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Glossary

For the basic notions on graphs and networks see the article Wouter de Nooy:
Social network analysis.

Network – consists of vertices linked by lines and additional data about vertices
and/or lines.

Network decomposition – identification of parts of network and their intercon-
nections. Usually it is described by a partition of set of vertices or set of lines.

1To be published as a chapter in the Encyclopedia of Complexity and System Science (editor-
in-chief Bob Meyers), in the Social Networks section (section editor John Scott), Springer Verlag,
2009.
version: April 7, 2008 / 11 : 38
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Time complexity of algorithm – describes how the time needed to run the algo-
rithm depends on the size of the input data.

Reduction of network – a network obtained by shrinking each cluster from a
given partition into a vertex.

Condensation – a reduction for strong connectivity partition.

Cut – a subnetwork of vertices/lines with values of selected property above given
threshold.

Island – a connected subnetwork of selected size of (locally) important, with
respect to selected property, vertices/lines.

Pattern searching – identification of all appearences of selected small subnet-
work (pattern or fragment) in a given network.

Topological sort – procedure to determine a compatible ordering in acyclic net-
work.

I. Definition of the Subject

A network is based on two sets – set of vertices (nodes), that represent the selected
units, and set of lines (links), that represent ties between units. Each line has two
vertices as its end-points; if they are equal it is called a loop. Vertices and lines
form a graph. A line can be directed – an arc, or undirected – an edge.

Additional data about vertices or lines are usually known – their properties
(attributes). For example: name/label, type, value, position, . . . In general

Network = Graph + Data

The data can be measured or computed.
Formally, a network N = (V ,L,P ,W) consists of:

• a graph G = (V ,L), where V is the set of vertices andL = E∪A, E∩A = ∅
is the set of lines; A is the set of arcs and E is the set of edges.

• P – set of vertex value functions or properties: p : V → A

• W – set of line value functions or weights: w : L → B

The size of a network/graph is expressed by two numbers: number of vertices
n = |V| and number of lines m = |L|. In a simple undirected graph (no parallel
edges, no loops) m ≤ 1

2
n(n− 1); and in a simple directed graph (no parallel arcs)

m ≤ n2.
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For a family of graphs G we define a density of graph G as γ(G) = m(G)
mmax(G)

.

II. Introduction

Small networks (some tens of vertices) – can be represented by a picture and an-
alyzed by many algorithms (UCINET [64], NetMiner [61]). Also middle size
networks (some hundreds of vertices), if they are not dense, can still be repre-
sented by a picture, but some analytical procedures can’t be used.

Till 1990 most networks were small – they were collected by researchers using
surveys, observations, archival records, . . . The advances in IT allowed to create
networks from the data already available in the computer(s) or by browsing on the
Internet. Large networks became reality. Large networks are too big to be dis-
played in details; special algorithms are needed for their analysis (Pajek [62]).
The availability of large data sets also provided incentives to the boost of theoret-
ical research in (large) network analysis (not only in social science).

A recent overview of social network analysis software is given in Huisman
and Van Duijn [22].

III. Large Networks and Complexity of Algorithms

Large networks have several thousands or millions of vertices. The upper limit to
their size is tehnologically dependent – they can be stored in computer’s memory;
otherwise we deal with a huge network (see Abello et al. [38]).

Large networks are usually sparse m << n2; typically m = O(n) or m =
O(n log n) .

network n = |V| m = |L| source
ODLIS dictionary 2909 18419 ODLIS online
Citations SOM 4470 12731 Garfield’s collection
Molecula 1ATN 5020 5128 Brookhaven PDB
Comput. geometry 7343 11898 BiBTEX bibliographies
English words 2-8 52652 89038 Knuth’s English words
Internet traceroutes 124651 207214 Internet Mapping Project
Franklin genealogy 203909 195650 Roperld.com gedcoms
World-Wide-Web 325729 1497135 Notre Dame Networks
Internet Movie DB 1324748 3792390 IMDB
Wikipedia 659388 16582425 Wikimedia
US patents 3774768 16522438 Nber
SI internet 5547916 62259968 Najdi Si

A collection of large networks is available from Pajek’s datasets [62].
The time complexity of an algorithm describes how the time needed to run

the algorithm depends on the size of the input data. In computer science the
problems for which only algorithms of exponential (or higher) complexity are
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Figure 1: Decompositions

known are considered hard or intractable since the speed-up of computer only
additively increases the size of problems that can be solved in a given period of
time; but the problems for which an algorithm of polynomial complexity exists are
considered ’nice’. When dealing with large instances of problems this isn’t always
true anymore. Let us look to time complexities of some typical algorithms:

algorithm T(n) 1.000 10.000 100.000 1.000.000 10.000.000
Alg-A O(n) 0.00 s 0.015 s 0.17 s 2.22 s 22.2 s
Alg-B O(n logn) 0.00 s 0.06 s 0.98 s 14.4 s 2.8 m
Alg-C O(n

√
n) 0.01 s 0.32 s 10.0 s 5.27 m 2.78 h

Alg-D O(n2) 0.07 s 7.50 s 12.5 m 20.8 h 86.8 d
Alg-E O(n3) 0.10 s 1.67 m 1.16 d 3.17 y 3.17 ky

For the interactive use on large networks already quadratic algorithms, O(n2), are
too slow – we have to restrict our ’toolbox’ to a selection of efficient, subquadratic
algorithms.

