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1. INTRODUCTION

Businesses and consumers are becoming increasingly conscious of the value of
archival data. In the business arena, data preservation is often mandated by
law [104th Congress 1996; Oxley 2002], and data mining has proven to be a
boon in shaping business strategy. For individuals, archival storage is being
called upon to preserve sentimental and historical artifacts such as photos,
movies, and personal documents. Further, this information often needs to be
stored securely; data such as medical records and legal documents that could
be important to future generations must be kept indefinitely but must not be
publicly accessible.

The goal of a secure, long-term archive is, therefore, to provide security for
relatively static data with an indefinite lifetime. More specifically, a secure
archive seeks to provide three long term features: secrecy, recoverability, and
integrity. The first, long term secrecy, aims to ensure that the data stored must
only be viewable by authorized readers. The second, recoverability, is akin to
availability and stipulates that data must be available and accessible to autho-
rized users within a reasonable amount of time, even to those who might lack a
specific key. The third, integrity, ensures that the data read is the same as the
data written.

The usage model of archival storage is quite different from that of traditional
storage systems. The workload is write-heavy, motivated by regulatory compli-
ance and the desire to save any data that might be valuable at a later date.
Reads, while relatively infrequent, are often part of a query or audit and thus
are likely to be temporally related. Thus, archival storage is more concerned
with throughput than low-latency data access. Long term archives also add the
unique “digital time-capsule” property that the reader may have little knowl-
edge of the system’s contents, and no contact with the original writer; while file
lifetimes may be indefinite, user lifetimes certainly are not.

While storage security has long been an active, well-researched area, the
indefinite lifetimes of archival storage introduce a number of new chal-
lenges [Baker et al. 2006; Storer et al. 2006]. One of the biggest challenges
is that mechanisms such as cryptography work well in the short term, but are
less effective in the long term. The use of computation-bound encryption in an
archival scenario introduces the problems of lost keys, compromised keys, and
even compromised cryptosystems. All this is exacerbated by the numerous key
rotations and cryptosystem migrations that will inevitably occur over the course
of several decades; this must all be done without user intervention because the
user who stored the data may be unavailable. Thus, security for archival storage
must be designed explicitly for the unique demands of long term storage.

To address the many security requirements for long term archival storage, we
have designed and implemented POTSHARDS (Protection Over Time, Securely
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Harboring And Reliably Distributing Stuff), which uses three primary tech-
niques to provide security for long term storage. First, secret splitting [Shamir
1979] is used to produce a tuple of n secret shares from a block of data, m of which
must be obtained to reconstruct the block. Unlike encryption, secret splitting
is unconditionally secure; it can be shown that combining fewer than m shares
reveals no information about the original block. Second, POTSHARDS uses a
global data namespace that is used to identify data entities. The namespace
introduces an element of diversity [Forrest et al. 1997] into the model, since it
is sparsely populated and treated in a similar fashion to a heap. Third, POT-
SHARDS utilizes approximate pointers, which differ from traditional pointers
in that they indicate a region in the namespace as opposed to an exact ad-
dress. Approximate pointers enable secure recovery from only the data itself by
associating related secret shares.

The privacy aspect of POTSHARDS is achieved through unconditionally se-
cure mechanisms, increased attack survivability, and malicious activity detec-
tion. Secret splitting provides attack resilience because, unlike pure encryption,
it is unconditionally secure and requires the adversary to collect multiple pieces
of data to reconstitute any portion of the original block. Further, the likelihood of
detecting malicious data access is probabilistically increased through a sparse
namespace; requests for shares that do not exist are easy to detect. Compound-
ing the attack detection’s effectiveness, an attacker that attempts to use the
approximate pointer to make a targeted attack would need to steal every share
in the indicated region along with every share in the region indicated by those
shares and so forth.

The recovery and availability strategy of POTSHARDS enables the recon-
struction of data from the secret shares alone. Thus, even with no outside index
to connect data blocks and secret shares, a user’s data can be recovered. This
is especially important in long term archival scenarios in which data may have
a potentially indefinite lifetime [Baker et al. 2006; Storer et al. 2006]. Our ap-
proach is based upon the use of approximate pointers, which provide clues about
inter-share relationships. These clues supply enough information to allow re-
covery but require a lot of shares, a necessity that is difficult for an adversary
to meet.

In order to validate our design and test its performance, we implemented
a prototype of POTSHARDS. The current implementation can read and write
data at a rate of 4—6 MB/s on commodity hardware. It also survives the failure
of an entire archive with no data loss and little effect seen by users. In addition,
we demonstrated the ability to rebuild a user’s data from all of the user’s stored
shares without the use of a user index. Finally, our implementation provides a
testbed we have used to perform a thorough exploration of our security model.
These experiments demonstrate the system’s suitability to the unique usage
model of long term archival storage.

2. BACKGROUND

Since POTSHARDS was designed specifically for secure, long term storage, we
identified three basic design tenets to help focus our efforts. First, we assume
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that encrypted data can be read by anyone, given sufficient CPU cycles and
advances in cryptanalysis. Put another way, if an attacker obtains encrypted
data, the plaintext will eventually be revealed. Second, for long term surviv-
ability, data must be recoverable without any information from outside the set
of archives; fulfilling requests in a reasonable time cannot require any outside
data, such as external indexes or encryption keys. Third, we assume that in-
dividuals are more likely to be malicious than an aggregate. Thus, our system
trusts groups of archives, even though it does not trust individual archives.
The chances of every archive in the system colluding maliciously is small; the
system allows rebuilding of stored data if all archives cooperate.

In designing POTSHARDS to meet these goals, we used concepts from a
number of existing storage systems that satisfy some of the design tenets dis-
cussed before. These ranged from general-purpose distributed storage systems
to distributed content delivery systems, to archival systems designed for short-
term storage and archival systems designed for very specific uses such as public
content delivery (a representative sample of these systems is summarized in
Table I).

2.1 Archival Storage Models

Storage systems such as Venti [Quinlan and Dorward 2002] and
Elephant [Santry et al. 1999] are concerned with archival storage, but tend
to focus on the near-term time scale. Both systems are based on the philosophy
that inexpensive storage makes it feasible to store many versions of data. Other
systems, such as Glacier [Haeberlen et al. 2005], are designed to take advan-
tage of the underutilized client storage of a local network. These systems, and
others that employ “checkpoint-style” backups, address neither the security
concerns of the data content nor the needs of long term archival storage. Venti,
BitVault [Zhang et al. 2007], and commercial systems such as the EMC Cen-
tera [Gunawi et al. 2005] use content-based storage techniques to achieve their
goals, naming blocks based on a secure hash of their data. This approach in-
creases reliability by providing an easy way to verify the content of a block
against its name. As with the short term storage systems described before, secu-
rity is often ensured by encrypting data using standard encryption algorithms.

Some systems, such as LOCKSS [Maniatis et al. 2005] and Intermem-
ory [Goldberg and Yianilos 1998], are aimed at long term storage of open con-
tent, preserving digital data for libraries and archives, where file consistency
and accessibility are paramount. These systems are developed around the core
idea of very long term access for public information; file secrecy is explicitly not
part of the design. Rather, the systems exchange information about their own
copies of each document to obtain consensus between archives, ensuring that
a rogue archive does not “alter history” by changing the content of a document
that it holds.

2.2 Storage Security

Many storage systems seek to enforce a policy of secrecy for their contents.
Two common mechanisms for enforcing data secrecy are encryption and secret
splitting.
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2.2.1 Secrecy via Encryption. Many systems such as OceanStore [Rhea
et al. 2003], FARSITE [Adya et al. 2002], SNAD [Miller et al. 2002], Plutus
[Kallahalla et al. 2003], e-Vault [Iyengar et al. 1998] and SafeStore [Kotla et al.
2007] address file secrecy but rely on the explicit use of keyed encryption. While
this may work reasonably well for short term secrecy needs, it is less than ideal
for the very long-term security problem that POTSHARDS is addressing. En-
cryption is only computationally secure and the struggle between cryptography
and cryptanalysis can be viewed as an arms race. For example, a DES encrypted
message was considered secure in 1976; just 23 years later, in 1999, the same
DES message could be cracked in under a day [Stinson 2002]; future advances
in quantum computing have the potential to make many modern cryptographic
algorithms obsolete.

The use of long-lived encryption implies that reencryption must occur to keep
pace with advances in cryptanalysis [Troncoso et al. 2008]. To prevent a single
archive from obtaining the unencrypted data, reencryption must occur over the
old encryption, resulting in a long key history for each file. Since these keys are
all external data, a problem with any of the keys in the key history can render
the data inaccessible when it is requested.

