
C

S

R

E SERC-0017March, 1996Issue 1
Perspectives on Erlang & TINAMaurice Castro



SERC-0017Issue 1March, 1996

Copies of this document may be obtained by contacting:DirectorSERC723 Swanston StCarlton, Victoria, 3053Prepared by the Software Engineering Research Center.Copyright c
1996 SERC.All Rights Reserved.
ii



AbstractThis paper assesses the viability of using the functional programming languageErlang to implement TINA blocks. It identi�es potential changes required in bothErlang and TINA to acheive systems which are better suited to interfacing. Thechanges are identi�ed by focusing on the TINA IDL and TINA's handling of datastructures used to exchange information, and examining a number of mechanismsto interface Erlang to the data structures currently provided by TINA.The contents of this technical report have been submitted to the TINA '96Conference.





SERC-0017Issue 1March, 19961 IntroductionTelecommunications Information Networking Architecture (TINA) provides an ar-chitectural basis for telecommunications systems. TINA systems are constructedfrom units known as building blocks or blocks. This paper assesses the viability ofusing the functional programming language Erlang to implement TINA blocks andexamines the issue from two perspectives represented by the two questions:� What changes are required to TINA to support Erlang?� What changes are required to Erlang to support TINA?The paper focuses on the TINA architecture's handling of data structures used toexchange information, and examines a number of mechanisms to interface Erlangto the data structures currently provided by TINA.Initially, the paper describes TINA's existing mechanisms for interfacing com-ponents of a system, and the gross features of the Erlang language. Subsequentsections identify: techniques which can be used to interface Erlang to TINA with-out alteration to TINA and the trade-o�s required; limitations inherent to the TINAinterface and changes recommended to the TINA interface; and an evaluation ofchanges that could be made to the Erlang language.2 TINATINA [2] provides a framework for services in the telecommunications domain. Itaddresses the requirements of voice-based, multimedia, and information servicesover a wide variety of media. In addition, it provides operations and managementfunctions to control the network and the services o�ered by the network.The architecture employs distributed computing concepts. Mechanisms for in-teroperability, software re-use and 
exible data placement, and task assignment areused to provide computational support to implement the services.TINA is being developed by an international consortium known as TINA-C.While most of the information relating to TINA is the proprietary property of themembers of that consortium, this document is based on information extracted frompublicly released drafts of TINA-C documents.Only the computational aspects of the TINA architecture are addressed here.Issues relating to the provision of services, network design, management of thenetwork, or task assignment are not covered. It is concerned speci�cally with theimplementation of computational objects and interactions between computationalobjects.Computational objects interact with each other through de�ned interfaces. Thereare two major classes of interface present in TINA:Operational interfaces provide de�ned operations for a server object to o�er func-tions to a client object. Operations have arguments and return results.Stream interfaces are used for passing structured information such as video orvoice bit streams. These interfaces do not support any operationsThe operational interfaces are used to communicate data and commands betweenobjects. Connections between stream interfaces are made by communicating withthe network. 1



SERC-0017Issue 1March, 19962.1 Objects, Blocks and InterfacesA computational object is used to represent data and a set of operations on thatdata. Access to the data contained within an object is through the use of a com-putational interface. Interfaces consist of a set of de�ned operations which may beinvoked by other objects. An object may have many interfaces.Building blocks are formed from a collection of objects (see �gure 1). Theyare the fundamental structuring unit of computation within TINA. Blocks providecontracts which are used by other blocks to construct services. Blocks must containat least one object which supports contracts for the management of objects withina block. All the objects of a block are required to be co-located. Objects can onlybe moved when the block that contains them is moved.
Building Block

