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Abstract—This paper considers a novel distributed system for collaborative location-based information generation and sharing which
become increasingly popular due to the explosive growth of Internet-capable and location-aware mobile devices. The system consists
of a data collector, data contributors, location-based service providers (LBSPs), and system users. The data collector gathers reviews
about points-of-interest (POIs) from data contributors, while LBSPs purchase POI data sets from the data collector and allow users to
perform spatial top-k queries which ask for the POIs in a certain region and with the highest k ratings for an interested POI attribute.
In practice, LBSPs are untrusted and may return fake query results for various bad motives, e.g., in favor of POIs willing to pay. This
paper presents three novel schemes for users to detect fake spatial snapshot and moving top-k query results as an effort to foster
the practical deployment and use of the proposed system. The efficacy and efficiency of our schemes are thoroughly analyzed and
evaluated.
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✦

1 INTRODUCTION

THE EXPLOSIVE growth of Internet-capable and
location-aware mobile devices and the surge in so-

cial network usage are fostering collaborative informa-
tion generation and sharing on an unprecedented scale.
In particular, IDC believes that total worldwide smart-
phone shipments will reach 659.8 million units in 2012
and will grow at a CAGR of 18.6% until 2016.1 Almost all
smartphones have cellular/WiFi Internet access and can
always acquire their precise locations via pre-installed
positioning software. Also owing to the growing popu-
larity of social networks, it is more and more convenient
and motivating for mobile users to share with others
their experience with all kinds of points of interests (POIs)
such as bars, restaurants, grocery stores, coffee shops,
and hotels. Meanwhile, it becomes commonplace for
people to perform various spatial POI queries at online
location-based service providers (LBSPs) such as Google
and Yelp. As probably the most familiar type of spatial
queries, a spatial (or location-based) top-k query asks
for the POIs in a certain region and with the highest k
ratings for a given POI attribute. For example, one may
search for the best 10 Italian restaurants with the highest
food ratings within five miles of his current location.
This paper focuses on spatial top-k queries, and the term
“spatial” will be omitted hereafter for brevity.
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We observe two essential drawbacks with current top-
k query services. First, individual LBSPs often have very
small data sets comprising POI reviews. This would
largely affect the usefulness and eventually hinder the
more prevalent use of spatial top-k query services. Con-
tinue with the restaurant example. The data sets at in-
dividual LBSPs may not cover all the Italian restaurants
within a search radius. Additionally, the same restaurant
may receive diverse ratings at different LBSPs, so users
may get confused by very different query results from
different LBSPs for the same query. A leading reason for
limited data sets at individual LBSPs is that people tend
to leave reviews for the same POI at one or at most only
a few LBSPs’s websites which they often visit. Second,
LBSPs may modify their data sets by deleting some
reviews or adding fake reviews and return tailored query
results in favor of the restaurants that are willing to pay
or against those that refuse to pay. 2 Even if LBSPs are
not malicious, they may return unfaithful query results
under the influence of various attacks such as the Sybil
attack [2], [3] whereby the same attacker can submit
many fake reviews for the same POI. In either case, top-k
query users may be misled by the query results to make
unwise decisions.

A promising solution to the above two issues is to
introduce some trusted data collectors as the central
hubs for collecting POI reviews. In particular, data col-
lectors can offer various incentives, such as free coffee
coupons, for stimulating review submissions and then
profit by selling the review data to individual LBSPs.
Instead of submitting POI reviews to individual LBSPs,
people (called data contributors) can now submit them

2. Similar misbehavior has been widely reported for the web-search
industry.
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to a few data collectors to earn rewards. The data sets
maintained by data collectors can thus be considered
the union of the small data sets currently at individual
LBSPs. Such centralized data collection also makes it
much easier and feasible for data collectors to employ
sophisticated defenses, such as [2], [3], to filter out fake
reviews from malicious entities like Sybil attackers. Data
collectors can be either new service providers or more
preferably existing ones with a large user base, such as
Google, Yahoo, Facebook, Twitter, and MSN. Many of
these service providers (e.g., Google) have already been
collecting reviews from their users and offered open
APIs for exporting selected data from their systems.
We postulate that they may act as location-based data
collectors and sellers if sound techniques and business
models are in place.

The above system model is also highly beneficial for
LBSPs. In particular, they no longer need struggle to
solicit faithful user reviews, which is often a daunting
task especially for small/medium-scale LBSPs. Instead,
they can focus their limited resources on developing
appealing functionalities (such as driving directions and
aerial photos) combined with the high-quality review
data purchased from data collectors. The query results
they can provide will be much more trustworthy, which
would in turn help them attract more and more users.
This system model thus can greatly help lower the
entrance bar for new LBSPs without sufficient funding
and thus foster the prosperity of location-based services
and applications.

A main challenge for realizing the appealing system
above is how to deal with untrusted and possibly ma-
licious LBSPs. Specifically, malicious LBSPs may still
modify the data sets from data collectors and provide
biased top-k query results in favor of POIs willing to
pay. Even worse, they may falsely claim generating
query results based on the review data from trusted
data collectors which they actually did not purchase.
Moreover, non-malicious LBSPs may be compromised to
return fake top-k query results.

In this paper, we propose three novel schemes to
tackle the above challenge for fostering the practical
deployment and wide use of the envisioned system. The
key idea of our schemes is that the data collector pre-
computes and authenticates some auxiliary information
(called authenticated hints) about its data set, which will
be sold along with its data set to LBSPs. To faithfully
answer a top-k query, a LBSP need return the correct
top-k POI data records as well as proper authenticity
and correctness proofs constructed from authenticated
hints. The authenticity proof allows the query user to
confirm that the query result only consists of authentic
data records from the trusted data collector’s data set,
and the correctness proof enables the user to verify that
the returned top-k POIs are the true ones satisfying
the query. The first two schemes both target snapshot
top-k queries but differ in how authenticated hints
are precomputed and how authenticity and correctness

proofs are constructed and verified as well as the related
communication and computation overhead. The third
scheme, built upon the first scheme, realizes efficient
and verifiable moving top-k queries. The efficacy and
efficiency of our schemes are thoroughly analyzed and
evaluated through detailed simulation studies.

The rest of this paper is organized as follows. Section 2
discusses the related work, and Section 3 gives the
problem formulation. Section 4 presents two schemes
for secure snapshot top-k query processing, which are
extended for secure moving top-k query processing in
Section 5. All the schemes are then thoroughly analyzed
in Section 6 and evaluated via detailed simulations in
Section 7. This paper is finally concluded in Section 8.

2 RELATED WORK

Our work is most related to data outsourcing [4], for
which we can only review representative schemes due
to space constraints. The framework of data outsourcing
was first introduced in [4], in which a data owner
outsources its data to a third-party service provider who
is responsible for answering the data queries from either
the data owner or other users. In general, there are two
security concerns in data outsourcing: data privacy and
query integrity [5].

Ensuring data privacy requires the data owner to
outsource encrypted data to the service provider, and
efficient techniques are needed to support querying en-
crypted data. A bucketization approach was proposed in
[6], [7] to enable efficient range queries over encrypted
data, which was recently improved in [8]. Shi et al.
presented novel methods for multi-dimensional range
queries over encrypted data [9]. Some most recent pro-
posals aim at secure ranked keyword search [10], [11]
or fine-grained access control [12] over encrypted data.
This line of work is orthogonal to our work, as we focus
on publicly accessible location-based data without need
for privacy protection.