How can we deal with large structures? Already Romans knew – divide et im-
pera (divide and conquer). In case of networks divide means the use of (recursive)
decomposition of a large network into several smaller networks (see Figure 1) that
can be visualized and treated further using more sophisticated methods; and im-
pera means that we have to take care about the interlinks among so obtained parts.

Another approach is the use of different statistical quantities to describe the
properties of a network and using probabilistic models to derive the answers to
some questions.
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IV. Decompositions

Decompositions of a network are usually described by clusterings of vertices or
lines. In the following we shall use mainly the clusterings of vertices.

A nonempty subset C ⊆ V is called a cluster (group). A nonempty set of
clusters C = {Ci} forms a clustering.

Clustering C = {Ci} is a partition iff

∪C =
⋃
i

Ci = V and i 6= j ⇒ Ci ∩ Cj = ∅

Clustering C = {Ci} is a hierarchy iff Ci ∩ Cj ∈ {∅, Ci, Cj}. In other words, in
a hierarchy two clusters are either disjoint or is one contained in the other.

Hierarchy C = {Ci} is complete, iff ∪C = V; and is basic if for all v ∈ ∪C
also {v} ∈ C.

Contraction of cluster C in a graph G is called a graph G/C, in which all
vertices of the clusterC are replaced by a single new vertex, say c. More precisely:
G/C = (V ′,L′), where V ′ = (V\C)∪{c} andL′ consists of lines fromL that have
both end-points in V \ C. Beside these it contains also a ’star’ with the center c
and: arc (v, c), if ∃p ∈ L, u ∈ C : p(v, u); or arc (c, v), if ∃p ∈ L, u ∈ C : p(u, v).
There is a loop (c, c) in c if ∃p ∈ L, u, v ∈ C : p(u, v).

In a network over graph G we have also to specify how the new values/weights
are determined in the shrunk part of the network. Usually as the sum or maksi-
mum/minimum of the original values.

For a given partition if we contract all clusters except few selected we obtain
their context; and if we contract all clusters we obtain the reduction of a given
network.

On the left side of the Figure 2 the matrix display of Snyder and Kick’s [33]
international trade network is presented. Vertices in the display are reordered
according to the partition by (sub)continents. On the right side the corresponding
reduction of the network is presented. The lines in the reduction have the thickness
proportional to the weights

w(Ci, Cj) =
n(Ci, Cj)

n(Ci) · n(Cj)

where n(Ci, Cj) is the number of lines from cluster Ci to cluster Cj; and n(Ci) is
the number of lines inside the cluster Ci.

A subgraph H = (V ′,L′) of a given graph G = (V ,L) is a graph which set
of lines is a subset of set of lines of G, L′ ⊆ L, its vertex set is a subset of set
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Figure 2: Snyder and Kick’s international trade; matrix display and reduction

Figure 3: Graph and its subgraph
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Figure 4: Africa cut-out and inter-links between South and Latin America

of vertices of G, V ′ ⊆ V , and it contains all end-vertices of L′. The graph on the
right side of Figure 3 is a subgraph of the graph on the left side.

A subgraph can be induced by a given subset of vertices V ′, then L′ = L|V ′
consists of all lines from L which have both end-points in V ′; or lines L′, then
V ′ = V|L′ consists of all end-points of lines from L′. It is a spanning subgraph iff
V ′ = V .

On the left side of Figure 4 the cut-out of African countries from the Snyder
and Kick’s network is presented – the induced subgraph by Africa cluster; and on
the right side the inter-links between Latin America and South America – the in-
duced subgraph by Latin America and South America clusters with inside cluster
lines removed.

V. Connectivity

A walk from vertex u to vertex v is a sequence of lines l(vi−1, vi), i = 1, . . . , k
such that v0 = u and vk = v. k is called the length of the walk. If in the definition
of a walk we don’t care about the direction of its lines we get a semiwalk. A walk
is closed iff u = v. A graph is acyclic iff it doesn’t contain any closed walk. A
walk in which all vertices are different is a path.

Vertex u is reachable from vertex v iff there exists a walk with initial vertex v
and terminal vertex u. Vertex v is weakly connected with vertex u iff there exists
a semiwalk with v and u as its end-vertices. Vertex v is strongly connected with
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Figure 5: Weak and strong components

Figure 6: Weak and strong components in matrix display

vertex u iff they are mutually reachable.
Weak and strong connectivity are equivalence relations. Equivalence classes

induce weak/strong components (See Figure 5).
Reordering the vertices of network such that the vertices from the same class

of weak partition are put together we get a matrix representation (left side of Fig-
ure 6) consisting of diagonal blocks – weak components. The out-diagonal blocks
are zero-blocks. Most problems can be solved separately on each component and
afterward these solutions combined into final solution.

