
Generating Design Pattern Detectors from Pattern Specifications

Dirk Heuzeroth, Stefan Mandel
Universiẗat Karlsruhe

Program Structures Group
76133 Karlsruhe, Germany

heuzer@ipd.info.uni-karlsruhe.de

Welf Löwe
Växjö universitet

MSI, Software Tech. Group
Växjö, Sweden

Welf.Lowe@msi.vxu.se

Abstract

We present our approach to support program under-
standing by a tool that generates static and dynamic anal-
ysis algorithms from design pattern specifications to de-
tect design patterns in legacy code. We therefore specify
the static and dynamic aspects of patterns as predicates,
and represent legacy code by predicates that encode its at-
tributed abstract syntax trees. Given these representations,
the static analysis is performed on the legacy code represen-
tation as a query derived from the specification of the static
pattern aspects. It provides us with pattern candidates in
the legacy code. The dynamic specification represents state
sequences expected when using a pattern. We monitor the
execution of the candidates and check their conformance to
this expectation.

We demonstrate our approach and evaluate our tool by
detecting instances of the Observer, Composite and Decora-
tor patterns inJava code usingProlog to define predicates
and queries.

1. Introduction

Understanding a system’sdesignandarchitecture[5] is
essential for its maintenance, re-engineering, and further
development. Since the software systems may be large
and complex, and their design is almost always scarcely
documented or even not available, softwarecomprehension
should be supported by tools. Design, however, is hard to
detect automatically, since it is not tangible. Fortunately,
standard solutions to solve certain design problems have
been established. Thesedesign patternsare described to-
gether with the design problem(s) they intend to solve [4].
Many of them have been formalized, for example to gener-
ate corresponding templates [13]. If it were possible to de-
tect these patterns in software systems, one would be able to
deduce the intended design. This also helps to infer the sys-
tem’s architecture, since connectors are often implemented

with design patterns – a fact we exploit already in our re-
engineering and component adaptation approach [9].

Design patterns usually have static aspects (structural
connections) and dynamic aspects (protocol of actions).
Hence, we propose to analyze systems with respect to both
the static and dynamic aspects combining static and dy-
namic analyses. The combination is necessary, because
there are situations where neither static nor dynamic anal-
yses alone are sufficient (or not with acceptable expenses),
e. g. when user interactions occur. Our approach thus re-
quires the programs’ source code to be available, and the
programs to be executable to observe their dynamic inter-
action aspects. We explicitly excluded all dependencies to
coding and naming conventions.

In our previous papers [7, 6], we implemented static and
dynamic analyses to detect instances of the Observer, Com-
posite, Mediator, Visitor, and Chain of Responsibility de-
sign patterns. In [8], we also presented how to integrate
visualizations.

An inconvenience concerning our previous work is, that
we needed to implement a different detection algorithm for
each design pattern, manually. Although the adaptation ef-
fort has been very limited due to the similar structure and
protocols of many patterns, we want to improve the situa-
tion by generating the analysis algorithms from specifica-
tions of design patterns.

2. Approach

To detect design patterns in source code, we first perform
a static analysis that provides a set of candidate pattern in-
stances conforming to the static structure of the patterns to
be detected. A pattern candidate is a tuple of program ele-
ments each in a certain role with respect to the pattern. An
example of such a tuple for an instance of an Observer pat-
tern is:

(ConcreteSubject.addObserver,
ConcreteSubject.detachObserver,
ConcreteListener.notifyObservers,
ConcreteListener.updateObserver)



SanD compiler

XSB−
Prolog

Inter−
Prolog

Inter−
Prolog

XSB−
Prolog

AST as Prolog facts

Evaluator

set of pattern candidate tuples

Validator JDI

set of validated, classified pattern instance tuples

SanD−Prolog

representation

program

Java sources SanD specification

to
investigate

event specification

Analyzer RECODER

Figure 1. Pattern detection framework.

We distinguish therole of a program elementin a pat-
tern from the program element itself.Subject and
Listener , e. g., are roles of classes in the Observer pat-
tern. ConcreteSubject and ConcreteListener
can be two concrete classes in the two roles. Similarly, a
concrete methodaddObserver could play theattach
in an Observer pattern.

We also have to distinguish anobject instancefrom a
design pattern instance, if the latter contains class pro-
gram elements. For example we could have different
object instances ofConcreteSubject each with sev-
eral object instances ofConcreteListener , or, even
AnotherConcreteListener attached to it.