Object

Interface

Node of SystemFigure 1: Relationship between Objects, Blocks, and Interfaces2.2 Data StructuresThe data structures used to communicate between TINA blocks are speci�ed usinga language known as TINA-ODL (TINA Object De�nition Language). TINA-ODL[6] is a superset of the IDL language [8] developed by the Object Management Group(OMG). The features added provide facilities required for the telecommunicationsdomain.TINA's object description language supports a number of fundamental datatypes and compound data types. These data structures are used in the formal partof the contracts that describe the form of the input and that of the output of ablock.Table 1 lists the fundamental data types supported by TINA-ODL. Table 2 liststhe compound types. Data type de�nitions are taken from IDL language de�nition[8].A signi�cant feature of the description language is that although the syntaxallows recursive types to be speci�ed, these types are not permitted by the semanticsof the language. Recursive types may only be speci�ed through the use of thesequence compound type.The syntax and semantics of arrays have been borrowed from C: The size ofan array is speci�ed by a single parameter, and arrays start at index 0 and end atsize � 1.2



SERC-0017Issue 1March, 1996short - signed short integer (�215 : : :215 � 1)long - signed long integer (�231 : : :231 � 1)unsigned short - unsigned short integer (0 : : :216 � 1)unsigned long - unsigned long integer (0 : : :232 � 1)
oat - single-precision 
oating point number conforming to IEEE 754double - double-precision 
oating point number conforming to IEEE 754char - 8-bit quantity where ISO Latin-1 characters and some graphic andformatting characters are de�ned. The meanings of other charactervalues are implementation dependent. The characters may be trans-lated in transmission to retain meaning.octet - an 8-bit quantity that is guaranteed not to be translated whentransmitted.enum - enumerated names are mapped to a data type which is capable ofrepresenting 232 values. The order of identi�ers in the speci�cationdetermines the relative order of identi�ers.boolean - a quantity taking only the values TRUE and FALSEstring - a series of 8-bit quantities excluding null.any - any TINA-ODL objectTable 1: Fundamental data types provided by TINAstruct - de�nes a record containing �elds of speci�ed types.sequence - a list built from elements of a speci�ed type. It is implementedas a one dimensional array with a maximum size determined at com-pile time and a length determined at run time.array - collections of a speci�ed number of instances of a data type. Arraysmay be multidimensional.union - a collective data structure that can have multiple internal struc-tures. A switch type speci�er is used to specify the interpretation ofthe contents of the union by identifying the structure used.Table 2: Compound data types provided by TINA 3



SERC-0017Issue 1March, 19962.3 Exception HandlingThe exception mechanism is based on the OMG-IDL notion of exceptions [9, page7-4]. The exceptions data structure resembles a struct. These structures are usedto return information relating to exceptional conditions which may occur during arequest.2.4 Using ObjectsTo access an interface, an object must acquire an interface reference. These arecreated when an object o�ering an interface is created, or they can be passed to anobject by another object.TINA supports two classes of interaction between clients and servers using in-terfaces:Interrogations require the client to pass zero or more arguments to the server.The invocation is then processed by the server, and any results are returned.Finally the client is informed of the success or failure of the invocation.Announcements are similar to interrogations except that results are not returned,and the client is not informed of the outcome of the invocation.Interrogations with multiple terminations [9] are speci�ed as having a single`normal' termination. Results are returned via out and inout parameters in thespeci�cation. An interface also has a group of `abnormal' terminations which returnresults using the exception mechanism.When an object is created, an interrogation operation is implicitly invoked. Thisoperation is invoked only when the object is instantiated. The operation may acceptone or more parameters.Interfaces may support several operations. An operation on an interface appearsas a function-call in a program invoking the operation. The following are speci�edwhen an operation is de�ned:� the type of the result returned by the operation.� the name of the operation.� the parameters of the operation.� a list of exceptions that can be raised by invoking this operation.There are three types of parameters available to an operation: out - only outputsresults, in - only accepts input, and inout - parameter may be passed both into andback from the operation.3 ErlangThe Erlang language [1] is a minimalist functional language employing patternmatching for rule selection. This paper uses the language description provided in[1]. Although the description does not re
ect the latest version of the language, itcontains all the basic concepts of the language and is su�ciently complete for usein the evaluation of the potential interaction of Erlang and TINA.Two signi�cant features of the language's handling of variables are that it sup-ports only a single assignment to variables, and it requires the scope of variables tobe restricted to a clause of the function.The language has support for concurrent programming and is suitable for softreal time applications.4



