protocol, but that the
manual annotation was made coherently.
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Sounds
Situations

Sitting down,
quiet environ-
ment (n)

Sitting down,
noisy environ-
ment (n)

Climbing/going
down a steplad-
der (n)

High volume
cough

5 5 5

Interm. vol.
cough

5 5 5

Low vol. cough 5 5 5
Fit of coughing 3 3 3
Forced expira-
tion

3 3 3

Throat clearing 5 5 5
Speaking 14 14 14
Laughing 3 3 3

Table 1: Standardized protocol for data recorings

3.2. Details of implementation

3.2.1. Feature Extraction

The key idea here is to extract the largest variety of audio features among
which only the most relevant will be selected. These features are extracted
every 12 ms on a 30 ms-long frames and can be divided into two categories:
features describing the spectral contents and measures of noise. We also
added the first and second derivatives for each of these features in order to
integrate the sound dynamics.

Several features characterizing the spectral shape have been proposed in
[25]. For a comprehensive description of the magnitude spectrum, we used
the widely-used Mel-Frequency Cepstral Coefficients (MFCCs), the loudness
associated to each Bark band [25] and the relative energy in different fre-
quency subbands. Besides, several parameters describing the spectral shape
are also employed. The Spectral Centroid is defined as the barycenter of
the amplitude spectrum. Similarly, the Spectral Spread is the dispersion of
the spectrum around its mean value. The Spectral Decrease is a perceptual
measure quantifying the amount of decreasing of the spectral amplitude [25].
Finally, the Spectral Variation and Spectral Flux characterize the amount of
variations of spectrum along time and are based on the normalized cross-
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correlation between two successive amplitude spectra [25]. Besides, we also
use the energy and total loudness which are informative mainly about the
presence of audio activity.

Quantifying the level of noise in the signal is of interest for describing the
cough sound. For this purpose, several measures are here extracted. First,
the Harmonic to Noise Ratio (HNR) is calculated in four frequency ranges.
The Spectral Flatness measures the noisiness/sinusoidality of a spectrum (or
a part of it) in four frequency bands [25]. The Zero-Crossing Rate quantifies
the number of times the signal crosses the zero axis. It is expected that the
greater the amount of high-frequency noise, the higher the number of zero-
crossings. The F0 value and its related measure of periodicity based on the
Summation of Residual Harmonics [26] are used as voicing measurements.
As a last parameter quantifying the amount of noise in the audio signal, the
Chirp Group Delay is a phase-based measure proposed in [27] for highlighting
turbulences during glottal production.

3.2.2. Feature Selection

A total number of 222 features (including the first and second deriva-
tives) has been extracted in Section 3.2.1. The goal of the feature selection
algorithm is to retain the most relevant ones so as to alleviate the effect of
the curse of dimensionality [28]. The algorithm of feature selection we use
throughout the rest of the paper is the one briefly described in Section 2.2
and whose details can be found in [23]. Probability density functions involved
in the calculation of MI measures are estimated by a histogram approach.
The number of bins is set to 50 for each feature dimension, which results in
a trade-off between an adequately high number for an accurate estimation,
while keeping sufficient samples per bin.

3.2.3. Classification

For each of the issues tackled across experiments, a dedicated Artificial
Neural Network (ANN) has been trained. Our ANN implementation relies on
the Matlab Neural Network toolbox. Each ANN is made of a single hidden
layer consisting of neurons (fixed to 16 neurons in this work, as it gave in [29]
a good compromise between high performance and rather low complexity)
whose activation function is an hyperbolic tangent sigmoid transfer function.
The output layer is a simple neuron with a logarithmic sigmoid function
suited for a binary decision.
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In order to provide contextual information to the ANNs, the feature vec-
tor at the considered analysis time is appended with its values 50 ms and 100
ms both in the past and in the future. Finally note that when testing, the
posterior probability of cough detection, provided by the ANN, is smoothed
by a median filtering over a period of 50 ms so as to remove erroneous isolated
decisions.

Except for the comparison with the Karmelsonix system (Section 4.2)
for which training is performed on set A and testing on set B, a leave-four-
subjects-out cross-validation approach is adopted in which models are trained
on 28 out of the 32 subjects are used for training, and test is performed on
the four remaining. This operation is repeated 8 times so as to cover the
whole database for testing, and results are averaged across them.

3.3. Methods Compared

Four methods will be compared in the following, depending upon the
steps involved in the proposed approach (see Section 2):

• Local=0, Synchro=0 (baseline): denotes the traditional method in which
none of the proposed steps is achieved. In other words, this is the clas-
sical framework where the initial features and labels are used, and it is
considered as a baseline in the following.

• Local=0, Synchro=1 : is the technique where features are synchronized
according to the original labels.

• Local=1, Synchro=0 : performs the step of information localization us-
ing the initial features.

• Local=1, Synchro=1 : is the proposed approach described in Section 2
for which the complete iterative process has been carried out.