Another line of research has been devoted to ensure
query integrity, i.e., that a query result was indeed
generated from the outsourced data (the authenticity
requirement) and contains all the data satisfying the
query (the correctness requirement). In these schemes,
the data owner outsources both its data and also its
signatures over the data to the service provider which
returns both the query result and a verification object (VO)
computed from the signatures for the querying user to
verify query integrity. Many techniques were proposed
for signature and VO generations, such as those [13]–
[15] based on signature chaining and those [5], [16]–[18]
based on the Merkle hash tree [19] or its variants. None
of these schemes consider spatial top-k queries and are
directly applicable to our intended scenario, as spatial
top-k queries exhibit unique feature in that whether a
POI is among the top-k is jointly determined by all the
other POIs in the query region and that the query region
cannot be predicted in practice.
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Secure remote query processing in tiered sensor net-
works [20]–[24] is also loosely related to our work here.
These schemes assume that some master nodes are in
charge of storing data from regular sensor nodes and
answering the queries from the remote network owner.
Various techniques were proposed in [20]–[23] to ensure
data privacy against master nodes and also enable the
network owner to verify range-query integrity. More-
over, Zhang et al. [24] proposed efficient techniques for
the network owner to validate the integrity of top-k
queries. These schemes cannot be adapted to address
our problem in this paper.

3 PROBLEM FORMULATION

3.1 System Model

We assume a distributed system comprising a data col-
lector, data contributors, LBSPs, and top-k query user-
s. Data contributors are common people who submit
POI reviews to the data collector’s website. The data
collector normally need offer some incentives, such as
FourSquare’s badges, to stimulate review submissions
and also employ necessary countermeasures such as [2],
[3] to filter out fake reviews from malicious data contrib-
utors. The data collector sells aggregated POI reviews in
the form of a location-based data set to individual LBSPs.
Every LBSP operates a website for users to perform top-
k queries over the purchased data set and may add
some appealing functionalities to the query result such
as street maps and photos. In addition, although there
might be multiple data collectors with each selling data
to a number of LBSPs, we hereafter focus on one pair of
data collector and LBSP for the purpose of this paper.

The data set is classified according to POI categories,
such as restaurants, bars, and coffee shops, and it con-
tains a unique record for every POI in every category.
As a result, POIs falling into multiple categories (e.g.,
both a restaurant and bar) have one record for every
affiliated category. This paper focuses on top-k queries
involving a single category, which are most commonly
used in practice, and the extension of our schemes to
involve multiple categories is part of our future work. In
particular, our discussion will focus on one POI category
whose total data records form a set D. For simplicity, we
assume that the category has one numerical attribute tak-
ing values from a given range. For instance, if restaurant
is the category under consideration, there may be λ = 4
attributes including food, price, service, and hygiene, with
each rated on a scale of 1 to 10.

The geographic area covered by the data collector is
partitioned into M ≥ 1 equally-sized non-overlapping
zones. For every zone i, let ni denote the number of
POIs, and POIi,j and Di,j denote the jth POI and its
corresponding data record, respectively. It follows that
D =

⋃M
i=1 Di, Di =

⋃ni

j=1 Di,j , and Di

⋂
Dj = φ for all

i �= j. Also note that Di can be empty for some i ∈ [1,M ],
meaning that there is no POI in zone i that has been
reviewed.

To illustrate the content of a data record, assume that
the data collector got reviews about POIi,j from ni,j

data contributors. Every review includes a rating on
every attribute and possibly text comments. We also let
Ai,j,q denote the rating for attribute q averaged over
ni,j individual ratings. The data record di,j for POIi,j
includes its name, location li,j , {Ai,j,q}λq=1, ni,j reviews,
and possibly other information.

3.2 Problem Statement

We consider two types of top-k queries in this paper. A
snapshot top-k query includes the interested POI category,
a query region R, and an integer k ≥ 1. As an example,
the POI category and attribute can be restaurant and
food, respectively. The query region can be in multiple
formats. For instance, the user can specify a GPS location
or street address along with a search radius, and he
may also select multiple zones on a map provided by
the LBSP. An authentic and correct query result should
include the records for k POIs in the specified category of
the data collector’s true data set, all of which are in the
query region R, have the attribute-q rating among the
highest k, and are ordered with respect to the attribute-q
rating in the descending order. For brevity, we will refer
to the POIs that are both authentic and correct as top-
k POIs hereforth. In contrast, a moving top-k query can
be viewed as the continuous version of snapshot top-k
queries, whereby the user is interested in the top-k POIs
in a moving region R defined with respect to the user’s
current location.

We assume that the data collector is trusted, while
the LBSP is untrusted. In particular, the LBSP may alter
the query result in favor of the POIs willing to pay, to
which similar misbehavior has been widely reported in
web-search industry. For example, the LBSP may replace
some true top-k POIs with others not among the top k
or even not in the data collector’s data set, and it may
also modify some data records by adding more good
reviews and deleting bad ones. In addition, a LBSP good
in nature may be compromised by attackers to forge
query results as well.

Our design objective is to enable the user to verify the
authenticity and correctness of the query result returned
by the LBSP. The query result is considered authentic
if all its k POI records exist in the data collector’s data
set and have not been tampered with, and it is called
correct if it contains the true top-k POI records in the
query region.

We summarize the major notations used throughout
the paper in Table 1.

4 SECURE SNAPSHOT TOP-k QUERY PRO-
CESSING

In this section, we illustrate our two schemes which both
comprises three phases and differ in operation details.
In the data-preprocessing phase, the data collector uses

3
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TABLE 1: Default Simulation Settings

Notation Meaning
M The number of zones.
Di All POI records in zone i.
Di,j The jth POI record in zone i.
ni,j The number of POI records in zone i.
li,j The location of POI Di,j .

Ai,j,q The attribute-q rating of Di,j .
φi,j The index of Di,j .
hi,j The hash value corresponding to Di,j .
I The set of candidate zones.

Ii,j The indexes of all the other zones in Me i with their
largest attribute-q ratings in (A′

i,j−1,q , A
′
i,j,q).

Ti The auxiliary set of zone i.
Ra The query region of the ath snapshot query.
Pa The progression region or the area in Ra+1 \Ra.

Va→b The verification region
⋃b−1

x=a Px.
Sa→b The suspicion region

⋃b−2
x=a Px.

kPOIa The top-k POIs for the ath snapshot query.
�t The delay between two consecutive snapshot queries.

h1,1 h2,1 h3,1 h4,1

h1-2 h3-4

h1-4

h5,1 h6,1 h7,1 h8,1

h5-6 h7-8

h5-8

h1-8

Fig. 1: An example of constructing the Merkle hash tree
over {hi,1}8i=1.

cryptographic methods to create authenticated hints over
its data set. In the subsequent query-processing phase,
the LBSP answers a top-k query by returning the query
result as well as the authenticity and correctness proofs
to the query user. In the final verification phase, the user
verifies authenticity and correctness proofs. For ease of
presentation, we shall temporarily assume that no two
POIs have the same rating for any attribute q ∈ [1, λ],
which implies that there is one and only one correct
result for any top-k query. We will also temporarily
assume that there are always at least k POIs in the query
region so that the query result contains exactly k POI
records for arbitrary k. We discuss how to relax these
two assumptions in the supplemental file.
4.1 Scheme 1

In Scheme 1, authenticated hints are created by chaining
ordered POIs in every zone via cryptographic hash
functions and then tieing the POIs in different zones via
a Merkle hash tree [25]. The details about constructing
and using authenticated hints are as follows.

4.1.1 Data Preprocessing

The data collector preprocesses its data set D =
⋃M

i=1 Di

before selling it to LBSPs, where M denotes the total
number of zones. Recall that Di =

⋃ni

j=1 Di,j , where
Di,j denotes the record of POIi,j and includes its name,
location li,j , received ratings {Ai,j,q}λq=1 for q attributes,

individual reviews, and some other information. The da-
ta collector performs the following operations for every
attribute q ∈ [1, λ].

