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Abstract 

Image and video indexing techniques are crucial in multimedia applications.  A number of the indexing 
techniques that operate in the pixel domain have been reported in the literature. The advent of 
compression standards has led to the proliferation of indexing techniques in the compressed domain. In 
this paper, we present a critical review of the compressed domain indexing techniques proposed in the 
literature.  These include transform domain techniques using Fourier transform, Cosine transform, 
Karhunen-Loeve transform, Subbands and Wavelets; and spatial domain techniques using Vector 
Quantization and Fractals.  In addition, temporal indexing techniques using motion vectors are also 
discussed. 

I. INTRODUCTION 

Digital image and video indexing techniques are becoming increasingly important with the recent advances in 
very large scale integration technology (VLSI), broadband networks (ISDN, ATM), and image/video compression 
standards (JPEG/MPEG). The goal of image indexing is to develop techniques that provide the ability to store and 
retrieve images based on their contents [1]. Some of the potential applications of image and video indexing are: 
multimedia information systems [2], digital libraries [3], remote sensing and natural resources management [4], movie 
industry and video on demand [5]. Traditional databases use keywords as labels to quickly access large quantities of 
text data. However, the representation of visual data with text labels needs a large amount of manual processing and 
entails extra storage. A more serious problem is that the retrieval results might not be satisfactory since the query 
was based on features that may not reflect the visual content. Hence, there is a need for novel techniques for content 
based indexing of visual data. 

Several content based image retrieval systems have been proposed in the literature [6]-[11]. A block schematic of 
a typical image archival and retrieval system is shown in Fig. 1. A multidimensional feature vector is generally 
computed for each image, and indexing is performed based on the similarities of the feature vectors. Since the 
interpretation/quantification of various features are fuzzy, emphasis is typically placed on the similarity rather than 
the exactness of the feature vectors. In indexing applications, a feature is selected based on the following 
performance criteria: i) its capacity to distinguish different images, ii) the maximum number of images a query could 
possibly retrieve, and iii) the amount of computation required to compute (or the amount of space required to store 
them) and compare the features. 

Typically, visual indexing techniques are based on features such as histogram, color, texture, etc. (see Fig. 3a).  
Here, the image features are extracted directly from the image pixels. Recently, image and video compression 
standards such as JPEG [12], MPEG [13] and H.261 [14], have been proposed to reduce the bandwidth and storage 
requirements. Hence, images and videos are expected to be stored in compressed form. This has led to the 
proliferation of a number of compressed domain indexing techniques in the literature. Here, indexing is performed 
directly on the compressed data (see Fig. 2). 
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Recently, Aigrain et al. [15] have surveyed the approaches for different types of visual content analysis, 
representation and their application in indexing, retrieval, abstracting, relevance assessment, and interactive 
perception. However, the review on indexing techniques is brief.  Idris et al. [16] have presented a review of image 
and video indexing techniques pointing out the advantages and disadvantages of each approach.  The review is 
mainly based on pixel-domain techniques.  Ahanger et al. [17] have reviewed present research trends in multimedia 
applications and the requirements of future data delivery systems which includes a review of few video segmentation 
techniques. The video segmentation techniques discussed mainly operate in pixel domain, although a brief 
discussion of DCT (discrete cosine transform) based techniques has also been presented.  In this paper, we provide a 
critical review of existing compressed domain indexing techniques (see Fig. 3b).  The main focus of this paper will be 
on techniques for deriving feature vectors in the compressed domain. 

The organization of the paper is as follows: a brief review of pixel domain indexing techniques is presented in 
section 2. In section 3, a review of compressed domain indexing techniques is presented. A brief review of pixel 
domain video indexing techniques is presented in section 4.  The review of video indexing techniques in compressed 
domain is presented in section 5, followed by the conclusions. 

II. IMAGE  INDEXING  IN PIXEL  DOMAIN 

The pixel domain indexing of visual data are based on features such as texture, shape, sketch, histogram, color, 
moments, etc. For example, the Query By Image Content (QBIC) system developed by IBM [7] retrieves images based 
on color, texture, shape, and sketches. The Content-based Retrieval Engine (CORE) for Multimedia Information 
Systems proposed by Wu et al. [9] employs color and word similarity measures to retrieve images based on content 
and text annotation, respectively.  We now briefly describe the state of the art approaches in image indexing. 

Color: Color is one of the important features of an image. Typically, the color of an image is represented using the 
image histogram. The histogram of an image with colors in the range [0, L-1] is a discrete function p i n ni( ) = , where 

i  is the color of a pixel, ni  is the number of pixels in the image with color i , n  is the total number of pixels in the 

image, and i  = 0, 1, 2, ....., L-1. In general, p i n ni( ) =  gives an estimate of the probability of occurrence of color i.  

In image retrieval using color histogram, the histogram of the query image is matched against the histograms of 
the images in the database. The matching process is carried out using a similarity metric. The common similarity 
metrics employed for evaluating color similarity are histogram intersection [18], and weighted distance between color 
histograms [19]. The complexity of the matching process can be reduced by quantizing the color space [18], use of 
the dominant features of a histogram [20], use of a lower dimensional histogram by representing the color histogram 
at different resolutions [21], and the use of a lower complexity metric [19].  The retrieval performance can be improved 
by taking into account the location of the colors in the color representation of an image [20].  However, this 
technique requires the use of efficient segmentation and representation of the sub-images. 

Texture: An image can be considered as a mosaic of different texture regions, and the image features associated 
with these regions can be used for search and retrieval. The term texture generally refers to repetition of basic texture 
elements called texels [22]. A texel contains several pixels and can be periodic, quasi periodic or random in nature. 
Texture modeling and classification are broadly grouped into three main categories [23]; structural, statistical, and 
spectral. 

Recently, several techniques for image indexing based on texture features have been reported. Picard et al. [24] 
have presented a technique based on Wold decomposition which provides a description of textures in terms of 
periodicity, directionality and randomness. A modified set of the Tamura features (Coarseness, Contrast and 
Directionality) [ 25] have been used in the QBIC project [7].  Zhang et al. [26] have proposed a technique based on a 
multiresolution autoregressive model, Tamura features, and gray level histogram.  Rao et al. [27] have studied the 
relationships between categories of texture images and texture words.  Retrieval by texture is useful when the user is 
interested in retrieving images which are similar to the query image.  However, the use of texture features requires 
texture segmentation which remains a challenging and computationally intensive task.  In addition, texture based 
techniques lack robust texture models and correlation with human perception. 
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Sketch: A sketch is an abstract image that contains the outline of objects. In this approach, the users may 
provide a rough sketch of the query image. Typically, a sketch is created by using edge detection, thinning and 
shrinking algorithms. The sketch of a query image is used as a key to retrieve the desired images from the database. 
The similarity of two images is measured by using the similarity of their sketches based on local and global 
correlation measures [23]. A technique for sketch based image retrieval has been proposed by Kato et al. [28] and is 
implemented in the QBIC [7].  The disadvantage of this approach is that it is orientation and scale dependent. Similar 
images with different orientation or scale will not be retrieved when compared with the query image. This problem can 
be eliminated by using sophisticated edge representation and matching algorithms. 

