
IEEE Network • January/February 200922 0890-8044/09/$25.00 © 2009 IEEE

onitoring the correct operation of a network is
an essential network management task.
Anomaly detection algorithms attempt to pro-
file the “normal” behavior of the network.

Understanding the normal behavior of a network makes it
possible to identify situations where network characteristics
deviate. In case of such anomalies, it may be possible to infer
the cause of the abnormal behavior and take corrective action.
The causes for network anomalies are numerous and varied.
Examples include link failures that cause changes in routing
and traffic loads on other links, flash crowds that cause
increased traffic loads due to sudden popularity of some con-
tent that is accessed via the network, and distributed denial of
service (DDoS) attacks that intentionally increase the traffic
load on some links.

Note that the definition of what constitutes an anomaly is
often not easy to translate into a clear quantitative definition.
For example, a DDoS attack increases the traffic volume, but
determining the threshold where it exceeds normal fluctua-
tions in network traffic volume is difficult. Therefore, there is
no perfect anomaly detection algorithm that can identify all
anomalies correctly. A direct implication is that accuracy is a
crucial metric for any anomaly detection system, as false posi-
tives (i.e., alarms on normal traffic) and false negatives (i.e.,
no alarms on anomalous traffic) are detrimental for opera-
tional reasons.

Research in anomaly detection therefore aims to find a
detection process that provides high accuracy. In prior and
related work, many different algorithms have been proposed
using a variety of techniques. Typically, these algorithms
exhibit different levels of sensitivity to different types of
anomalous traffic. A key challenge for a designer of an
anomaly detection system is therefore to select the most suit-
able algorithm. A related challenge is the question of what
subset of monitored traffic to consider for the anomaly detec-
tion process. For example, attacks that swamp a victim with
TCP SYN requests are typically of low volume in comparison
to all the traffic on a link. Detecting changes in TCP SYN

traffic volume can therefore not be done effectively unless
only the subset of TCP SYN traffic is considered. We address
these two problems in our work by proposing a parallel
anomaly detection (PAD) system.

The key idea of PAD is to exploit recent technological
advances, implementing multiple algorithms on a single sys-
tem and monitoring multiple traffic subsets in parallel. The
key benefits of such a design (compared to traditional anoma-
ly detection systems) are:
• Higher detection accuracy: Combining multiple existing

anomaly detection algorithms with the normalization and
aggregation process described in this article, PAD achieves
higher accuracy than any single algorithm.

• Higher sensitivity to a range of anomalies: Monitoring
numerous traffic subsets in parallel allows PAD to be sensi-
tive to anomalies that are specific to a particular traffic
class.
The PAD design we propose has become feasible only in

recent years as high-performance embedded processing sys-
tems have become available for network systems (e.g., net-
work processors on routers). These processing systems allow
real-time processing of monitoring information (rather than
collecting traffic traces and post-processing them). Thus,
anomaly detection results become available to a network
operator practically instantaneously.

However, there are several fundamental challenges that
need to be addressed to make PAD a practical system. In par-
ticular, it is important to determine how to manage and inter-
pret the data from multiple anomaly detection algorithms.
The contributions of this article are as follows:
• A system design for parallel anomaly detection
• An aggregation process that increases the accuracy of the

overall system beyond that of any single algorithm
• A detailed evaluation of a prototype system that illustrates

the feasibility and effectiveness of PAD, and shows that it
achieves higher detection accuracy than any single anomaly
detection algorithm
The remainder of this article is organized as follows. The

Shashank Shanbhag and Tilman Wolf, University of Massachusetts

Abstract
In this article we discuss the design and implementation of a real-time parallel
anomaly detection system. The key idea is to use multiple existing anomaly detec-
tion algorithms in parallel on thousands of network traffic subclasses, which not
only enables us to detect hidden anomalies but also to increase the accuracy of
the system. The main challenge then is the management and aggregation of the
vast amount of data generated. We propose a novel aggregation process that
uses the internal continuous anomaly metrics used by the algorithms to output a sin-
gle system-wide anomaly metric. The evaluation on real-world attack traces shows
a lower false positive rate and false negative rate than any individual anomaly
detection algorithm.