Keyed cryptography is only computationally secure, so a compromise of an
archive of encrypted data is a potential problem regardless of the encryption
algorithm that is used. An external adversary who compromises an encrypted
archive need only wait for cryptanalysis techniques to catch up to the encryption
used at the time of the compromise. The data’s existence on a secure, long term
archive suggests that data will still be valuable even if the malicious user must
wait several years to read it. The situation is more dramatic when dealing with
a privileged inside attacker that can decrypt any desired information, even if
the data is subsequently reencrypted by the archive; an insider will have access
to the new key by virtue of his internal access.

Some content publishing systems utilize encryption, but its use is not moti-
vated solely by secrecy. Publius [Waldman et al. 2000] utilizes encryption for
write-level access control. Freenet [Clarke et al. 2001] is designed for anony-
mous publication and encryption is used for plausible deniability over the con-
tents of a user’s local store. As with secrecy, the use of encryption to enforce
long-lived policy is problematic due to the mechanism’s computationally secure
nature.

2.2.2 Secrecy via Splitting. 'To address the issues resulting from the use of
encryption, several recent systems including PASIS [Wylie et al. 2000; Goodson
et al. 2004] and GridSharing [Subbiah and Blough 2005] have used or suggested
the use [Storer et al. 2005] of secret splitting schemes [Shamir 1979; Rabin 1989;
Plank 1997; Choi et al. 2003]; a related approach used by Mnemosyne [Hand
and Roscoe 2002] and CleverSafe [CleverSafe 2006] uses encryption followed by
information dispersal (IDA) to attempt to provide security. In secret splitting,
a secret is distributed by splitting it into a set number n of shares such that no
group of £ shares (¢ < m < n) reveals any information about the secret; this
approach is called an m of n threshold scheme. In such a scheme, any m of the
n shares can be combined to reconstitute the secret; combining fewer than m
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shares reveals no information. A simple example of an n of n secret splitting
scheme for a block B is to randomly generate X, ..., X, 2, where | X;| = |B]|,
and choose X, 1 sothat Xo®---d X, o ® X, 1 = B. Secret splitting satisfies
the second of our three tenets, that is, data can be rebuilt without external
information, but it can have the undesirable side-effect of combining the secrecy
and redundancy aspects of the systems. Although related, these two elements
of security are, in many respects, orthogonal to one another. Combining these
elements also risks introducing vulnerabilities into the system by restricting
the choices of secret splitting schemes.

While secret splitting can provide the benefit of unconditionally security, it
does incur a number of drawbacks compared to encryption. First, secret split-
ting schemes have a high storage overhead; in an m of n threshold scheme
with perfect secrecy, no information can be obtained from the possession of
less than m shares, but splitting results in a storage blowup of n. Second,
while some XOR-based secret splitting schemes have been shown to provide
fast enough throughput for low-latency access situations [Subbiah and Blough
2005], many others utilize computationally expensive operations such as linear
interpolation. Fortunately, in many archival scenarios, long-term security is a
valid trade-off for a reasonable increase in access time.

To ensure that our third design tenet is satisfied, a secure long term storage
system must ensure that an attempt to breach security will be noticed by some-
body, ensuring that the trust placed in the collection of archives can be upheld.
Existing systems do not meet this goal because the secret splitting and data
layout schemes they use are minimally effective against an inside attacker that
knows the location of each of the secret shares. None of PASIS, CleverSafe, or
GridSharing is designed to prevent attacks by insiders at one or more sites who
can determine which pieces they need from other sites and steal those specific
blocks of data, enabling a breach of secrecy with relatively minor effort. This
problem is particularly difficult given the long time that data must remain se-
cret, since such breaches could occur over years, making detection of small-scale
intrusions nearly impossible. PASIS addressed the issue of refactoring secret
shares [Wong et al. 2002]; however, this approach could compromise data in
the system because the refactoring process may reveal information during the
reconstruction process that a malicious archive could exploit. By keeping this
on separate nodes, the PASIS designers hoped to avoid information leakage.
Mnemosyne used a local steganographic file system to hide chunks of data, but
this approach is still vulnerable to rapid information leakage if the encryption
algorithm is compromised; the IDA provides no additional protection to the
distributed pieces.

2.3 Application Security

In the area of application security, a lot of effort has gone into increasing the
amount of work an adversary must perform through the introduction of random-
ness [Forrest et al. 1997; Bhatkar et al. 2003]. Attacks that rely upon memory
exploits are often based on the fact that information is stored in very predictable
and consistent locations. Randomization forces an adversary to analyze each
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copy of the program they are attacking. The use of approximate pointers extends
the idea of diversity into the area of data protection.

Another strategy utilized in application security involves detecting ma-
licious behavior by utilizing attack signatures. In this technique, observed
behavior patterns are matched to known attacks. To this end, signature gen-
eration tools [Wang et al. 2006; Xu et al. 2005; King and Chen 2003] are an
important aid in automatically detecting the future occurrence of known at-
tacks. The sparse namespace borrows the idea of attack detection as means to
prevent data loss. However, an important difference between application pro-
tection and data protection is that a user’s data is unique and personal. Thus,
even one compromise could mean that unique data has been lost.

2.4 Disaster Recovery

With long data lifetimes, hardware failure is a given; thus, dealing with a failed
archive is inevitable. In addition, a long term archival storage solution that
relies upon multiple archives must be able to survive the loss of an archive
for other reasons, such as business failure. Recovering from such large-scale
disasters has long been a concern for storage systems [Keeton et al. 2004]. To
address this issue, systems such as distributed RAID [Stonebraker and Schloss
1990], Myriad [Chang et al. 2002], and OceanStore [Rhea et al. 2003] use RAID-
style algorithms or more general redundancy techniques including (m, n) error
correcting codes along with geographic distribution to guard against individual
site failure. Secure, long term storage adds the requirement that the secrecy
of the distributed data must be ensured at all times, including during disaster
recovery scenarios.

3. POTSHARDS OVERVIEW

POTSHARDS is structured as a client application communicating with a num-
ber of independent archives. Though the archives are independent, they as-
sist each other through distributed RAID techniques to protect data against
archive loss. Users store their data within the system using a POTSHARDS
client, which splits their data it into secure shards. These shards are then
distributed to a number of archives, where each archive exists within its own
security domain. The read procedure is similar, but reversed; a user utilizes
the POTSHARDS client to request shards from archives and reconstitute the
data.

Users access the system through a POTSHARDS client, which has three
primary functions. First, the client handles all data transformation duties.
For writes, as shown in Figure 1, this involves generating shards from objects
through the use of secret splitting techniques. For reads, the process is reversed,
shard identifiers are used to fetch shards from the archives, and objects are re-
constructed. Second, the client is responsible for distributing shards to archives
such that no single archive has enough shards to reconstruct data. Third, as the
client resides on a system separate from the shards, the POTSHARDS client
is responsible for handling communication between the user and the archives.
The advantage of this arrangement is that data never reaches an archive in
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POTSHARDS Client App.

Z
Data
Transformer
S
- wf - \ - N ) ~
[shara-00 |3/ || I | Il |
| | | shara-01|4/| || | | |
| ||l || “{snarc02|| ]| |
| shardX | | shard-y | (-u—| Parity | . \H Shard-03 |
L Archive 0 ) L Archive 1 ) L Archive 2 ) | L Archive 3 y

Shard-X @ Shard-Y @ Shard-03 = Parity Redundancy group

Fig. 1. An overview of POTSHARDS showing the data transformation component of the client
application producing shards from objects, and distributing them to independent archives. The
archives utilize distributed RAID algorithms to securely recover shards if an archive is lost.

unsecured form, and multiple CPU-bound data transformation processes can
generate shards in parallel for a single set of physical archives. Of course, as in
any security application, careless implementation of the POTSHARDS client
can introduce unforeseen compromises; adversaries can take advantage of care-
lessly cached passwords and other such key material.

Shards are stored in a series of independent archives that function similarly
to financial banks; they are relatively stable and they have an incentive (finan-
cial or otherwise) to monitor and maintain the security of their contents. While
security is strengthened by distributing shards amongst the archives, it is im-
portant that each archive can demonstrate an ability to protect its data. Other
benefits of archive independence include reducing the effectiveness of insider
attacks and making it easier to exploit the benefits of geographic diversity. For
these reasons, even a single entity, such as a multinational company, should
still maintain multiple independent archives.

