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Abstract

This paper assesses the viability of using the functional programming language
Erlang to implement TINA blocks. It identifies potential changes required in both
Erlang and TINA to acheive systems which are better suited to interfacing. The
changes are identified by focusing on the TINA IDL and TINA’s handling of data
structures used to exchange information, and examining a number of mechanisms
to interface Erlang to the data structures currently provided by TINA.

The contents of this technical report have been submitted to the TINA ’96
Conference.
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1 Introduction

Telecommunications Information Networking Architecture (TINA) provides an ar-
chitectural basis for telecommunications systems. TINA systems are constructed
from units known as building blocks or blocks. This paper assesses the viability of
using the functional programming language Erlang to implement TINA blocks and
examines the issue from two perspectives represented by the two questions:

e What changes are required to TINA to support Erlang?
e What changes are required to Erlang to support TINA?

The paper focuses on the TINA architecture’s handling of data structures used to
exchange information, and examines a number of mechanisms to interface Erlang
to the data structures currently provided by TINA.

Initially, the paper describes TINA’s existing mechanisms for interfacing com-
ponents of a system, and the gross features of the Erlang language. Subsequent
sections identify: techniques which can be used to interface Erlang to TINA with-
out alteration to TINA and the trade-offs required; limitations inherent to the TINA
interface and changes recommended to the TINA interface; and an evaluation of
changes that could be made to the Erlang language.

2 TINA

TINA [2] provides a framework for services in the telecommunications domain. Tt
addresses the requirements of voice-based, multimedia, and information services
over a wide variety of media. In addition, it provides operations and management
functions to control the network and the services offered by the network.

The architecture employs distributed computing concepts. Mechanisms for in-
teroperability, software re-use and flexible data placement, and task assignment are
used to provide computational support to implement the services.

TINA is being developed by an international consortium known as TINA-C.
While most of the information relating to TINA 1s the proprietary property of the
members of that consortium, this document is based on information extracted from
publicly released drafts of TINA-C documents.

Only the computational aspects of the TINA architecture are addressed here.
Issues relating to the provision of services, network design, management of the
network, or task assignment are not covered. It is concerned specifically with the
implementation of computational objects and interactions between computational
objects.

Computational objects interact with each other through defined interfaces. There
are two major classes of interface present in TINA:

Operational interfaces provide defined operations for a server object to offer func-
tions to a client object. Operations have arguments and return results.

Stream interfaces are used for passing structured information such as video or
voice bit streams. These interfaces do not support any operations

The operational interfaces are used to communicate data and commands between
objects. Connections between stream interfaces are made by communicating with
the network.
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2.1 Objects, Blocks and Interfaces

A computational object i1s used to represent data and a set of operations on that
data. Access to the data contained within an object is through the use of a com-
putational interface. Interfaces consist of a set of defined operations which may be
invoked by other objects. An object may have many interfaces.

Building blocks are formed from a collection of objects (see figure 1). They
are the fundamental structuring unit of computation within TINA. Blocks provide
contracts which are used by other blocks to construct services. Blocks must contain
at least one object which supports contracts for the management of objects within
a block. All the objects of a block are required to be co-located. Objects can only
be moved when the block that contains them is moved.

L] suildingBlock
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Interface
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Figure 1: Relationship between Objects, Blocks, and Interfaces

2.2 Data Structures

The data structures used to communicate between TINA blocks are specified using
a language known as TINA-ODL (TINA Object Definition Language). TINA-ODL
[6] is a superset of the IDL language [8] developed by the Object Management Group
(OMG@G). The features added provide facilities required for the telecommunications
domain.

TINA’s object description language supports a number of fundamental data
types and compound data types. These data structures are used in the formal part
of the contracts that describe the form of the input and that of the output of a
block.

Table 1 lists the fundamental data types supported by TINA-ODL. Table 2 lists
the compound types. Data type definitions are taken from IDL language definition
[8].

A significant feature of the description language is that although the syntax
allows recursive types to be specified, these types are not permitted by the semantics
of the language. Recursive types may only be specified through the use of the
sequence compound type.