Shape: Shape is an important criterion for matching objects based on their profile and physical structure. In image 
retrieval applications, shape features can be classified into global and local features.  Global features are the 
properties derived from the entire shape such as roundness, circularity, central moments, and eccentricity [29].  Local 
features are those derived by partial processing of a shape including size and orientation of consecutive boundary 
segments [30], points of curvature, corners and turning angle [29].  Shape features are fundamental to systems such 
as medical image databases where the color and textures of objects are similar. However, retrieval by shape similarity 
is a difficult problem because of the lack of mathematically exact definition of shape similarity that accounts for the 
various semantic qualities that humans assign to shapes.  

Spatial Relationships: In this technique, objects and their spatial relationships among objects in an image are 
used to represent the content of an image. First, objects in an image are segmented and recognized. The image is then 
converted into a symbolic picture that is encoded using two-dimensional (2-D) strings [31]-[34]. We note that 2-D 
string represents relationships among the objects in the image and is expressed using a set of operators (e.g., left, 
right, above, etc.). The problem of image retrieval thus becomes a problem of 2-D sequence matching.  The basic 
algorithm for image indexing using spatial relationships was presented by Chang et al. [31].  Jungert et al. [32]. have 
extended the basic 2-D string to increase the range of relationships that can be expressed, especially among 
overlapping objects.  Chang et al. [33] have presented a generalization of the 2-D string called 2-D G-String to reduce 
the number of partitions required for representing overlapping objects. Lee et al. [34] have proposed the 2-D B-string 
for image indexing without the need for object partitioning.  We note that matching 2-D strings is based on a simple 
ranking scheme.  However, the generation of a 2-D string is based on object segmentation and recognition which is 
compute intensive. 

III. IMAGE INDEXING IN THE COMPRESSED DOMAIN 

The large volumes of visual data necessitate the use of compression techniques. Hence, the visual data in future 
multimedia databases is expected to be stored in the compressed form. In order to obviate the need to decompress 
the image data and apply pixel-domain indexing techniques, it is efficient to index the image/video in the compressed 
form. Compressed domain image/video indexing techniques based on compression parameters have been reported in 
the literature. These techniques have a lower cost for computing and storing the indices.  Compressed domain 
indexing (CDI) techniques can be broadly classified into two categories: transform domain techniques, and spatial 
domain techniques. The transform domain techniques are generally based on DFT (discrete Fourier transform), KLT 
(Karhunen-Loeve transform), DCT, and Subbands/Wavelets. Spatial domain techniques include vector quantization 
(VQ) and fractals.  We now present a review of compressed domain image indexing techniques. 

Discrete Fourier Transform 

Fourier transform is very important in image and signal processing. DFT employs complex exponential basis 
functions and provides a good coding performance since it has good energy compaction property. DFT has several 
properties that are useful in indexing or pattern matching. Firstly, the magnitude of the DFT coefficients are 
translation invariant. Secondly, the spatial domain correlation can be efficiently computed using DFT coefficients.  
We now present selected Fourier-domain indexing techniques. 

Stone et al. [35] have proposed and evaluated an image retrieval algorithm in Fourier domain. The algorithm has 
two thresholds that allow the user to independently adjust the closeness of a match. One threshold controls an 
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intensity match while the other controls a texture match. The thresholds are correlation values that can be computed 
efficiently using the Fourier coefficients and are particularly efficient when the Fourier coefficients are mostly zero. 

Several texture measures have been evaluated by Augustejin et al. [36] for classification of satellite images. The 
measures are based on the magnitude of the Fourier spectra of an image. The statistical measures include i) maximum 
magnitude, ii) average magnitude, iii) energy of magnitude, and iv) variance of magnitude of Fourier coefficients. In 
addition, the authors have also studied the retrieval performance based on the radial and angular dis tribution of 
Fourier coefficients. We note that the radial distribution is sensitive to texture coarseness whereas the angular 
distribution is sensitive to directionality of textures. It was observed that the radial and angular measures provide a 
good classification performance when a few dominant frequencies are present. The statistical measures provide a 
satisfactory performance in the absence of dominant frequencies. 

Celantano et al. [37] have evaluated the performance of angular distribution of Fourier coefficients in image 
indexing. Here, the images are first pre-processed with a lowpass filter and the FFT is calculated. The FFT spectra is 
then scanned by a revolving vector exploring 180o range. The angular histogram is calculated by computing the sum 
of image components contribution for each angle. While calculating the sum, only the middle frequency range is 
considered as they represent visually important image components. The angular histogram is used as the feature 
vector for indexing. The feature vector is independent of translation in pixel domain while the rotation in pixel domain 
corresponds to a circular shift in the histogram. 

Karhunen-Loeve Transform 

Karhunen-Loeve transform (Principal Component Analysis), is based on the statistical properties of an image. 
Here, the basis functions are the eigenvectors of the autocorrelation matrix of the image. KLT provides maximum 
energy compaction and is statistically the optimum transform. Since the KLT basis functions are image adaptive, a 
good indexing performance is obtained by projecting the images in K-L space and comparing the KLT coefficients. 

Pentland et al. [38] have proposed a KLT-based technique for face recognition. Here, a set of optimal basis 
images, i.e., eigenfaces, is created based on a randomly chosen subset of face images. A query image is then 
projected onto the eigenfaces. Faces are recognized based on the Euclidean distance between the KLT coefficients of 
the target and query image. Since the KLT basis images are ordered with respect to the eigen values, the salient 
image characteristics can be well represented by using a first few (15-20) KLT coefficients. 