In order to limit the effectiveness of insider attacks, there is no central index
over shards. Rather, users maintain a private index that maps their data to
shards. This is made possible by the fact that POTSHARDS enables the re-
construction of data from the shards alone. This private index, which could be
contained on a physical token such as a smart-card, allows normal read opera-
tions to take place quickly because the user would know exactly which shards to
request and how to combine them. If, however, a user loses her index, or never
had one, it can be regenerated in a reasonable amount of time. By removing
the need for an omniscient, central authority, the risk of a malicious insider is
mitigated.
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Shard-00 Shard-02 |~
. ) Shard-01 Vas 1 )
Shard-03

Shard-21 .
l ) Shard-22 ) Shard-23

.

Fig. 2. Approximate pointers point to R “candidate” shards (R = 4 in this example) that might
be next in a valid shard tuple. Shardsyx make up a valid shard tuple. If an intruder mistakenly
picks shardyq, he will not discover his error until he has retrieved sufficient shards and validation
fails on the reassembled data.

3.1 Security Techniques

Security in POTSHARDS is provided by two mechanisms: a sparsely populated,
global namespace, and unconditionally secure secret splitting. With secret split-
ting, an intruder must collect multiple shards in order to read any data, and
the sparse namespace makes attacks more noticeable by increasing the chances
that an intruder will request shards that do not exist.

Secret splitting provides the secrecy in POTSHARDS with a degree of future-
proofing; it can be proven that an adversary with infinite computational power
cannot gain any of the original data, even if an entire archive is compromised.
Further, these algorithms provide file secrecy without the need for the key
and algorithm rotations that traditional encryption introduces; perfect secret
splitting is unconditionally secure. Thus, POTSHARDS is not forced into main-
taining complex key histories.

A number of secret splitting algorithms, known as threshold schemes, pro-
duce a set of n shares, any m < n of which are needed to rebuild the original
data. While POTSHARDS can utilize such schemes, it does not rely on them
for the system’s reliability. Rather, the small amount of redundancy these al-
gorithms offer allows POTSHARDS to handle transient archive unavailability
by not requiring that a reader obtain all of the shards for an object.

In addition to uniquely identifying data entities in POTSHARDS and improv-
ing attack detection, the global namespace enables the use of secret splitting
algorithms by imposing an ordering over entities. Many threshold schemes,
such as those that rely on linear interpolation [Shamir 1979], require both the
shares and a specific ordering of those shares for reconstruction. Preserving the
ordering over a tuple of shards is easily accomplished by naming the shards in
ascending order, according to their location within the full shard tuple. In this
way, names impose a total ordering over a complete tuple of shards.

3.2 Reliability and Availability Techniques

POTSHARDS provides reliability and availability through two distinct recov-
ery strategies. First, as Figure 2 illustrates, the shards that reconstruct a data
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block form a circularly-linked list, allowing a specific user’s data to be recovered
from her shards alone. This ring of shards is generated within the transforma-
tion components, as part of the ingestion process. Second, the loss of an entire
archive is handled using distributed RAID techniques, across multiple inde-
pendent archives. This two-level approach allows POTSHARDS to scale the
recovery to the size of the data loss.

In the absence of the index over a user’s shards, approximate pointers can
be used to recover data from the shards alone. Such a scenario could occur if a
user loses the index over her shards, or in a long term time-capsule scenario in
which a future user may be able to access the shards that she has a legal right
to, but has no idea how to combine them.

Approximate pointers enable the use of secret splitting by providing a built-
in method of “key recovery”; knowing which secret shares to combine is anal-
ogous to an encryption key because it is the secret that transforms ciphertext
into plaintext. Without the clues provided by approximate pointers, recovery
involves testing every possible combination of shards, making it an intractable
problem. In contrast, while direct pointers would make recovery trivial, it would
also compromise security; an adversary with one shard could easily make tar-
geted attacks for the rest of the shards. Thus, the advantage of approximate
pointers is that, by indicating a region and utilizing namespace sparseness, tar-
geted attacks are much more difficult, and brute-force attacks would be quite
noticeable. Thus, secrecy is not unduly affected, providing a worthwhile trade-
off for slower recovery times if a block’s shard list is lost.

To deal with larger-scale losses, the archive layer in POTSHARDS con-
sists of independent archives utilizing secure, distributed RAID techniques. As
Figure 1 shows, archive-level redundancy is computed across sets of unrelated
shards, so redundancy groups provide no insight into shard reassembly. POT-
SHARDS includes two novel modifications beyond the distributed redundancy
explored earlier [Stonebraker and Schloss 1990; Chang et al. 2002]. The first
is a secure reconstruction procedure, described in Section 4.3.1, that allows
a failed archive’s data to be regenerated in a manner that prevents archives
from obtaining additional shards during the reconstruction; shards from the
failed archive are rebuilt only at the new archive that is replacing it. Second,
POTSHARDS uses algebraic signatures [Schwarz and Miller 2006] to ensure
intraarchive integrity as well as interarchive integrity. Algebraic signatures
have the desirable property that the parity of a signature is the same as the
signature of the parity.

4. IMPLEMENTATION DETAILS

This section details the components and security model of POTSHARDS, and
how each contributes to providing long-term, secure storage. First, we de-
scribe how objects in POTSHARDS are named, and present two naming dan-
gers that, if ignored, could compromise data security. Second, we describe the
POTSHARDS client in detail, including how it produces shards from objects.
Third, we describe the role of the archives, including how they securely rebuild
data if an archive is lost. Fourth, we describe the role and construction of the
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Fig. 3. Example of a situation in which careless naming has reduced the search space indicated
by an approximate pointer. If shard ordering is not randomized, an adversary would know that S3
must be greater than Sy and thus would only need to search the region above Ss.

user’s private index. Finally, we describe how approximate pointers are used to
recover a user’s data from the shards alone.

4.1 Naming

All of the data entities in POTSHARDS, both higher-level entities such as ob-
jects, as well as lower-level secure entities such as shards, exist within a single
128-bit namespace. Each identifier contains two portions. The first 40 bits of the
name identify the user in the same manner as a bank account is identified by
an account number. The remaining 88 bits are used to identify the data entity.

While names for high-level POTSHARDS entities, such as objects, can be
generated fairly easily, the names of lower-level entities, such as shards, must
be chosen more carefully; shard names and approximate pointer rings directly
affect security and recovery. Two naming and ring formation scenarios in par-
ticular have the potential to compromise security. First, a poorly chosen ring
of shards could inadvertently reduce the search space of a targeted attack.
Second, poorly named shards could leave the potential namespace fan-out un-
derutilized.

Careless naming and ring formation can inadvertently provide an attacker
with information that effectively reduces the search space for the next shard.
For example, if the shards in a tuple are ordered S1, Sy, ..., S, and shard S;
always points to shard S;,1, an attacker would know that the name of the next
shard must be greater than the current shard. Now suppose that shard S; itself
is within the range indicated by the approximate pointer to S;,1. As illustrated
in Figure 3, the attacker would know that S; < S;,1, and thus can narrow down
the search space.

To avoid revealing information through shard names, a simple randomizing
procedure can be used to permute the total ordering of the shard tuple into a
separate ring order. This procedure proceeds as follows.

(1) Determine the names that will be used for the shards (e.g., (So, S1, Sz, S3)).

(2) Create the shards and name them in ascending order so that their position
within the tuple is preserved by the total ordering imposed by their names.

(3) Randomize the order of these shards (e.g., (Ss, S1, So, S3)).

(4) Use approximate pointers to form a ring based on this randomized order.
Thus, the next shard can exist in any portion of the namespace, regardless
of the current shard’s name.
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Fig. 4. Example of a situation in which careless naming has underutilized the potential of approx-
imate pointers to increase the fan-out of linked shards. Ideally, So, S, and S, would all point to
different regions.

Another danger involves the underutilization of the fan-out that can be
achieved with approximate pointers. Since approximate pointers indicate a re-
gion as opposed to a single address, they have the potential to greatly increase
an adversary’s workload. An ideal arrangement is achieved if each shard in a
given region points to a different region. In this scenario, the adversary would
need to acquire each shard in each of those diverse regions. Figure 4 illustrates
an example in which the shard names and approximate pointers are config-
ured poorly, resulting in little fan-out. The effect is a greatly reduced workload
for the adversary; the attacker would only need to acquire the shards of over-
lapping regions once, rather than having to steal a given shard once for each
predecessor that could point to it.

In order to ensure the greatest fan-out, careful shard naming and linking is
required. Since users maintain an index of object-to-shard mappings, naming
can proceed with knowledge of previously named shards. An area of future work
could be to further develop intelligent naming techniques; the security of the
system is greatly influenced by the namespace and the links between shards,
making this a particularly important area to examine.