Accurate Anomaly Detection
through Parallelism

MM

SHANBHAG LAYOUT 1/15/09 2:12 PM Page 22

IEEE Network • January/February 2009 23

next section discusses related work. We then introduce the
general design of the PAD system. We discuss how we aggre-
gate information from multiple anomaly algorithms that are
run in parallel. The following section presents the evaluation
result from our prototype PAD system. The final section sum-
marizes and concludes this article.

Related Work
Anomaly detection is an active area of research and a number
of different anomaly detection algorithms have been pro-
posed. These anomaly detection algorithms differ either in the
technique used to detect deviations from normal behavior or
in the type of data from the packet stream that is used for
analysis. In practically all cases, traffic is monitored at regular
intervals to obtain time-series data. These data are then inter-
preted using different approaches. Examples are:
• Rate-based detection: In rate-based detection, the history of

previously observed data rates is used to compute an esti-
mate for the current interval. If the observed data rate dif-
fers from the estimate (plus/minus a certain range of
permissible variation), an anomaly is reported. Examples of
such rate-based detection algorithms are Holt-Winter fore-
casting [1], adaptive threshold [2], average over window [3],
exponential weighted moving average [4], and cumulative
sum [5]. Since this kind of anomaly detection is most widely
used, we focus our work on this class of algorithms.

• Frequency information-based detection: In frequency-based
detection, packet rates are transposed into the frequency
domain and analyzed for anomalies using signal processing
methods (e.g., wavelets [6]).

• Entropy-based detection: In entropy-based detection, traffic
is split into different classes. Anomalies in traffic rates are
determined by changes in the entropy compared to a base-
line [7].
Other anomaly detection algorithms are based on machine

learning, clustering, and related techniques.
The work presented in this article is based on some of our

own prior work. The use of embedded processing systems for
online network measurement has been discussed in [8]. A
detailed analysis of aggregating anomaly detection algorithms
has been presented in [9]. The parallel anomaly detection sys-
tem has been evaluated with realistic attack traffic on a
testbed in [10]. In addition to the work carried out in [9] and
[10], we also discuss the various techniques used to aggregate
anomaly detection algorithms in this work.

Exploiting Parallelism in Anomaly Detection
Systems
The processing performance of an anomaly detection algo-
rithm in an operational network is an important considera-
tion. While anomaly detection accuracy is the most important
design goal, it is also important to consider real-time process-
ing constraints. To permit continuous operation of an anoma-
ly detection system, the processing performance must be such
that traffic can be handled at the peak rate of the monitored
link. If this rate cannot be sustained, monitoring information
will eventually backlog and be discarded. Thus, available tech-
nology dictates what kind of anomaly detection systems are
practically feasible.

Technology Trends
Traditional anomaly detection systems often operate in what
can be described as a batch or offline mode. In such systems,
packet traces from the monitored link are collected and trans-

ferred to a workstation for anomaly detection processing. The
main drawbacks of this design are twofold:
• Large trace files need to be transferred and stored (at least

temporarily).
• Anomaly detection results are only available after an inher-

ent delay (depending on the batch size).
Also, the complexity of the anomaly detection algorithm is

limited to the amount of processing the workstation computer
can accomplish while the next packet trace is collected.

Advances in embedded processor design have made it pos-
sible to integrate significant amounts of processing power in
network systems. These embedded processors are often multi-
core systems with a handful to dozens of processor cores.
Examples range from routers with conventional server proces-
sors to high-performance network processors [11]. Using such
processing resources, the following two changes can be made
to the design of anomaly detection systems:
• Online processing: Processing resources that are located on

the line cards of routers can be used to perform network
measurement and anomaly detection processing. Therefore,
the collection and transfer of packet traces is no longer
necessary. Instead, every packet is processed as it traverses
the network system. Such online processing is discussed in
more detail in [8].