If we shrink every strong component of a given graph into a vertex, delete
all loops and identify parallel arcs the obtained reduced graph, called also the
condensation of a given graph, is acyclic (Harary et al. [49]). For every acyclic
graph an ordering / level function i : V → N exists s.t. (u, v) ∈ A ⇒ i(u) < i(v).
The procedure to determine such ordering is called topological sort (Cormen et
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al. [44]). Reordering in matrix display the vertices of a network by this ordering
we obtain a representation as at the right side of Figure 6 – the blocks below the
diagonal are zero-blocks.

A directed graph, its condensation and its topologically ordered matrix display
are presented in Figure 7.

For several network analysis problems more efficient algorithms exist for acyclic
networks.

VI. Cuts

The basic approach to find interesting groups inside a network is to express our
intentions (question) with an appropriate property/weight (measured or computed
from network structure) and then identify the substructures of elements with the
highest (lowest) values of the selected property. This approach is known as a
method of cuts.

There exist several measures of importance of vertices in a network such as:
degree, betweeness, closeness (Freeman [19]; Brandes [14]), hubs and authorities
(Kleinberg [24]), clustering coefficient, . . .

The degree deg(v) of vertex v equals to the number of lines having vertex v
as their end-point. The maximum degree of a graph is denoted by ∆. Similary the
in-degree indeg(v) of vertex v equals to the number of lines having vertex v as
their terminal point, and the out-degree outdeg(v) . . .

The vertex-cut of a network N = (V ,L, p), for a property p : V → R, at
selected level t is a subnetwork N (t) = (V ′,L(V ′), p), determined by the set

V ′ = {v ∈ V : p(v) ≥ t}

and L(V ′) is the set of lines from L that have both end-points in V ′.
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Figure 8: Main component of arc cut at level 0.007 of the SOM citation network

The line-cut of a networkN = (V ,L, w), for a weight w : L → R, at selected
level t is a subnetwork N (t) = (V(L′),L′, w), determined by the set

L′ = {e ∈ L : w(e) ≥ t}

and V(L′) is the set of all end-points of the lines from L′.
In the analysis of a cut N (t) we look at its components. Their number and

sizes depend on t. Usually there are many small components. Often we consider
only components of size at least k and not exceeding K. The components of
size smaller than k are discarded as ’less interesting’; and the components of size
larger than K are cut again at some higher level.

The values of threshold t and size bounds k and K are determined by inspect-
ing the distribution of vertex/line-values and the distribution of component sizes
and considering additional knowledge on the nature of network or goals of analy-
sis.

The pS-core at level 46 (see Figure 11) of the collaboration network in the
field of computational geometry is an example of vertex cut.

The citation network analysis started in 1964 with the paper of Garfield et
al. [20]. In 1989 Hummon and Doreian [23] proposed three indices – weights
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Figure 9: Cores

of arcs that are proportional to the number of different source-sink paths passing
through the arc. In Figure 8 the main component of the arc cut at level 0.007
for SPC (search path count) weights of the SOM (selforganizing maps) citation
network (4470 vertices, 12731 arcs) is presented.

VII. Dense groups – cores and short rings

Several notions were proposed in attempts to formally describe dense groups in
graphs.

Clique of order k, k ≥ 3, is a maximal complete subgraph (isomorphic to
complete graph Kk – graph with k vertices and all possible edges among them).

Other notions are: s-plexes, s-clans, LS sets, lambda sets, cores, . . . (Wasserman
and Faust [53]). For all of them, except for cores, it turned out that they are diffi-
cult (no fast algorithm exists) to detemine.

The notion of core was introduced by Seidman in 1983 [31]. Let G = (V , E)
be a graph. A subgraph Hk = (W , E|W) induced by the set W is a k-core or a
core of order k iff for all v ∈ W : degHk

(v) ≥ k, and Hk is a maximal subgraph
with this property. The core of maximum order is also called the main core. The
core number of vertex v is the highest order of a core that contains this vertex.
In general graphs instead of the degree deg(v) we can also use: in-degree, out-
degree, in-degree + out-degree, etc., determining different types of cores.

From the Figure 9, representing 0, 1, 2 and 3 core, we can see the following
properties of cores:

• The cores are nested: i < j =⇒ Hj ⊆ Hi. They form a hierarchy.

• Cores are not necessarily connected subgraphs.

An efficient algorithm for determining the cores hierarchy is based on the follow-
ing property: If from a given graph G = (V , E) we recursively delete all vertices,
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Figure 10: Cores of orders 10–21 in Computational Geometry collaboration net-
work

and edges incident with them, of degree less than k, the remaining graph is the
k-core.

The Figure 10 presents the cores of orders 10 to 21 in the collaboration net-
work (n = 7343, m = 11898) for the field of Computational geometry – two
authors are linked iff they wrote a paper together. The weight of the edge equals
to the number of joint papers.