The syntax and semantics of arrays have been borrowed from C: The size of
an array is specified by a single parameter, and arrays start at index 0 and end at
size — 1.
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short - signed short integer (—2!%...215 — 1)

long - signed long integer (—231...231 — 1)

unsigned short - unsigned short integer (0...21% —1)

unsigned long - unsigned long integer (0...23% — 1)

float - single-precision floating point number conforming to IEEE 754
double - double-precision floating point number conforming to IEEE 754

char - 8-bit quantity where ISO Latin-1 characters and some graphic and
formatting characters are defined. The meanings of other character
values are implementation dependent. The characters may be trans-
lated in transmission to retain meaning.

octet - an 8-bit quantity that is guaranteed not to be translated when
transmitted.

enum - enumerated names are mapped to a data type which is capable of
representing 232 values. The order of identifiers in the specification
determines the relative order of identifiers.

boolean - a quantity taking only the values TRUE and FALSE

string - a series of 8-bit quantities excluding null.

any - any TINA-ODL object

Table 1: Fundamental data types provided by TINA

struct - defines a record containing fields of specified types.

sequence - a list built from elements of a specified type. It is implemented
as a one dimensional array with a maximum size determined at com-
pile time and a length determined at run time.

array - collections of a specified number of instances of a data type. Arrays
may be multidimensional.

union - a collective data structure that can have multiple internal struc-
tures. A switch type specifier is used to specify the interpretation of
the contents of the union by identifying the structure used.

Table 2: Compound data types provided by TINA
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2.3 Exception Handling

The exception mechanism is based on the OMG-IDL notion of exceptions [9, page
7-4]. The exceptions data structure resembles a struct. These structures are used
to return information relating to exceptional conditions which may occur during a
request.

2.4 Using Objects

To access an interface, an object must acquire an interface reference. These are
created when an object offering an interface is created, or they can be passed to an
object by another object.

TINA supports two classes of interaction between clients and servers using in-
terfaces:

Interrogations require the client to pass zero or more arguments to the server.
The invocation is then processed by the server, and any results are returned.
Finally the client is informed of the success or failure of the invocation.

Announcements are similar to interrogations except that results are not returned,
and the client is not informed of the outcome of the invocation.

Interrogations with multiple terminations [9] are specified as having a single
‘normal’ termination. Results are returned via out and inout parameters in the
specification. An interface also has a group of ‘abnormal’ terminations which return
results using the exception mechanism.

When an object is created, an interrogation operation is implicitly invoked. This
operation is invoked only when the object is instantiated. The operation may accept
one or more parameters.

Interfaces may support several operations. An operation on an interface appears
as a function-call in a program invoking the operation. The following are specified
when an operation is defined:

e the type of the result returned by the operation.

e the name of the operation.

e the parameters of the operation.

e a list of exceptions that can be raised by invoking this operation.

There are three types of parameters available to an operation: out - only outputs
results, in - only accepts input, and inout - parameter may be passed both into and
back from the operation.

3 Erlang

The Erlang language [1] is a minimalist functional language employing pattern
matching for rule selection. This paper uses the language description provided in
[1]. Although the description does not reflect the latest version of the language, it
contains all the basic concepts of the language and is sufficiently complete for use
in the evaluation of the potential interaction of Erlang and TINA.

Two significant features of the language’s handling of variables are that it sup-
ports only a single assignment to variables, and it requires the scope of variables to
be restricted to a clause of the function.

The language has support for concurrent programming and is suitable for soft
real time applications.
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integers - positive and negative integers must be representable with at
least a 24 bit range.

floats - floating point values with at least 24 bits of precision.

atoms - a constant with a name. Atoms may be quoted and hence may
include any character. Unquoted atoms must begin with a lower case
letter.

PIDs - a process ID; Uniquely 1dentifies a process within a system.

references - an object which is guaranteed to be unique. Comparison for
equality is the only operation permitted on this type.

Table 3: Fundamental data types provided by Erlang

tuples - a structure which stores a fixed number of items

lists - a structure which can store a variable number of items

Table 4: Compound data types provided by Erlang

3.1 Data Types

Table 3 lists the fundamental data types provided by Erlang. Table 4 lists the
compound data types.

Erlang does not currently have a syntactic mechanism for describing types. The
language 1s dynamically typed. The structuring elements of the language - tuples
and lists - use position within the structure to identify fields rather than names.