The dynamic analysis monitors the execution of the
legacy program. It classifies the candidate tuples proposed
by the static analysis according to their conformance to the
expected pattern behavior. The categories arefull match
(full protocol conformance),may match(a prefix of a cor-
rect protocol could be detected, the candidate does not vio-
late the protocol though),mismatch(violation of the proto-
col) andno decision(candidate not executed).

We provide two languages to specify design patterns al-
lowing to generate the static and dynamic analyses auto-
matically: a powerful, extensible, low-level language called
SanD-Prolog1 (Section 2.1) consisting ofProlog predi-
cates that specify the static structure and dynamic behav-
ior of design patterns and a high-level languageSanD2

(Section 2.2) that allows to specify design patterns even
more abstract and intuitively. We implemented a simple
compiler that transformsSanD specifications intoSanD-
Prolog specifications. In Figure 1 shows the structure and
data flow of our pattern detection system.

1Static and Dynamic Prolog Specification
2Static and Dynamic Specification Language

2.1. The Specification LanguageSanD-Prolog

Basically,SanD-Prolog is a collection ofProlog predi-
cates, that represent relations between source code elements
(attributed AST nodes) as well as the states and state transi-
tions of the protocol defined by a pattern.

The static specification containsProlog predicates to
identify the types of syntax elements like classes, methods,
calls, etc. and relate them to the roles in the pattern. Below
you see (a part of) the static specification for the Observer
pattern:

observer(Vattach,Vattachee,Vdetach,Vdetachee,Vlistener,
Vnotify,Vsubject,Vupdate) :-

listener(Vlistener,Vupdate),
subject(Vattach,Vattachee,Vdetach,Vdetachee,Vlistener,

Vnotify,Vsubject,Vupdate).

subject(Vattach,Vattachee,Vdetach,Vdetachee,Vlistener,
Vnotify,Vsubject,Vupdate) :-

notify(Vnotify,Vsubject,Vupdate),
attach(Vattach,Vattachee,Vlistener,Vsubject),
detach(Vdetach,Vdetachee,Vlistener,Vsubject),
class(Vsubject).

attach(Vattach,Vattachee,Vlistener,Vsubject) :-
attachee(Vattachee,Vlistener),
assignAttachee(Vattachee,Vstatement15),
member(Vattach,Vsubject),
method(Vattach),
parameter(Vattachee,Vattach),
statement(Vstatement15,Vattach).

...

We also represent the dynamic behavior of patterns by pred-
icates based on the temporal logic of actions (TLA) [11].
Here the predicates specify the relevant states and state tran-
sitions of a pattern’s behavior to detect in a concrete pro-
gram run. This specification corresponds to a simulation of
the pattern that our dynamic analysis performs. This analy-
sis checks if a concrete program run of the pattern candidate
conforms to the specified pattern behavior.

The dynamic analysis is based on events triggered dur-
ing candidates executions. The event triggering points are
specified bywatch predicates used to set breakpoints in
the monitored program execution. Dynamic constraints
checked at certain breakpoints are defined by a correspond-
ing Prolog procedure. The code below shows an exam-
ple for a watch predicate specifying a breakpoint for the
execution of methods in theattach role, and a procedure
onMethodEntry checking the corresponding dynamic
constraints:

watch(’attach’,Vattach,Arguments) :-
observer(Vattach,Vattachee,_,_,_,_,_,_),
Arguments = [’this’,Vattachee].

onMethodEntry(’attach’,Vattach,[Vsubject,Vattachee]) :-
dynamicConformTyped(Vattachee,VattacheeClass),
containingTyped(VattacheeName,VattacheeClass),
dynamicConformTyped(Vsubject,VsubjectClass),
dynamicObserver(VNo,Vattach,VattacheeName,_,_,_,_,

VsubjectClass,_),
request(assert(attached(VNo,Vsubject,Vattachee))),
fail.