• Processing power: Embedded multicore processors can ded-
icate more processing power to anomaly detection than
conventional workstation computers. One of the reasons is
the large number of processor cores (e.g., 16 cores on the
Intel IXP2400). Another reason is the improved handling of
traffic I/O. In many conventional workstations, the operat-
ing system consumes much of the processing resources
when reading packet traces at high data rates [12]. In con-
trast, network processors are optimized to handle data rates
on the order of gigabits per second. Also, network proces-
sors usually do not use operating systems and thus do not
incur these overheads. This availability of processing power
is the premise for our PAD system.
Based on these technology trends, we can develop a system

architecture that utilizes these advances to improve anomaly
detection.

System Architecture
The key idea of our PAD system is to run multiple existing
anomaly detection algorithms on multiple subsets of traffic
in parallel. The design is based on utilizing the available pro-
cessing resources in network systems to perform online
anomaly detection processing for all algorithms and traffic
classes in real time. The general architecture of parallel
anomaly detection is illustrated in Fig. 1. Packet headers
captured from the monitored link are classified into different
subsets by the packet classifier, and the data pertaining to
those subsets are then extracted. Specifically, we maintain
packet and byte counts per observation interval. Each
anomaly detection algorithm processes this data for each
subset to find volume anomalies characterized by unexpected
changes in traffic volume. The continuous anomaly metric
output by each algorithm is further normalized. The normal-
ized anomaly metrics for all algorithms for a particular sub-
set are then aggregated to produce an anomaly score that
represents the severity of the anomaly. Finally, a binary deci-
sion is made based on whether the anomaly score exceeds
the threshold.

As our results show, using multiple anomaly detection algo-
rithms on multiple traffic subsets improves the detection sen-
sitivity and accuracy of the system. The main challenge in this
process is to determine how the results from multiple algo-
rithms can be combined effectively.

SHANBHAG LAYOUT 1/15/09 2:12 PM Page 23

IEEE Network • January/February 200924

Normalization and Aggregation of Anomaly
Detection Information
The key technical challenge in our design is the aggrega-
tion of the information from multiple anomaly detection
algorithms. Existing anomaly detection algorithms inter-
nally use a continuous metric, before applying a threshold
and generating a binary output (i.e., a 1 for anomaly and
0 for no anomaly). One could choose to aggregate these
binary outputs by using majority decision or similar binary
functions. However, such a method is too coarse. Instead,
our system aggregates the internal continuous anomaly
metrics and applies the threshold as late as possible. The
internal continuous metric produced by an algorithm
depends on its characteristics: internal parameters and the
technique used to process the data. Therefore, normaliza-
tion of these metrics is necessary to ensure that every
algorithm has equal influence on the final anomaly metric.
The aggregation process reduces the amount of informa-
tion for each traffic subset by combining the normalized
outputs of all algorithms and providing a single indicator
of an anomaly.

Notation
Let s be the total number of different traffic subsets Si, 1 ≤ i ≤
s, and a be the number of anomaly detection algorithms Aj, 1
≤ j ≤ a. During an observation interval [t,t + τ), where param-
eter τ is assumed to be a preset fixed time interval that
decides the granularity of the data, let ci be the packet count
observed for the subset Si, and pi,j be the prediction produced
by each algorithm Aj based on the history of packet counts for
the subset Si. Then our system uses the metric mi,j = ci/pi,j for
the observation interval [t,t + τ).