First, for each i ∈ [1,M ], the data collector sorts Di

according to the attribute-q rating to generate an orderer
list D′

i = 〈D′
i,1, D

′
i,2, . . . , D

′
i,ni

〉 such that A′
i,1,q > A′

i,2,q >
· · · > A′

i,ni,q
. It then computes an index for every D′

i,j ∈
D′

i as
φi,j = 〈l′i,j , A′

i,j,q, H(D′
i,j)〉 , (1)

where l′i,j denotes the location of D′
i,j , and H(·) denotes

a cryptographic hash function. Note that φi,j contains
sufficient information for a user to determine whether
D′

i,j satisfies a top-k query, which will be further illus-
trated shortly.

Second, the data collector chains {φi,j}ni

j=1 using a
cryptographic hash function to ensure the correct order
among them. In particular, recall that every attribute
rating is on a given range [Amin, Amax], say [1, 10]. Let χ
denote a publicly known number smaller than Amin. The
data collector recursively computes a sequence of hash
values as follows,

hi,j =

{
H(χ) j = ni + 1,
H(hi,j+1||φi,j) 1 ≤ j ≤ ni,

(2)

where || denotes concatenation and ni ≥ 0. If ni = 0, we
let φi,1 = hi,1 = H(χ). Note that the data collector can
also ensure the correct order among {φi,j}ni

j=1 by build-
ing a Merkle hash tree on top of them, but doing so will
incur higher communication and computation overhead
during query processing and query-result verification.

Finally, the data collector builds a Merkle hash tree
over {hi,1}Mi=1 to enable efficient authentication of query
results. More specifically, assuming that M = 2d for
some integer d, the data collector builds a binary tree of
depth d, in which every leaf node corresponds to one
of {hi,1}Mi=1, and every non-leaf node is computed as
the hash of the concatenation of its immediate children
nodes. We also define an auxiliary set Ti as the set of
non-leaf nodes required along with any leaf node hi,1 to
compute the Merkle root hash. An example for M = 8 is
shown in Fig. 1, in which h1−2 = H(h1,1||h2,1), h3−4 =
H(h3,1||h4,1), h5−6 = H(h5,1||h6,1), h7−8 = H(h7,1||h8,1),
h1−4 = H(h1−2||h3−4), h5−8 = H(h5−6||h7−8), and
h1−8 = H(h1−4||h5−8). If h3,1 is the given leaf node,
we have T3 = {h4,1, h1−2, h5−8}, as the root h1−8 =
H(H(h1−2||H(h3,1||h4,1))||h5−8). Note that if M is not
a power of two, some dummy leaf nodes need be
introduced for constructing the Merkle hash tree.

Since there are totally λ attributes, every POIi,j has
λ indexes, based on which the data collector builds a
separate Merkle hash tree for every attribute and signs
every root using its private key. In addition, the data
collector need perform the above operations separately
for the data set of every POI category.

4
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4.1.2 Query Processing

The LBSP purchases the data sets of interested POI
categories from the data collector. For every POI category
selected by the LBSP, the data collector returns the
original data set D, the signatures on λ Merkle root
hashes, and all the intermediate results for constructing
the Merkle hash tree. Alternatively, the data collector can
just return the first two pieces of information and let the
LBSP itself perform a one-time process to derive the third
piece in the same way as the date collector.

Now we illustrate the processing of a snapshot top-k
query, including the desired POI category, the interested
attribute q ∈ [1, λ] for ranking POIs, the query region
R, and k. We denote the k POIs in R with the highest
k attribute-q ratings by kPOI, among which the lowest
attribute-q rating is denoted by γ. In addition, we call
each zone either completely or partially covered by the
query region a candidate zone. A correct and authentic
query result needs to satisfy two conditions. The cor-
rectness condition requires the query result to contain
at least the following information: (1) the complete data
records for kPOI; (2) the data indexes (much shorter than
data records) for all the POIs in each candidate zone but
not in R whose attribute-q rating is larger than γ; and
(3) some additional information to prove that the query
result includes either the data record or index of every
POI in every candidate zone with attribute-q rating not
smaller than γ. In addition, the authenticity condition
requires that the query result include the auxiliary set for
every candidate zone for the calculation and verification
of the qth Merkle root hash.

To satisfy the correctness condition, the LBSP first
searches {D′

i}Mi=1 to locate kPOI and then determine the
lowest attribute-q rating γ. Next, the LBSP determines
the set of candidate zones, denoted by I ⊆ {1, . . . ,M}.
Let τi the number of POIs in zone i with attribute-q rat-
ings higher than γ. Apparently, we have ni ≥ τi, ∀i ∈ I.
It follows that

∑
i∈I τi ≥ k, which holds because any

candidate zone that partially overlaps with R may have
some POIs outside R but with attribute-q ratings higher
than γ. We further define

Xi,j =

{
D′

i,j if l′i,j ∈ R,
φi,j o.w., (3)

for all i ∈ I, j ∈ [1, ni]. In other words, Xi,j equals D′
i,j if

the POI is in R and a shorter index otherwise. The LBSP
returns the following information Si for each candidate
zone i ∈ I in the query result to enable correctness
verification.

• Case 1: if ni = 0, Si = 〈i〉.
• Case 2: if ni = 1, Si = 〈i,Xi,1〉.
• Case 3: if ni ≥ 2 and τi = 0, Si = 〈i, φi,1, hi,2〉.
• Case 4: if ni ≥ 2 and ni > τi ≥ 1,

Si = 〈i,Xi,1, . . . , Xi,τi , φi,τi+1, hi,τi+2〉 .

• Case 5: if ni = τi ≥ 2, Si = 〈i,Xi,1, . . . , Xi,τi〉.
Note that the last two fields in both Case 3 and Case 4

correspond to the POI in zone i with the largest attribute-
q rating smaller than γ. Since the POIs in zone i have
been ranked and chained together under cryptographic
hash functions during data preprocessing, the inclusion
of such fields is necessary for proving that every POI
in every candidate zone whose attribute-q rating not
smaller than γ has been covered in the query result in the
form of either a data record or index. Such information
has been implicitly covered in the other three cases as
well. In addition, the LBSP returns T =

⋃
i∈I Ti and the

data collector’s signature on the qth Merkle root hash to
enable authenticity verification.

4.1.3 Query-result Verification
Now we discuss how the user verifies the authenticity
and correctness of the query result, which can be done
via a small plug-in developed by the data collector and
installed on his web browser. The security analysis of
Scheme 1 is postponed to Section 6.

For authenticity verification, the user checks if every
piece of information in the query result can lead to the
same Merkle root hash matching the data collector’s
signature. Specifically, the user first determines which
of the above five cases Si (∀i ∈ I) belongs to based
on its message format. He then derives the indexes for
all related POIs in {Si}i∈I . Note that the indexes of the
POIs outside R are explicitly included in {Si}i∈I , while
those of the POIs in R can be computed from their
corresponding data records in {Si}i∈I . Subsequently, the
user computes hi,1 for each i ∈ I according to Eq. (2).
Since the auxiliary information Ti for hi,1 is also in
the query result, the user further uses hi,1 and Ti to
compute the Merkle root hash. If the query result is
authentic, the user can derive the same root hash for
each i ∈ I, in which case he further verifies whether the
data collector’s signature in the query result is a valid
signature on the derived root hash. If so, he considers
the query result authentic.