SERC-0017Issue 1March, 1996integers - positive and negative integers must be representable with atleast a 24 bit range.
oats - 
oating point values with at least 24 bits of precision.atoms - a constant with a name. Atoms may be quoted and hence mayinclude any character. Unquoted atoms must begin with a lower caseletter.PIDs - a process ID; Uniquely identi�es a process within a system.references - an object which is guaranteed to be unique. Comparison forequality is the only operation permitted on this type.Table 3: Fundamental data types provided by Erlangtuples - a structure which stores a �xed number of itemslists - a structure which can store a variable number of itemsTable 4: Compound data types provided by Erlang3.1 Data TypesTable 3 lists the fundamental data types provided by Erlang. Table 4 lists thecompound data types.Erlang does not currently have a syntactic mechanism for describing types. Thelanguage is dynamically typed. The structuring elements of the language - tuplesand lists - use position within the structure to identify �elds rather than names.3.2 MessagesErlang has an inbuilt Interprocess Communication Mechanism (IPC). This mecha-nism allows messages to be sent from one Erlang process to another Erlang process(see �gure 2). The Process ID (PID) is used to identify the target process forthe send operation. Messages may contain any Erlang structure. Message passingmechanism is asynchronous in nature. Sending a message does not block the sender,and messages are stored in a mailbox associated with each process. Messages areretrieved using pattern matching. The �rst message in order of arrival at the processwhich matches the pattern is retrieved.Work is being conducted into program design techniques for Erlang which arebased on Communicating Finite State Automata (CFSA). Messages are a criticalpart of the implementation of CFSAs in Erlang.
5



SERC-0017Issue 1March, 1996
<0.1.2> <0.1.5> <0.1.4>

<0.2.1><0.2.5>

Process

Domain of PIDs

Range of Messages

Machine

<...> PID

Mailbox

Figure 2: Relationship between Processes, Machines and Messages4 Compatibility of Erlang & TINAErlang and TINA are drawn from two widely di�ering traditions. TINA's IDLis well suited to C and C++ applications. Both these languages are imperative,statically typed, and have a wide range of fundamental types available. Erlangis drawn from a minimalist functional school. The language is based on a smallnumber of orthogonal types using only two structuring elements.4.1 Fundamental Data TypesWhile TINA is rich in types, the collection of fundamental types o�ered is notorthogonal. For example, the IDL supports 4 types of integers, and 2 types of
oating point value. Erlang is more frugal in providing data types. It supports asingle type of 
oating point value and a single type of integer.Erlang has no provision for the octet data type. Characters are handled as atomswith names of one character in length. Strings are also implemented as atoms.The enum type provided by TINA has no equivalent in Erlang as an orderingis imposed on the values of an enum. The value is de�ned by the order in whichthe strings are speci�ed in the enum. The closest equivalent in Erlang is to usethe atom data type. The atom data type has the same semantics as enum forequality operations, but as the ordering on atoms is lexicographical, inequalitieshave di�erent semantics.There is no boolean type present in Erlang. It may be represented using theatom true and a test for equality.The any type provided by TINA is implicit in Erlang as types are determineddynamically and are only signi�cant if an operation is performed on an item unsuitedto the operation.Erlang's PIDs are not explicitly present in TINA's IDL; however, they are im-plicitly recognized as they would form part of the interface reference.Erlang's reference type is not supported by IDL.4.2 Compound Data TypesErlang currently supports two compound data types - tuples and lists - while TINA'sIDL supports 4 types - array, sequence, struct and union. The mismatch in thenumber of structuring elements and the structuring mechanisms requires Erlangto use its structuring mechanisms to represent more than one of the TINA types.6