Normalization Scheme
Our system lays emphasis on detecting volume anomalies that
are characterized by an increase in bit rates or packet counts.
Some examples of such anomalies are DoS attacks, flash
crowds, and port-scanning traffic. Each algorithm j outputs a
prediction pi,j that depends on the characteristics and internal
parameters used by the algorithm. Thus, normalization is
necessary to ensure equal influence of each algorithm on the
aggregate. We define a normalization function, N, that pro-
duces the normalized metric ni,j, for algorithm j and subset i
at time t. This function normalizes mi,j to the continuous

interval [0,1], where 0 represents the condition of no anomaly
and 1 represents anomaly. The normalization function is as
follows:

ni,j = N(mi,j, αj) = min(1, max(0,0.5 · αj · mi,j)). (1)

Parameter αj determines the slope of the normalization func-
tion and is unique to a particular algorithm Aj. It is adjusted
such that the boundary between the anomalies and no anoma-
lies falls exactly in the middle of the range [0,1] at θ* = 0.5
for

(Refer to Fig. 2.) In other words, the normalization scheme
seeks to transform the algorithm-specific thresholds, θj, to θ*.
This ensures that we do not have to use a system-specific
threshold, and the final aggregated value can be compared
with θ* = 0.5.

Aggregation Scheme and Anomaly Decision
During the observation interval [t,t + τ), for each subset Si,
the output of the normalization module is the normalized
anomaly metric ni,j for every algorithm Aj. The aggregation
module then uses the aggregation function G on these values
to determine the final aggregated anomaly metric gi for each
subset i at time t. We have evaluated arithmetic mean, geo-

α
θj

j

n* *
.=

n Figure 1. System architecture. Observe that all algorithms process data for every monitored subset.

Normalization
1

Traffic subset n

Th
re

sh
ol

d

Anomaly
detection

algorithm 1

Normalization
a

Anomaly
detection

algorithm a

Traffic subset 1

Parallel anomaly detection system

Subset n
anomoly
indicator

Subset 1
anomoly
indicator

Normalization
1

Pa
ck

et
 c

ap
tu

re

A
gg

re
ga

ti
on

Th
re

sh
ol

d

Anomaly
detection

algorithm 1

Normalization
a

Anomoly
detection

algorithm a

Packet
classifier

A
gg

re
ga

ti
on

Th
re

sh
ol

d

n Figure 2. Normalization function N(m, α). α* ensures that the
boundary between anomalies and no anomalies occurs at θ* =
0.5.

Anomaly metric mi,j

0.50
0

0.2

N
or

m
al

iz
ed

an
om

al
y

m
et

ri
c

n i
,j

0.4

0.6

0.8

1

1 1.5 2

θ

N(m,α*)

N(m,1)

2.5

θ*

SHANBHAG LAYOUT 1/15/09 2:12 PM Page 24

IEEE Network • January/February 2009 25

metric mean, median, minimum, maximum, and so on as
aggregation functions; but the following function, which is the
average of the maximum and mean as proposed by Evange-
lista et al. in [13], is the most effective:

(2)

A performance comparison of the various aggregation
functions is presented later. Different algorithms have
different characteristics and thus behave differently under
different traffic conditions. For example, an algorithm
may be sensitive to high-volume anomalies but may fail to
detect low-volume floods. The mean aggregation func-
tions work by assigning equal weights to the various algo-
rithms independent of whether a particular algorithm is

good or bad. An alternative approach is to determine
which of the algorithms have poor performance under
certain conditions and assign weights. The max function
selects the algorithm that is most sensitive and produces
the highest normalized value at any particular instance.
Therefore, we use the max function in conjunction with
the arithmetic mean to make sure that the aggregation
function is robust in all cases, thus improving overall
detection performance.

Finally, a binary decision is made to determine if there is
an anomaly by comparing the aggregated anomaly metric with
the threshold, θ* as follows:

(3)

The binary decision is then reported to the operator.

r
g

gi
i

i
=

≥

0

1

,

,
.

 if < *

 if *

θ
θ

g G n n
a

ni i i a i j
j

a

j
= =

 +

=
∑(,...) max, , ,1

1

1

2

1
nni j,

⋅

n

Table 1. Packet traces used in experiments.

Trace Source Trace duration Anomaly type Description

T1 Los Nettos Trace 4 [14] 439 s TCP SYN flood Persistent low packet rate traffic from five sources target-
ing a single victim IP on four ports.

T2 Los Nettos Trace 18 [14] 1057 s

TCP SYN Persistent traffic of different intensities from large number
of sources targeting a single port on seven victim IPs.

