
Modeling Quality of Services
in Service Oriented Environments

Jens Hündling, Mathias Weske

Hasso Plattner Institute for Software Engineering at the University of Potsdam
Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam, Germany,

Phone: +49(0)3 31 55 09-1 96
{huendling,weske}@hpi.uni-potsdam.de

Abstract. Information technology is the core enabler for global businesses. Based
on an integration of services provided by companies, virtual enterprises are built
to achieve business goals. This integration can be supported or even automated,
if companies publish a standardized description of the services they offer in a for-
mal, computer-readable way. This paper argues that service orientation offers a
promising approach to achieve this goal. Furthermore, the paper introduces a for-
mal model for enriched service description that goes beyond technical interface
specifications by including Quality of Service properties. We illustrate the model
in usage scenarios like automated discovery and substitution of services as well
as for optimized composition of services to support service oriented processes.
Furthermore, the Quality of Service properties will be integrated in the general
service model.

1 Introduction

Nowadays, companies are coalescing, building virtual enterprises and are achieving
common business goals together. Information technology is the core enabler for tight-
ening integration of companies, and service orientation is the arising paradigm to handle
the complexity of this task. Using the service oriented paradigm, this integration can be
supported or even automated, by companies publishing a standardized description of
the services they offer in a computer-readable way. This paper argues that service ori-
entation offers a promising approach to achieve this goal, but still is in its infancies
since important features are missing. One key aspect is a model for enriched service
description that goes beyond technical interface specifications by including Quality of
Services (QoS) properties. Throughout this paper, it will be shown how and where QoS
properties can be used in the context of automated discovery and substitution of services
as well as for optimized composition of services to enable service oriented processes.

The basic principles of service orientation is manifasted by the Service Oriented
Architecture (SOA) [2, 8] defining three roles and their interactions as shown in Fig. 1.
Service Providers publish descriptions of their services in a Service Repository. Ser-
vice Requestors can find the published descriptions at the repository, where several
descriptions are stored, e.g. in a categorized catalogue. A service description allows the
requestor to use the service. This is done by automatically generating a message and
send it to the provider for invoking the service; this is called bind.

Service
Requestor

Service
Provider

Service
Repository

publish find

bind

Fig. 1. The Service Oriented Architecture (SOA) – roles and interactions.

These basic roles and interactions imply the availability of standardized description
languages and standard communication protocols as well as a common understanding
of the querying, the categories and other objectives of the service repository. Current
standardization efforts like SOAP for XML messaging, WSDL for service descriptions
and UDDI for service repositories are de-facto standards for todays most popular im-
plementation of service orientation: Web services [1]. Additionally, for specific indus-
trial sectors, standardized names for categories and services are evolving or are already
existing, and the semantic web is an emerging technology to handle this. This imple-
mentation of the basic principles allows loose coupling between business partners and
since all interactions can be automated, very late binding, i.e. just-in-time queries to
find available services, becomes feasible.

Since paper concentrates on enhancements of service descriptions, the Web Ser-
vices Description Language (WSDL) [4] will be introduced in more detail. WSDL
provides a model, shown in Fig. 2, and an XML format for describing Web services
that enables separating the description of the abstract functionality offered by a service
from concrete details of a service description such as ’how’ and ’where’ that function-
ality is offered. Thus, WSDL describes a Web service in two stages: At an abstract
level, WSDL describes a Web service in terms of the messages it sends and receives;
messages are described independent of a specific wire format typically using a XML
Schema type system. One or more messages, their exchange pattern and the logical
roles of the participants are aggregated in an operation. Finally, an interface groups
logically related operations still without any commitment to communication protocols.
At a concrete level, a binding specifies transport and wire format details for interfaces.
Adding a network address with a binding results in an endpoint, and finally, a service
groups together endpoints implementing a common interface [4]. The different levels
of abstraction will also be relevant for the QoS model introduced in this paper.