The predicateonMethodEntry specifies the expected
dynamic behavior of an execution of the specified attach



method as a conjunction of calls to furtherProlog pro-
cedures. The arguments to the parameters of the proce-
dureonMethodEntry are supplied during dynamic anal-
ysis by querying the runtime information at the breakpoint
when execution enters the method inattach role. Each
of the supplied arguments has a unique dynamic identi-
fier. The proceduredynamicConformTyped transforms
these identifiers into their static equivalent, by specifying
that the second parameter has to be the same class or a su-
perclass of the first parameter. The second procedure call
containingTyped(...) associates the static variable
identifier VattacheeName to the previously retrieved
class identifierVattacheeClass . VattacheeName
then contains the static identifier for the parameter in the
attachee role. The next step retrieves the dynamic pat-
tern candidate tuple that corresponds to the object instance
of the pattern identified by the elements calculated so far.
This is done by calling thedynamicObserver with
the appropriate arguments. Matching tuples are identi-
fied by their numberVNo. For each match the procedure

request(assert(attached(VNo,Vsubject,Vattachee)))

is called. It sets the relation
attached(VNo,Vsubject,Vattachee)

to true, and thus simulates attachingVattachee to
Vsubject . An object instance of the pattern is thus repre-
sented by the predicates that simulate its states and execu-
tion, together with the concrete values of the participating
variables that represent concrete objects. The Prolog inter-
preter considers each match and every possible combination
of the values specified by the constraints represented by the
previously given procedure calls due to the final call to the
fail procedure.

So,SanD-Prolog is suited to specify the static and dy-
namic constraints of design pattern, but specifications might
become complicated and lengthy so that the pattern is hard
to recognize in the crowd of predicates. We therefore intro-
duce our more intuitive specification languageSanD, now.

2.2. The Specification LanguageSanD

TheSanD specification language integrates the specifi-
cation of the dynamic behavior of a pattern into the spec-
ification of its static structure. The notation for the speci-
fication of the static structure is similar to object oriented
languages familiar to developers. The code below shows an
example specification for the Observer:

pattern observer {

class subject {
method attach (attachee:listener-)
[:attached(<this>,attachee);] {

assign attachee | call passing attachee
}
optional method detach (detachee:listener-)
[:˜attached(<this>,detachee);] {

assign detachee | call passing detachee
}
method notify

[:˜updated(<this>,*);] {
call update

}
[updated(<this>,*) & attached(<this>,L) &

˜updated(<this>,L) : discard;]
}

classOrInterface listener {
method update { }
[:updated(<stack>,<this>);]

}
}

The dynamic specification consists of constraints defined by
bracketed lists ofguard:assert constructs attached to
elements of the static specification. Theguard expression
specifies a condition that must hold in the current state of
the program simulation, and theassert expression spec-
ifies a new state of the program simulation. The dynamic
specification constructs, together with their association to
a static constraint, correspond to dynamic specifications of
SanD-Prolog.

In our example specification, the dynamic specification
[:attached(<this>,attachee);] related to the
method inattach role specifies that in the new state of
the simulated program the parameter objectattachee is
attached to the subject object identified by<this> .

The dynamic specification attached to the method exit of
the specified method in thenotify role (see code above)
states that the protocol is violated and the currently in-
spected candidate tuple has to be discarded if at least one
listener has been updated, but there also exists an attached
listener that has not been updated.

Obviously, pattern specifications are preferably written
in SanD as this notation is more concise and intuitive
thanSanD-Prolog. However,SanD is less powerful than
SanD-Prolog. For example, we cannot express constraints
like classX mustnot contain methodm. Nevertheless, we
have been able to specify standard design patterns like Ob-
server, Composite and Decorator patterns inSanD without
problems. This might indicate thatSanD could be suffi-
cient in practice. The validation of this assumption, how-
ever, needs more expertise with the new language and will
be matter of further research.

3. Evaluation

The static analysis is performed by the evaluator module
on theProlog database representing the source programs’
attributed abstract syntax trees by aProlog query corre-
sponding to the predicates of theSanD-Prolog specifica-
tion representing static pattern aspects. The dynamic anal-
ysis monitors the execution of the program to analyze and
validates the behavioral specification by simulating the exe-
cution of a pattern instance on the specified states using the
specified state transitions both associated to the executed



program element. Violation of the constraints leads to re-
jection of the candidate instance.

We evaluated our approach by detecting Observer, Com-
posite and Decorator patterns in (theJava code of) our own
analysis tool, c. f. Table 1.