The projection to K-L space extracts the Most Expressive Features (MEFs) of an image. However, an eigenfeature 
may represent aspects of the imaging process, such as illumination direction, which are unrelated to recognition. An 
increase in the number of eigenfeartures does not necessarily lead to an improved success rate. To address this 
issue, Swets et al. [39] have proposed a Discriminant Karhunen Loeve (DKL) projection where KLT is followed by a 
discriminant analysis to produce a set of Most Discriminating Features (MDFs). In DKL projection, between-class 
scatter is maximized, while the within-class scatter is minimized. The authors have reported an improvement of 10-30% 
using DKL technique (over KLT) on a typical database. 

KLT has also been applied to reduce the dimensionality of features derived from a texture for classification. We 
note that several methods [40] exist for texture classification, such as spatial gray level dependence matrix (SGLDM), 
gray level run-length method (GLRLM), and power spectral method (PSM).  Tang et al. [40] have showed that KLT is 
efficient in reducing the dimensionality of the feature vectors. 

Although, KLT has the potential to provide good performance, it has been tested on small databases. Therefore, 
detailed investigation has to be performed to gain insights on how to generate feature vectors for a large database 
with widely varying characteristics. We note that KLT is generally not used in traditional image coding because of 
higher complexity. However, it is employed in analyzing and encoding multispectral images [41] and has therefore a 
potential for indexing in remote sensing applications. 

Discrete Cosine Transform 

DCT, a derivative of DFT, employs real sinusoidal basis functions [22] and has energy compaction efficiency 
close to the optimal KL transform for most natural images. As a result, all international image and video compression 
standards, such as JPEG, MPEG 1 and 2, H.261/H.263, employ DCT. We now provide a brief description of DCT-
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based JPEG [12] baseline algorithm since all the above mentioned standards employ a similar algorithm for coding. In 
JPEG, compression is performed in three steps (see Fig. 4): DCT computation, quantization and variable-length 
coding. The original image is first partitioned into non-overlapping blocks of 8x8 pixels as shown in Fig. 4. The 2-D 
DCT of the block is then computed and quantized using a visually adapted quantization table suggested by JPEG. 
Each 8x8 block generates one DC coefficient and 63 AC or, high frequency coefficients. The quantized coefficients 
are reordered using zigzag scan pattern to form a 1-D sequence of quantized coefficients. The DC coefficients from 
each block is DPCM coded and all other coefficients, i.e., the AC coefficients are compressed using a combination of 
Huffman and run-length coding. We note that the above mentioned DCT-based standards do not address the aspect 
of indexing. We now discuss some DCT-based indexing techniques that have appeared in the recent literature. 

Smith et al. [42] have proposed a DCT based method where the image is divided into 4x4 blocks and the DCT is 
computed for each block resulting in 16 coefficients. The variance and the mean absolute values of each of these 
coefficients are calculated over the entire image. The texture of the entire image is then represented by this 32 
component feature vector. The authors use a Fisher discriminant analysis (FDA) to reduce the dimensionality of the 
feature vector. We note that FDA generates a family of linear composites from the original feature vectors that 
provide for maximum average separation among training classes. The reduced dimension feature vector is used for 
indexing. 

Reeves et al. [43] have proposed a DCT-based texture discrimination technique which is similar to that of Smith et 
al [42]. Here, the image is divided into 8x8 blocks. A feature vector is formed with the variance of the first 8 AC 
coefficients. The technique does not employ the mean absolute value of the DCT coefficients, as in [42].  The 
technique assumes that the first AC coefficients have the most discriminating features, and thus avoids discriminant 
analysis used in [42]. The run-time complexity of this technique is smaller than that of [42], since the length of the 
feature vector is small. 

Shneier et al. [44] have proposed a technique for image retrieval using JPEG. This technique is based on the 
mutual relationship between the DCT coefficients of unconnected regions in both the query image and target image. 
Here, a set of 2K  windows is selected, and is randomly paired, producing K  pairs of windows.  For each window 
the average of each DCT coefficient is computed resulting in a 64-dimensional feature vector ( f ).  The feature 

vectors corresponding to a pair of windows are compared and each pair of components is assigned a bit (0 or 1) 
depending on their similarity. Thus, each pair of windows will be assigned 64 bits. The similarity of the query and 
target image is determined by the overall similarity of all the bits in all window pairs. 

Many content-based indexing and retrieval methods are based on the discrimination of edge information. Abdel-
malek et al. [45] have proposed a technique to detect oriented line features using DCT coefficients. The technique is 
based on the observation that predominantly horizontal, vertical, and diagonal features produce large values of DCT 
coefficients in vertical, horizontal, and diagonal directions, respectively. The authors report that a straight line of 
slope m  in spatial domain generates a straight line with a slope of approximately 1/ m  in the DCT domain. The 
technique can be extended to search more complex features composed of straight-line segments. 

A segmentation technique [46] using local variance of DCT coefficients was proposed by Ng et al. Here, 3x3 DCT 
is computed at each pixel location using the surrounding points. The local variance of each DCT coefficient is then 
computed using a 15x15 sliding window. Changes in the local variance are used to segment the image. 

Shen et al. [47] have proposed techniques to detect regions of interest and edges in images from the high 
frequency JPEG DCT coefficients. The technique estimates edge orientation, edge offset from center, and edge 
strength from DCT coefficients of a 8x8 block. The orientations include horizontal, vertical, diagonal, vertical 
dominant, and horizontal dominant. Experimental result [47] shows that the DCT based edge detection provides a 
performance comparable to the Sobel edge detection operator. 

Subbands/Wavelets 

Recently, subband and discrete wavelet transforms (DWT) have become popular in image coding and indexing 
applications [48,49]. Here, an image is passed through a set of lowpass and highpass filters, recursively, and the filter 
outputs are decimated in order to maintain the same data rate. In DWT, the lowpass output is recursively filtered (see 
Fig. 5). Gabor transform is similar to wavelet transform, where the basis functions are Gaussian in nature and hence 
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Gabor Transform is optimal in time-frequency localization. Since, most of the energy in the subband domain is 
represented by a few lowpass coefficients, high compression ratio is achieved by discarding the high frequency 
coefficients. Subband coding is generally implemented using quadrature mirror filters (QMFs) in order to reduce the 
aliasing effects arising out of decimation. We note that the entire data is passed through the filters, and there is no 
blocking of data as in JPEG. Subband decomposition has several advantages in coding - i) multiresolution capability, 
ii) better adaption to nonstationary signals, iii) high decorrelation and energy compaction efficiency, iv) reduced 
blocking artifacts and mosquito noise, and v) better adaptation to the human visual system characteristics. 