The remainder of the paper is organized as follows: For further motivation and better
understanding, an example and general usage scenarios for a QoS model are given in
section 2. Afterwards, the QoS model is developed in section 3, starting with a definition
of QoS, categories of aspects of the properties and the model itself. Additional related

Message

Service

Endpoint

Binding

Interface

Operation

Message
ExchangePattern

Role

** *
1

1

*

1

*

*
1

1

*

1 *implements

Abstract Concrete

Fig. 2. The core elements of WSDL, version 2.0 (excerpt).

work is pointed to in section 4, and the paper will be closed with an outlook of future
applications and refinements of the QoS model.

2 Usage Scenarios for a QoS Model

Using a WSDL description of a service, it is possible to create a correct invoking mes-
sage and send it to the service providers network address, who in turn conducts the
service and returns the result. Nevertheless, for a fully-fledged service oriented envi-
ronment, this is not enough. First, a service has to be found and the requestor has to
decide, whether it uses a specific service implementation or another implementation
from a competitor. WSDL concentrates on technicalities like messages, message ex-
change patterns and URIs of the endpoints. Additionally, a UDDI repository only offers
keys for arbitrary technical issues (so called tModel-keys) and category bags aiming at
offering categorized searching capabilities like yellow pages. This is not enough as will
be shown in the following usage scenarios of typical interactions for Quality of Services
enhanced descriptions [13]. Some of these will benefit from and some are not possible
without a QoS-Model.

2.1 Example

For better understanding, a short example of a transportation service will be introduced.
The service offers transportation and delivery of goods. It is invoked by a message con-
taining procurement information, start and destination address. Additional information
like possible climatic conditions of the transportation, e.g. temperature and humidity
in climatic containers, are available and important for users of such services. Cost and
delivery time can also be provided and security options for the messages like encrypted

payment issues are available. Furthermore, some providers offer delivery state moni-
toring, e.g. by a web portal (web), per automatic mails at special events like delay or
delivery (mail) or by a 24h phone-hotline (phone).

Climatic
Service Temperature Humidity Cost Time Security Option State Monitor

S11 – – 100-150 € 12-48 hours – web portal
S12 ≤-8°C 20 − 60% 275 € 24 hours – web portal
S21 – – 150 US-$ 1 day – mail, phone
S22 max. 20°F – 320 US-$ 8 hours 128-bit key mail, phone
S31 ≤+4°C 20 − 80% 400 € 24-36 hours 512-bit key phone, web portal
S32 ≤-4°C 20 − 40% 450 € 48 hours 512-bit key phone, web portal

Table 1. Sample transportation services and their properties

Table 2.1 shows service implementations S11 to S32 with additional properties.
These services are implementing a common transportation interface IT (not described
in more detail) and are offered by three different transport service providers (T 1, T2 and
T3). The service names Sij means service is offered by provider T i; j is a counter for
the services of one provider. As could easily be recognized, the diversity of the proper-
ties show the complexity of a complete QoS model, and the next sections depicts usage
scenarios for the properties using the sample services.

2.2 Usage Scenarios

Discovery The interaction starting with a service requestor searching for a service is
called discovery. The requestor generates a query or searches the service repository in-
teractively. This usage scenario surely works with the service descriptions as defined by
WSDL and with the service entities described in Fig. 2, when the requestor searches for
implementation of an interfaces. Considering the example, all services from S 11 to S32

are in the result set when querying for implementations of IT . Additional information
in an UDDI, like categories etc. are intended to describe this interface or the providers.

Nevertheless, enhancements are more than helpful. Consider a service requestor
that has exact restrictions like delivery within 24 hours or frozen goods that have to be
transported. Even more, optimization criteria could be given, e.g. the cost. With these
optimization criteria, it is possible to select the best service out of a set of restriction
matching implementations for the interface.