To perform correctness verification, the user first
checks if zones I encloses the query region R. If so, he
proceeds with the following verifications in accordance
with the aforementioned correctness condition used in
query processing.

1. There are exactly k data records in the query result
with POI locations all in R, which correspond to
the top-k POIs (i.e., kPOI) in R. If so, the user
locates the lowest attribute-k rating γ.

2. None of the POIs for which the data indexes
(instead of data records) are returned satisfy the
query. In particular, for each index φi,j (i ∈ I), at
least one of the following conditions does not hold.

• φi,j contains a location l′i,j ∈ R.
• φi,j contains an attribute−q rating A′

i,j,q > γ.
In addition, since the query result is authentic, it must
include either the data record or index for every POI
in every candidate zone whose attribute-q rating is not
smaller than γ. Therefore, the user considers the query
result correct if the above two verifications succeed.

5
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Rating

Location

Zone 1 Zone 2 Zone 3 Zone 4

Query region

POI returned Index returned POI need not be returned 

Index returned in Scheme 1, not returned in Scheme 2

Fig. 2: An example for Scheme 1, where M = 4, k = 4,
and the dots in zone i correspond to POI records D′

i,1 to
D′

i,4 from top to bottom.

4.1.4 An Example

To better illustrate Scheme 1, we show an example in
Fig. 2 with M = 4 zones, where we assume one-
dimensional POI locations for simplicity, i.e., that all
POIs are distributed on a straight line, and all the shown
POIs have been ordered according to the attribute-q
rating (q is omitted from subscripts for brevity). Suppose
that the user queries the top-4 POIs in the query region
that completely covers zone 2 and partially overlaps
with zones 1 and 3. It follows that I = {1, 2, 3}, and
τ1, τ2, τ3 are 3, 2, 0, respectively. For zone 1, there is
one POI outside the query region with a rating higher
than γ, so we have S1 = 〈1, D′

1,1, φ1,2, D
′
1,3, φ1,4, h1,5〉.

Similarly, we have S2 = 〈2, D′
2,1, D

′
2,2, φ2,3, h2,4〉 for zone

2 and S3 = 〈3, φ3,1, h3,2〉 for zone 3. The query result
includes S1, S2, S3, the auxiliary indexes {Ti}3i=1, and
the data collector’s signature on h1−4 which is the root
of the Merkle hash tree with depth d = 2. Based on
S1, S2, and S3, the user can derive h1,1, h2,1, and h3,1,
respectively. He can further compute three Merkle root
hashes using h1,1 and T1, h2,1 and T2, and h3,1 and
T3, respectively. If the three root hashes are equal and
match the data collector’s signature, the user considers
the query result authentic. If the query result can also
pass the aforementioned three correctness verifications,
the user considers the query result both authentic and
correct.

4.2 Scheme 2

Scheme 1 requires the LBSP to return some information
for every candidate zone even if it has no top-k POI
satisfying the query. This may incur significant com-
munication overhead for a large query region. Given
this observation, we propose Scheme 2 which works by
embedding some information among nearby zones to
dramatically reduce the amount of information returned
to the user.

The basic idea of Scheme 2 can be better illustrated
using a simple example. Assume that zones i and j
are two candidate zones. But neither contains a top-
k POI. Under Scheme 1, the LBSP need return both
〈i, φi,1, hi,2, Ti〉 and 〈j, φj,1, hj,2, Tj〉 to prove that no POI

in zones i or j satisfies the query. In contrast, if we could
consider zones i and j as one virtual zone, the LBSP
only need return 〈x, φx,1, hx,2, Tx〉, where x = i if the
largest attribute-q rating in zone j is smaller than that in
zone i, and x = j otherwise. The amount of information
returned to the user can thus be reduced.

4.2.1 Data Preprocessing

To implement the basic idea exemplified above, the data
collector binds to every POI data index some additional
information about the POIs in adjacent zones. In partic-
ular, the data collector partitions the original M zones
into non-overlapping macro zones, each consisting of m
nearby zones, where m is a public system parameter.
Assuming that M is divisible by m, we let Me denote
the set of zones composing the macro zone e ∈ [1,M/m].

Consider a macro zone e as an example. As in
Scheme 1, the data collector first sorts Di for every
zone i ∈ Me according to the descending order of
the attribute-q rating to generate an orderer list D′

i =
〈D′

i,1, D
′
i,2, . . . , D

′
i,ni

〉. Let A′
j,0,q = χ and A′

j,ni+1,q = χ
denote two public values larger than the largest possible
attribute rating and smaller than the smallest possible
attribute rating, respectively. The data collector further
generates {Ii,j}ni+1

j=1 , where Ii,j = {〈s, A′
s,1,q〉|s ∈ Me \

{i}} with A′
s,1,q ∈ (A′

i,j−1,q , A
′
i,j,q). In other words, Ii,j

comprises all the other zones in Me \ {i} and their
largest attribute-q ratings in (A′

i,j−1,q , A
′
i,j,q). Apparently,

we have |
⋃ni+1

j=1 Ii,j | = |Me \ {i}| = m − 1. The data
collector then computes an index as

φi,j = 〈li,j , Ii,j , A′
i,j,q, H(Ii,j ||D′

i,j)〉 (4)

for all j ∈ [1, ni] and chains {φi,j}ni

j=1 according to Eq. (2).
Finally, it builds a Merkle hash tree over {hi,1}Mi=1 and
signs the root as in Scheme 1. The essential difference in
data preprocessing between Schemes 1 and 2 thus lies
in the construction of POI indexes.

As in Scheme 1, the data collector builds a separate
Merkle hash tree for every attribute q ∈ [1, λ] in every
POI category and signs every Merkle root hash using its
private key.

4.2.2 Query Processing

The LBSP purchases the original data set D, the signa-
tures on λ Merkle root hashes, and all the intermediate
results for constructing the Merkle hash tree of every
interested POI category from the data collector.

After receiving a top-k query, the LBSP first deter-
mines the top-k POIs (i.e., kPOI) in the query region R
and also the set of candidate zones I ⊆ {1, . . . ,M}. The
LBSP then determines the lowest attribute-q rating γ in
kPOI and τi as the number of POIs in zone i ∈ I with
attribute-q ratings not smaller than γ. Next, the LBSP
defines

Yi,j =

{
D′

i,j ||Ii,j if l′i,j ∈ R,
φi,j o.w., (5)

6
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for all i ∈ I, j ∈ [1, ni], where Ii,j is as defined in the
data-preprocessing phase. The query result includes the
following information Si for each zone i ∈ I with τi > 0.

• Case 1: if ni = τi ≥ 1, Si = 〈i, Yi,1, . . . , Yi,τi〉.
• Case 2: if ni ≥ 2 and ni > τi > 0,

Si = 〈i, Yi,1, . . . , Yi,τi , φi,τi+1, hi,τi+2〉 .

Moreover, let M′
e = {i|i ∈ Me

⋂
I, τi < ni, ni �= 0}

denote the zones with at least one attribute-q rating
smaller than γ in every macro zone e ∈ [1,M/m]. There
are two cases.

• Case 3: if there is zone i ∈ M′
e, τi > 0, nothing

need be done because this case has been covered
by Case 2.

• Case 4: otherwise, we have τi = 0, ∀i ∈ M′
e.