Chang et al. [50] have proposed a texture analysis scheme using irregular tree decomposition where the middle 
resolution subband coefficients are used for texture matching. In this scheme, a J  dimensional feature vector is 
generated consisting of the energy of J  most important subbands. Indexing is done by matching the feature vector 
of the query image with those of the target images in a database. For texture classification, superior performance can 
be obtained by training the algorithm. Here, for each class of textures, the most important subbands and their average 
energy are found by the training process. A query image can then be categorized into one of the texture classes, by 
matching the feature vector with those of the representative classes. 

A texture discrimination technique has been proposed by Smith et al. [42], where the energy of the subbands are 
used to define the texture feature sets. The performance of DCT and subbands has been compared with that of pixel 
domain techniques. For an N×N DCT transform, N2 bands are obtained using the DCT/Mandala transform. For a 3-
level DWT, feature vectors with 10 terms are produced. The texture feature vector is reduced by using Fisher 
discriminant technique. The Mahalanobis distance in the transformed feature space is used to measure the similarity 
between two images. Brodatz texture set was used for this experiment. The classification performance is as follows: 
uniform subband (92%), wavelets (92%), 4x4 DCT/Mandala (85%), 4x4 pixel domain (34%). In summary, it is observed 
that wavelets provide a superior texture classification performance compared to other transforms in the given 
framework. 

Chen et al. [51] have proposed a rotation and gray scale transform invariant texture recognition technique using 
wavelets and hidden Markov model (HMM). In the first stage, the gray scale transform invariant features are 
extracted from each subband. In the second stage, the sequence of subbands is modeled as a HMM, and one HMM 
is designed for each class of textures. The HMM is used to exploit the dependence among these subbands, and is 
able to capture the trend of changes caused by rotation. During recognition, the unknown texture is matched against 
all the models and the best match model identifies the texture class. 

Mandal et al. have proposed to compare the histograms of directional subbands to find a match with the query 
image [52]. It has been shown that the histograms of wavelet bands of similar images, with limited camera operations, 
are similar. The images can be discriminated by the amount of horizontal, vertical, and diagonal information at 
different scales. Different images might have similar overall histograms, but they are unlikely to have similar band 
statistics. The complexity of direct comparison of the histograms of all the subbands is high. This complexity is 
reduced substantially by matching the distribution parameters of the subbands. The pdfs (or histograms) of highpass 
wavelet subbands can be modeled using generalized Gaussian density (GGD) function [53] which is expressed in 
terms of two parameters -σ  (standard deviation) and γ  (shape parameter). Hence, the dissimilarity between a target 

and query image can be expressed in terms of the difference of the band parameters, i.e., 

 ( ) ( )d f g B Ak
k

Q

f g k f g
k

Q

k k k k
( , ) = − + −

= =
∑ ∑

1

2 2

1

γ γ σ σ  (1) 

where Q  is the number of wavelet bands used for comparison. Ak and Bk are the weights of the parameters and are 

estimated by trial and error procedure to achieve the best performance. The images that have minimum distance are 
retrieved from the database. 

Most of the indexing algorithms presented in the literature assume that the illumination level of the images are 
similar. The indexing performance may substantially degrade if the above assumption is violated. Mandal et al. [54] 
have proposed a histogram-based technique in the wavelet domain that is robust to changes in illumination. In this 
technique, the change in the illumination level is estimated using scale invariant moments of the histogram. The 
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subband parameters -σ  and γ  of each subband of the target image are then changed appropriately to counter the 

effect of illumination change. Eq. (1) can then be used for matching images. 

An indexing technique [55] using Gabor wavelets was proposed by Manjunath et al. Here, each image is 
decomposed into four scales and six orientations. A feature vector, of dimension 48, is then formed using the mean 
(µ ) and standard deviation (σ ) of each subband. The similarity of the query image and a target image is determined 

by the similarity of their feature vectors. In this technique, the number of orientations are more, i.e., six, compared to 
three orientations (horizontal, vertical and diagonal) in the wavelet domain. Hence, better directional discrimination is 
achieved with this technique. However, the Gabor wavelets are computationally expensive compared to dyadic 
wavelets. 

Wang et al. [56] have proposed a correlation based pattern matching in the subband domain. They have derived 
an expression for correlating two spatial domain functions in terms of their subband coefficients. This is executed as 
follows: Consider two one-dimensional signals x n( )  and w n( ) . The correlation of the signals can be represented in 

z -transform domain as ~
( ) ( )W z X z . Let the lowpass and highpass analysis filters be H z0 ( )  and H z1 ( ) , respectively. 

Suppose the subband decomposition of x n( )  and w n( )  are {y n0 ( ),  }y n1 ( )  and {z n0 ( ),  }z n1 ( ) , respectively. The 

correlation of the signal can then be represented as: 

 ~
( ) ( ) ( )

~
( ) ( )

,

W z X z F z Z z Y zij i
i j

j=
=

∑ 2

0

1
2  (2) 

where F z H z H zij i j( ) ( )
~

( )= , i j, ,= 0 1 

Eq. (2) shows that the correlation of two signals equals the weighted sum of their correlation in subbands. It was 
conjectured in [56] that to get a reasonable estimate of the correlation peaks, computation can be done on a few 
subbands with high energy, resulting in a substantial reduction in complexity. In addition, subband synthesis is not 
required since the coefficients also provide spatial information. This is in contrast to Fourier domain techniques 
where inverse transform must be performed to find the correlation peaks. 

Jacobs et al. [57] have proposed an indexing technique based on direct comparison of DWT coefficients. Here, all 
images are rescaled to 128 128×  pixels followed by wavelet decomposition. The average color, the sign (positive 
and negative) and indices of M  (the authors have used a value of 40-60) largest magnitude DWT coefficients of 
each image are calculated. The indices for all of the database images are then organized into a single data structure 
for fast image retrieval. A good indexing performance has been reported in the paper. However, the index is 
dependent on the location of DWT coefficients. Hence, the target images which are translated and rotated versions 
of the query image, may not be retrieved using this technique. 

Wang et al. [58] have proposed a technique which is similar to that of Jacob et al [57]. Here, all images are 
rescaled to 128 128×  pixels followed by a four stage wavelet decomposition. Let the four lowest resolution 
subimages, which are of size 8 8× , be denoted by S L  (lowpass), S H  (horizontal band), SV  (vertical band), and S D  

(diagonal band). Image matching is then performed using a three-step procedure. In the first stage, 20% of the images 
are retrieved based on the variance of S L  band. In the second stage, a fewer number of images will be selected based 

on the difference of S L  coefficients of query and target images. Finally, the images will be retrieved based on the 

difference of S L , S H , SV  and S D  coefficients of query and target images. For color images, this procedure is 

repeated on all three color channels. The complexity of this technique is small due to hierarchical matching. The 
authors have reported an improvement of performance over Jacob’s technique [57]. However, as in Jacob’s 
technique, the indexing performance is not robust to translation and rotation. 