In addition to an assessment of these four methods, a part of the re-
sults (Section 4.2) will also be devoted to a comparison with the commercial
Karmelsonix system [24].

3.4. Metrics

Metrics we use at the event level are the standard specificity and sen-
sitivity measures [30]. Specificity is the complement of the so-called ”false
positive rate”, defined as the proportion of false alarms. A false alarm is
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an event which is incorrectly identified: in our case, this means that the
algorithm detects a cough event when there is actually none. Similarly, sen-
sitivity is the complement of the so-called ”false negative rate”, defined as
the proportion of misses. A miss is an event which is incorrectly rejected:
in our case, that implies that the algorithm does not detect anything where
there is actually a cough event. By varying the decision threshold θ (applied
on the posterior probability outputted by the ANN), a Receiver Operating
Characteristic (ROC) curve is obtained in the specificity-sensitivity plane
[30]. Two measures are then employed to characterize the performance of
the ROC curve. The first one is the well-known Area Under Curve (AUC),
which reaches a value of 1 for a perfect classifier. As a second single mea-
sure summarizing the ROC curve, we defined the Revised Event Error Rate
(REER) as:

REER = min
θ

√
(1− sens.(θ))2 + (1− spec.(θ))2, (7)

and which also benefits from a straightforward interpretation: REER
is the Euclidean distance in the ROC curve plane from the ideal working
point characterized by values of 1 for both specificity and sensitivity. This
criterion implies that an equal importance is given to both specificity and
sensitivity criteria. Based on a medical advice, one of these aspects could be
emphasized by weighting its importance in Equation 7. Finally, the Revised
Event Classification Rate (RECR) is defined as the complement of the REER
(i.e RECR = 1 − REER). As a consequence, the higher AUC and RECR
(the lower REER), the better the system performance.

4. Results

This section presents the results of our experiments. Section 4.1 first
investigates the influence of the proposed approach in a mutual information-
based feature selection scheme. Section 4.2 then highlights the classification
abilities of the proposed method in comparison with a commercial system:
Karmelsonix [24]. Section 4.3 finally further explores the classification per-
formance of the proposed technique, in terms of error rate as a function of
the number of selected features.

4.1. Impact on Feature Selection

As mentioned in the introduction, traditional state-of-the-art approaches
have been designed for frame classification, not for event detection. In a first
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experiment, our goal is to show that applying the proposed method (mainly
through its information localization step) makes the MI-based measures more
suited for feature selection. For this, we computed for each feature separately
i) its normalized MI with the classes, which is supposed to be an image
of its discrimination ability, and ii) the area under the ROC curve using
only this feature in a ANN classifier, which is a performance measure after
classification. Ideally, both measures should be highly correlated such that
MI can be reliably used for feature selection. Figure 4 shows the results we
obtained with the proposed method for our 222 audio features used for cough
detection.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mutual Information−based Measure

A
re

a 
U

n
d

er
 t

h
e 

R
O

C
 c

u
rv

e

Local=0, Synchro=0 (R=0.6953)

Local=0, Synchro=1 (R=0.7092)

Local=1, Synchro=0 (R=0.8989)

Local=1, Synchro=1 (R=0.9147)

Figure 4: Illustration, for the four compared techniques, of the significance of mutual
information for feature selection. The baseline method is Local=0, Synchro=0.

Three main problems can be noticed with the baseline approach (Lo-
cal=0, Synchro=0). First, some features have very low MI values (close to
0) while their classification ability is rather good. Secondly, features having
a comparable classification performance can lead to MI values dramatically
different. This can be particularly observed for the two groups with MI values
ranging between [0.1-0.2] and [0.3-0.4], and which have comparable classifi-
cation performance. Thirdly, as a consequence, MI values are only poorly
correlated with the classification performance measures, reaching a coefficient
of Pearson correlation of only 0.6953. Therefore applying the baseline ap-
proach in the context of event classification makes the resulting MI measures
inappropriate for efficient feature selection.
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It is seen that the effect of feature synchronization on this issue is rather
negligible, while the improvement brought by information localization is
clear, leading to a correlation coefficient of 0.8989. The complete technique
(Local=1, Synchro=1) still slightly enhances this trend. In this latter case,
the three drawbacks observed with the traditional approach have been solved
and the choice of features with high MI values ensures high classification abil-
ities, leading to a proper feature selection.

4.2. Comparison with the Karmelsonix system

An example of ROC curves in the specificity-sensitivity plane, obtained
using the four compared techniques with 20 features, is given in Figure 5.
These results were obtained by training the four methods on set A of the
database, and testing on set B, such that a comparison with the commercial
Karmelsonix system is possible. First, it is clearly observed that the pro-
posed approach outperforms the standard baseline (Local=0, Synchro=0 ),
reaching higher values of both specificity and sensitivity. It can be observed
that a non-negligible part of this improvement is brought by a single appli-
cation of the information localization step. Further feature synchronization
using the resulting new labels, and carrying out the iterative process allow
to still increase the performance of cough detection. Another important con-
clusion is that albeit Karmelsonix provides an interesting specificity (95.3%),
its sensitivity performance is rather poor (64.9%). The proposed approach
is interestingly shown to lead to a dramatic improvement, yielding a sensi-
tivity of about 91% for comparable specificity capabilities, or equivalently a
corresponding absolute gain of 26%.