4.2 POTSHARDS Client: Data Transformation

One of the primary tasks of the POTSHARDS client is to perform the data
transformation that produces shards from user data. As Figure 5 illustrates,
the client is composed of four layers, and utilizes three unique data entities. Dur-
ing the ingestion of data, the preprocessing layer is responsible for producing
fixed-size objects from user files. Objects are then transformed into fragments
in a secret split tuned for secrecy. A second split occurs, this time tuned for
availability, which transforms fragments into shards. Finally, the placement
layer is responsible for distributing a set of shards to the archives. Extraction
is similar, but reversed; shards are requested from the archive, combined into
fragments, and those fragments are combined into objects.

The two levels of secret splitting provide three important security advan-
tages. First, as Figure 5 illustrates, two levels of splitting results in a tree,
providing extra security through increased fan-out; even with all of the mem-
bers of a shard tuple, an attacker can only rebuild a fragment, which provides
no information about the shards for the other fragments. Second, as secret split-
ting algorithms present varied features, each split can be independently tuned
for a specific property, and can select the algorithm best suited to that property.
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(b) inputs and outputs for each transformation layer

Fig. 5. The transformation component consists of four levels. Approximate pointers are utilized at
the second secret split. Note that locating one shard tuple provides no information about locating
the shards from other tuples.

Third, it enables recovery by allowing useful metadata to be stored with the
fragments; this data will be kept secret by the second level of splitting.

4.2.1 Preprocessing Layer. When a user submits data to the POTSHARDS
client for ingestion, objects are created from the user’s files in a three-step
process. First, each file is divided into a series of fixed-sized blocks. As the
system is designed for archival workloads, these blocks are on the order of
several hundred kilobytes to a megabyte in size. Second, as Figure 6 details,
an object identifier is generated and appended to the block. Third, a hash over
the block and id is generated and appended. This hash is used to confirm a
successful rebuild during reads. It does not, however, compromise security, as
it is included in the unconditionally secure secret split in the later stages of
shard production.

4.2.2 Secret Splitting Layers. Fragments are generated from objects at the
first of two secret splits that occur in the secret splitting layers. This first split
is tuned for secrecy, and currently uses an XOR-based algorithm that produces
n fragments from an object, all n of which are required for reconstruction. To
ensure security, the random data required for XOR splitting can be obtained
through a physical process such as radioactive decay or thermal noise.
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| shardID | apx. ptr.l split2 (fragment) —l
Shard

Fig. 6. Data entities in POTSHARDS, with size (in bits) indicated above each field. Note that
entities are not shown to scale relative to one another. S is the number of shards that the fragment
produces. split1 is an XOR secret split and split2 is a Shamir secret split in POTSHARDS.

As Figure 6 illustrates, each fragment contains metadata that assists in re-
construction and recovery. First, as in the object, a hash over the entire fragment
serves to confirm a successful reconstruction. Second, the object identifier that
this fragment contributes to aids in reconstruction; if a user is able to repro-
duce all of her fragments, this identifier assists in combining them into objects.
This approach does not compromise security, as reconstructing a single frag-
ment provides no information about which shards form the other fragments for
a given object. Third, the fragment contains its own id. Finally, each fragment
contains a list of the shards it produces.

A tuple of shards is produced from a fragment using another layer of secret
splitting. This second split is tuned for availability, and therefore the current im-
plementation of POTSHARDS uses an m of n secret splitting algorithm [Shamir
1979]. As mentioned in Section 3.1, this allows reconstitution in the event that
an archive is down or unavailable when a request is made.

As Figure 6 shows, shards contain no information about the fragments that
they make up. They do, however, include two pieces of metadata. First, they
include their own shard id. Second, they include an approximate pointer to a
random shard from the same shard tuple, as described in Section 4.1.

The approximate pointers can be implemented using one of two approaches.
First, the bitmask method indicates a region, R, by masking off the low-order
r bits (R = 2") of an actual address, hiding the true value. The drawback of
the bitmask method is the coarse level of granularity that can be achieved. It
does, however, have the advantage that the size of the region indicated by the
approximate pointer is relatively self-evident: It is straightforward to see how
many bits are masked off (set to zero) in an address. Second, the range method
randomly selects a value within R /2 above or below the actual address. In
contrast to the bitmask method, the granularity offered by the range method
is quite good. However, it is not self-evident from the approximate pointer how
large the range is. Our implementation uses the latter approach.

One drawback of the two-level secret splitting approach is the resulting in-
crease in storage requirements. A two-way XOR split followed by a 2 of 3 secret
split increases storage requirements by a factor of six; distributed RAID, and
metadata further increase the overhead. If a user desires to offset this cost, data
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can be submitted in a compressed archival form [You et al. 2005]; compressed
data is handled just like any other type of data.

4.2.3 Placement Layer. During ingestion, the placement layer is respon-
sible for mapping shards to archives. The decision takes into account which
shards belong in the same tuple and ensures that no single archive is given
enough shards to recover data. During extraction, the placement layer is re-
sponsible for requesting shards from archives.

This layer contributes to security in four ways. First, since it is part of the
data transformation component, no knowledge of which shards belong to an
object need exist outside of the client. Second, the effectiveness of an insider
attack at the archives is reduced because no single archive contains enough
shards to reconstitute any data. Third, the effectiveness of an external attack
is decreased because shards are distributed to multiple archives, each of which
can exist in its own security domain. Fourth, the placement layer can take into
account the geographic location of archives in order to maximize the availability
of data.

4.3 Archive Design

Persistent storage of shards is handled by a set of independent archives that
actively monitor their own security, and question the security of the other
archives. The archives do not, however, know which shards combine to form
a fragment, or which shards contribute to a given object. Thus, a compro-
mised archive does not provide an adversary with enough shards to rebuild
user data. Additionally, it does not provide an adversary with enough informa-
tion to launch a targeted attack at the other archives. Absent such precautions,
the archive model would likely weaken the strong security properties provided
by the other system components.

Since POTSHARDS is designed for long-term storage, it is inevitable that
disasters will occur, and archive membership will change over time. To deal
with the threat of data loss from these events, POTSHARDS utilizes distributed
RAID techniques. The space at each archive is divided into fixed-sized blocks,
each holding either shards or redundancy data. Archives then agree on dis-
tributed, RAID-based methods over these blocks.

As in other distributed RAID systems [Stonebraker and Schloss 1990; Chang
et al. 2002], fault-tolerant, distributed storage is achieved by computing parity
across unrelated data in wide-area redundancy groups. Given an (n, k) erasure
code, a redundancy group is an ordered set of £ data blocks and n — & parity
blocks where each block resides on one of n distinct archives. The redundancy
group can survive the loss of up to n — k archives with no data loss. The current
implementation of POTSHARDS has the ability to use Reed-Solomon codes
or single parity to provide flexible and space-efficient redundancy across the
archives.

When shards arrive at an archive for storage, ingestion occurs in three steps.
First, a random block is chosen as the storage location of the shard. Second, the
shard is placed in the last available slot in that block. Third, the corresponding
parity updates are sent to the proper archives. The failure of any parity update
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will result in a roll-back of the parity updates, and replacement of the shard
into another block.

An integral part of preserving data, POTSHARDS actively verifies the in-
tegrity of data using two different forms of checking. First, each archive actively
monitors the integrity of its own contents using stored hashes. Second, inter-
archive integrity checking is performed using algebraic signatures [Schwarz
and Miller 2006] across the redundancy groups. Algebraic signatures have the
property that the signatures of the parity equals the parity of the signatures.
This property is used to verify that the archives in a given redundancy group
are properly storing data and are performing the required internal checks.

Secure, interarchive integrity checking is achieved through algebraic signa-
ture requests over a specific interval of data. A check begins when an archive
asks the members of a redundancy group for an algebraic signature over a
specified interval of data. The algebraic signature forms a codeword in the era-
sure code used by the redundancy group, and integrity over the interval of data
is checked by comparing the parity of the data signatures to the signature of
the parity. If the comparison check fails, then the archive(s) in violation may
be found as long as the number of incorrect signatures is within the error-
correction capability of the code. This approach is efficient and secure as sig-
natures are typically only a few bytes, and only leak b bytes for signatures of
length b.

4.3.1 Secure Archive Reconstruction. Reconstruction of data can pose a
significant security risk because it involves many archives and considerable
amounts of data passing between them. POTSHARDS mitigates this risk
through a secure protocol that allows each archive to assist in the reconstruction
of failed data, without revealing any information about its data. Further, the
reconstruction procedure is performed in multiple rounds in order to prevent
collusion between archives.