Qi et al. [59] have proposed a complex wavelet transform where the magnitude of the DWT coefficients are 
invariant under rotation. The mother wavelet is defined in the polar coordinates. An experiment on a set of English 
character images shows that the proposed technique performs better than complex Zernike moments (whose 
magnitude are also rotation invariant). Rashkovskiy et al. [60] have proposed a class of nonlinear wavelet transforms 
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which are invariant under scale, rotation and shift (SRS) transformations. This wavelet transform adjusts the mother 
wavelet for every input signal to provide SRS invariance. The wavelet parameters or the wavelet shape are iteratively 
computed to minimize an energy function for a specific application. 

Froment et al. [61] have proposed a second generation image coding technique that separates edges from the 
texture information. Multiscale edges are detected from the local maxima of the wavelet transform modulus.  An error 
image is computed by subtracting the reconstructed image from the original image, which mostly provides the texture 
information.  The textures are coded with a standard orthogonal wavelet transform.  The multiscale edges have the 
potential to provide good indexing performance. 

Vector Quantization 

In coding theory, it is well known that better performance can be achieved by coding vectors instead of scalars. A 
vector quantizer (VQ) is defined [62] as a mapping Q of K-dimensional Euclidean space R into a finite subset Y of R, i.e., 

 Q R YK   : →  

where ( )Y x i Ni= ′ =; ,2, . . .1  is the set of reproduction vectors, and is called a VQ codebook or VQ table. N  is the 

number of vectors in Y . A VQ encoder maps (see Fig. 6) each input vector onto one of a finite set of codewords 
(codebook) using a nearest neighbor rule, and the labels (indices) of the codewords are used to represent the input 
image. Hence, VQ is naturally an indexing technique. 

Two image indexing techniques [63, 64] using vector quantization have been proposed by Idris et al.  In the first 
technique [63], the images are compressed using vector quantization and the labels are stored in the database.  The 
histograms of the labels are used as feature vectors for indexing. For an image of size X×Y pixels, the computation of 
histogram in pixel domain has a complexity of O X Y( * ) , whereas the computation of label histogram has a 

complexity of O X Y L( * / )  where L  is the dimension of a codevector. Hence, the computation of histogram is less 

complex in the VQ domain. The second technique [64] has been proposed for adaptive VQ where a large codebook is 
used. In this case, a usage map of codewords is generated for each image and is stored along with the image. We 
note that the usage map reflects the content of the image. Hence, the usage map of the VQ encoded query image is 
compared with the usage map of the target images in the database for indexing. The runtime complexity of this 
technique is only O K( )  bit-wise operations, where  K is the size of the codebook [64].  Although, both techniques 

provide good indexing performance, the former has been shown to outperform the latter. 

Barbas et al. [65] have investigated the problem of efficient representations of large databases of radar returns in 
order to optimize storage and search time. The technique employs multiresolution wavelet representation working in 
synergy with a tree structured vector quantization, utilized in its clustering mode. The tree structure is induced by the 
multiresolution decomposition of the pulse. The technique has been shown to provide a good overall performance. 

Vellaikal et al. [66] have applied VQ technique for content-based retrieval of remote sensed images. Here, various 
distortion measures have been evaluated to enhance the performance of the VQ codewords as content descriptors. 
Two types of query: query-by-class and query-by-value, were tested with the proposed technique. It has been found 
that the second query type provide excellent performance while the first query type provides satisfactory 
performance. 

Fractals/Affine Transform 

A fractal is a geometric form where irregular details recur at different scales and angles which can be described by 
a transformations (e.g. an affine transformation).  Fractal image compression [67] is the inverse of fractal image 
generation, i.e. instead of generating an image from a given formula, fractal image compression searches for sets of 
fractals in a digitized image which describe and represent the entire image. Once the appropriate sets of fractals are 
determined, they are reduced to very compact fractal transform codes or formulas. In block fractal coding, an image is 
partitioned into a collection of nonoverlapping regions known as range blocks. For each range block, a domain block 
and an associated transformation are chosen so that the domain block best approximates the range. These 
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transformations are known as fractal codes. While the pixel data contained in the range and domain blocks are used 
to determine the code, they are not part of the code, resulting in a high compression ratio. 

Zhang et al. [68] have proposed a texture-based image retrieval technique that determines image similarity based 
on the match of fractal codes. Here, each image is decomp osed into block-based segments that are then assembled as 
a hierarchy based on inclusion relationships. Each segment is then fractally encoded. The fractal codes of a query 
image are used as a key and are matched with the fractal codes of the images in a database. Retrieval is performed by 
applying searching and matching algorithms to the hierarchy of images in the database. 

Zhang et al. [69] have also compared the performance of wavelet and fractals in image retrieval. In wavelet 
domain, the mean absolute value and variance of different subbands are used as the image features.  In fractal 
domain, the authors have proposed a joint fractal coding of two images ( M1  and M2 ).  Here, the best approximation 

for range blocks of image M1  is searched both in image M1  and M2 .  The similarity of M1  and M2  is estimated 

from the ratio of the number of best domain blocks found in M1  and M2 . Based on simulation results, the authors 

have concluded that wavelets are more effective for images which contain strong texture features while fractals 
performs relatively well for various types of images.  However, we note that this conclusion is valid in the given 
framework and the relative performance may change if other techniques are employed. 

Ida et al. [70] have proposed a segmentation technique using fractal codes. The hypothesis includes three 
assumptions: i) if a domain block is in a region S , its range block will also be in S , ii) if a domain block is outside S , 
its range block will also be outside S , and iii) if a domain block includes the boundary of S , its range block will also 
include S , and the pixel pattern in the range block will be similar to that in the domain block. 

Hybrid Schemes 

In image and video compression, hybrid schemes generally refer to a combination of two or more basic coding 
schemes [49, 71].  These hybrid schemes exploit the advantages of the associated compression techniques and 
provide superior coding performance.  For example, a wavelet-VQ scheme has been proposed in [49], while a wavelet-
fractal scheme has been proposed in [71].  A few indexing techniques have been proposed in the hybrid framework 
which are presented below. 