During automated discovery, additional properties that the requestor did not men-
tion in its query might be taken into account, when more than one service matches the
initial query. All of this leads to a more accurate and rapid (i.e. automated) discovery.

Negotiation Service requestor and provider can negotiate on the concrete QoS proper-
ties for a specific service or even for a single service execution. This negotiation takes

place after the requestor has located the service description in the repository. For in-
stance, a provider can offer a service with a cost- and time-range like service S 11 and
S31 in the example. On each execution the precise costing and time-guarantees can be
negotiated.

This allows the provider to take its current workload and available resources into
account. On the other hand, the requestor for instance might decide ad hoc whether a
very fast service execution is necessary and ask the provider if he can offer this. The
negotiation itself can also be automated, for instance by intelligent software agents
relying on a QoS model, but this is out of the scope of this paper.

Substitution A specific service often is one step towards a bigger business goal and
thereby part of a complex business processes underneath. In special occasions like un-
foreseen exceptions it becomes necessary to substitute this service, e.g. by a better,
faster or cheaper one. Thus, comparing service implementations of a common interface
allows more flexibility in the business process and could be a foundation for negotiation
by recognizing the boundaries (i.e. limitations or restrictions) and bottlenecks. Consider
a company normally using S21 for delivery of their products. Suddenly one of the sup-
pliers of the company has problems, causing a 10 hour production delay. To deliver in
time, very fast transportation is necessary and thus the faster service S22 is used by the
company instead.

Composition The advantages of service orientation are multiplied, when services are
aggregated to build a new higher-level, value-added service; this is called service com-
position [9]. The business logic is expressed in a process model that is carefully de-
signed by human experts. QoS properties have to be taken into account when selecting
concrete services [20]. Obviously, the QoS of this process that will be offered as a new
service depends on the QoS of the individual services. The overall QoS has to be calcu-
lated or estimated by the QoS of the composed services due to algorithms, taking into
account the control flow, uncertainty etc [3]. These algorithms are out of the scope of
this paper, but nevertheless this implies another application of the QoS model for single
services.

Process (re-)planning As already mentioned, service composition is normally done
by human experts modeling a business process. In an integrated process planning and
enactment system as presented in [15], AI planning techniques support the business
process modeling. Thereby, it is vital to have a sound QoS model to generate opti-
mized process plans taking time, cost and other QoS properties into account [16]. Obvi-
ously, these properties have to be defined in a way the planning algorithm can use them.
Taking Replanning [17] in a volatile service oriented environment into account, these
optimization can be flexibly done during runtime with up-to-date information. From
the viewpoint of usage scenarios the distinction between composition/substitution and
planning/replanning is blurred, but the requirements for the QoS model are enhanced,
because an AI planning algorithm as to handle the QoS properties.

Services Management Service management is done by providers of services. Providers
normally offers a whole set of different services, e.g. at different locations and with dif-
ferent QoS. With measuring and metering of the current execution behavior of its ser-
vices, it is possible for the provider to adjust resources for the services. In the example,
this could be done by recruiting additional resources like drivers and delivery vans or
allowing overtime work. The provider has to react flexible to changing demands of re-
questors as well as to competitor offering service implementation of common Interfaces
interfaces, e.g. at a cheaper price.

Furthermore, with a sound QoS model a provider can offer a service at different lev-
els, like T2 does with the expensive and fast premium level service S22 and the cheaper
and slower standard level service S21. Thereby, the provider can optimize his work-
load and cost. Even more, with automatically calculated and managed QoS, dynamic
and flexibile negotiation for individual service request is feasible, as already mentioned
above. For instance, if its resources are nearly used at full capacity, additional requests
might only be answered if the negotiated price is very high.

3 Modeling Quality of Services

These usage scenarios showed where and how a QoS model is needed and how it can
be used. Additionally, the main requirements can easily be derived. In this next section,
a QoS model will be introduced. First a definition of the term Quality of Services will
be given and after a categorization of property scales, the model and its relation to the
service entities are explained.