Assuming that A′
j,1,q is the highest attribute-q rating

in M′
e, the LBSP also adds Sj = 〈j, φj,1, hj,2〉 to the

query result.
Furthermore, for any candidate macro zone e, if there
is no POI in zones Me

⋂
I with attribute-q rating not

smaller than γ, we must have ni = τi for all i ∈ Me

⋂
I,

in which case the LBSP is required to return Si = 〈i〉 for
each i ∈ Me

⋂
I if ni = τi = 0 (Case 5). Note that the

case for ni = τi > 0 has been covered by Case 1 above.
As in Scheme 1, the LBSP additionally returns the data

collector’s signature on the qth Merkle root hash and
T =

⋃
i∈I′ Ti, where I ′ ⊆ I is the set of zones in which

there at least one POI data record or index has been
included in the query result. In contrast to Scheme 1,
〈i, φi,1, hi,2, Ti〉 need not be returned for any zone i ∈
I when τi = 0 in most cases due to the macro-zone
idea, which can lead to much lower computation and
communication overhead in practice.

4.2.3 Query-result Verification

After receiving the query result, the user first verifies
its authenticity as in Scheme 1. If the authentication
succeeds, he proceeds with correctness verification by
checking whether the query result contains some infor-
mation for every candidate macro zone e ∈ [1,M/m]
that overlaps with the query region R. This verification
should succeed for a correct query result according to the
query-processing process. If so, the user further checks
that the query result satisfies the same two conditions as
in Scheme 1 (see Section 4.2.3) and then determines the
lowest attribute-q rating γ among kPOI. Subsequently,
based on the information format Si for every zone i in
the query result, the user determines τi (i.e., the number
of POIs in zone i with attribute-q ratings ≥ γ) and also
the relationship between τi and ni (the total number of
POIs in zone i).

Unlike Scheme 1, Scheme 2 does not require some in-
formation to be returned for every candidate zone i ∈ I
overlapping with the query region R if τi = 0. The LBSP
may exploit this situation and return no information for
zone i even if τi > 0. To detect this possible attack,
the user conducts the following verifications for every

candidate macro zone e in accordance with the five cases
in query processing.

• If there is any zone i ∈ I
⋂
Me with 0 < τi < ni

(i.e., Case 2 in query processing), the user checks
whether the query result contains a valid Sx field
corresponding to Case 1 or 2 in query processing for
every zone x ∈ I

⋂
Me

⋂
(
⋃τi+1

j=1 Ii,j) that satisfies
A′

x,1,q ≥ γ > A′
i,τi+1,q. If not, the user considers

the query result incorrect. The reason is that the
pair 〈x,A′

x,1,q〉 should have been inserted by the
data collector in one of {Ii,j}τi+1

j=1 if x ∈ Me and
A′

x,1,q > A′
i,τi+1,q. If x is also in I and A′

x,1,q ≥ γ,
we have τx ≥ 1, so the LBSP should have returned
a valid Sx for zone x corresponding to Case 1 or 2.

• If such zone i does not exist, the user checks if
the query result contains Sj = 〈j, φj,1, hj,2〉 =
〈j, lj,1, Ij,1, A′

j,1,q, H(Ij,1||D′
j,1)〉 with A′

j,1,q < γ for
j ∈ I

⋂
Me, which corresponds to the case of τi = 0

for all i ∈ M′
e = {i|i ∈ Me

⋂
I, τi < ni, ni �=

0}. If so, for every zone x ∈ I
⋂
Me

⋂
Ij,1 with

A′
x,1,q ≥ γ > A′

j,1,q , the user checks whether the
query result contains a valid Sx corresponding to
Case 1 or 2 in query processing. If not, the query
result is considered incorrect. Note that this verifi-
cation implicitly ensures the compliance with Case 4
in query processing, i.e., that the LBSP only returns
the information for the highest attribute-q rating in
M′

e.
• If such zone j does not exist either, it must be true

that ni = τi for all i ∈ I
⋂
Me and that there is

no attribute-q rating in zones I
⋂
Me smaller than

γ. The user verifies this by checking if ni = 0 or
ni = τi > 0 for each zone i ∈ I

⋂
Me according to

the corresponding field Sx. If not, the user considers
the query result incorrect.

If the query result pass all the above verifications, the
user considers it both authentic and correct.

4.2.4 An Example

We continue with the example in Fig. 2, where we
assume that zones 1 to 3 compose a macro zone. Unlike
in Scheme 1, the LBSP need not return any information
for zone 3, which has been embedded into the query
result along with the information from zones 1 and
2. More specifically, we can see that the highest POI
rating A′

3,1 in zone 3 satisfies A′
1,3 > A′

3,1 > A′
1,4 and

A′
2,2 > A′

3,1 > A′
2,3. Therefore, 〈3, A′

3,1〉 must have been
embedded into I1,4 and also I2,3, so there is no need to
include 〈3, A′

3,1, T3〉 in the query result. After verifying
the query result, the user can find that no POI in zone 3
has a rating higher than γ.

5 SECURE MOVING TOP-k QUERY PROCESS-
ING

In this section, we propose a novel scheme to realize
secure moving top-k query processing.
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5.1 Basics of Moving Top-k Queries

Similar to moving kNN queries [17], a moving top-k
query asks for the top-k POIs in a moving query region
R. For example, a user may want to be kept updated
about the top-10 restaurants within 5 miles radius when
driving north in Manhattan. In this example, R is a
changing circle of radius 5 miles centered at the user’s
current location.

One may think about two possible solutions for secure
moving top-k queries. First, the user may query k′ > k
POIs in a larger area than needed whereby to deduce
the top-k POIs in a moving smaller query region. Un-
fortunately, this solution works only if POI density is
relatively uniform across the larger region, otherwise it
is difficult to choose suitable k′ to ensure that the top-
k′ POIs in the larger region contains the top-k′ POIs in
each smaller region of interest. For example, there are
many more good restaurants in the middle and lower
Manhattan area than in the upper Manhattan area. If
the user wants to deduce the top-10 restaurants in the
upper Manhattan area from the top-k′ restaurants in
New York city, he has to choose k′ large enough to ensure
the query result contains the top-10 restaurants in the
upper Manhattan area, which is not only difficult but
may also incur unnecessarily high communication and
computation overhead. Another possible solution is to
securely process a moving top-k query as a sequence
of snapshot top-k queries. In particular, the mobile user
submits a snapshot top-k query at a sufficiently high
frequency which can be processed by the LBSP using
Scheme 1 or 2. Since the query results for consecutive
snapshot top-k queries may largely overlap, this solution
may also incur unnecessarily high communication and
computation overhead. This observation motivates us
to develop a more efficient solution to moving top-k
queries.

5.2 Scheme 3

Our basic idea is to let the LBSP process consecutive
snapshot top-k queries involved in a moving top-k query
as a whole and only return a query result if there is
any update in the top-k POIs satisfying the query. An
update in the top-k POIs may occur when a current top-
k POI is no longer in the moving query region or when a
new POI appears in the moving query region, which has
an attribute-q rating higher than the lowest among the
current top-k POIs. The user can directly tell when the
first situation occurs based on the current top-k POIs he
knows, in which case he can issue a new snapshot top-k
query for the current query region. The user, however,
cannot tell when the second situation will occur. Without
a sound defense in place, the LBSP can choose not to
inform the user about updated top-k POIs in the second
situation.

Scheme 3 aims at the second situation discussed above
and can be built upon either Scheme 1 or Scheme 2. Due
to space constraints, we focus on Scheme 1 and assume

A

D

B C

E F

Query region

X Y

Fig. 3: An example of two consecutive snapshot top-k
queries.

that the data set has been preprocessed by the data
collector accordingly, and the same design principles
apply when Scheme 2 is chosen instead. Without loss of
generality, we assume that a user issues a moving top-
k query for attribute q during time period [0, T ], where
T may be unknown in advance. Since a moving top-
k query involves a sequence of snapshot top-k queries,
we denote the ath snapshot top-k query by Qa and
the corresponding query region Ra. We also let kPOIa
be the top-k POIs in Ra and γa the lowest attribute-q
rating among kPOIa. In what follows, we detail the ad-
ditional operations in Scheme 3 in contrast to Scheme 1,
including query scheduling, query processing, and query-
result verification.