Idris et al. [72] have proposed a wavelet-based indexing technique using vector quantization (VQ). Here, the 
images are first decomposed using wavelet transform. This is followed by the vector quantization of wavelet 
coefficients. The codebook labels corresponding to an image constitute a feature vector that is then used as an index 
to store and retrieve the images. 

Swanson et al. [73] have proposed a VQ-based technique for content based retrieval in wavelet domain. Here, 
each image to be stored in the database (see Fig. 7) is divided into 8x8 blocks. A segmentation algorithm is then 
applied to define image regions and objects. Each segmented region in the image is covered with the smallest 
possible rectangular collection of the previously defined 8x8 blocks. The collection of blocks is denoted a 
superblock. The superblocks are encoded by a combination of wavelets and vector quantization. The remaining 
image regions, i.e., the 8x8 blocks which are not elements of a superblock, are coded using the JPEG algorithm. The 
authors have also proposed a joint text -based coding and indexing technique by minimizing a weighted sum of the 
expected compressed file size and the expected query response time. Each file is coded into three sections: a file 
header consisting of query terms, a set of indices denoting the locations of these terms in the file, and the remainder 
of the file. Each file header is constructed by concatenating the codeword for each query term which appears in that 
file. The order of the concatenation and the codeword lengths are based on the probability distributions of the query 
terms. Although, this technique was proposed for text -based indexing, it can be extended for image retrieval. 

A VQ-based face recognition technique has been proposed by Podilchuk et al. [74] in DCT domain. Here, a block-
DCT is first performed on a set of images and code vectors are formed from the DCT coefficients. The codebook is 
generated by k-means clustering algorithm. The retrieval performance has been evaluated based on feature selection, 
codebook size, and feature dimensionality.  Although, the technique seems to be promising, the coding performance 
of the comb ined technique has not been evaluated. 
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We note that it is difficult to compare the performance of various indexing techniques.  The success and 
popularity of an indexing technique generally depends on the performance of the associated coding techniques.  
KLT, although statistically optimal, is computationally intensive.  In addition, the basis images need to be stored, 
resulting in a poor coding performance.  The block DCT in JPEG provides a good coding and indexing performance.  
However, the block structure was not originally intended for indexing.  The wavelet-based techniques are promising 
for indexing applications because of i) inherent multiresolution capability, ii) simple edge and shape detection, and iii) 
readily available directional information.  It has been seen in [42] that the wavelet transform outperforms the 
DCT/Mandala transform in image classification.  The vector quantization is a natural indexing technique where 
indexes are used in coding.  The same indexes can also be employed in image retrieval.  Although, fractals have a 
potential to provide good coding performance, the fractal codes are highly nonlinear and image dependent.  Hence, 
direct use of fractal codes may not provide good retrieval rates.  We note that the complexity of both VQ and fractal 
coding are highly asymmetric, i.e. encoding is compute intensive, while decoding is fast. 

In contrast to textual database systems, image and video databases are required to evaluate properties of the data 
specified in a query. For example, to retrieve all images similar to a query image based on color, the color attributes 
(e.g., color histogram) of the query image has to be calculated. 

IV. VIDEO INDEXING IN PIXEL DOMAIN 

A video sequence is a set of image frames ordered in time. Generally video indexing refers to indexing of 
individual video frames based on their contents and the associated camera operations involved in the imaging 
process. We note that the image indexing techniques described in section 2 and 3 can be applied individually to index 
each frame based on their content. However, the neighboring frames in a video sequence in general are highly 
correlated. Hence, for computational efficiency, the video sequence is segmented in a series of shots. A shot is 
defined as a sequence of frames generated during a continuous operation and representing a continuous action in 
time and space. A frame in each shot is declared as a representative frame. Indexing is performed by applying the 
image indexing technique on representative frames from each shot. Each shot in a video sequence consists of frames 
with different scenes.  There are two ways by which two shots can be joined together - i) abrupt transition, and ii) 
gradual transition. In abrupt transition, two shots are simply concatenated while in the gradual transition, additional 
frames may be introduced using editing operations such as fade in, fade out or dissolve.  A good video segmentation 
technique should be able to detect shots with both types of transition. 

The apparent motion in a video sequence can be attributed to camera or object motion. Motion 
estimation/compensation plays an important role in video compression. The objective is to reduce the bit rate by 
taking advantage of the temporal redundancies between adjacent frames in a video sequence. Typically, this is 
accomplished by estimating the displacement (motion vectors) of uniformly sized blocks between two consecutive 
frames. In general, motion vectors exhibit relatively continuos changes within a single camera shot, while this 
continuity will be disrupted between frames across different shots. 

Detecting camera motion is becoming important with potential applications in low bit-rate video coding and video 
editing. We note that there are seven basic camera operations (see Fig. 8) - panning, tracking, tilting, booming, 
zooming, and dollying [75]. Since, both object motion and camera motion are reflected in the observed motion vectors 
of a block coding scheme, it is generally difficult to estimate the camera motion. However, several models have 
recently been proposed to improve the estimation. A review of camera motion estimation is outside the scope of this 
paper. Interested readers may refer to [16].  In this section, a brief review of video segmentation techniques in pixel 
domain is presented.  A detailed review of video segmentation techniques in the compressed domain will be 
presented in section 5. 

Pixel Intensity Matching: In this method, pixel intensities of the two neighboring frames are compared. For example, 
to detect a scene change between m -th and ( )m + 1 -th frame, the distance between the two frames is calculated in 

Lk  metric.  If the distance exceeds a predetermined threshold [76], a scene change is declared at m -th frame. For 
color video sequences, the distance is calculated for all the three color channels. A scene change is declared if the 
overall change exceeds a threshold. In pixel intensity matching, it is difficult to distinguish a large change in a small 
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area and a small change in a large area. Hence, this method is sensitive to motion, and camera operations which might 
result in false detection. 

Histogram Comparison: In this method, two consecutive frames are compared based on their histograms. There are 
two variations of this technique [77, 78]. Difference of histograms (DOH) measures the difference of histograms of the 
two frames in Lk metric. Histogram of difference frame  (HOD) is the histogram of the pixel to pixel difference frame 
and measures the change between two frames fm and fn. The degree of change between fm and fn is large if there are 
more pixels distributed away from the origin. The DOH technique is insensitive to local object motion, however, it is 
sensitive to global camera operations such as panning and zooming and scene changes. The HOD technique is more 
sensitive to local object motion compared to DOH technique [79]. Histogram-based techniques fail when i) the 
histograms across different shots are similar, and ii) the histograms within a shot is different due to changes in 
lighting condition, such as flashes and flickering objects. 