3.1 Definition of Quality of Services

To state the term Quality of Services more precisely, a short discussion is started, head-
ing to a term often considered as closely related or even synonym for QoS [13]: non-
functional properties. First of all, a suitable definition of property for the purposes of
this paper is given by Merriam-Webster OnLine Dictionary [12]:

a.) quality or trait belonging and especially peculiar to an individual or thing
b.) an effect that an object has on another object or on the senses (. . .).

This definition fits if the thing in definition a.) is the service and the effects on the ob-
jects mentioned in b.) are the service execution for some asset between provider and
requestor. Interestingly the definition sees quality as a synonym for property. As stated
earlier, a whole set of different properties about different aspects is related to a service.
These properties are often categorized in functional and non-functional properties. Gen-
erally speaking, functional properties describe what the service does and non-functional
properties are used to describe how the service does it. Separating properties into func-
tional and non-functional seams feasible and useful, because functional equivalence
can be defined on two services with the same functional properties. Thus, a service can
easily be replaced by a functional equivalent service with more suitable non-functional
properties, e.g. lower cost, faster execution, and higher security. This goes along with
the basic service oriented principle of loose coupling.

Nevertheless, in a service-oriented environment it is often hard to decide whether
a certain property is functional or not. Take for example the property execution dura-
tion of a service, which is a typical example for a non-functional property. Consider a
request for “a transportation service within Germany in 24 hours”. Here the service’s
functionality is to transport something. The functionality is specified more precisly by
stating “within Germany”; considering the example in section 2.1, this would be part of
the interface IT . The restriction of delivery within 24 hours is also a functional require-
ment, because a functionally equivalent service has to meet this mandatory property; in
the example S31 will not meet this criteria and for S11 it is not sure since a time-range is
given. Similar examples can be found for other properties like costs, security or quality
that are often regarded as non-functional properties. To sum up, the decision whether
a property is functional or not has to be made individually for each request and is not
dependent on the property itself.

For the remainder of this paper we use the term Quality of Services (QoS) for all
properties without further distinction between functional or non-functional. Neverthe-
less, we separate QoS from the description of the service, like a WSDL document or
the categories of an UDDI repository.

3.2 Scales of Measurement for QoS Properties

The first aspect to categorize QoS is the scales of measurement of the property. Gen-
erally speaking, scales of measurement as know from statistics [19] refer to ways in
which variables or numbers are defined and categorized. These scales are ordered, i.e.
each higher level of measurement includes the principles of the lower level which im-
plies the allowed arithmetics are also allowed in the higher levels; the categories start
with the lowest level and examples for QoS of each scale are given.

Nominal Scale The nominal scale just assigns labels like numbers to values and does
not express relationships between values. Thus, the same scale values for a specific
nominal scale QoS of two services implies that they are equivalent concerning this
QoS. Nevertheless, the values have no numeric meaning. Considering the example in
section 2.1, labeling the state monitoring option web portal as 1 and mail as 2 does not
mean mail is twice something compared to web portal. Nor does it suggest that 1 is
somehow better than 2, although a specific requestor might prefer an option.

Consequently, the only arithmetic or statistical operations that can be performed on
nominal scales is a frequency run or count. An average can not be determined, except
for the mode – that number which holds the most responses –, nor can numbers be
added and subtracted. It is important to mention that possible values must be assigned
in advance; in order to be exhaustive, an category such as other or unknown might be
applicable. It is also important that the categories provided are mutually exclusive; but
multiple options can be offered.

Ordinal Scale QoS properties of ordinal scale have a logical or ordered relationship
to each other. This scale permit the measurement of degrees of difference, but not the
specific amount of difference, i.e. a service with a higher scale value of a ordinal QoS

has more of this property, but the intervals between adjacent scale values are indeter-
ministic. For example, service S22 offers message encryption with a 128-bit key, which
is less secure than service S32 using a 512-bit key.