5.2.1 Query Scheduling

To realize a moving top-k query, the user issues a se-
quence of snapshot top-k queries according to a query
schedule. In particular, the user issues the ath snapshot
top-k query (i.e., Qa) at time

ta =

{
0 if a = 1,
min(ta−1 +
t, tu, T ) o.w. , (6)

where 
t is his personal parameter determining the
lowest frequency at which snapshot queries are issued,
and tu denotes the time when the first POI in the current
top-k POIs moves out of the query region. To be more
clear, after receiving kPOIa from the LBSP in response
to Qa, the user sets a timer of length 
t. Then he issues
Qa+1 when the timer fires or when the first POI in kPOIa
is no longer in his moving query region, whichever
comes first.

As before, Qa includes the interested POI category,
the interested attribute q, the current query region Ra,
and an integer k ≥ 1. To facilitate query processing at
the LBSP, it also includes both an integer id uniquely
identifying this moving top-k query and a one-bit flag
indicating whether Qa is the last snapshot query for this
moving top-k query.

5.2.2 Query Processing

Assume that the LBSP has purchased the data set from
the data collector as in under Scheme 1. It processes the
sequence of snapshot top-k queries of the same moving
top-k query as follows.

We first define a special region to ease our subsequent
illustration. Consider two consecutive snapshot top-k

8
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queries Qa and Qa+1 with query regions Ra and Ra+1,
respectively. Since the user’s query region R is always
defined with regard to his current location, we have
R = Ra at time ta and R = Ra+1 at time ta+1. We
define the progression region, denoted by Pa, as the area
in Ra+1 but not in Ra. Consider Fig. 3 as an example
where the user issues two consecutive snapshot top-k
queries at locations X and Y with query regions R1 and
R2, respectively. The progression region P1 is the area
formed by arcs AD and ACFD.

On receiving query Q1, the LBSP locates kPOI1 in
the query region R1 and then returns a complete query
result constructed as in Scheme 1. In addition, the LBSP
records id, R1, and kPOI1 to facilitate the processing of
subsequent snapshot top-k queries with the same mov-
ing top-k identifier id. Then it processes any subsequent
query Qb (b > a) as follows. Without loss of generality,
assume that the last complete query result the LBSP
returned is in response to Qa (a ≥ 1), which contains
kPOIa in Ra. In other words, we assume that the top-
k POIs {kPOIa}b−1

i=a in the query regions {Ri}b−1
i=a are all

equal to kPOIa.
First, the LBSP checks if a complete query result con-

taining the top-k POIs (i.e., kPOIb) in the current query
region Rb need be returned by checking the following
two conditions.

• kPOIb have different POIs from kPOIa.
• The one-bit flag in Qb is set, meaning that it is the

last snapshot query for the current moving top-k
query identified by the same id.

If neither condition holds, the LBSP returns a short ACK
containing a predefined flag to the user, which means
that the previously returned top-k POIs in kPOIa remain
valid in the current query region Rb. Otherwise, the
LBSP constructs a complete query result as follows.

First, the LBSP locates the top-k POIs (i.e., kPOIb) in
the query region Rb whose attribute-q ratings are among
the highest k. Second, the LBSP retrieves the recorded
query regions {Rx}bx=a based on their same moving
top-k identifier id, based on which to compute the pro-
gressive regions {Px}b−1

x=a. Next, the LBSP computes a
verification region as Va→b =

⋃b−1
x=a Px whereby to find

the set of zones either completely or partially covered
by Rb

⋃
Va→b, denoted by Ia→b.

Let γa and γb be the lowest attribute-q rating among
kPOIa and kPOIb, respectively. For each zone i ∈ Ia→b,
we define

τi =

⎧⎪⎪⎨
⎪⎪⎩

τb,i if zone i only overlaps with Rb,
τa,i if zone i only overlaps with Va→b,
max(τa,i, τb,i) if zone i overlaps with both Rb

and Va→b ,

where τa,i and τb,i are the number of POIs in zone i with
the attribute-q rating ≥ γa or γb, respectively. We further
define

Zi,j =

{
D′

i,j if l′i,j ∈ Rb and A′
i,j,q ≥ γb,

φi,j otherwise ,

which means that the LBSP only needs to return a much
shorter index instead of the complete record for any
POI not in the query region Rb or not among the top-
k. Similar as in Scheme 1, the LBSP finally returns the
following information Si for each zone i ∈ Ia→b as part
of the query result.

• Case 1: if ni = 0, Si = 〈i〉.
• Case 2: if ni = 1, Si = 〈i, Zi,1〉.
• Case 3: if ni ≥ 2 and τi = 0, Si = 〈i, φi,1, hi,2〉.
• Case 4: if ni ≥ 2 and ni > τi ≥ 1,

Si = 〈i, Zi,1, . . . , Zi,τi , φi,τi+1, hi,τi+2〉 .

• Case 5: if ni = τi ≥ 2, Si = 〈i, Zi,1, . . . , Zi,τi〉.
In addition, the LBSP returns T =

⋃
i∈Ia→b

Ti and the
data collector’s signature on the qth Merkle root hash.

5.2.3 Query-result Verification
For every snapshot top-k query Qb of the same mov-
ing top-k query, the LBSP (if benign) should return a
complete query result if b = 1 or there has been any
change in the top-k POIs, or return an ACK if b > 1
and the previously returned top-k POIs are still valid.
Accordingly, there are three cases for the user to verify
the query result in response to Qb. First, if the user
receives an ACK when Qb is the final snapshot query, he
can immediately tell that the result is incorrect. Second,
if receiving an ACK when Qb is not the final snapshot
query, he marked this query result unverified and waits
for the next complete query result. Third, if receiving a
complete query result for Qb (no matter whether Qb is
the final query), he verifies it as follows.

First, the user checks if the query result is authentic as
in Scheme 1. If so, the user derives the set of zones Ia→b

from the POI information returned in the query result
and checks if zones Ia→b encloses the region Rb

⋃
Va→b.

If so, he locates the lowest attribute-q rating γb in the
query result whereby to check whether all the following
conditions hold.

1. There are exactly k POI records in the query result.
2. Every returned POI record is in Rb.
3. None of the POIs for which the indexes are re-

turned satisfy the query. In particular, for each in-
dex φi,j , ∀i ∈ Ia→b, at least one following condition
does not hold.

• φi,j contains a location l′i,j ∈ Rb.
• φi,j contains an attribute rating A′

i,j,q ≥ γb.
If so, the top-k POI records are correct.

Assume that the last complete query result the user
verified is for Qa and contains kPOIa in the region Ra

and that b > a + 1. The user should have accumulated
b− a− 1 unverified query results for queries {Qx}b−1

x=a+1

and can verify their correctness by checking whether
the LBSP should have returned a complete query result
instead of an ACK for each of them instead. Let γa again
denote the lowest attribute-q rating in kPOIa and Sa→b =⋃b−2

j=a Pj denote the suspicion region. If all the unverified
query results are correct, there should not be any POI in
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Sa→b with attribute-q rating higher than γa. According
to the query-processing process, the LBSP should have
returned one or multiple data indices for every zone
i that overlaps with Sa→b; otherwise, the query result
for Qb would not have passed the verification. The user
thus proceeds to check whether at least one following
condition does not hold for any such index, say φi,j .