SERC-0017Issue 1March, 1996Furthermore, Erlang programs have to adopt a convention in representing TINAtypes so they can be distinguished within the source code.Only the semantics of Erlang's list mechanism correspond well to the sequencemechanism in TINA. None of the other mechanisms in TINA have a direct corre-spondence to an Erlang mechanism.Tuples are Erlang's closest match for TINA's struct data type. The semanticsof the struct data type are based on the use of names to identify �elds. This isat variance with Erlang's use of position to identify �elds. For example the IDLdeclaration:struct equiv {short a;long b;};is equivalent tostruct equiv {long b;short a;};and programs written in C and C++ using either of those declarations would beidentical. The ordering of a tuple is essential in Erlang programs, and changing theorder would result in major rewriting of the code. A more dramatic di�erence wouldbe observed should a new �eld be added. While a C or C++ program would beuna�ected, an Erlang program would need signi�cant modi�cation. This is causedby the pattern matching mechanism used in Erlang: tuples can only be matched totuples of the same length.Unions are naturally represented using tuples. To represent unions as tuples itis necessary to store the switch type which identi�es the structure being used inthe tuple to ensure that expressions which have the same structures, but di�erenttypes, are distinguished. For example, the following IDL description for a point:union Point switch (PointType) {case i:struct Ipoint {short ix;short iy;};case f:struct Fpoint {float fx;short fy;};};could be represented as two types of tuple. An example of each class would be:{i, {3, 4}}{f, {3.0, 4.0}}Erlang is well suited to dealing with this type of structure as it can use patternmatching to select rules based on the contents of the union. The following is anexample of an Erlang routine to move a point by one unit in the x-direction:upx({i, {X, Y}}) -> {i, {X+1, Y}};upx({f, {X, Y}}) -> {f, {X+1.0, Y}}. 7



SERC-0017Issue 1March, 1996Erlang has no indexed data types. There is no direct equivalent for the TINAarray data type. However, it can be implemented using a list in Erlang. If indexedaccess to the list is required, functions can be written which return the nth elementof a list.4.3 InterfacesThe interface mechanisms of Erlang and TINA are poorly matched. TINA identi�esfunction parameters as one of the three types: in, out and inout. Other informationis passed using the exception mechanism. Erlang only allows function parametersto be used to pass values into a function. The return value of a function is used tooutput results.The IDL mechanism appears to be well suited to implementation in C as point-ers can be used for out and inout parameters to allow values to be modi�ed insitu. The IDL mechanism is incompatible with the Erlang approach. Many ofthe �ne grained parallelism bene�ts o�ered by functional languages are dependenton functions having immutable parameters. By ensuring that parameters cannotchange, multiple operations in a program clause can be invoked at one time. Fur-thermore, dependency analysis is simpli�ed, allowing independence between clausesto be easily identi�ed, providing greater opportunities to enhance the parallelism ofa program.Common Lisp has been mapped to OMG's IDL [7]. The solution proposed forpassing variables to and from a module implemented as a Lisp function to the callerof the interface are applicable to Erlang. Under Lisp, parameters are passed intothe function in the same order as in the IDL declaration, but the out parametersare excluded. Return results are passed by using the multiple-values-bind macro,with the �rst value representing the function result, the second parameter, theexception value, and the subsequent values corresponding to each of the inout andout parameters in the order of declaration in the IDL description.Either a macro preprocessor or a change in the Erlang language would be re-quired to rewrite the output values and return results to the calling interface.An alternative method would be to return a tuple from the interface function(map curpos in the example) which would contain the return value, exception value,and all out or inout parameters in the order of declaration in the IDL declaration.This method has the advantage of avoiding the need for changes to the language.The Common Lisp implementation also yields a mechanism for naming func-tions. Under Lisp, the names of entry point functions are derived from the interfacename followed by a hyphen then the name of the operation. As the hyphen is thesubtraction and negation operator in Erlang, substituting the underscore (` ') isappropriate.An implementation in Erlang based on the Lisp concepts might appear as follows:// IDLinterface map {void curpos(in long t,out long x,out long y);};% Potential Erlang Implementationmap_curpos(T) ->{R, X, Y} = find(T),% ...[R, normal, X, Y].8