The recovery protocol begins with the confirmation of a partial or whole
archive failure and, since each archive is a member of one or more redundancy
groups, proceeds one redundancy group at a time. If a failure is confirmed, the
archives in the system must agree on the destination of recovered data. This
fail-over archive is chosen based on two criteria. First, the fail-over archive
must not be a member of the redundancy group being recovered. Second, the
fail-over archive must have the capacity to store the recovered data. Due to
these constraints, multiple fail-over archives may be needed to perform recon-
struction and redistribution. Future work will include ensuring that the choice
of fail-over archives prevents any archive from acquiring enough shards to re-
construct user data.

Once the fail-over archive is selected, recovery occurs in multiple rounds. A
single round of the secure recovery protocol is illustrated in Figure 7. In this
example, the available members of a redundancy group collaborate to recon-
struct the data from a failed archive onto a chosen archive, X. An archive,
which cannot be the fail-over, is appointed to manage each round (in Figure 7,
archive A has been selected). The managing archives determines the ordering
for the round and generates a request containing an ordered list of archives,
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Fig. 7. A single round of archive recovery in a RAID 5 redundancy group. Each round consists of
multiple steps. Archive N contains data n and generates random blocks r,.

the id of the block to regenerate, and a data buffer. Each archives in the list
then proceeds as follows.

(1) Request « involving local block n arrives at archive N.

(2) The archive creates a random block r, and computes n ®r, = n'.

(3) The archive computes 8 = o @ n’ and removes its entry from the request.
(4) The archive sends r, directly to archive X.

(5) B 1is sent to the next archive in the list.

This continues at each archive until the chain ends at archive X and the block
is reconstructed. The commutativity the rebuild process allows decreases the
likelihood of data exposure by permuting the order of the chain in each round.
This procedure is easily parallelized and continues until all of the failed blocks
for the redundancy group are reconstructed. This approach can be generalized
to any linear erasure code; as long as the generator matrix for the code is known,
the protocol remains unchanged.

4.4 User Indexes

While approximate pointers join the shards within the systems, the exact names
are returned to the user during ingestion, along with the archive placement
locations. Typically, a user maintains this information and the relationship be-
tween shards, fragments, objects, and files in an index to allow for fast retrieval.
In the general case, the user consults her index and requests specific shards
from the system. This index can, in turn, be stored within POTSHARDS, re-
sulting in an index that can be rebuilt from a user’s shards with no outside
information.

It is important to note that, while the index does contain the information
describing which shards correspond to fragments and objects, it does not provide
the information needed to obtain those shards. An attacker with a user’s index
will still need the information needed to authenticate to the archives containing
the user’s shards. Of course, as with any security scheme, an adversary with
enough information (in the case of POTSHARDS, the user’s index and enough

ACM Transactions on Storage, Vol. 5, No. 2, Article 5, Publication date: June 2009.



POTSHARDS—A Secure, Recoverable, Long-Term Archival Storage System . 5:19

Index Page t, Index Page t, Index Page t,
Object 4 : (shard ids) Object 2 : (shard ids) Object 0 : (shard ids)
Object 5 : (shard ids) Object 3 : (shard ids) Object 1 : (shard ids)
Next : (shard ids for t,) Next : (shard ids for 1) Next page : @

Fig. 8. User index stored in POTSHARDS as multiple pages. The initial page was created at time
to, subsequent pages at times ¢; and o, respectively. By knowing just the shards to the newest
page, the user can extract the entire index.

authentication information to sufficiently pose as the user) is assumed to have
acquired full access to the user’s data.

The index for each user can be stored in POTSHARDS as a linked list of index
pages, with new pages inserted at the head of the list, as shown in Figure 8.
Since the index pages are designed to be stored within POTSHARDS, each page
is immutable. When a user submits a file to the system, a list of mappings from
the file to its shards is returned. This data is recorded in a new index page,
along with a list of shards corresponding to the previous head of the index list.
This new page is then submitted to the system and the shard list returned is
maintained as the new head of the index list. These index root-shards can be
maintained by the client application or even on a physical token, such as a flash
drive or smart-card.

The approach of private, per-user indices has a number of advantages com-
pared to a single, centralized index. First, since each user maintains his own
index, the compromise of a user index does not affect the security of other users’
data. Second, the index for one user can be recovered with no effect on other
users. Third, the system does not know about the relationship between a user’s
shards and his data.

While the index over a user’s shard contains the information needed to re-
build a user’s data, it differs from an encryption key in two important ways.
First, unlike an encryption key, the user’s index is not a single point of failure.
If the index is lost or damaged, it can be recovered from the data without any
input from the owner of the index. Second, full archive collusion can rebuild the
index. If a user can prove a legal right to data, such as by a court subpoena, than
the archives can provide all of the user’s shards and allow the reconstitution of
the data. If the data was encrypted, the files without the encryption key might
not be accessible in a reasonable period of time.

4.5 Recovery with Approximate Pointers

Recovery through the use of approximate pointers is based upon the graph
structure that approximate pointers impose over a set of shards. Each shard is
a named vertex in the graph, with an edge between it and every other vertex
within the region defined by the shard’s approximate pointer. The relationships
described by this graph are used to recover data through the use of two recovery
algorithms: the naive approach, and the more efficient ring heuristic. Both
approaches are based on knowing the spitting parameters, m of n, that produced
the shards.

ACM Transactions on Storage, Vol. 5, No. 2, Article 5, Publication date: June 2009.



5:20 o M. W. Storer et al.

Shard —
: Shard . Shard  }e,
. : - “apd
5, 5 Shard 4 s i
Shard Shard st
Shard e
Shard M\
N Shard -
=] Shard Shard >
’

Fig.9. Recovery example where each approximate pointer indicates a region of four shard names.
If shards are produced using a 2 of 4 split, the ring heuristic reveals one recovery candidate based
on its circular-linked list structure of exactly n, four, shards (shaded shards and dotted approximate
pointers). In contrast, the naive approach of testing paths of length m, 2, would result in many more
potential recovery candidates.

With both reconstruction strategies, the process starts the same way. Once a
user determines that she must recover her data, perhaps due to a lost index, she
begins by collecting her shards. As Section 4.1 described, the user’s shards can
be identified by the initial, user id portion of the shard name. The operation to
collect all of the shards could differ for each archive. Additionally, releasing all of
a user’s shards is a potentially dangerous; a lot of data could be compromised.
Therefore, this operation should require a higher level of authorization and
clearance.

In the first recovery strategy, the naive approach, the solution space is re-
duced by limiting reconstruction attempts to paths of length m. This approach
can be useful when less than the full set of shards are available; with less
than a full set of shards, the user may not have all n shards that recon-
struct a fragment. Unfortunately, a number of factors conspire to make this
approach less than ideal. First, as Figure 9 illustrates, while still better than
a purely brute force-based approach, there are still a fair number of paths of
length m, and therefore many possible candidates for reconstruction. Second,
a side effect of the randomization discussed in Section 4.1 is that reconstruc-
tion with less than a complete tuple of shards is time consuming; secret split-
ting is expensive, and a user with less than n shards does not have a total
ordering, and must attempt recovery on multiple permutations. For example,
suppose that a user posses a chain of three of the five shards, S,, Sy, S, re-
sulting from a 3 of 5 threshold split. If the inter-shards links were not formed
using the randomization method, but rather were simply formed using the
name order, reconstruction would potentially involve testing three shard tu-
ples: (Sg, Sy, S¢, 8, 8), (¥, Sq, Sp, Se, ?), and (4,9, Sy, Sp, S.). However, if the
shards were connected using the randomized method, reconstruction attempts
would need to include combinations with interspersed empty shards, such as
B, , Sa, Sp, Se), (B, Sa, 3, Sp, Se), (B, Say Sp, 8, Se), ...
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The second strategy, the ring heuristic, utilizes the circular structure of the
shard tuples, depicted in Figure 9. This approach only attempts to reconstruct
cycles of length n, and provides two important advantages. First, it efficiently
reduces the potential solution space to a manageable number of recovery can-
didates. Second, because the ring heuristic identifies all » members of a shard
tuple, the shard names impose a full ordering. One disadvantage of this ap-
proach is that it requires a lot of shards. However, given an incomplete set of
shards, the ring heuristic can be used as a first-pass algorithm to quickly re-
cover the full shard tuples and reduce the solution space for the remaining,
unrecovered secrets. These can then be recovered using the naive approach.