TCP No-Flag High intensity attack targeting a single IP on 65,530 ports
from 788,820 sources.

UDP flood Persistent flooding of three ports on a single IP from five
source IPs and 250 source ports.

T3 Los Nettos Trace 29 [14] 956 s

TCP SYN Persistent traffic of different intensities from a large num-
ber of source IPs targeting different ports on 5 victim IPs.

UDP flood Persistent flooding of four victim IPs from a large number
of sources.

T4 Code Red II [15] 248 s TCP SYN
portscan Single IP scans HTTP port on a large number of victim IPs.

T5 MIT Lincoln Labs DDoS [16] 6167 s TCP RST flood Single IP flooded by a large number of spoofed source IPs.

n Figure 3. Behavior of metrics over time for trace 1.

Time (s)
50 0

0

150

Pa
ck

et
 c

ou
nt

100

200

50

100 150 200 250 300 350 400

Time (s)

0

0.6

N
or

m
al

iz
ed

m

et
ri

c 0.8

0.4

1

0.2

Time (s)
50 0

0

0.6

A
gg

re
ga

te
d

m
et

ri
c 0.8

0.4

1

0.2

100 150 200 250 300 350 400

cSYN
Normal

Anomaly

nSYN,HW
nSYN,ADAP
nSYN,AVG

nSYN,EWMA
nSYN,CUSUM

gSYN
True pos.
False pos.
True neg.
False neg.

500 100 150 200 250 300 350 400

SHANBHAG LAYOUT 1/15/09 2:12 PM Page 25

IEEE Network • January/February 200926

Prototype Implementation and Experimental
Results

Our prototype implementation is based on an online mea-
surement node [8] developed on an Intel IXP2400 network
processor platform. The system makes use of multiple data
path processors to classify packets into different subsets
and update packet counts for each subset of traffic. These
counts are stored in a shared SRAM. For each observation
interval [t,t + τ), the XScale control processor reads these
SRAM locations to obtain ci. Each algorithm then outputs
a prediction pi based on the previously observed history of
packet counts. The XScale control processor then com-
putes the mi,j, ni,j, gi, and ri values. Our system uses τ = 1
s. The summary of gi and ri can then be transmitted to the
user via a socket interface. At runtime the system monitors
a total of s = 2031 subsets of traffic including subsets that
distinguish UDP and TCP, TCP flags (e.g., SYN and RST),
and port numbers (as done in [7]). The a = 5 different
anomaly detection algorithms we implement in our proto-
type are:
• HW: Holt Winter Forecasting Model [1]
• ADAP: Adaptive Threshold Algorithm [2]
• AVG: Average over Window [3]
• EWMA: Exponential Weighted Moving Average [4]
• CUSUM: Cumulative Sum Algorithm [5]

We test the ability of our system to identify anomalies in
packet traces by replaying the traces shown in Table 1 using
tcpreplay. This ensures that the PAD system receives real-
istic traffic and the results are reproducible. Each time inter-
val of the trace is labeled manually. If during any interval of
τ = 1 seconds any packets match the anomaly description
shown in Table 1, the interval is marked as anomalous. The
labeling is compared to the anomaly decision ri made by the
PAD system. Figure 3 illustrates the working of the PAD
system over time for trace T1 which consists of a TCP SYN
flood attack.

The top graph in Fig. 3 shows the TCP SYN packet count,
cSYN, and the manual classification into normal and anoma-
lous time intervals. The middle graph shows the normalized
anomaly metrics, nSYN,j, provided by the five anomaly detec-
tion algorithms we have implemented on the prototype sys-
tem. The bottom graph shows the aggregate anomaly metric,
gSYN. Also shown are the binary classification results, rSYN,
indicating by color if an anomaly is reported. For trace T1, the
PAD system yields a false positive rate of 4.4 percent and a
false negative rate of 3.3 percent.