This allows requestors to specify its needs with = or ≤ and providers to give offer
values at ranges or using max-expressions, but S22 is neither 384 bits nor four times
more secure than S32. It is not specified that distances between values are equal and
difference in the key-length has no numeric meaning.

Interval Scale For QoS of interval scales the distance between adjacent points on the
scale are equal, e.g. the difference between 4 and 5 is the same as the difference between
27 and 28. For example, the temperature scales like °Cis an interval scale, since each
degree is equal but there is no absolute, meaningful zero point. Consider service S 12

offering guaranteed -8°C, which is 4°Ccolder than S32 offering -4°C, but S21 is not
twice as cold as S32 (think of S31 offering +4°C).

At interval scale, addition and substraction is now allowed, and calculating of aver-
ages mode, median and mean, the range and standard deviation is possible. This might
be useful for estimations of executions, especially when composing services to pro-
cesses or for service management, when competitors are investigated.

Ratio Scale The ratio scale is applicable where a meaningful zero point exist. For
instance, the delivery time in the example is a ratio scale value: S12 takes 24 hours for
delivery and S32 takes 48 hours, which indeed is twice as long. Other examples are
weight, costs, or consumption of certain resources like fuel. Multiplication and division
of scale values is allowed. As a result, a large number of descriptive calculations are
applicable to ratio scale.

3.3 Quality of Services Properties

As mentioned in section 2, service discovery is done by specifying the needs, e.g. ser-
vices implementic interface IT . Additional restrictions on the QoS property, like budget
restrictions, temporal deadlines and necessary security protocols can be added to the
discovery query. On the other side, a requestor can offer his service not with precise
QoS properties, but with ranges or at different levels. All of these can be found in the
example in Table 2.1. Obviously, several aspects of these restrictions must be handled
by a QoS model:

– A QoS property can be a fixed value or a set of possible values. When the QoS
property is at least of an ordinal scale, a value range, min or max are also possible
restrictions.

– A QoS property can be mandatory or optional. In a more sophisticated QoS model,
a prefering metric, e.g. an ordering or a weighting and scoring of possible values,
can be added at the correct scale.

– Taking into account a set of restrictions, these can be combined disjunctively or
conjunctively.

– Negated QoS properties can be described by complemental notions.

If a requestor searches a service, the restrictions should be described in a declar-
ative way. Thereby methods well known from Description Logic could be applied for
matchmaking, like described in [10]. Standardization efforts like the Web Ontology
Language (OWL) [18] are suspected to build a semantic foundation for describing such
restrictions.

This leads to the following model: The set of QoS for the service interface I is
defined as a set of properties Pi as follows:

QI = {P1, ..., Pn}.

Each Pi ∈ QI , 1 ≤ i ≤ n has a domain dom(Pi) and the values are of a scale
scale(Pi) as defined in section 3.2. Also, for each property a metric metric(P i) has
to be defined, how, where, and when the property is measured and the numbers or la-
bels assigned to the measured results. Furthermore, let dom(QD) =

⋃
P∈QD

dom(P).
Then, a concrete QoS level LS of a service SI implementing an interface I is a trans-
formation:

λ : QD → dom(QD)|(∀P ∈ QD)λ(P) ∈ dom(P).

Thus, for each service implementation the provider can define a service level with
the applicable properties. This service level should be stored as part of the service de-
scription in the repository and requestors can define queries with desired mandatory and
optional properties. A key requirement for this model is that a predefined and commonly
agreed on domain of possible values and the corresponding scale. Thereby, checking
correct values and applicable comparisons like at least, inbetween or max are possible.
For example, a requestor can query for a Service with the properties P time ≤ 30hours,
Psecurityoption ∈ { (128-bit key),(512-bit key)} and so on.