In addition to approximate pointers, there are other hints in the structure
of the data entities, illustrated in Figure 6, that are useful with both the naive
approach and the ring heuristic. First, a hash of the fragment is used to confirm
a successful reconstruction. Second, each reconstructed fragment includes a list
of the secret shards that it produces. Using this list, reconstruction of a secret
from less than n shards will reveal the ids of the n—m shards that were not used.
In a recovery scenario, the shards that correspond to these ids can be removed
from the set of unused shards, thereby reducing the remaining solution space.
It is important to note these hints are primarily useful after a block has been
reconstructed; less than m of n shards contain no information, and the hints
themselves are only present in the reconstructed block.

5. EXPERIMENTATION AND DISCUSSION

Our experiments with POTSHARDS were designed to explore both the system
and the novel security model that we have developed. First, we wanted to eval-
uate the performance of the system in order to establish its effectiveness, and to
identify any potential bottlenecks. Second, we wanted to demonstrate the abil-
ity of POTSHARDS to recover from a lost archive. Third, we wanted to demon-
strate the effectiveness of approximate pointers, and understand their behavior.
Finally, we wanted to explore the unique security model of POTSHARDS.

The current version of POTSHARDS consists of roughly 1,400 lines of Python
version 2.5 code. For improved buffer management, versus standard Python
lists, SciPy version 1.1.0 arrays were utilized extensively. Further, while most
of the current version is implemented in native Python with SciPy code, an
exception was the threshold secret splitting scheme. For this, we utilized an
optimized C library that includes a GF(28) arithmetic based implementation
of Shamir’s linear interpolation algorithm.

All of our experiments were performed on identical hardware, and were
the only processes running aside from basic system processes. Each host was
equipped with four dual-core AMD Opteron™ 2212 processors with 8 GB of
RAM and ran Linux 2.6.18-92.el5.

During these experiments, the data transformation component utilized block
sizes of 750 KB. Since POTSHARDS is designed for archival storage, block sizes
are expected to be relatively large, on the order of a few hundred kilobytes to
a megabyte, and possibly larger. Additionally, the default approximate pointer
width, R, was 30. Unless otherwise noted, the first layer of secret splitting
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Table II. Ingestion and Extraction Performance for a Variety of

Configurations

Splitting Parameters

first split, second split Ingestion (MB/s) | Extraction (MB/s)
(1, 1, null), (1, 1, null) 46.00 16.70

(1, 1, null), (3, 3, XOR) 26.18 16.26

(1, 1, null), (2, 3, Shamir) 8.09 9.25

(1, 1, null), (3, 4, Shamir) 5.05 8.05

(2, 2, X0OR), (2, 3, Shamir) 4.17 6.12

The splitting parameters are expressed in tuples of the form (m,n, algorithm
where the first tuple corresponds to the first split, and the second tuple to the
second split. For testing, a pass-through algorithm named “null” was created which
appends metadata but does no secret splitting.

used an XOR-based algorithm and produced two fragments per object, and the
second layer utilized a 2 of 3 Shamir threshold scheme. The workloads consisted
of randomly generated files, all larger than 1 MB in size. While these files are
representative of the files that a long-term archive might contain, it is important
to note that POTSHARDS sees all objects as the same, regardless of the object’s
origin or content.

5.1 Read and Write Performance

Our first set of experiments evaluated the ingestion and extraction perfor-
mance of the POTSHARDS client. Table II presents the throughput of a single
POTSHARDS client at various parameters. A workload of randomly selected
academic literature totaling 25 MB was selected, as it provided stable through-
put numbers and reflects the type of data likely to be encountered by an archival
system.

In order to establish a performance upper bound for the client operations, we
created a pass-through algorithm that did no secret splitting but left all other
client operations (such as metadata processing and index generation) intact.
The results with this “null” splitter, seen in the first line of Table II, show that
extraction lags considerably behind ingestion. This is largely a factor of system
write caching.

With an upper bound established, our goal was measure the performance of
the secret splitting operations. As Table II shows, simple XOR splitting is con-
siderably faster than the compute-intensive Shamir algorithm. For reference,
in isolated tests, our optimized Shamir implementation achieved secret split-
ting throughput of 7.6 MB/s, and a secret combining throughput of 19.3 MB/s
with a 3 of 5 split. Extraction times with m of n secret splitting algorithms are
often faster than ingestion times for two reasons. First, ingestion involves the
overhead of generating random data for the secret splitting algorithms. Second,
secret regeneration in the extraction process begins as soon as sufficient shares
have been obtained; reconstruction does not need to wait for all n shares.

Finally, Table II shows the client throughput with a first-level XOR split
and a second-level Shamir split, the “default” POTSHARDS configuration. This
arrangement demonstrated the slowest throughput rates, although this is to be
expected for a number of reasons. First, with two levels of secret splitting, there
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are two levels incurring a random data generation penalty. Second, and more
importantly, with an initial (2, 2, xor) split, followed by a (2, 3, Shamir) split,
the second-level splitter is splitting over twice as much data as the user had
submitted. Further in our experiments, system throughput is measured from
the user’s perspective; demands inside the system are six times those seen by
the client.

5.2 Archive Reconstruction

The archive recovery mechanisms were run on our local system using eight
1.5 GB archives. Each redundancy group in the experiment contained eight
archives encoded using RAID 5. A 25 MB client workload was ingested into the
system using 2 of 2 XOR splitting and 2 of 3 Shamir splitting, resulting in
150 MB of client shards, excluding the appropriate parity. After the workload
was ingested, an archive was failed. We then used a static recovery manager
that sent reconstruction requests to all of the available archives and waited for
successful responses from a fail-over archive. Once the procedure completed,
the contents of the failed archive and the reconstructed archive were compared.
This procedure was run three times, recovering at 14.5 MB/s, with the verifica-
tion proving successful on each trial. The procedure was also run with faults
injected into the recovery process to ensure that the verification process was
correct.

5.3 User Data Recovery

In the absence of approximate pointers, reconstructing data from a set of shards
is a difficult combinatorics problem. Lacking any outside information, each
shard must be matched with every other shard and a reconstruction attempt
must be made on every chain of length m. Approximate pointers enable the re-
construction of user data in a reasonable time. The experiments of this section
were designed to explore the difference between the various recovery heuris-
tics, and to understand how different naming and splitting parameters affect
recovery.

5.3.1 Recovery Heuristics. In other to establish a recovery baseline, a pure
combinatorics approach of attempting reconstruction on every combination of
m shards was attempted. This strategy, while still time consuming, takes ad-
vantage of two aids. First, the shard names provide at least a partial order-
ing. Second, the appended hash can confirm a successful reconstruction. As
expected, the results of Table III shows that this approach does not scale be-
yond a handful of shards, and serves only as a baseline or last resort recovery
strategy.

With a baseline established, we evaluated usefulness of approximate point-
ers with both the naive and the ring heuristic described in Section 4.5. While
user indices provide for efficient read and write performance under most access
scenarios, Figure 10 shows that approximate pointers can provide adequate
recovery performance when an index is unavailable. As the number of shards
increases, the ring heuristic provides dramatically faster recovery times when
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Table III. Recovery Time, in Seconds

[ Secrets [ 10 20 50 |
(2,3) 37.08 94.28 698.89
(2,4) 68.01 202.42 1523.41

(3,4 1872.14 10305.86  180080.86

These recovery times are for a variety of secret splitting
parameters using the brute-force approach in which ap-
proximate pointers are not used.
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Fig. 10. Recovery time, in seconds, for various values of m and n with both the naive approach
and the ring heuristic. Reconstruction plots that use the ring heuristic are shown using a dashed
line.

compared to the naive approach, and both are orders of magnitude faster than
the approach that does not use approximate pointers, as shown in Table III. This
is quite apparent when comparing the recovery times for data resulting from
a 3 of 4 split. The ring heuristic was able to recover 2,600 secrets in 1,251 sec-
onds; in contrast, the naive approach took 17,712 seconds. Even this, however,
is an improvement compared to the brute-force approach which required over
180,000 seconds to recover just fifty secrets.