3.2 Messages

Erlang has an inbuilt Interprocess Communication Mechanism (IPC). This mecha-
nism allows messages to be sent from one Erlang process to another Erlang process
(see figure 2). The Process ID (PID) is used to identify the target process for
the send operation. Messages may contain any Erlang structure. Message passing
mechanism is asynchronous in nature. Sending a message does not block the sender,
and messages are stored in a mailbox associated with each process. Messages are
retrieved using pattern matching. The first message in order of arrival at the process
which matches the pattern is retrieved.

Work is being conducted into program design techniques for Erlang which are
based on Communicating Finite State Automata (CFSA). Messages are a critical
part of the implementation of CFSAs in Erlang.
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Figure 2: Relationship between Processes, Machines and Messages

4 Compatibility of Erlang & TINA

Erlang and TINA are drawn from two widely differing traditions. TINA’s IDL
is well suited to C and C++ applications. Both these languages are imperative,
statically typed, and have a wide range of fundamental types available. Erlang
is drawn from a minimalist functional school. The language is based on a small
number of orthogonal types using only two structuring elements.

4.1 Fundamental Data Types

While TINA is rich in types, the collection of fundamental types offered is not
orthogonal. For example, the IDL supports 4 types of integers, and 2 types of
floating point value. Erlang is more frugal in providing data types. It supports a
single type of floating point value and a single type of integer.

Erlang has no provision for the octet data type. Characters are handled as atoms
with names of one character in length. Strings are also implemented as atoms.

The enum type provided by TINA has no equivalent in Erlang as an ordering
is imposed on the values of an enum. The value is defined by the order in which
the strings are specified in the enum. The closest equivalent in Erlang is to use
the atom data type. The atom data type has the same semantics as enum for
equality operations, but as the ordering on atoms is lexicographical, inequalities
have different semantics.

There is no boolean type present in Erlang. It may be represented using the
atom frue and a test for equality.

The any type provided by TINA is implicit in Erlang as types are determined
dynamically and are only significant if an operation is performed on an item unsuited
to the operation.

Erlang’s PIDs are not explicitly present in TINA’s IDL; however, they are im-
plicitly recognized as they would form part of the interface reference.

Erlang’s reference type is not supported by IDL.

4.2 Compound Data Types

Erlang currently supports two compound data types - tuples and lists - while TINA’s
IDL supports 4 types - array, sequence, struct and union. The mismatch in the
number of structuring elements and the structuring mechanisms requires Erlang
to use its structuring mechanisms to represent more than one of the TINA types.
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Furthermore, Erlang programs have to adopt a convention in representing TINA
types so they can be distinguished within the source code.

Only the semantics of Erlang’s list mechanism correspond well to the sequence
mechanism in TINA. None of the other mechanisms in TINA have a direct corre-
spondence to an Erlang mechanism.

Tuples are Erlang’s closest match for TINA’s struct data type. The semantics
of the struct data type are based on the use of names to identify fields. This 1s
at variance with Erlang’s use of position to identify fields. For example the IDL
declaration:

struct equiv {
short a;
long b;

s

1s equivalent to

struct equiv {
long b;
short a;

};

and programs written in C and C+44 using either of those declarations would be
identical. The ordering of a tuple is essential in Erlang programs, and changing the
order would result in major rewriting of the code. A more dramatic difference would
be observed should a new field be added. While a C or C++ program would be
unaffected, an Erlang program would need significant modification. This is caused
by the pattern matching mechanism used in Erlang: tuples can only be matched to
tuples of the same length.

Unions are naturally represented using tuples. To represent unions as tuples it
is necessary to store the switch type which identifies the structure being used in
the tuple to ensure that expressions which have the same structures, but different
types, are distinguished. For example, the following IDL description for a point:

union Point switch (PointType) {
case 1i:
struct Ipoint {
short ix;
short 1iy;
s
case f:
struct Fpoint {
float fx;
short fy;
s
s

could be represented as two types of tuple. An example of each class would be:

{i, {3, 4}}
{f, {3.0, 4.0}}

Erlang is well suited to dealing with this type of structure as it can use pattern
matching to select rules based on the contents of the union. The following is an
example of an Erlang routine to move a point by one unit in the x-direction:

upx({i, {X, Y}}) —> {1, {X+1, Y}3};
upx({f, {X, Y}}) —> {f, {X+1.0, Y}}.




SERC-0017
Issue 1
March, 1996

Erlang has no indexed data types. There is no direct equivalent for the TINA
array data type. However, it can be implemented using a list in Erlang. If indexed
access to the list is required, functions can be written which return the nth element
of a list.