SERC-0017Issue 1March, 19964.4 ExceptionsThe exception mechanism in TINA is based on the assignment of values to anexception data structure, and returning an exception state. Erlang only allows asingle assignment to a variable, and restricts the scope of a variable to a clause.This makes the assignment mechanism in Erlang unsuitable for use in this context.A new mechanism is required to support the semantics of Erlang1.Two possible solutions include using records in the process dictionary, and intro-ducing a set of functions which set �elds outside the Erlang module to the requiredvalues to indicate an exception. If the process dictionary is used to store the value ofan exception's parameters, then the value of the exception must be recovered fromthe process dictionary before the process is terminated. This can be accomplishedby calling a function in the Erlang module that examines the appropriate entries inthe dictionary. The second solution requires the introduction of a new set of BIFsto the language.4.5 Erlang MessagesThe message mechanism provided by Erlang is only poorly compatible with theinterface mechanisms provided by TINA. TINA models all computational commu-nication between blocks using function calls. At a syntactic level, functions can beprovided which allow messages to be sent and received from Erlang modules and abinding between Erlang PIDs and instances of a TINA block can be provided. Thereare two objections to supporting messages between Erlang processes and processesoutside the current TINA block. The �rst is that the extremely low overhead pro-cesses required by Erlang would be burdened by the binding mechanism required byTINA. The second objection is that a new mechanism would need to be introducedinto TINA. Furthermore, the new mechanism would mix the functional metaphorwith the message metaphor in non-Erlang blocks, potentially leading to confusion.5 Evaluation of TINA IDLThe interface description language employed by TINA is limited by its C and C++heritage. The choice of data types for the IDL, the method of passing parametersand returning results, and the exception mechanism are all closely modeled onC mechanisms. This allows C and C++ programs to be written which are easilyshown to be immune from artifacts of translation and the loss of e�ciency caused bytranslation. However, the non-generic nature of the interface makes implementationof TINA blocks in languages other than C and C++ unwieldy.The current IDL is not suited to interfacing with conventional languages suchas COBOL [4]. A critical problem in accessing COBOL is the observation thatPIC statements in COBOL are not accurately reproducible in IDL. For instancePIC 9(11) is not representable in the IDL as it represents a range of values thatexceeds the capacity of TINA's long type. Furthermore, this is a practical problemas the integer size provided by TINA's IDL is inadequate as it only allows 42 milliondollars worth of cents to be represented. This is inadequate to represent turnoverin the accounting modules for many telecommunications functions. These problemsare not limited to COBOL, for instance Sybase's money type [10] can represent 914dollars accurately with 1100 of a cent precision.From the point of view of interfacing to languages other than C and C++ amore generic IDL would be desirable. A single type of integer and a single size1Lisp di�ers from Erlang in that the setq operator, unlike Erlang's assignment, has a globale�ect and can be used to assign elements to a structure 9