The notion of core can be generalized to networks. Let N = (V , E , w) be
a network, where G = (V , E) is a graph and weight w : E → R is a function
assigning values to edges. A vertex property function on N , or a p-function for
short, is a function p(v, U), v ∈ V , U ⊆ V with real values. Let NU(v) =
N(v) ∩ U , where N(v) is the set of neighbors of v. Besides degrees, here are
some other examples of p-functions [12]:

pS(v, U) =
∑

u∈NU (v)

w(v, u), where w : E → R+
0

pM(v, U) = max
u∈NU (v)

w(v, u), where w : E → R

pk(v, U) = number of cycles of length k through vertex v in (U, E|U)

pγ(v, U) =
deg(v, U)

maxu∈N(v) deg(u)
, if deg(v) > 0; 0, otherwise

pδ(v, U) = max
u∈N+

U (v)
deg(u)− min

u∈N+
U (v)

deg(u)
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pa(v, U) =
1

|NU(v)|
∑

u∈NU (v)

w(v, u), if NU(v) 6= ∅; 0, otherwise

The subgraph H = (C, E|C) induced by the set C ⊆ V is a p-core at level t ∈ R
iff for all v ∈ C : t ≤ p(v, C) and C is a maximal such set.

The function p is monotone iff it has the property

C1 ⊂ C2 ⇒ ∀v ∈ V : (p(v, C1) ≤ p(v, C2))

The degrees and the functions pS , pM , pk, pγ and pδ are monotone; and pa is not.
For a monotone function the p-core at level t can be determined, as in the ordinary
case, by successively deleting vertices with value of p lower than t; and the cores
on different levels are nested

t1 < t2 ⇒ Ht2 ⊆ Ht1

The p-function is local iff p(v, U) = p(v,NU(v)) . The degrees, pS , pM , pγ , pδ
and pa are local; but pk is not local for k ≥ 4. For a local monotone p-function an
O(mmax(∆, log n)) algorithm for determining the p-core levels exists, assuming
that p(v,NC(v)) can be computed in O(degC(v)).

Figure 11 presents the pS-core at level 46 of the collaboration network in the
field of computational geometry. Note, for example, that R. Klein (lower left) has
in-core degree only 2, but its in-core sum of weights is at least 46 – he wrote most
of his papers with C. Icking.

A k-ring is a simple closed chain of length k. Using k-rings we can define a
weight of an edge e as

wk(e) = # of different k-rings containing the edge e ∈ E
Since for a complete graph Kr, r ≥ k ≥ 3 we have wk(Kr) = (r − 2)!/(r − k)!,
the edges belonging to cliques have large weights. Therefore these weights can
be used to identify the dense parts of a network. For example: all r-cliques of a
network belong to (r − 2)-edge cut for the weight w3.

Related to triangular (3-rings) network is the notion of triangular connectivity
that can be used to operationalize the notion of Granovetter’s strong and weak
ties [21]. This notion can be generalized to short cycle connectivity. For details
see Batagelj and Zaveršnik [13]. For efficient algorithms for computing triangles
in networks see Batagelj and Mrvar [9], Schank and Wagner [32], and Latapy [58].

In Figure 12 the edge-cut at level 16 of triangular network of Erdős collabo-
ration graph (without Erdős, n = 6926, m = 11343) is presented (Batagelj and
Mrvar [8]).

In directed networks there are two types of triangles or 3-rings (cyclic and
transitive, see Figure 14).
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Figure 11: pS-core at level 46 in Computational Geometry collaboration network
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Figure 12: Edge-cut at level 16 of triangular network of Erdős collaboration graph
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Figure 13: Vertex and edge triangular connectivity

K5 cyclic transitive

Figure 14: K5 and cyclic and transitive 3-ring

Let G = (V , E) be a simple undirected graph. Clustering in vertex v is usually
measured as a quotient between the number of lines in subgraph G1(v) = G(N(v))
induced by the neighbors of vertex v and the number of lines in the complete graph
on these vertices:

C(v) =


2|L(G1(v))|

deg(v)(deg(v)− 1)
deg(v) > 1

0 otherwise

For simple directed graphs we have to omit the number 2.
So defined clustering coefficient attains largest values mostly on vertices of

low degree – it is not useful for data analysis task. A better coefficient is obtained
by the following correction

C1(v) =
deg(v)

∆
C(v)

where ∆ is the maximum degree in graph G. This measure attains its largest value
in vertices that belong to an isolated clique of size ∆.

VIII. Islands

Islands are very general and efficient approach to determine the ’important’ sub-
networks in a given network with respect to a given property of vertices or lines.
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Figure 15: Cuts and islands

It is an improvement of the cuts approach. If we represent a given or computed
value of vertices / lines as a height of vertices / lines and we immerse the network
into a water up to selected level we get islands. Varying the level we get different
islands [37].