4.3 Interfaces

The interface mechanisms of Erlang and TINA are poorly matched. TINA identifies
function parameters as one of the three types: in, out and inout. Other information
is passed using the exception mechanism. Erlang only allows function parameters
to be used to pass values into a function. The return value of a function is used to
output results.

The IDL mechanism appears to be well suited to implementation in C as point-
ers can be used for out and inout parameters to allow values to be modified in
situ. The IDL mechanism is incompatible with the Erlang approach. Many of
the fine grained parallelism benefits offered by functional languages are dependent
on functions having immutable parameters. By ensuring that parameters cannot
change, multiple operations in a program clause can be invoked at one time. Fur-
thermore, dependency analysis is simplified, allowing independence between clauses
to be easily identified, providing greater opportunities to enhance the parallelism of
a program.

Common Lisp has been mapped to OMG’s IDL [7]. The solution proposed for
passing variables to and from a module implemented as a Lisp function to the caller
of the interface are applicable to Erlang. Under Lisp, parameters are passed into
the function in the same order as in the IDL declaration, but the out parameters
are excluded. Return results are passed by using the multiple-values-bind macro,
with the first value representing the function result, the second parameter; the
exception value, and the subsequent values corresponding to each of the inout and
out parameters in the order of declaration in the IDL description.

Either a macro preprocessor or a change in the Erlang language would be re-
quired to rewrite the output values and return results to the calling interface.

An alternative method would be to return a tuple from the interface function
(map_curpos in the example) which would contain the return value, exception value,
and all out or inout parameters in the order of declaration in the IDL declaration.
This method has the advantage of avoiding the need for changes to the language.

The Common Lisp implementation also yields a mechanism for naming func-
tions. Under Lisp, the names of entry point functions are derived from the interface
name followed by a hyphen then the name of the operation. As the hyphen is the
subtraction and negation operator in Erlang, substituting the underscore (‘’) is
appropriate.

An implementation in Erlang based on the Lisp concepts might appear as follows:

// IDL
interface map {
void curpos(in long t,
out long x,
out long y);
s

% Potential Erlang Implementation
map_curpos(T) ->

{R, X, Y} = £ind(T),
o
ho.o..
[R, normal, X, YJ.
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4.4 Exceptions

The exception mechanism in TINA is based on the assignment of values to an
exception data structure, and returning an exception state. Erlang only allows a
single assignment to a variable, and restricts the scope of a variable to a clause.
This makes the assignment mechanism in Erlang unsuitable for use in this context.
A new mechanism is required to support the semantics of Erlang®.

Two possible solutions include using records in the process dictionary, and intro-
ducing a set of functions which set fields outside the Erlang module to the required
values to indicate an exception. If the process dictionary is used to store the value of
an exception’s parameters, then the value of the exception must be recovered from
the process dictionary before the process is terminated. This can be accomplished
by calling a function in the Erlang module that examines the appropriate entries in
the dictionary. The second solution requires the introduction of a new set of BIFs
to the language.

4.5 Erlang Messages

The message mechanism provided by FErlang is only poorly compatible with the
interface mechanisms provided by TINA. TINA models all computational commu-
nication between blocks using function calls. At a syntactic level, functions can be
provided which allow messages to be sent and received from Erlang modules and a
binding between Erlang PIDs and instances of a TINA block can be provided. There
are two objections to supporting messages between Erlang processes and processes
outside the current TINA block. The first is that the extremely low overhead pro-
cesses required by Erlang would be burdened by the binding mechanism required by
TINA. The second objection is that a new mechanism would need to be introduced
into TINA. Furthermore, the new mechanism would mix the functional metaphor
with the message metaphor in non-Erlang blocks, potentially leading to confusion.

5 Evaluation of TINA IDL

The interface description language employed by TINA is limited by its C and C++
heritage. The choice of data types for the IDL, the method of passing parameters
and returning results, and the exception mechanism are all closely modeled on
C mechanisms. This allows C and C+4 programs to be written which are easily
shown to be immune from artifacts of translation and the loss of efficiency caused by
translation. However, the non-generic nature of the interface makes implementation
of TINA blocks in languages other than C and C+4 unwieldy.