3.4 QoS Entities

The QoS model can be mapped to the service entities as shown in figure 3. The Quality
of Services is a set of properties. For each Property, the Domain, a Scale and a Metric
has to be defined as explained above. This abstract set of QoS properties is linked to a
Interface. Thus, for each interface, the set of applicable QoS properties are specified.
The concrete counterpart of this set is a ServiceLevel which in turn is related to a
service. The cardinality of the relation between service and a service level is stated as
1-to-1, because with a different set of QoS properties, it becomes a different service
implementation. Nevertheless, when a Provider stores its service and the service level
in a repository ranges etc. can be defined. A ServiceLevel, a provider and a Requestor
can negotiate on more precise QoS properties and create a ServiceLevelAgreement as
a contract.

4 Related Work

As stated earlier, Quality of Services is a term used in many research areas. Service
Level Agreements (SLA) are well know from network services as a contract offered by

ServiceInterface
1 *implements

Abstract Concrete

Property

Scale MetricDomain

** *
1

QoS

1
*

1

1

is related to

ServiceLevel

1

1

is related to

1 *implements

ServiceLevel
Agreement

Provider

Requestor

1

1

1

Fig. 3. Mapping of the QoS Model to the Service Entities.

a provider specified in measurable terms like throughput, availability (time) or number
of simultaneously users. IS departments adopted the idea of SLA and allowed customer
departments to measure, justify, and compare e.g. with outsourcing providers. Thus, it
is necessary to exactly define, how each property metric can be observed or measured
and what happens if a property is violated. This idea of contracts can also be used in
a service oriented environment, where a SLA is seen as a formal (electronic) contract
specifying the QoS of a service [14, 11]. The SLA can be stored in the service reposi-
tory and thus included in the discovery [5]. Furthermore, a SLA can be the individual
result from an automated negotiation phase between provider and requestor. Recently
standardization efforts are underway to define a common language to define SLAs for
Web services.

WS-Policy [7] is part of a greater framework focussed on sharing information se-
curely between applications and organizations. This framework consists of two key
groups of specifications: 1.) Technical concerns in security area like and 2.) Streamlin-
ing implementation of business policies in a Web services environment. The WS-Policy
framework sees policies as collection of all acceptable policy statements for specific do-
main and thereby goes along with the definition of the set of QoS properties given in
this paper. The framework specifies also how a policy can be attached to WSDL entities
and how a policy is defined as a UDDI. Nevertheless, a policy itself are not clearly de-
fined and quite vague and a sound model for the properties is vital for the possibilities
of QoS.

In [13] an overview definition of possible non-functional properties are given and
some of the use cases defined here are used for motivating precise modeling of non-
functional properties. Nevertheless, it concentrates on specific properties rather than on
an overall model.

Another very interesting approach is to take quality ratings of users of the service
into account. [6] introduces a quality of services management framework based on user
expectation. This approach as a different viewpoint, but the QoS models are not contra-
dictory and integration of the ideas will be an interesting future work.

5 Conclusion and Outlook

In this paper a formal QoS Model is introduced. It is based on the principles of domains
and scales of the possible properties. These properties are grouped as a set of properties
that is related to an interface. For a concrete service implementation, the specific service
level can be defined and enhanced requests for services can be generated.

Nevertheless, many things that are already in the example are not mentioned in de-
tail in this paper. Considering the sample service S11, it is likely that the cost depends
on the delivery time negotiated as well as the distance between starting point and de-
livery point. Modeling this functional dependence is out of the scope of this paper and
will be future work. Additionally, the metric has been left out of the discussion as well
as the difference of the measurement units like US-$ and € or °C and °F.

These aspects are future work, and defining QoS in OWL [18] seams to be a fruit-
ful approach which we currently investigate. Additionally, using QoS for processes and
process (re-)planning which was mentioned in the usage scenarios is still under re-
search.
Acknowledgements: The authors would like to thank Hilmar Schuschel, Harald Meyer
and Hagen Overdick for their comments on earlier versions of this paper.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services - Concepts, Architectures
and Applications. Springer Verlag, 2004.