Normalization Parameters

For each algorithm Aj, we need to determine the best normal-
ization function shape parameter αj*. The results for each
trace are shown in Table 2. We can observe that most param-
eter values for a given algorithm are similar across different
traces. The aggregate parameters used in the PAD implemen-
tation are obtained by averaging across traces.

Detection Performance of PAD
To prove that the aggregated anomaly metric indeed performs
better than any individual algorithm in terms of detection per-
formance, we compare the receiver operating characteristic
(ROC) curves for the algorithms and the PAD system. A
ROC curve is a graphical plot of the true positive rate (y-axis)
vs. the false positive rate (x-axis) for a binary classifier (i.e., an
anomaly detection algorithm) as its threshold values (i.e., θ) is
varied. An ideal binary classifier will yield a point in the upper
left corner of the ROC space, which represents a 100 percent
true positive rate and a 0 percent false positive rate. Thus,
when comparing the detection performance of algorithms, the

n

Table 2. Normalization parameter αj for all algorithms and traces. All subsets that trigger anomalies are shown. The aggregate normal-
ization parameter αj* (used in the aggregation function G) shows the average of αj across all traces.

Algorithm
Normalization parameter αj

Aggregate
normalization

T1 T2 T3 T4 T5

j name SSYN SSYN SRST SNOFLAG SUDP SSYN SUDP SSYN SRST Parameter αj*

1 HW 0.95 0.95 0.99 0.94 0.97 0.88 0.97 0.74 0.93 0.927

2 ADAP 1.12 1.14 1.16 1.11 1.12 1.11 1.15 0.63 1.12 1.075

3 AVG 0.95 0.96 0.98 0.94 0.96 0.94 0.97 0.57 0.95 0.915

4 EWMA 0.98 0.99 0.99 0.97 1.01 0.95 0.98 0.61 0.98 0.940

5 CUSUM 1.39 1.22 1.03 1.23 1.18 1.49 1.09 2.86 2.27 1.529

n Figure 4. ROC curves comparing detection performance for dif-
ferent aggregation Functions for Trace 1. Min_avg is the average
of the minimum and average. Max_avg has the best performance
and is used by PAD.

False positive rate
0.20

0

0.2

Tr
ue

 p
os

it
iv

e
ra

te

0.4

0.6

0.8

1

0.4 0.6 0.8 1

Mean
Geometric mean
Median
Minimum
Maximum
Min_avg
Max_avg

SHANBHAG LAYOUT 1/15/09 2:12 PM Page 26

IEEE Network • January/February 2009 27

algorithm that yields the maximum distance between its ROC
curve and the diagonal is considered to perform better than
other algorithms. Figure 4 compares the performances of the
various aggregation functions we have evaluated. Clearly, the
aggregation function shown in Eq. 2 outperforms the other
functions evaluated.

Figure 5 shows the ROC curves for all individual algo-
rithms (using the best possible parameters shown in Table 2)
and the ROC curve for the PAD system using aggregated
parameters. Observe that the PAD system outperforms any
individual algorithm, even though a single set of parameters is
used for all traces.

Table 3 shows the false positive rates and false negative
rates for the PAD system as well as individual algorithms. The
entries shown in bold are the lowest false positive or false
negative rates achieved by any algorithm. Observe that the

PAD system provides a lower false positive and false negative
rates than any given algorithm, the only exception being the
subset SSYN in trace T4. The difference in these rates is shown
as a percentage in the last row. Trace T4 consists of Code Red
II scans with very low packet rates (in tens). This is barely dis-
tinguishable from normal traffic resulting in most algorithms
having very poor detection performance for this trace. Howev-
er, Holt-Winter forecasting performs exceptionally well and
detects every instance of the anomaly. CUSUM has the worst
detection performance of all algorithms. Since the averaging
term in the aggregation function assigns equal weights to all
the algorithms, the other algorithms tend to have some influ-
ence on the aggregate and thus the deterioration in perfor-
mance of the aggregate for trace T4. However, the aggregate
still performs better than the other algorithms. The median
improvement is a 10.0 percent lower false positive rate and a

n Figure 5. ROC curves comparing detection performance for all traces and all anomalous traffic subsets.