In the islands approach we select only maximal islands of sizes inside the
given size bounds k to K, but on different levels. In this way we bypass the
problems of the cuts approach: determining the ’right’ threshold value and too
small/large sizes of obtained components. Besides this we can also identify locally
important islands with small heights – emerging groups. Very efficient algorithms
exist to determine the islands hierarchy and to list all the islands of selected sizes.
An island is simple iff it has only one peak.

As an example, let us take the Nber network of US Patents [59]. It has 3774768
vertices and 16522438 arcs. We computed SPC weights in it and determined all
(2,90)-islands. The reduced network has 470137 vertices, 307472 arcs and for
different k: C2 =187610, C5 =8859,C30 =101, C50 =30 islands. The main
island turns out to be the island on the theme LCD – Liquid crystal display.

In Figure 16 four islands for transitivity triangular weight from The Edinburgh
Associative Thesaurus network [55] (n = 23219, m = 325624) are presented.
From the left bottom island of words around the leader ’WORK’ we see that the
data were collected asking students.

IX. Pattern searching

If a selected pattern determined by a given graph does not occur frequently in
a sparse network the straightforward backtracking algorithm applied for pattern
searching finds all appearences of the pattern very fast even in the case of very
large networks. Pattern searching was successfully applied to searching for pat-
terns of atoms in large organic molecula (carbon rings) and searching for relinking
marriages in genealogies (Batagelj and Mrvar [11]; Batagelj [5]).

The Figure 17 presents three connected relinking marriages in the genealogy
(represented as a p-graph) of ragusan noble families. In a p-graph the vertices
represent married couples or nonmarried individuals. A solid arc indicates the

is a son of relation, and a dotted arc indicates the is a daughter of relation.
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Figure 16: Selected Islands from The Edinburgh Associative Thesaurus
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Figure 17: Marriages among relatives in Ragusa
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In all three patterns a brother and a sister from one family found their partners in
the same other family.

X. Two Mode Networks

A network N = (V ,L, w) in which the set of vertices V = V1 ∪ V2 is composed
of two disjoint sets V1 and V2, and L is a set of lines linking V1 and V2 is called a
two-mode or bipartite network.

The two-mode networks often appear in applications, but till recently no di-
rected methods for analysis of larger two-mode networks were available. To iden-
tify dense parts of two-mode network we can use the adapted cores and short rings
approaches (Ahmed et al. [2]).

The subset of vertices C ⊆ V is a (p, q)-core in a two-mode network N =
(V1,V2;L), V = V1 ∪ V2 iff

a. in the induced subnetworkH = (C1, C2;L(C)), C1 = C∩V1, C2 = C∩V2

it holds for all v ∈ C1 : degH(v) ≥ p and for all v ∈ C2 : degH(v) ≥ q ;

b. C is the maximal subset of V satisfying condition a.

The two-mode cores have the following properties:

• C(0, 0) = V

• C(p, q) is not always connected

• (p1 ≤ p2) ∧ (q1 ≤ q2)⇒ C(p1, q1) ⊆ C(p2, q2)

To determine a (p, q)-core an algorithm similar to the ordinary core algorithm
can be used: recursively remove from the first set all vertices of degree less than
p, and from the second set all vertices of degree less than q. It can be implemented
to run in O(m) time.

The main question when applying the bipartite cores is what are the right val-
ues of p and q? The most interesting are the values on the ’border’ that don’t
produce too large cores.

In Figure 18 the (247,2)-core and (27,22)-core from the Internet Movie Database [56]
(two-mode network actors × movies, n = 1324748 = 428440 + 896308 vertices
and m = 3792390 arcs) are presented. Both deal with wrestling.

In 2-mode network there are no 3-rings. The densest substructures are com-
plete bipartite subgraphsKp,q – seeK4,5 on the left side of Figure 19. They contain
many 4-rings

w4(Kp,q) = (p− 1)(q − 1)
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Royal Rumble

Survivor Series

Dumas, Amy
Ellison, Lillian
García, LiliÆn
Guenard, Nidia
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Keibler, Stacy
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Martin, Judy (II)
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Figure 18: (247,2)-core and (27,22)-core of IMDB – wrestling

K4,5

cyclic transitive

genealogical diamond

Figure 19: K4,5 and directed 4-rings
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Figure 20: Islands for w4 / Charlie Brown and Adult

There are 4 types of directed 4-rings – see the right side of Figure 19. In the
case of transitive rings we can count also on how many transitive rings the arc is
a shortcut.

In the Internet Movie Database we obtained for w4 12465 simple line islands
on 56086 vertices; 30 among them have size at least 50. Two of them are presented
on Figure 20.

XI. Multiplication of networks

To a simple two-mode network N = (I,J , E , w); where I and J are sets of
vertices, E is a set of edges linking I and J , and w : E → R is a weight; we can
assign a network matrix W = [wi,j] with elements: wi,j = w(i, j) for (i, j) ∈ E
and wi,j = 0 otherwise.