• φi,j contains a location l′i,j ∈ Sa→b.
• φi,j contains an attribute rating A′

i,j,q > γa.
If so, all the unverified query results are marked verified;
otherwise, the LBSP has misbehaved.

6 PERFORMANCE ANALYSIS

In this section, we analyze Schemes 1∼3 with regard
to their correctness in detecting inauthentic and/or
incorrect query results and the related communica-
tion/computation overhead. To make the quantitative
analysis tractable, we make the following assumptions.

• There are n > k POIs uniformly distributed in each
zone, i.e., ni = n, ∀i ∈ [1,M ], where M = 2d for an
integer d > 1.

• All attribute ratings are i.i.d. random variables u-
niformly distributed in the range [0, 1] after proper
normalization.

• The query-region size is δ times of the zone size.

6.1 Analysis of Scheme 1

The following proposition is for the correctness of
Scheme 1.

Proposition 1: Scheme 1 can detect any incorrect and/or
inauthentic query result from a misbehaving LBSP.
We give the proof of the above proposition in the sup-
plemental file.

The main extra computation overhead incurred by
Scheme 1 on top-k query processing involves hash com-
putations and signature generations/verifications. Con-
sider the data collector first. For every zone i ∈ [1,M ]
and every attribute, the data collector performs n hash
computations to generate the indexes {φi,j}nj=1 and n
hash computations to derive hi,1, which leads to totally
2Mn hash computations. In addition, the data collector
needs M − 1 hash computations to construct the Merkle
hash tree of every attribute and one signature generation
for the root hash. Since there are q POI attributes, the
total computation overhead per POI category at the data
collector is λ(2Mn + M − 1) hash computations and λ
signatures. Moreover, the computation overhead at the
LBSP is negligible because the LBSP need not perform
any hash or signature operations for query processing.
Finally, we consider the computation overhead at the
user. For every query result, the user needs one signature
verification for the Merkle root hash and also a certain
number of hash computations given below.

Proposition 2: The expected number of hash computations
the user performs to verify the query result under Scheme 1

is given by

E[Nhash,1] = k + |I| · (k + δ)n+ 1

δn+ 1

+
d−1∑
j=1

2j−1(1 − (1− 2−(j−1))|I|) .
(7)

We give the proof of the above proposition in the sup-
plemental file.

Now we analyze the communication overhead associ-
ated with transmitting the necessary information for au-
thenticity and correctness proofs from the data collector
to the LBSP. Let Lh, Lloc, Lr, and Lsig denote the bit-
lengths of a hash value H(·), a POI location, an attribute
rating, and the data collector’s signature, respectively.
For each of λ POI attributes, the data collector sends
n indexes of Lloc + Lr + Lh bits for each of M zones
as well as a Merkle hash tree of (M − 1)Lh bits. The
extra communication overhead in bits per POI category
Scheme 1 incurs between the data collector and LBSP is
thus

S1 = λ(Mn(Lloc + Lr + Lh) + (M − 1)Lh + Lsig). (8)

We also have the following proposition about the extra
communication overhead associated with sending au-
thenticity and correctness proofs of a top-k query result
from the LBSP to the user.

Proposition 3: The additional communication overhead
between the LBSP and the user incurred by Scheme 1 is given
by

E[T1] = (|I| · (k + δ)n+ 1

δn+ 1
− k)(Lloc + Lr + Lh) + |I| · d

+
d−1∑
j=1

2j(1 − (1− 2−j)|I|)Lh + Lsig ,

(9)

We give the proof of the above proposition in the sup-
plemental file.

6.2 Analysis of Scheme 2

The following proposition is for the efficacy of Scheme 2.
Proposition 4: Scheme 2 can detect any incorrect and/or

inauthentic query result from a misbehaving LBSP.
We give the proof of the above proposition in the sup-
plemental file.

Scheme 2 incurs the same computation overhead to
the data collector and LBSP as Scheme 1, which has
been analyzed before. To verify the authenticity and
correctness of a top-k query result, the user performs
one signature verification on the Merkle root hash and
also a certain number of hash computations given in the
following theorem.

Proposition 5: The expected number of hash computations
the user performs to verify the query result under Scheme 2

10
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is given by

E[Nhash,2] = |I|μ1 +

d−1∑
j=1

2j−1(1− (1− 2−(j−1))|I|(1−μn
2 )) ,

(10)
where μ1 = (n− nμ2 + 1− μn

2 ) and μ2 = δn−k+1
δn+1 .

We give the proof of the above theorem in the supple-
mental file.

Now we analyze the communication overhead in-
curred by Scheme 2. In Scheme 2, every zone belongs
to a macro zone of m zones. For every zone i in a macro
zone Me, the set {j, A′

j,1,q}j∈Me\{i} need be transmitted
along with both POI records and indexes. Since a zone ID
is of log2 M = d bits, Scheme 2 requires the data collector
to additionally transmit 2(m−1)(d+Lr) bits for attribute
q in contrast to Scheme 1. The extra communication
overhead per POI category Scheme 2 incurs between the
data collector and LBSP is thus

S2 = S1 + 2(m− 1)λ(d+ Lr) , (11)

where S1 is given in Eq. (8). We also have the follow-
ing proposition about the communication overhead for
sending authenticity and correctness proofs of a query
result from the LBSP to the user.

Proposition 6: Assuming that the query region comprises
m̌ zones I fully contained in a macro zone Me with m zones.
The expected additional communication overhead Scheme 2
incurs between the LBSP and user is bounded as follows,

T2 ≤ m̌(1− μn)d+ m̌(n− nμ+ 1− μn)(Lloc + Lr + Lh)

+ (m̌(1 − μn) +

d−1∑
j=1

2j(1− (1− 2−j)m̌(1−μn)))Lh

+ m̌(1− μn)(m− m̌)(1 − (
n− ν

n+ 1
)n)(d+ Lr)

+ g(g − 1)(d+ Lr) + Lsig ,
(12)

where μ = (m̌n− k + 1)/(m̌n+ 1), ν = n(1− μ)/(1− μn),
and g = min(k, m̌).
We give the proof of the above proposition in the sup-
plemental file. We have not been able to obtain a close-
form solution for the more general case, which we will
evaluate using simulation in the next section.

6.3 Analysis of Scheme 3

The following proposition is for the correctness of the
Scheme 3.

Proposition 7: Any misbehavior of the LBSP, including
returning incorrect/inauthentic query result and omitting
complete query results, will be eventually detected under
Scheme 3.
We give the proof of the above proposition in the sup-
plemental file. We will use simulation to evaluate the
communication and computation overhead incurred by
Scheme 3 in the next section.

TABLE 2: Default Simulation Settings

Para. Val. Para. Val. Para. Val. Para. Val.
M 10000 m 100 n 100 δ 10
k 5 d 14 d 20 Lh 160

Lloc 20 Lsig 160 Lr 10

7 SIMULATION RESULTS

In this section, we evaluate our schemes and validate the
theoretical results we obtained in Section 6 using simula-
tions on a synthetic dataset. We assume that the data set
covers 100×100 unit square zones of 1000×1000m2, each
containing 100 POIs distributed uniformly at random.
The simulation code is written in C++, and each data
point represents an average of 50 simulation runs with
different random seeds. In addition, our simulations
use the default parameters in Table 2, unless stated
otherwise.

7.1 Snapshot Top-k Queries

We first report the simulation results for Schemes 1 and
2. Recall that δ denote the ratio of the query-region
size to the zone size and that I represent the set of
candidate zones that completely or partially overlap
with the query region R. We assume that R exactly
covers an integer number of zones, which means that
I = R and |I| = δ. We have also simulated the top-k
queries with query region R being a circle of radius r
centered at a random location and give the simulation
results in the supplemental file.