T1-SSYN
T2-SSYN T2-SRST T2-SDATA

T3-SSYN
T3-SUDP T4-SSYN T5-SRST

T2-SUDP

Tr
ue

 p
os

it
iv

e
ra

te

False positive rate
0.20

0

0.2

0.4

0.6

0.8

1

0.4 0.6 0.8 1

HW
ADAP
AVG
EWMA
CUSUM
PAD

n

Table 3. False positive rate/false negative rate of individual algorithm and PAD system.

Algorithm
False positive rate/false negative rate

T1 T2 T3 T4 T5

j name SSYN SSYN SRST SNOFLAG SUDP SSYN SUDP SSYN SRST

1 HW .085/.115 .188/.058 .365/.056 .146/.043 .107/.230 .210/.038 .364/.017 .093/.000 .117/.147

2 ADAP .237/.082 .225/.102 .243/.493 .182/.109 .255/.264 .170/.157 .212/.247 .047/.079 .090/.107

3 AVG .240/.082 .226/.102 .253/.493 .187/.116 .259/.272 .185/.152 .221/.247 .018/.074 .092/.109

4 EWMA .233/.115 .277/.069 .409/.279 .136/.167 .375/.145 .214/.114 .390/.086 .035/.064 .076/.121

5 CUSUM .057/.156 .046/.105 .029/.000 .060/.036 .050/.017 .058/.095 .020/.011 .041/.118 .092/.282

PAD .044/.033 .043/.036 .027/.000 .052/.025 .047/.009 .055/.000 .018/.011 .000/.053 .066/.004

Improvement 22.8%/
59.8%

6.5%/
37.9%

6.9%/
0%

13.3%/
30.6%

6.0%/
47.1%

5.2%/
100.0%

10.0%/
0%

100.0%/
–100.0%

13.2%/
96.3%

SHANBHAG LAYOUT 1/15/09 2:12 PM Page 27

IEEE Network • January/February 200928

37.9 percent lower false negative rate. Thus, the PAD system
performs significantly better than any single anomaly detec-
tion algorithm.

Conclusion
We have discussed the design of a parallel anomaly detec-
tion system that uses multiple existing anomaly detection
algorithms in parallel to detect traffic anomalies in real time.
The prototype implementation on an Intel IXP2400 network
processor is evaluated using real-world attack traces. The
main idea of our parallel anomaly detection system is to
implement multiple existing anomaly detection algorithms on
multiple traffic subsets in parallel. The availability of
advanced processing resources in network systems helps us
achieve this task. Using multiple anomaly detection algo-
rithms improves the accuracy and detection sensitivity of an
anomaly detection system, and running these algorithms on
multiple subsets of traffic in parallel allows us to detect sub-
sets that are causing the anomaly. Our experiments on real-
world attack traces show that parallel anomaly detection
achieves lower false positive and false negative rates than
any individual algorithm.

Acknowledgment
This material is based on work supported by the National Sci-
ence Foundation under Grant no. CNS-0325868.

References
[1] J. D. Brutlag, “Aberrant Behavior Detection in Time Series for Network Monitor-

ing,” Proc. 14th Sys. Admin. Conf., New Orleans, LA, Dec. 2000, pp. 139–46.
[2] V. A. Siris and F. Papagalou, “Application of Anomaly Detection Algorithms

for Detecting SYN Flooding Attacks,” Proc. IEEE GLOBECOM, Dallas, TX,
Nov. 2004, pp. 2050–54.

[3] C. Schwarzer, “Prediction and Adaptation in a Traffic-Aware Packet Filtering
Method,” Master’s thesis, EPFL, Lausanne, Switzerland, Mar. 2006.

[4] S. Deshpande et al., “A Statistical Approach to Anomaly Detection in Inter-
domain Routing,” Proc. 3rd Int’l. Conf. Broadband Commun., Netw., and
Sys. (BROADNETS), San Jose, CA, Oct. 2006.