Given a pair of compatible networks NA = (I,K, EA, wA) and NB = (K,J ,
EB, wB) with corresponding matrices AI×K and BK×J we call a product of net-
works NA and NB a network NA ? NB = NC = (I,J , EC , wC), where EC =
{(i, j) : i ∈ I, j ∈ J , ci,j 6= 0} and wC(i, j) = ci,j for (i, j) ∈ EC . The product
matrix C = [ci,j]I×J = AB is defined in the standard way

ci,j =
∑
k∈K

ai,k · bk,j

In the case when I = K = J we are dealing with ordinary one-mode networks
(with square matrices).
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The standard matrix multiplication is too slow to be used for large networks.
For sparse large networks we can multiply much faster considering only nonzero
elements. In general the multiplication of large sparse networks is a ’dangerous’
operation since the result can ’explode’ – it is not sparse. But in many interesting
cases we can assure that also the product is sparse. For example, we can prove:

If at least one of the sparse networks NA and NB has small maximal degree
on K then also the resulting product network NC is sparse.

A more detailed analysis gives: Let dmin(k) = min(degA(k), degB(k)), ∆min =
maxk∈K dmin(k), dmax(k) = max(degA(k), degB(k)),K(d) = {k ∈ K : dmax(k) ≥
d}, and d∗ = argmind(|K(d)| ≤ d). If for the sparse networks NA and NB the
quantities ∆min and d∗ are small then also the resulting product network NC is
sparse.

For example, using network multiplication we can in a given genealogy from
the basic relations (P – parent-of, L – is a man, J – is a woman) compute all other
kinship relations. For details see Batagelj and Mrvar [11].

An important application of network multiplication is conversion of two-mode
network to the corresponding one-mode networks. Often we transform a two-
mode network N into an ordinary (one-mode) network N1 = (I, E1, w1) or/and
N2 = (J , E2, w2), where E1 and w1 are determined by the matrix W(1) = WWT ,
w

(1)
ij =

∑
k∈J wik · wTkj and WT is the transpose of matrix W. Evidently the

matrix W(1) is symmetric w(1)
ij = w

(1)
ji . There is an edge {i, j} ∈ E1 in N1 iff

N(i)∩N(j) 6= ∅. Its weight is w1(i, j) = w
(1)
ij . The networkN2 is determined in

a similar way by the matrix W(2) = WTW.
The networks N1 and N2 are analyzed using standard methods for one-mode

networks.
Another very important application of network multiplication is producing dif-

ferent networks from data tables. A data table T is a set of records T = {Tk : k ∈
K}, whereK is the set of keys. A record has the form Tk = (k, q1(k), q2(k), . . . , qr(k))
where qi(k) is the value of the property (attribute) qi for the key k.

Suppose that the property q has the range 2Q. For example: Authors[WasFau] =
{ S. Wasserman, K. Faust }, PubYear[WasFau] = { 1994 }, . . . IfQ is finite (it can
always be transformed in such set by partitioning the set Q and recoding the val-
ues) we can assign to the property q a two-mode network K × q = (K,Q, E , w)
where (k, v) ∈ E iff v ∈ q(k), and w(k, v) = 1.

Also, for properties qi and qj we can define a two-mode network qi × qj =
(Qi,Qj, E , w) where (u, v) ∈ E iff ∃k ∈ K : (u ∈ qi(k) ∧ v ∈ qj(k)), and
w(u, v) = card({k ∈ K : (u ∈ qi(k) ∧ v ∈ qj(k))}).

It holds [qi×qj]
T = qj ×qi and qi×qj = [K×qi]

T ? [K×qj] = [qi×K] ?
[K × qj].

We can join a pair of properties qi and qj also with respect to the third property
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Figure 21: The main two islands in ProjInst

qs: we get a two-mode network [qi × qj]/qs = [qi × qs] ? [qs × qj].
For the meeting The Age of Simulation at Ars Electronica in Linz, January

2006, a dataset of EU projects on simulation was collected by FAS research, Vi-
enna and stored in the form of Excel table. The rows are the descriptions of
projects participants (idents) and columns correspond to different their properties.
From this table three two-mode networks were produced: Project – P = [ idents
× projects ]; Country – C = [ idents × countries ]; and Institution – U = [ idents
× institutions ]; where |idents| = 8869, |projects| = 933, |institutions| = 3438,
and |countries| = 60.

Since all three networks have the common set (idents) we can derive from
them using network multiplication several interesting networks, such as: ProjInst
– W = [ projects × institutions ] = PT ? U; Countries – S = [ countries ×
countries ] = CT ? C; and Institutions – Q = [ institutions × institutions ]/
projects = WT ?W.

For identifying important parts of ProjInst network the 4-rings weights were
computed and in the obtained network the line islands were determined. 101
islands were obtained, 18 of the size at least 5. In Figure 21 the two most important
islands are presented: aviation companies and car companies.