2. S. Burbeck. The tao of e-business services. IBM Corporation, October 2000. Available at
http://www-106.ibm.com/developerworks/library/ws-tao/.

3. J. Cardoso, A. Sheth, and J. Miller. Workflow quality of service. In International Conference
on Enterprise Integration and Modeling Technology and International Enterprise Modeling
Conference (ICEIMT/IEMC), 2002.

4. R. Chinnici, M. Gudgin, J.-J. Moreau, J. Schlimmer, and S. Weerawarana. Web
Services Description Language (WSDL) version 2.0 part 1: Core language.
http://www.w3.org/TR/wsdl20/. W3C Working Draft 26 March 2004.

5. A. Dan, H. Ludwig, and G. Pacifici. Web services differentiation with service
level agreements. Technical report, IBM Corporation, May 2003. http://www-
106.ibm.com/developerworks/library/ws-slafram/.

6. V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian. A quality of service management framework
based on user expectations. In M. E. Orlowska, S. Weerawarana, M. P. Papazoglou, and
J. Yang, editors, Service-Oriented Computing - ICSOC 2003, volume 2910, pages 104–114,.
Springer, 2003.

7. M. Hondo and C. Kaler, editors. Web Services Policy Framework (WSPolicy), May 2003.
Available at http://www.ibm.com/developerworks/library/ws-policy.

8. J. Hündling and M. Weske. Web services: Foundation and composition. EM - Electronic
Markets Journal, 13(2):108–119, June 2003.

9. F. Leymann, D. Roller, and M. Schmidt. Web services and business process management.
IBM Systems Journal, 41(2), 2002.

10. L. Li and I. Horrocks. A software framework for matchmaking based on semantic web
technology. In Proceedings of the Twelfth International World Wide Web Conference
(WWW’2003), pages 331–339. ACM, 2003.

11. H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck. Web service level agreement (wsla)
language specification. Available at http://www.research.ibm.com/wsla, January 2003.

12. Merriam-Webster, Inc. Merriam-webster online dictionary. Available at http://www.m-
w.com, 2004.

13. J. O’Sullivan, D. Edmond, and A. Ter Hofstede. What’s in a service? towards accurate de-
scription of non-functional service properties. Distributed and Parallel Databases, 12:117–
133, 2002.

14. A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, and F. Casati. Automated sla monitoring
for web services. In M. Feridun, P. Kropf, and G. Babin, editors, 13th IFIP/IEEE Inter-
national Workshop on Distributed Systems: Operations and Management, DSOM, volume
2506 of Lecture Notes in Computer Science, pages 28 – 41, 2002.

15. H. Schuschel and M. Weske. Integrated workflow planning and coordination. In 14th Inter-
national Conference on Database and Expert Systems Applications, volume 2736 of LNCS,
pages 771–781, Prague, Czech Republic, 2003. Springer.

16. H. Schuschel and M. Weske. Automated planning in a service-oriented architecture. In 2nd
International Workshop on Distributed and Mobile Collaboration. IEEE Computer Society
Press, 2004. to appear.

17. H. Schuschel and M. Weske. Automated planning in a service-oriented architecture. In
8th East-European Conference on Advances in Databases and Information Systems, LNCS.
Springer, 2004. to appear.

18. M. K. Smith, C. Welty, and D. L. McGuinness. OWL Web Ontology Language Guide. Avail-
able at http://www.w3.org/2004/OWL/, 2004. W3C Recommendation 10 February 2004.

19. S. Stevens. On the theory of scales of measurement. Science, 103:677–680, 1946.
20. L. Zeng, B. Benatallah, M. Duams, J. Kalagnanam, and Q. Z. Sheng. Quality driven web

service composition. In The 12th International World Wide Web Conference, Budapest, Hun-
gary, May 2003. ACM.