To give an idea, these results can be compared to other similar studies,
although they were not obtained on the same database. In [31], the HACC
system based on the analysis of audio recordings achieved a specificity of 96%
and a sensitivity of 80%. In [32], it was reported that the commercialized
LifeShirt system (using a microphone, a respiratory inductance plethysmog-
raphy, and an accelerometer) gave a specificity and sensitivity of respectively
99.6% and 78.1%. Finally, the Leicester Cough Monitor was found in [33] to
have a specificity and sensitivity of respectively 99% and 91%.

4.3. Impact on Classification

The benefit of applying the proposed method is evident by simple visual
inspection of the ROC curves (as those exhibited in Figure 5). This is ob-
viously reflected through the AUC and RECR values extracted from these

15



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Specificity

S
en

si
ti

vi
ty

Local=0, Synchro=0

Local=0, Synchro=1

Local=1, Synchro=0
Local=1, Synchro=1

Karmelsonix system

Figure 5: ROC curves in the specificity-sensitivity plane for the four compared techniques
using 20 features. The performance of the commercialized Karmelsonix system is also
indicated.

latter curves. As an exammple, Table 2 gives the classification rates achieved
using 20 features. Figure 6 further shows, for the four compared techniques,
how RECR varies with the number of selected features. Several conclusions
can be drawn from this table and plot. First of all, it turns out that the
proposed approach outperforms all other methods across all configurations.
The gain with regard to the baseline (Local=0, Synchro=0) is clear, with an
absolute gain of RECR varying between 4 and 8% (depending on the num-
ber of features). Secondly, the observation made in Section 4.1 about the
fact that the proposed technique makes the MI-based measures more suited
for feature selection is here also corroborated. Indeed the advantage of our
method, although existent across all conditions, is also well emphasized for
a low number of features.

Finally, it is worth noting that a key aspect of the method is the step of
information localization. Focusing the detection on these specific segments
is shown to significantly increase the performance of the system. On the
opposite, it turns out that feature synchronization while keeping the original
labels does not bring anything, and even deteriorates the results. Never-
theless, it is seen that this step makes sense in the whole iterative process
(Local=1, Synchro=0 ), as it yields a slight but consistent enhancement over
the Local=1, Synchro=0 technique.
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Method L=0, S=0 L=0, S=1 L=1, S=0 L=1, S=1
RECR 83.07% 81.36% 88.90% 89.86%

Table 2: Revised event clasiffication rate for the 4 compared techniques using 20 features.
L and S respectively stand for Local and Synchro.
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Figure 6: Evolution, for the four compared methods, of RECR as a function of the number
of selected features.

5. Conclusion

This paper focused on a modification of the traditional recognition frame-
work specifically devoted to the event detection issue, in the context of super-
vised learning. The proposed method consists of an iterative process made of
two steps: i) information localization which identifies the most relevant seg-
ments inside each event, and ii) feature synchronization which ensures that
the discrimination abilities of each feature emerge at the same time, even
though they describe different aspects of the signal, or arise from various
sensors. The proposed technique is assessed for a particular concrete appli-
cation: audio-based cough detection. In a first experiment, it is shown that,
compared to the baseline, it allows MI-based measures to be more suited for
feature selection. These latter measures are indeed observed to be much more
correlated with classification results, than what is obtained with the tradi-
tional baseline approach. This is reflected by a Pearson correlation coefficient
increasing from around 0.7 to 0.9. The impact on feature selection is clear,
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and event detection with the proposed technique has been significantly im-
proved independently of the number of selected features. As an illustration,
working with 50 features, the revised event detection rate increased from
about 85% to 92%. This enhancement was noticed to be mainly due to the
information localization step. In a last experiment, the resulting audio-only
cough detection method was compared to the commercialized Karmelsonix
system which relies on four sensors. Applying the proposed algorithm was
shown to clearly outperform Karmelsonix, as it led to a dramatic augmen-
tation of sensitivity from 65% to 91%, keeping equal specificity performance
(95%).

The potential applicability of the proposed approach covers any system
targeting temporal event detection: monitoring of biomedical measures, seis-
mic event detection, anomaly detection, meteorological changes, traffic regu-
lation, etc. As perspectives of this study, our future works encompass: i) the
clinical validation of the proposed technique in a 24-hour ambulatory cough
counter for patients suffering from cystic fibrosis, ii) applying the proposed
approach in an audio-based surveillance system for the automatic detection
of abnormal events.
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