Block-Based Techniques: In this technique, each frame is partitioned into a set of k  blocks. The similarity of the 
consecutive frames is estimated by comparing the corresponding blocks individually [79].  In Block Histogram 
Difference (BHD) technique, the blocks are compared with respect to histogram, whereas in Block Variance 
Difference (BVD) technique the blocks are compared with respect to variance. If the dissimilarity exceeds a threshold, 
a scene change is declared. The block-based technique emphasizes the local attributes (compared to the pixel 
matching and global histogram comparison that emphasizes the global attributes) and reduce the effect of camera 
flashes and other noises. The increased tolerance to slow camera and object movements results in a reduction in 
over-detected camera breaks. However, cuts may be misdetected between two frames that have similar pixel values, 
but different density functions. 

Twin Comparison: The previous segmentation techniques are based on thresholding. With a single threshold, it is 
difficult to detect the two types of scene changes, namely abrupt and gradual. If the threshold is small, the cuts will 
be over-detected. On the other hand, if the threshold is large, gradual cuts will be undetected. A two-pass dual 
threshold algorithm, known as twin comparison algorithm, has been proposed in [77] to address this problem. In the 
first pass, a high threshold (Th ) is employed to detect abrupt cuts. In the second pass, a lower threshold ( Tl ) is used 

and any frame that has the difference more than this threshold is declared as a potential start of the transition. Once 
the start frame is identified, it is compared with the subsequent frames based on the cumulative difference. When this 
value increases to the level of the higher threshold (Th ), camera break is declared at that frame. If the value falls 

between the consecutive frames then the potential frame is dropped and the search starts all over. 

V. VIDEO INDEXING IN COMPRESSED DOMAIN 

In this section, we present a review of video segmentation techniques in DFT, DCT, KLT, DWT, VQ domains and 
hybrid approach (any combination of the three approaches). We note that motion vectors, not available for image 
indexing, is an important feature for video segmentation. Hence, a review of motion vector based video segmentation 
will also be presented. 

DCT Coefficients 

We recall that the international standards for image and video compression (JPEG, MPEG, H.261, and H.263) are 
based on DCT [12]-[14]. The transform coefficients in the frequency domain are related to the pixel domain. Therefore, 
the DCT coefficients can be used for scene change detection in compressed video sequences. 

Before discussing the indexing techniques, we provide a brief description of MPEG [13] algorithm. In MPEG (see 
Fig. 9), a block-based motion compensation scheme is employed to remove the temporal redundancy. Because of the 
conflicting requirements of random access and high compression ratio, the MPEG standard suggests that frames be 
divided in three categories: I, P and B frames. The organization of the three frame types in a sequence is very flexible. 
Fig. 10 illustrates the relationship among the three different frame types in a group of pictures (GOP). Intra coded 
frames (I-frames) are coded without reference to other frames and employ a coding scheme similar to JPEG baseline 
scheme. Predictive coded frames (P-frames) are coded more efficiently using motion compensated prediction from a 
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past I or P-frames and are generally used as a reference for further prediction. Bi-directionally predictive coded frames 
(B-frames) provide the highest degree of compression but require both the past and future reference frames for 
motion compensation. We note that, B-frames are never used as a reference for prediction.  

Zhang et al. [80] have presented a pair-wise comparison technique for the intracoded (I-frame) where the 
corresponding DCT coefficients in the two frames f m  and f n  are matched. This is similar to the pixel intensity 

matching technique (see section 4) in the uncompressed domain. Here, the pair wise normalized absolute difference 
D f f lm n( , , )  of the l block in two frames f m  and f n  is determined using  

D f f l
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where c f l km( , , )  is the k th coefficient of block l  in f m . If the difference D f f lm n( , , )  is larger than a threshold, the 

block l  is considered to be changed. If the number of changed blocks exceeds a certain threshold, a scene change is 
declared in the video sequence from frame f m  to frame f n . 

Arman et al. [81] have proposed a technique based on the correlation of corresponding DCT coefficients of two 
neighboring frames. For each compressed frame f m , B blocks are first chosen apriori from R connected regions in 

f m . A set of randomly distributed coefficients { , , , ....}c c cx y z is selected from each block where c x  is the x th 

coefficient. A vector Vf c c cm = { , , , ....}1 2 3 is formed by concatenating the sets of coefficients selected from the 

individual blocks in R. The vector Vfm  represents f m  in the transform domain. The normalized inner product is used 

as a metric to judge the similarity of frame f m  to frame f n . 
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A scene transition is detected if Ψ is greater than a threshold. In case of false positives, which result from camera 
and object motion, f m  and f n  are decompressed and their color histograms are compared to detect camera breaks.  

We note that, Zhang’s technique [80] is computationally less intensive compared to Arman’s technique, although 
the former is more sensitive to gradual changes. 

We note that the previous two algorithms are applied on video sequences compressed using motion JPEG. In the 
case of MPEG video, only I-frames are compressed with DCT coefficients and hence the previous two techniques 
cannot be directly applied to the B- and P-frames. In addition, the techniques based on I-frames may result in false 
positives. To overcome these problems, Yeo et al. [82] have proposed a unified approach for scene change detection 
in motion JPEG and MPEG. This algorithm is based on the use of only the DC coefficients.  

To start with, a DC frame f m
DC  is constructed for every frame in the sequence. The DC coefficients in JPEG and I-

frames in MPEG are obtained directly from each block. For P and B-frames in MPEG video, the DC coefficients are 
estimated. The sum of the difference magnitude of the DC frames f m

DC  and f n
DC  is used a measure of similarity 

between two frames, i.e., 
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where f i jm
DC ( , )  is the DC coefficient of block ( , )i j . A scene change from f m  to f n  is declared if: (i) D f fm

DC
n
DC( , )  

is the maximum within a symmetric sliding window and (ii) D f fm
DC

n
DC( , )  is 2-3 times the second largest maximum in 

the window. Although this technique is fast, cuts may be misdetected between two frames which have similar pixel 
values, but different density functions. A metric for gradual transition has also been proposed [82] based on temporal 
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subsampling where one in every 20 frames is tested rather than successive frames. This technique is sensitive to 
camera flashes and variations in scene that typically occur before scene changes. 