Recovery times are largely computationally limited because m of n thresh-
old schemes often rely upon expensive operations. Thus, in addition to recovery
times, we can also measure the efficiency of the strategies based on how often
they select false shard tuples. By this definition, perfect efficiency would be
achieved if every shard tuple selected reconstructed a valid secret. Figure 11(a)
shows the comparison of three different secret splitting settings and their re-
covery efficiency. From our experiments, two things are evident. First, the ring
heuristic is very efficient at selecting valid shard tuples with all three of the se-
cret splitting settings. Second, larger values of m adversely affect the efficiency
of the naive approach. This is due to the fact that as m increases, the number of
paths of length m increases greatly. Given a shard with an approximate pointer
that points to R candidate shards, and a namespace density of D = (0, 1], there
are (RD)™~! possible paths. Thus, on average, %(RD)'”‘1 paths must be tested
by the naive approach.
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Fig. 11. Efficiency of different recovery strategies as the total number of shards increases. Effi-
ciency of shard tuple selection is the percentage of tuples selected by the recovery heuristic that
reconstruct a valid secret. Efficiency of the Shamir call is the percentage of reconstruction attempts
that reconstruct a valid secret. The ring heuristic was used with all three secret splitting parameter
settings and each gave similar results. Thus, all of the results obtained using the ring heuristic
were averaged and shown as one plot in order to improve clarity.

The difference between the ring heuristic and the naive approach is even
more pronounced when the efficiency of the secret splitting operation is mea-
sured. Figure 11(b) clearly illustrates two important points. First, the ring
heuristic benefits from a full shard tuple and thus a total ordering over the se-
cret shares. Therefore, each potential shard tuple selected by the ring heuristic
only needs to be tested by the Shamir reconstruction operation once. Figure 11
shows the result; the efficiency of the ring heuristic is the same at the shard
tuple selection level as it is at the secret splitting operation level. In contrast,
with only m of the total n secret shares, the shard names only provide a partial
ordering. Thus, a shard tuple selected by the naive scheme must be tested by
the secret splitting reconstruction operation up to times before it can

n!
. . m!(n—m)!
be confirmed as invalid.
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It might be tempting to believe the ring heuristic provides an additional
layer of data secrecy because a user with only a partial set of shards is unable
to utilize the ring heuristic to its full potential. However, it is important to bear
in mind that once an intruder has enough shards to reconstruct data, security
is only computationally bound; subsequently, it must be assumed that it is only
a matter of time until data is revealed. Thus, the system’s goal is to survive
long enough and make attacks noticeable enough to prevent an adversary from
acquiring sufficient shards to computationally recover plaintext blocks.

5.3.2 Population. The population of an approximate pointer can be de-
scribed as the number of valid shards indicated by each approximate pointer
and is closely tied to the width of the approximate pointer. For example, a well-
formed traditional pointer would have a population of one shard per pointer and
a null pointer has (rather appropriately) a population of zero shards. Further,
suppose an approximate pointer p indicates a region [p — 2, p + 2]. If there are
three shards in this range, p — 2, p + 1, p 4+ 2, the density of p is 0.6. Manag-
ing population is important because if it is too high, it will be more difficult to
detect intruders and will negatively affect recovery times. On the other end of
the spectrum, if the number of shards per approximate pointer is too low, an
unacceptable portion of the namespace is being wasted.

The density of a region, as calculated by dividing the population, P, of a re-
gion by its size, R, affects the ease with which malicious data accesses can be
detected. Suppose a fictional adversary has obtained a shard and is requesting
additional shards based on the approximate pointer. Assuming the attacker
is restricted to making one request at a time, there are a number of possible
outcomes of a shard request. First, there is a chance, approximately 1 — P/R,
that the attacker will make an invalid guess by requesting a shard that does
not exist (name assignment within a region is random, and hence the number
of valid shards in a region may not be precisely P). This property is integral
to the use of approximate pointers with a sparse namespace because this out-
come is very noticeable by an archive, which can log the invalid access. Second,
there is the chance that a malicious attacker will successfully make a correct
guess. In this scenario, correctness is defined as successfully requesting the
shard that actually belongs to the same shard tuple as their current shard.
Third, there is a chance that the attacker can make a valid guess. If a guess is
valid, then there is an actual shard at the requested address, but it does not
belong to the same shard tuple as the attacker’s shard. Thus, all correct guesses
are valid guesses, but the reverse is not true. Both correct and valid guesses are
difficult to use in detecting attackers because normal users as well as attackers
make them. However, invalid guesses are much more often unique to attackers
because normal users will typically know exactly which shards they need and
not request nonexistent shards.

The population of an approximate pointer also has an effect on data recovery
times. Even with the ring heuristic, recovering objects from shards, when faced
with no other outside information, amounts to controlling a combinatorics prob-
lem of exponential growth. This is evident in Figure 12 which shows the recovery
time for 2,600 secrets at various population levels per pointer. Population was
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Fig. 12. The effect of the approximate pointers’ populations on the time to recover 2,600 secrets
using the ring heuristic. In these tests, population, P, was modified by adjusting the size of the
region, R, indicated by the approximate pointer; density was kept constant.
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Fig. 13. Percentage of 2,600 total blocks (secrets) that could be recovered by an adversary in a
large-scale compromise. Tests were performed over randomly selected, partial sets of secret shares.

increased by modifying the width, R, of the approximate pointers; the shard
density was constant. The tests were run utilizing the ring heuristic and, as
would be expected, the tests that required cycles of length four to be tested grew
at a faster rate than those that only had to test cycles of length three.

5.4 Security Model

5.4.1 Secret Splitting Parameters. The secret splitting parameters used
greatly affect many aspects of the system’s security including data leakage,
recovery times, and efficiency. The three aspects of secret splitting parameter
selection include the values of m, n, and the difference between the two, n —m.

Higher values of m provide a higher level of data protection, but can also
lead to higher recovery times. As Figure 13 and Figure 14 illustrate, less data
was leaked when larger values of m were used. However, there is the risk that
recovery times will be higher if less than the full shard tuple can be acquired.
While approximate pointers and the naive approach are still useful, Figure 10
and Figure 11 demonstrate that higher values of m incur a penalty for recoveries
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Fig. 14. Percentage of 1,300 total blocks (secrets) that could be recovered by an adversary in a
large-scale compromise. Tests were performed over randomly selected, partial sets of secret shares
in which secrets were guarded through two levels of secret splitting: a top-level XOR split and a
lower-level threshold split.

with less than a full set of n shards. This scenario can, however, be mitigated
in two ways. First, a hybrid solution can be utilized in which as many secrets
as possible are recovered using the ring heuristic. Then, the remaining shards
can be recovered using the naive approach. Second, as Figure 6 illustrates, the
list of shard identifiers that a fragment generates is appended to the fragment.
Thus, upon successful reconstruction of a fragment from only m shards, the
remaining shards can be identified and removed from the list of unused shards.
This reduces the solution space for the subsequent secret recoveries. The results
of our experiments suggest that larger values of m should be chosen when
secrecy is a priority over potential recovery times.

In an m of n threshold scheme, the value of n directly impacts the storage
overhead and in turn the namespace density. One technique for managing the
namespace relies on careful name allocation. Entities that draw security di-
rectly from their position in the namespace, such as shards that rely on notice-
able attacks, should be placed sparsely. In contrast, entities that do not draw
their security from their position in a namespace can be densely packed. For
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example, when performing a two-layer split, the identifiers for the original data
and the identifiers for the results of the first split can all be drawn from a small,
densely packed portion of the total namespace. The majority of the namespace,
however, can be sparsely populated and devoted to shard names.

Despite their increased namespace overhead, higher values of n do provide
security benefits. As Figure 13 shows, higher values of n can be useful for
limiting the amount of information leaked, albeit mostly as a result of allowing
higher values of m. To this end, our experimentation suggests that a higher
value of n, along with a correspondingly higher value of m, provides the most
protection against lost data.

5.4.2 Risk of Data Compromise. While secret splitting and approximate
pointers are designed to make attempts to steal specific shards easy to detect
and survive, there is also the possibility that a large-scale compromise could
occur. This could occur in a scenario in which shards are stored in a distributed
manner across several data stores. If some of those archives are either com-
promised or collude to reconstruct data, there is the possibility of data being
revealed.

To determine the amount of data that can be revealed from a large-scale com-
promise, and to better understand how to limit it, we measured the data that
could be regenerated from a random subset of secret shares. In our experiment,
2,600 secrets were split using Shamir’s linear interpolation scheme. From the
resulting set of secret shares, an increasing percentage was randomly selected
and as much data as possible was recovered. The results, shown in Figure 13,
indicate two things. First, less data is released when both m and n increase and
n —m is held constant. In our experiment, using a 3 of 4 split revealed the least
amount of information. Second, for a fixed m, increasing n reveals an increasing
amount of information. This is not unexpected as the odds of randomly select-
ing a secret share from a given tuple increase as the size of the tuple increases.
In fact, threshold schemes are often used because of the availability that can
be achieved by increasing the value of n.