SERC-0017Issue 1March, 1996of 
oating point value, would be provided. These values would be de�ned to bethe same as the larger of the 
oat and signed integer types provided. This wouldintroduce a conversion cost to C and C++ programs, but, that cost would be minorcompared with other elements of the communications mechanism. Although a BCDtype might be considered desirable, the current string mechanism can be used toful�ll the function of passing large �xed point values throughout the system.The current mechanism which uses parameters to pass both data into and out ofa function is well suited to languages which allow data to be updated in situ, but itis poorly suited to functional languages. IDL appears to have adopted the view thatinterfaces are procedures, rather than functions. The IDL also assumes the presenceof either pointers or var parameters. A more general mechanism would eliminateinout and out parameters, hence providing only in parameters to a function. Thecurrent mechanism of returning results from an interface uses the inout and outparameters present in the parameter list of the function. A preferable mechanism forreturning data would be to return a structure (or pointer to a structure dependingon the language2) from a function. The structure would contain the return stateof the module, all the out parameters, and the values of the exception �elds. Thismechanism entails the cost of generating the structure but has the advantage ofbeing more generally applicable than the current mechanism. The removal of inoutparameters may result in an increase in storage space requirements but is likely toimprove program quality by removing side e�ects from interface calls.6 Evaluation of ErlangErlang is currently a small language well attuned to its target environment. Thelanguage has minimised syntactic sugar and has a small number of fundamentaltypes.To operate within the TINA environment, Erlang must either introduce an octettype, or specify that the names of atoms are not translated by software. An octettype would be the preferred solution as it di�erentiates octets from human readablestrings and allows strings to be represented in local character sets.A perceived di�culty with using Erlang in the context of TINA is the require-ment that major modi�cationsmust be made to programs when the number of �eldsof a tuple is either increased or decreased. A possible solution for this problem isthe introduction of a structure which allows the programmer to name the elementsof the structure3 . However, this approach is probably inappropriate Erlang. Cur-rently Erlang supports no user de�ned types4, and type checking is a simple processconducted when a value is used by a BIF or an operator. The introduction of auser de�ned type will require signi�cant modi�cations to the language to allow thedeclaration of the type. Furthermore, it is simple to arrange for an Erlang programto consist of a public interface (sensitive to changes in structures) and a workingcomponent (insensitive to changes in structures). The public interface would trans-late the passed structures into an internal form to be manipulated by the workingcomponent.2Both ANSI C [5, page 225] and C++ [3, page 138] permit structures to be returned3Erlang version 4.3 introduced the concept of records. This feature is currently uno�cial andundocumented and it appears to be implemented using a preprocessor.4The type of a tuple may be considered the number of elements present in a tuple. The numberof elements in a tuple is far less restrictive than typical of user de�ned types in other languages10



SERC-0017Issue 1March, 19967 ConclusionAt the present time Erlang is well suited for use as a language for application toTINA. The language is simple and avoids constructs likely to encourage errors.Erlang currently does not have support for the enum type provided by TINA.The current semantics of enum type place an ordering on the elements of the enu-meration. If only equivalence operation is required over enum, Erlang can supportit. However, if ordering is required, Erlang currently cannot support this data type.Currently an IDL description can be written for any Erlang program to accu-rately represent the actions of the program. The converse is untrue.Erlang currently lacks an octet type. To interface with TINA, Erlang must eitherprovide an octet type or treat all strings (atoms) and characters as octets. Octetsare guaranteed not to be translated when transmitted.TINA's current IDL is not well suited to interfacing with languages other than Cor C++. By reducing the number of fundamental types, removing inout parametersand using the function as the basic model of interaction rather than a procedure,the IDL would be better placed for interfacing with other languages.

11



SERC-0017Issue 1March, 1996References[1] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent Programmingin Erlang. Prentice-Hall, 1993.[2] Martin Chapman and Stefano Montesi. Overall concepts and principles ofTINA: Version 1.0, 2 1995. TB MDC.018 1.0 94 Publicly Released.[3] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Man-ual. Addison-Wesley, 1990.[4] Dave Gamble. 95-3-36: Extending IDL for COBOL and other languages, 31995. http://www.omg.org/docs/95-3-36.txt, document.[5] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.Prentice Hall, second edition, 1988.[6] B. Kitson, P. Leydekkers, N. Mercouro�, and F. Ruano. TINA object de�nitionlanguage (TINA-ODL) MANUAL: Version 1.3, 6 1995. TR NM.002 1.3 95Publicly Released.[7] Tom Mowbray and K. L. White. 94-3-11: OMG IDL mapping to CommonLisp, 12 1994. http://www.omg.org/docs/94-3-11.ps.[8] Pramila Mullan. 95-1-17: First ODP IDL standalone draft, 12 1994.http://www.omg.org/docs/95-1-17.ps.[9] N. Natarajan, F. Dupuy, N. Singer, and Christensen H. Computational mod-elling concepts: Version 2, 2 1995. TB A2.HC.012 1.2 94 Publicly Released.[10] Sybase Inc. Student Guide, 1992. updated: 92-4-6.

12