The current IDL is not suited to interfacing with conventional languages such
as COBOL [4]. A critical problem in accessing COBOL is the observation that
PIC statements in COBOL are not accurately reproducible in IDL. For instance
PIC 9(11) is not representable in the IDL as it represents a range of values that
exceeds the capacity of TINA’s long type. Furthermore, this is a practical problem
as the integer size provided by TINA’s IDL is inadequate as it only allows 42 million
dollars worth of cents to be represented. This is inadequate to represent turnover
in the accounting modules for many telecommunications functions. These problems
are not limited to COBOL, for instance Sybase’s money type [10] can represent 94
dollars accurately with ﬁ of a cent precision.

From the point of view of interfacing to languages other than C and C++ a
more generic IDL would be desirable. A single type of integer and a single size

ILisp differs from Erlang in that the setq operator, unlike Erlang’s assignment, has a global
effect and can be used to assign elements to a structure
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of floating point value, would be provided. These values would be defined to be
the same as the larger of the float and signed integer types provided. This would
introduce a conversion cost to C and C++ programs, but, that cost would be minor
compared with other elements of the communications mechanism. Although a BCD
type might be considered desirable, the current string mechanism can be used to
fulfill the function of passing large fixed point values throughout the system.

The current mechanism which uses parameters to pass both data into and out of
a function 1s well suited to languages which allow data to be updated in situ, but it
is poorly suited to functional languages. IDL appears to have adopted the view that
interfaces are procedures, rather than functions. The IDL also assumes the presence
of either pointers or var parameters. A more general mechanism would eliminate
wmnout and out parameters, hence providing only in parameters to a function. The
current mechanism of returning results from an interface uses the inout and out
parameters present in the parameter list of the function. A preferable mechanism for
returning data would be to return a structure (or pointer to a structure depending
on the language?) from a function. The structure would contain the return state
of the module, all the out parameters, and the values of the exception fields. This
mechanism entails the cost of generating the structure but has the advantage of
being more generally applicable than the current mechanism. The removal of inout
parameters may result in an increase in storage space requirements but is likely to
improve program quality by removing side effects from interface calls.

6 Evaluation of Erlang

Erlang is currently a small language well attuned to its target environment. The
language has minimised syntactic sugar and has a small number of fundamental

types.

To operate within the TINA environment, Erlang must either introduce an octet
type, or specify that the names of atoms are not translated by software. An octet
type would be the preferred solution as it differentiates octets from human readable
strings and allows strings to be represented in local character sets.

A perceived difficulty with using Erlang in the context of TINA is the require-
ment that major modifications must be made to programs when the number of fields
of a tuple is either increased or decreased. A possible solution for this problem is
the introduction of a structure which allows the programmer to name the elements
of the structure®. However, this approach is probably inappropriate Erlang. Cur-
rently Erlang supports no user defined types*, and type checking is a simple process
conducted when a value is used by a BIF or an operator. The introduction of a
user defined type will require significant modifications to the language to allow the
declaration of the type. Furthermore, it is simple to arrange for an Erlang program
to consist of a public interface (sensitive to changes in structures) and a working
component (insensitive to changes in structures). The public interface would trans-
late the passed structures into an internal form to be manipulated by the working
component.

?Both ANSI C [5, page 225] and C++ [3, page 138] permit structures to be returned

3Erlang version 4.3 introduced the concept of records. This feature is currently unofficial and
undocumented and it appears to be implemented using a preprocessor.

4The type of a tuple may be considered the number of elements present in a tuple. The number
of elements in a tuple is far less restrictive than typical of user defined types in other languages

10
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7 Conclusion

At the present time Erlang is well suited for use as a language for application to
TINA. The language is simple and avoids constructs likely to encourage errors.

Erlang currently does not have support for the enum type provided by TINA.
The current semantics of enum type place an ordering on the elements of the enu-
meration. If only equivalence operation is required over enum, Erlang can support
it. However, if ordering is required, Erlang currently cannot support this data type.

Currently an IDL description can be written for any Erlang program to accu-
rately represent the actions of the program. The converse is untrue.

Erlang currently lacks an octet type. To interface with TINA, Erlang must either
provide an octet type or treat all strings (atoms) and characters as octets. Octets
are guaranteed not to be translated when transmitted.

TINA’s current IDL is not well suited to interfacing with languages other than C
or C++. By reducing the number of fundamental types, removing inout parameters
and using the function as the basic model of interaction rather than a procedure,
the IDL would be better placed for interfacing with other languages.

11
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