Fig. 4a shows the impact of δ on the user’s compu-
tation overhead for k = 5, where the single signature
verification is not included for brevity. Clearly, our ana-
lytical and simulation results closely match under both
schemes. In addition, the user’s computation overhead
increases with δ under Scheme 1, while it initially in-
creases as δ goes from 1 to 10 and then is relatively stable
under Scheme 2. The reason is that Scheme 1 requires
the LBSP to return information for every zone in R for
the user to verify. Therefore, the larger δ, the higher the
user’s computation overhead in Scheme 1. In contrast,
Scheme 2 requires the LBSP to return information only
for the zones that have at least one POI among the top-k
POIs under our simulation settings, and there are at most
k such zones in R. Therefore, Scheme 2 incurs lower
computation overhead on the user for small k and large
δ.

Fig. 4b shows the impact of δ on the LBSP-user
communication overhead for k = 5. It is clear that the
simulation results are always below the corresponding
theoretical upper bounds. As in Fig. 4a, we can also
observe that the LBSP-user communication overhead in
Scheme 1 always increases with δ and is higher than that
in Scheme 2. In contrast, the LBSP-user communication
overhead under Scheme 2 is relatively stable and even
slightly decreases when δ grows. The reason is that the
kth largest attribute rating becomes large as δ increases,
which means that the query result contains less infor-
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(a) computation cost (b) communication cost

Fig. 4: The impact of δ, where k = 5.

(a) computation cost (b) communication cost

Fig. 5: The impact of k, where δ = 10.

mation for other zones in the same macro zone with
attribute ratings higher than any top-k rating.

Fig. 5a shows the impact of k on the user’s computa-
tion overhead for δ = 10. We can see that our simulation
and analytical results closely match and increase with
k under both schemes. The reason is that the number
of hash computations increases with the number of
zones with information in the query result, which itself
increases with k. In addition, since Scheme 2 does not
require the LBSP to return any information for zones
without a top-k POI, it requires the user to perform fewer
hash computations and thus incurs smaller computation
overhead than Scheme 1. The difference between the two
schemes gradually diminishes when k goes beyond 20,
as the number of zones in R without a top-k POI quickly
decreases for sufficiently large k.

Fig. 5b shows the impact of k on the LBSP-user com-
munication overhead for δ = 10. Again, our simulation
and analytical results closely match. In addition, the
LBSP-user communication overhead of Scheme 1 is not
affected by k because it only involves transmitting |I| =
δ POI indexes. In contrast, the LBSP-user communication
overhead of Scheme 2 always increases with k, as the
number of POI records or indexes increases with k, and
accordingly the information about other zones in the
same macro zone returned along with every POI record
or index also increases.

Fig. 6a shows that the user’s computation overhead
decreases rapidly as m increases from 1 to 10 and slowly
as m further increases. The reason is that the LBSP
returns only one index and the corresponding auxiliary
set for each candidate macro zone that has no top-
k POI. When k is small and R is large, most zones

(a) computation cost (b) communication cost

Fig. 6: The impact of m on Scheme 2.

(a) computation cost (b) communication cost

Fig. 7: The impact of n.

in R do not have any top-k POI, so the number of
indexes and auxiliary sets returned is approximately
proportional to the number of macro zones and thus
inversely proportional to m when m is not too large.
Otherwise, the number of macro zones overlapping with
R approaches a constant, leading to relatively stable
computation overhead.

Fig. 6b shows that the LBSP-user communication over-
head quickly decreases as m increases from 1 to 10.
The reason is that the larger m, the fewer POIs and
corresponding auxiliary sets returned to the user. As m
further increases, the communication overhead slowly
increases, as a larger m requires the LBSP to return more
information about other zones in the same macro zone
along with every POI record or index in the query result.

Figs. 7a and 7b show the impact of n, the number
of POIs per zone, on the data collector’s computation
overhead and the collector-LBSP communication over-
head. For brevity, we only show the simulation results
which apply to both Type-1 or Type-2 queries. Fig. 7a
shows that the data collector’s computation overhead
increases linearly with n under both schemes. The reason
is that the data collector performs one hash computation
to generate the index and chain it with adjacent indexes
for each POI record in both schemes. Moreover, as antic-
ipated, the larger M , the more POIs, and the higher the
computation overhead. In addition, Fig. 7b shows that
the collector-LBSP communication overhead under both
schemes increases with n, and Scheme 2 incurs larger
overhead because it requires additional information for
other zones in the same macro zone to be transmitted
for each POI record.
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(a) computation cost (b) communication cost

Fig. 8: Comparison of the first 20 snapshot queries in
Schemes 1 and 3.

(a) computation cost (b) communication cost

Fig. 9: The impact of 
t on Scheme 3.

7.2 Moving Top-k Queries

In this subsection, we report the simulation results for
Scheme 3. In particular, we compare Scheme 3 with
realizing moving top-k query via independent snapshot
queries under Scheme 1. We simulate a moving top-
k query in which the query region is a circular area
of radius r = 5000m centered at the user’s location.
The user starts at the random location along a random
direction, moves at a speed of 5m/s for a total distance
of 5000m.

Figs. 8a and 8b show the user’s computation overhead
and LBSP-user communication overhead incurred by the
first 20 snapshot top-k queries under Schemes 1 and
3, respectively, where 
t = 20s. We can see that both
schemes incur the same user-side computation over-
head and LBSP-user communication overhead for the
first snapshot top-k query, as the LBSP need return a
complete query result in both cases. Under Scheme 1,
each snapshot query incurs similar computation and
communication costs, while under Scheme 3, all the
snapshot queries (except the 1st, 7th, and 16th) incur
negligible user-side computation overhead and LBSP-
user communication overhead. This is anticipated, as the
LBSP always need return a complete query result for any
snapshot query under Scheme 1 but does so only when
there is an update in the top-k POIs from the previous
ones under Scheme 3.

Figs. 9a and 9b come Schemes 1 and 3 when 
t, the
delay between two consecutive snapshot queries, varies.
We can see that the total computation and communica-
tion cost incurred by Scheme 3 are relatively insensitive
to the change in 
t, as no matter how frequently the

(a) computation cost (b) communication cost

Fig. 10: The impact of k on Scheme 3.

user issues snapshot top-k queries, the LBSP only need
return a complete query result when there is an update
in the top-k POIs. In contrast, the total computation and
communication costs incurred by Scheme 3 are inversely
proportional to 
t, since the LBSP treats each snapshot
query independently by always returning a complete
query result. These results demonstrate the significant
advantage of Scheme 3 over Scheme 1.

Figs. 10a and 10b compare Schemes 1 and 3 when
k varies. We can see that the user-side computation
overhead and LBSP-user communication overhead both
increase as k increases under both schemes. This is
because that the larger k, the more updates in the top-k
POIs for the same distance that the user travels, and vice
versa. Under both schemes, the LBSP need return more
complete query results, which lead to higher user-side
computation overhead and LBSP-user communication
overhead. When k is small, Scheme 3 incurs significantly
lower user-side computation overhead and LBSP-user
communication overhead than Scheme 1 does.

8 CONCLUSION

This paper considers a novel distributed system for
collaborative location-based information generation and
sharing. We have proposed three novel schemes to en-
able secure top-k query processing via untrusted LBSPs
for fostering the practical deployment and wide use
of the envisioned system. Our schemes support both
snapshot and moving top-k queries, which enable users
to verify the authenticity and correctness of any top-k
query result. The efficacy and efficiency of our schemes
are thoroughly analyzed and evaluated through detailed
simulation studies.
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