[5] H. Wang, D. Xhang, and K.G. Shin, “Change-Point Monitoring for the
Detection of DoS Attacks,” IEEE Trans. Dependable Secure Comp., vol. 1,
no. 4, Oct. 2004, pp. 193–208.

[6] P. Barford et al., “A Signal Analysis of Network Traffic Anomalies,” Proc.
2nd ACM SIGCOMM Wksp. Internet Measurement , Marseille, France, Nov.
2002, pp. 71–82.

[7] Y. Gu, A. McCallum, and D. Towsley, “Detecting Anomalies in Network Traf-
fic Using Maximum Entropy Estimation,” Proc. 5th ACM SIGCOMM Conf.
Internet Measurement, Berkeley, CA, Oct. 2005.

[8] T. Wolf et al., “An Architecture for Distributed Real-Time Passive Network
Measurement,” Proc. 14th Annual Meeting IEEE/ACM Int’l. Symp. Modeling,
Analysis, and Simulation Comp. and Telecommun. Sys., Monterey, CA, Sept.
2006, pp. 335–44.

[9] S. Shanbhag and T. Wolf, “Massively Parallel Anomaly Detection in Online
Network Measurement,” Proc. 17th IEEE ICCCN, St. Thomas, U.S. Virgin
Islands, Aug. 2008.

[10] S. Shanbhag and T. Wolf, “Evaluation of an Online Parallel Anomaly
Detection System,” Proc. IEEE GLOBECOM, New Orleans, LA, Dec. 2008.

[11] T. Wolf, “Challenges and Applications for Network-Processor-Based Pro-
grammable Routers,” Proc. IEEE Sarnoff Symp., Princeton, NJ, Mar. 2006.

[12] S. Bunga and T. Wolf, “A Characterization of High-Performance Network
Monitoring Systems and Workloads,” Proc. IEEE Wksp. High Perf. Switching
and Routing, Brooklyn, NY, May 2007.

[13] P. F. Evangelista, M. J. Embrechts, and B. K. Szymanski, “Data Fusion for
Outlier Detection Through Pseudo-ROC Curves and Rank Distributions,” Proc.
Int’l. Joint Conf. Neural Net., Vancouver, BC, July 2006, pp. 2166–73.

[14] A. Hussain, J. Heidemann, and C. Papadopoulos, “A Framework for Classi-
fying Denial of Service Attacks,” Proc. SIGCOMM ’03, Karlsruhe, Germany,
Aug. 2003, pp. 99–110.

[15] D. Moore, C. Shannon, and J. Brown, “Code-Red: A Case Study on the
Spread and Victims of an Internet Worm,” Proc. 2nd ACM SIGCOMM
Wksp. Internet Measurement, Marseille, France, Nov. 2002, pp. 273–84.

[16] R. P. Lippmann et al., “Evaluating Intrusion Detection Systems: The 1998
DARPA Off-Line Intrusion Detection Evaluation,” Proc. DARPA Info. Surviv-
ability Conf. Expo., Hilton Head, SC, vol. 2, Jan. 2000, pp. 12–26.

Biographies
SHASHANK SHANBHAG (sshanbha@ecs.umass.edu) is a doctoral student at the Uni-
versity of Massachusetts, Amherst. He received his B.S. degree from Visves-
varaya Technological University, India, and his M.S. degree from the University
of Massachusetts, Amherst. His research interests span the areas of network
measurement, anomaly detection, and next-generation Internet architectures.

TILMAN WOLF (wolf@ecs.umass.edu) is an associate professor in the Department
of Electrical and Computer Engineering at the University of Massachusetts,
Amherst. He received a D.Sc. in computer science from Washington University in
St. Louis in 2002. His research interests include network processors, their appli-
cation in next-generation Internet architectures, and embedded system security.
He has been active as a program committee member and an organizing com-
mittee member of numerous professional conferences, including IEEE INFOCOM
and ACM SIGCOMM.

SHANBHAG LAYOUT 1/15/09 2:12 PM Page 28