In Figure 22 the collaboration among countries is presented. For dense (sub)-
networks we get better visualization by using matrix display. To determine the or-
dering of vertices we used Ward’s clustering procedure with corrected Euclidean
distance as dissimilarity measure (Doreian et al. [46]). The permutation deter-
mined by hierarchy can often be improved by changing the positions of clusters
in the clustering tree. We get a typical center-periphery structure (See Figure 23).

Note that in matrix display some details become appearent, such as the col-
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laboration inside the peripherical group Afghanistan, Moroco, Malta, Tunisia,
Lebanon, Jordan and Algeria; or collaboration of Russian Federation with ex-
Soviet republics Turkmenistan, Uzbekistan, Moldavia, Kazakhstan, Azerbaijan
and Japan.

XII. Statistical approach

There are many properties computed from the network data that give us different
information about it. For example:
global properties: number of vertices, lines (edges/arcs), components; diameter;
centralization; maximum core number, . . .
local properties: degrees, core numbers, indices (betweeness, hubs, authorities,
. . . ). Usually we look at their distributions or inspect the values of interesting
elements.

Another interesting task is searching for associations between computed (struc-
tural) data and input (measured) data.

Paul Erdős and Alfréd Rényi introduced in 1959 the notion of random graph in
which each pair of vertices is linked with a given probability p. The theory of ER
random graphs is well developed (see Bollobás [42]). Some characteristic results:

• the degree distribution is binomial (in the limit Poisson’s) and most of the
vertices have degree (very) close to the average degree;

• for p ≥ 1
n

cycles appear in the graph, and soon also the giant component;

• for p ≥ log2 n
n

almost all graphs are connected;

Real-life networks are usually not random in the Erdős–Rényi sense. The
analysis of their distributions gave new views about their structure.

On the left side of Figure 24 a degree distribution in ER graph on n = 100000
vertices with average degree deg = 30 is presented. On the right side a degree dis-
tribution for US Patents citation network is presented (in log-log scale). Evidently
this distribution is very far away from Poisson distribution.

In 1967 a psychologist Stanley Milgram made his experiment with letters.
The letter should reach a target person. The persons involved in experiment were
asked to send the letter with these instructions to his or her acquaintance that is
supposed to be closer (in the acquaintances network) to the target person. The
letter was sent from Boston to Omaha. The average length of the successful paths
was 6 – six degrees of separation. The average path length on the internet is 19
clicks.
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Figure 24: Distributions: ER-random and US patents

The networks in which the average shortest path length is small are called
small worlds. Duncan Watts and Steven Strogatz developed in late 90-ties a pro-
cedure for construction of (random) small worlds by rewiring – an edge is ran-
domly selected and one of its endpoints is attached to same other vertex. After
each rewiring step the average length of geodesics is usually descreased because
the rewiring creates shortcuts.

Albert-László Barabási from University of Notre Dame in 1998 analyzed sev-
eral networks and noticed:

• the degree distribution follows the power law – the probability pd that a
vertex has a degree d equals to pd = cḋ−γ . In a log-log scale diagram it is
represented by a line;

• in a network there exist some vertices with large degree (very unprobable
in ER graphs). These vertices link the network into a single component.

It turned out that most of real life networks (persons – e-mail, phone calls, sexual
contacts (drug users, AIDS), collaboration; movie actors – playing in the same
movie; proteins – interactions; words – semantic relations; . . . ) have such char-
acteristics. Because for these networks their degree distribution has no natural
scale they were named scale-free networks. For a discussion about the notion of
scale-free network see Li et al. [27].

The first explanation (Barabási) of scale-free nature of many real-life networks
was:

• these networks are growing;

• in this process new vertices are added and linked with new edges to already
existing vertices. The random selection of vertex to which a new vertex is
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attached is not uniform but follows the preferential attachment rule – the
selection probability is proportional to the degree of a vertex.

Based on this model it can be shown that:

• the degree distribution is the power law;

• the average length of geodesics is O(log n) ;

• these networks are resilient against random vertex or edge removals (ran-
dom attacks), but quickly become disconnected when large degree nodes
(Achilles’ heel) are removed (targeted attacks).

Mark Granovetter noticed in 1973 that in social networks groups appear linked
with strong ties [21]. They link in larger networks with weak ties. Also in other
real-life networks vertices often form groups – the clustering coefficient is larger
than in ER networks.

Several improvements and alternative models were proposed that also produce
scale-free networks with some additional properties characteristic for real-life net-
works: copying (Kleinberg [25]), combining random and preferential attachment
(Pennock et al. [30]), R-mat (Chakrabarti et al. [16]), forest fire (Leskovec et
al. [26]), aging, fitness, nonlinear preferences, . . .

There are several applications of the scale-free networks theory. For example
searching (Adamic et al. [1]) and spreading of epidemies (Barthélemy, Barrat,
Pastor-Sattoras, Vespignani, Complex Networks Collaboratory [54]).

For general overviews see Albert, Barabási [3], Newman [29], Dorogovtsev
and Mendes [47], and Newman at al. [51].