Table 1. Pattern Detection by SanD
pattern static full partial no de- cor-

match match match cision rect
Observer 18 2 6 4 2
Composite 4 1 0 0 1
Decorator 2 2 0 0 2

Table 2 compares the execution times of the static and
dynamic analyses ofSanD and our previous hand-coded
pattern detectorMetaD [7] applied to the same program.
The static analysis ofSanD is much faster than that of
MetaD, especially when there are several patterns to de-
tect.SanD can do this simultaneously whereasMetaD has
to be started once per pattern. On the other hand the dy-
namic analysis ofMetaD is much faster than that ofSanD,
mainly becauseMetaD uses code instrumentation instead
of the Java Debug Interface (JDI) to obtain runtime in-
formation. However, this is not inherent to our approach.
The performance ofSanD can be improved by using in-
strumentation instead of theJDI.

Table 2. Performance comparison
pattern matcher SanD MetaD
static analysis (Observer) 2 sec 4 sec
dynamic analysis (Observer) 20 sec 1 sec
static analysis (3 patterns) 2 sec 12 sec
dynamic analysis (3 patterns)26 sec 3 sec

4. Related Work

Other approaches to detect patterns [14, 3, 10] mostly
restrict themselves to static analyses using rather strong
static signatures. These approaches fail to detect behavioral
patterns as their static patterns are not distinctive enough.
Brown [1] and Carriere etal. [2] perform a dynamic analy-
sis, but either only at periodic events, or merely to identify
communication primitives.

Alternative specification languages have been investi-
gated before developingSanD: UML including OCL [?]
does not provide the means we need to generate the analy-
sis algorithms.LePUS [?] does not offer means to specify
dynamic behavior.DisCo [13] is formal and treats static as
well as dynamic aspects, but does not offer a mechanism to
reject incorrect pattern candidates.

5. Conclusions and Future Work

We presented how to generate static and dynamic anal-
yses to detect design patterns in legacy code starting from
design pattern specifications. We proposed two languages
both suited to generate the analyses: an intuitive compre-
hensible high-level design pattern specification language
SanD and a more powerful but less intuitive low-level spec-
ification languageSanD-Prolog. We validated our ap-
proach and tool by several case studies.

Future work comprises to study the expressive power of
our languages in further case studies. We will improve the
performance of the dynamic analyses by code instrumenta-
tion, and improve coverage by testing technology.

References

[1] K. Brown. Design reverse-engineering and automated de-
sign pattern detection in smalltalk, 1997.

[2] S. J. Carriere, S. G. Woods, and R. Kazman. Software Ar-
chitectural Transformation. InWCRE 99, October 1999.

[3] O. Ciupke. Automatic detection of design problems in
object-oriented reengineering. InTOOLS 30, pages 18–32.
IEEE Computer Society, 1999.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison-Wesley, 1995.

[5] D. Garlan and M. Shaw. An introduction to software archi-
tecture. InAdvances in Software Engineering and Knowl-
edge Engineering. World Scientific Publishing, 1993.

[6] D. Heuzeroth, G. Ḧogstr̈om, T. Holl, and W. L̈owe. Auto-
matic Design Pattern Detection. In11th IWPC, May 2003.

[7] D. Heuzeroth, T. Holl, and W. L̈owe. Combining Static and
Dynamic Analyses to Detect Interaction Patterns. InIDPT,
Jun 2002.

[8] D. Heuzeroth and W. L̈owe. Software-Visualization - From
Theory to Practice, chapter Understanding Architecture
Through Structure and Behavior Visualization. Kluwer,
2003.

[9] D. Heuzeroth, W. L̈owe, A. Ludwig, and U. Aßmann.
Aspect-Oriented Configuration and Adaptation of Compo-
nent Communication. In3rd GCSE. Springer, 2001.

[10] R. K. Keller, R. Schauer, S. Robitaille, and P. Page. Pattern-
based reverse-engineering of design components. InICSE,
pages 226–235, 1999.

[11] L. Lamport. The temporal logic of actions.ACM TOPLAS,
16(3):872–923, May 1994.

[12] A. Ludwig, R. Neumann, U. Amann, and D. Heuzeroth. Re-
coder homepage.http://recoder.sf.net , 2001.

[13] T. Mikkonen. Formalizing Design Patterns. In B. Werner,
editor,20th ICSE, pages 115–124. IEEE, Apr. 1998.

[14] L. Prechelt and C. Kr̈amer. Functionality versus practical-
ity: Employing existing tools for recovering structural de-
sign patterns.J.UCS, 4(12):866ff, 1998.