Vector Quantization 

Idris et al. [83] have proposed a vector quantization technique for video indexing. This is basically an extension of 
image indexing technique discussed in section 4 to video indexing. We note that the histograms of the labels of a 
frame f m  is a K  dimensional vector { ( , ); , ,... }H f i i Km  = 1 2  where H f im( , )  is the number of labels i in the 

compressed frame and K  is the number of codewords in the codebook. The difference between two frames f m  to f n  

is measured using the χ2  metric: 
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A large value of d f fm n( , )  indicates that f m  and f n  belong to different scenes. An abrupt change is declared if the 

difference between two successive frames exceeds a threshold. A gradual transition transition is detected if the 
difference between the current frame and the first frame of the current shot is greater than a threshold. 

Subband Decomposition 

Lee et al. [79] have proposed a histogram based indexing technique in the subband domain. Here, the histograms 
of lowpass subbands of two frames are compared hierarchically from lower resolution to higher resolution. The 
authors have compared the performance of DOH, HOD, BVD, and BHD (see section 4) techniques in the 
multiresolution framework. They have employed twin comparison method to detect both abrupt and gradual changes. 
A block diagram of this technique, with two level subband decomposition, is shown in Fig. 11.  Let the histogram of 
level 0, 1, and 2 of a subband decomposed frame f  be h f

0 , h f
1 , and h f

2 , respectively.  In the first pass, a transition 

between frame f  and g  is coarsely estimated by comparing h f
2 and h g

2 .  The estimation can be further refined by 

comparing histograms of lower levels.  We note that the size of the level-2 subband is one-sixteenth the size of the 
original image and hence, this technique has a low computational complexity. 

Motion Vectors 

Motion analysis is an important step in video processing. A video stream is composed of video elements 
constrained by the spatiotemporal piecewise continuity of visual cues. The normally coherent visual motion becomes 
suddenly discontinuous in the event of scene changes or new activities. Hence, motion discontinuities may be used 
to mark the change of a scene, the occurrence of occlusion, or the inception of a new activity. 

The spatiotemporal (ST) surfaces can be used to represent the shape and motion of a moving planar object. 
Hence, it is possible to classify image motion qualitatively if the types of adjacent surfaces patches are known. Hsu 
et al. [84] have proposed techniques to characterize motion activities by considering the Gaussian mean and 
curvature of the spatiotemporal surfaces. Clustering and split-and-merge approach are then taken to segment the 
video. 

Shahraray et al. [85] have proposed a technique based on motion-controlled temporal filtering of the disparity 
between consecutive frames to detect abrupt and gradual scene changes. A block matching process is performed for 
each block in the first image to find the best fitting region in the second image. A nonlinear statistical filter is then 
used to generate a global match value. Gradual transition is detected by identification of sustained low level 
increases in matched values.  

In MPEG, B and P-frames contain the DCT coefficients of the error signal and motion vectors. Liu et al. [86] have 
presented a technique based on the error signal and the number of motion vectors. A scene cut between a current P 
frame fn

P  and the corresponding past reference frame f n
R  increases the error energy. Hence, the error energy 

provides a measure of similarity between fn
P  and the motion compensated frame f n

R . 
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where Ei is the error energy of macroblock i and Fp is the number of forward predicted macroblocks. For the detection 
of scene changes based on B-frames, the difference between the number of forward predicted macroblocks Fp and 
backward predicted Bp is used. A scene change between a B-frame and its past reference B-frame will decrease Fp and 
increase Bp. A scene change is declared if the difference between Fp and Bp changes from positive to negative. 

Zhang et al. [80] have proposed a technique for cut detection using motion vectors in MPEG. This approach is 
based on the number of motion vectors M.  In P-frames, M is the number of motion vectors.  In B-frame, M is the 
smaller of the counts of the forward and backward non-zero motion.  Then M < T will be an effective indicator of a 
camera boundary before or after the B and P-frame, where T is a threshold value close to zero. However, this method 
yields false detection when there is no motion. This is improved by applying the normalized inner product metric to 
the two I-frames on the sides of the B-frame where a break has been detected. 

Meng et al. [87] have presented a segmentation algorithm based on motion information and the DC coefficients of 
the luminance component. To start with, the DC coefficients in the P-frames are reconstructed. The variance of the 
DC coefficients |∆σ2| for the I and P-frames is then computed. Three ratios are computed, namely: i) Rp  - the ratio of 

intracoded blocks and motion predicted blocks for P frames, ii) Rb  - the ratio of backward and forward motion 

vectors, iii) R f  - the inverse of Rb . A two-pass algorithm is applied. In the first pass, suspected scene change frames 

are marked. A P-frame and B-frame are suspected frames if Rp and Rb, peaks, respectively. An I- frame is a suspected 
frame if |∆σ2| peaks and Rf of the B-frames in front of them peaks. In the second pass, all suspected frames that fall in a 
dissolve region are unmarked. All the marked frames are then examined. If the difference between the current marked 
frame and the last scene change exceeds a threshold, then the current marked frame is a true scene change. 

VI. CONCLUSION 

The demand for multimedia data services necessitates the development of techniques to store, navigate and 
retrieve visual data. The use of existing text indexing techniques for image and video indexing is inefficient and 
complex. Moreover, this approach is not generic, and hence is not useful in a wide variety of applications.  
Consequently, content-based indexing techniques should be employed to search for desired images and video in a 
database.  This paper reviews and summarizes compressed domain indexing techniques proposed in the recent 
literature. The main contribution of each algorithm has been presented in brief. The main focus of the review is how 
the image feature vectors are generated using the transform coefficients, VQ labels, or fractal codes. The use of 
motion vectors in video indexing was also reviewed. In addition, we also discussed how the pixel domain techniques 
(e.g. texture, histogram, etc.) were imported in compressed domain and their relative complexity. 

We note that the techniques reviewed in this paper are associated with coding techniques that were developed to 
provide high compression ratio. To obtain a superior overall performance, integrated coding and indexing techniques 
should be developed. The emerging second-generation image and video coding techniques are expected to provide a 
better joint coding and indexing performance. These techniques are generally based on segmentation or model based 
schemes. The authors feel that the feature extraction techniques reviewed in this paper will provide important clues to 
design efficient indexing techniques in the future standards. 
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 Figure 1: Schematic of an image archival and retrieval system [52] 
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 Figure 2: Block Diagram of a Compressed Domain Indexing System 
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Figure 3: Various Methods in Content Based Image Indexing: a) Pixel domain and b) 
Compressed domain 
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 Figure 5: Wavelet transformed image 
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Figure 7: Block diagram of a hybrid image coding and indexing system [73] 
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Figure 8: Basic camera operations [75] 
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 Figure 10: Example of a group of pictures (GOP) used in MPEG 
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Figure 11: Flowchart of Multiresolution Video Segmentation [79] 