XIII. Future Directions

In 2005 the support for multi-relational networks was introduced in Pajek.
Combined with temporal networks it enables analysis of new kinds of networks
– such as KEDS networks [57] (Kansas Event Data System or Tabari). These
networks are usually small in terms of vertices but can be (very) large in terms of
lines – different interaction events among actors.

The last developed approach for analysis of large networks is adaptation of hi-
erarchical clustering with relational constraints based on Ferligoj and Batagelj [18]
to large networks. The basic idea to get a fast algorithm is to compute the dissim-
ilarities between units (vertices) only for the linked pairs of units (Batagelj and
Mrvar [10]). This approach is one of the possible approaches to analysis of spatial
networks [63].
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There are still several fields of social network analysis for which efficient ap-
proaches to deal with large networks have to be developed such as blockmodeling,
probabilistic models, . . .

In the near future new versions of network analysis software will appear using
very large computer memories enabled by the new 64-bit computer architecture.
A special challenge is development of methods and software for analysis of huge
networks.
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[13] Batagelj V., Zaveršnik M. (2007) Short cycle connectivity. Discrete Mathe-
matics 307(3-5), 310-318.

[14] Brandes U. (2001) A Faster Algorithm for Betweenness Centrality. Journal
of Mathematical Sociology 25(2):163-177.

[15] Breiger R.L. (2004) The analysis of social networks.

[16] Chakrabarti D., Zhan Y., Faloutsos C. (2004) R-MAT: A Recursive Model for
Graph Mining. in SIAM Data Mining 2004, Orlando, Florida, USA.

[17] Doreian P., Batagelj V., Ferligoj A. (2000) Symmetric-Acyclic Decomposi-
tions of Networks. Journal of Classification, 17(1), 3-28.

[18] Ferligoj A., Batagelj V. (1983) Some types of clustering with relational con-
straints. Psychometrika, 48(4), 541–552.

[19] Freeman L.C. (1979) Centrality in Social Networks: A Conceptual Clarifi-
cation. Social Networks 1: 211-213.

[20] Garfield E, Sher IH, and Torpie RJ. (1964) The Use of Citation Data in
Writing the History of Science. Philadelphia: The Institute for Scientific In-
formation, December 1964.

[21] Granovetter M. (1973) The Strength of Weak Ties. American Journal of So-
ciology 78: 1360-80.

28

http://arxiv.org/abs/cs.DS/0202039


[22] Huisman M., Van Duijn M.A.J. (2005) Software for social network analysis.
In: P.J. Carrington, J. Scott, S. Wasserman, Models and methods in social
network analysis (pp. 270-316). Cambridge: Cambridge University Press.

[23] Hummon N.P., Doreian P. (1990) Computational Methods for Social Net-
work Analysis. Social Networks, 12, 273-288.

[24] Kleinberg J. (1998) Authoritative sources in a hyperlinked environment.
Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.

[25] Kleinberg J., Kumar R., Raghavan P., Rajagopalan S., Tomkins A.(1999)
The Web as a graph: measurements, models and methods. Proceedings of
the 5th International Computing and combinatorics Conference.

[26] Leskovec J., Kleinberg J., Faloutsos C. (2006) Laws of Graph Evolution:
Densification and Shrinking Diameters.

[27] Li L., Alderson D., Tanaka R., Doyle J.C., Willinger W. (2005) Towards
a Theory of Scale-Free Graphs: Definition, Properties, and Implications.
cond-mat/0501169.

[28] Mane K.K., Börner K. (2004) Mapping topics and topic bursts in PNAS.
PNAS 101: 5287-5290.

[29] Newman M.E.J. (2003) The structure and function of complex networks.
SIAM Review 45, 167-256.

[30] Pennock D.M., Flake G.W., Lawrence S., Glover E.J., Giles C.L. (2002)
Winners dont take all: Characterizing the competition for links on the web.
PNAS 99(8), 52075211.

[31] Seidman S.B. (1983) Network Structure And Minimum Degree. Social Net-
works 5:269–287.

[32] Schank T., Wagner D. (2005) Finding, counting and listing all triangles in
large graphs, an experimental study. In Workshop on Experimental and Ef-
ficient Algorithms (WEA), 606-609.

[33] Snyder D., Kick E. (1979) The World System and World Trade: An Empirical
Exploration of Conceptual Conflicts. Sociological Quaterly, 20,1, 23-36.

[34] Snijders T.A.B. (2005) Models for Longitudinal Network Data. Chapter 11
in P. Carrington, J. Scott, and S. Wasserman (Eds.), Models and methods in
social network analysis. New York: Cambridge University Press.

29



[35] Stuckenschmidt H., Klein M. (2004) Structure-Based Partitioning of Large
Concept Hierarchies. Proceedings of the 3rd International Semantic Web
Conference ISWC 2004, Hiroshima, Japan.

[36] White D.R., Batagelj V., Mrvar A. (1999) Analyzing Large Kinship and Mar-
riage Networks with Pgraph and Pajek. Social Science Computer Review –
SSCORE, 17, 245-274.
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