One approach to minimizing data loss from large-scale compromises is the
two-level secret splitting technique used by POTSHARDS. To test the benefits of
this strategy, we utilized an initial n of n XOR-based split. Each of the resulting
shares is then split using Shamir’s m of n threshold scheme. The results, for
two different values of n at the XOR split, are shown in Figure 14 and indicate
that the additional level of secret splitting is effective at lowering the amount
of information released. Also, as in the single split, larger values of n —m at the
second layer of secret splitting still resulted in higher amounts of information
loss.

Our experiments also indicate that a larger split at the first level of splitting
further limited the amount of information loss. This is evident in Figure 14(b),
which shows that revealing 20% of the total number of secret shares under a
first-level 3 of 3 split revealed no data, regardless of the second-level split. The
same 20% compromise with a first-level split of two and second-level 2 of 3 or
2 of 4 split resulted in 0.42% and 0.50% of the total number of secrets being
revealed, respectively. Even with 60% of the total number of secret shares and a
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3 of 4 Shamir split, a first-level split of three only revealed an average of 0.68%
of the secrets. In contrast, with 60% of the secret shares, a first-level split of
two revealed 5.46% and the single layer of splitting alone revealed 24.69%. Of
course, 60% of the total number of secret shares represents a very large-scale
compromise—over half of the shares stored for the user have been acquired; we
expect that compromises are more likely to result in 10% or fewer shares being
acquired, given the intrusion detection approaches made possible by sparse
namespaces.

Of course, while our results do show that multiple layers of secret splitting
enhance security, they do incur a storage penalty. As Figure 6 shows, there
is already a constant amount of storage overhead in the form of hashes and
identifiers. These costs are, however, dominated by the storage blowup intrinsic
to secret splitting. This situation is exacerbated by multiple levels of splitting.
For example, a first-level split of three, along with a second 3 of 4 split incurs a
storage blowup of twelve.

A system that distributes secret shares to multiple archives can further limit
data loss through careful share distribution. In our experiments, all secret
shares were pooled and reconstruction was attempted on a random subset of
those shares. In a storage model where shares are distributed to independent
archives, a more likely scenario of large-scale compromise is for an adversary
to acquire all of the shares on a single archive. In this situation, rather than
compromising a random subset of shares, the compromise would be a specific
subset: shares that reside on the compromised archives. To this end, careful
distribution of shares to archives could further limit data loss.

5.4.3 Chaff Shards. When a shard that does not exist is requested, either
mistakenly or due to a malicious user, there are two possible responses: an
error message or a chaff shard. The use of chaff [Bellare and Boldyreva 2000;
Rivest 1998] (fake packets) has been suggested as an approach to providing data
secrecy without encryption. A key difference, however, is that the “chaffing and
winnowing” strategy uses chaff as its primary secrecy mechanism. In the model
that we are investigating, secrecy comes primarily from secret splitting. Thus,
in our model, when a request is made for a shard that does not exist, a seemingly
valid chaff shard is generated and returned to the user.

The primary security advantage of chaff is that the attacker is not alerted
that the request for a false shard has been detected. This is not unlike a silent
alarm that alerts authorities without raising the suspicion of the intruder. Thus,
the role of chaff is not to slow down recovery time. In a scenario where a mali-
cious user has obtained sufficient shards, it is only a matter of time before the
data is revealed regardless of the existence of chaff. Data secrecy, whether from
encryption or secret sharing, is reducible to a computationally bound prob-
lem once an intruder has acquired enough ciphertext. Thus, the existence of
chaff shards is similar to an increased key size in that it makes the prob-
lem more difficult but it does not fundamentally change the potential for data
exposure.

There are two possible strategies for dealing with a user that requests a shard
multiple times in order to test its validity; if a shard is requested twice, but the
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Fig. 15. The effect of chaff on the time to recovery 1,000 secrets. Recovery attempts that utilized
the ring heuristic are shown using a dashed line.

returned result is different each time, it is clear to the user (or attacker) that
the shard is simply chaff. First, chaff can be generated using a deterministic
process. Alternatively, the chaff can be generated randomly and then stored.
One issue with the second strategy is that a user could attempt to intentionally
request false shards in order to pollute a user’s set of shards. The aim of such an
attack might be to use the increased recovery time as a type of denial-of-service
attack. In fact, as Figure 15 demonstrates, chaff does not dramatically increase
the recovery time, especially if the user is able to utilize the ring heuristic.

6. FUTURE WORK

Currently, POTSHARDS depends on strong authentication and intrusion de-
tection to keep data safe, but it is not clear how to defend against intrusions
that may occur over many years, even if such attacks are detected. We are ex-
ploring approaches that can refactor the data [Wong et al. 2002] so that partial
progress in an intrusion can be erased by making new shards “incompatible”
with old shards. Unlike the failure of an encryption algorithm, which would
necessitate wholesale reencryption, refactoring for security could be done over
time to limit the window over which a slow attack could succeed. Refactoring
could also be applicable to secure migration of data to new storage devices.

We would also like to reduce the storage overhead in POTSHARDS, and are
considering several approaches to do so. Some information dispersal algorithms
may have lower overheads than Shamir secret splitting; we plan to explore their
use, assuming that they maintain the information-theoretic security provided
by our current algorithm.

The research in POTSHARDS is only concerned with preserving the bits that
make up files; understanding the bits is an orthogonal problem that must also
be solved. Others have begun to address this problem [Gladney and Lorie 2005],
but maintaining the semantic meanings of bits over decades-long periods may
prove to be an even more difficult problem than securely maintaining the bits
themselves.
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7. CONCLUSION

This article introduced POTSHARDS, a system designed to provide secure long-
term archival storage to address the new challenges and new security threats
posed by archives that must securely preserve data for decades or longer. The
goal is to create a security model that relies not on a large key-space, but on
surviving attacks and making attacks easy to detect and respond to.

In developing POTSHARDS, we made several key contributions to secure
long term data archival. First, we use multiple layers of secret splitting, approx-
imate pointers, and archives located in independent authorization domains to
ensure secrecy, shifting security of long-lived data away from a reliance on en-
cryption. The combination of secret splitting and approximate pointers forces
an attacker to steal an exponential number of shares in order to reconstitute
a single fragment of user data; because he does not know which particular
shares are needed, he must obtain all of the possibly required shares. Second,
we demonstrated that a user’s data can be rebuilt in a relatively short time
from the stored shards only if sufficiently many pieces can be acquired. Even
a sizable (but incomplete) fraction of the stored pieces from a subset of the
archives will not leak information, ensuring that data stored in POTSHARDS
will remain secret. Third, with approximate pointers and a sparse namespace,
we made intrusion detection easier by dramatically increasing the amount of
information that an attacker would have to steal and requiring a relatively
unusual access pattern to mount the attack. Fourth, we ensure long-term data
integrity through the use of RAID algorithms across multiple archives, allow-
ing POTSHARDS to utilize heterogeneous storage systems with the ability to
recover from failed or defunct archives and a facility to migrate data to newer
storage devices.

Out experiences with an early implementation show that users can store
data at over 4 MB/s and retrieve user data over 6 MB/s. Since POTSHARDS is
an archival storage system, throughput is more of a concern than latency, and
even these unoptimized throughputs exceed typical long-term data creation
rates for most environments. Since the storage process is parallelizable, ad-
ditional clients increase throughput until the archives’ maximum throughput
is reached; similarly, additional archives linearly increase maximum system
throughput.

Our experiments also show that the ring heuristic is effective at recovering
data from even a large set of shards. From an efficiency standpoint, the total
ordering that the ring heuristic imposes over a potential shard tuple provides a
dramatic improvement compared to the naive approach of testing only paths of
length m. Additionally, we demonstrate that increasing m and utilizing multiple
levels of secret splitting can minimize the amount of data revealed in the event
of a large-scale data compromise. Our experiments also show that chaff shards
do not dramatically increase recovery times. Thus, their benefit is primarily to
act as a silent alarm which does not alert an adversary that they have been
detected.

By addressing the long term threats to archival data while providing reason-
able performance, POTSHARDS provides reliable data protection specifically
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designed for the unique challenges of secure archival storage; the use of secret
splitting, a sparse namespace, and approximate pointers are well suited to the
unique secrecy and recovery demands of archival data with a potentially indefi-
nite lifetime. Storing data in POTSHARDS ensures not only that it will remain
available for decades to come, but also that it will remain secure and can be
recovered by authorized users even if all indexing is lost.

ACKNOWLEDGMENTS

We would like to thank our colleagues in the Storage Systems Research Center
(SSRC) who provided valuable feedback on the ideas in this article.

REFERENCES

1047 Congress. 1996. Health Information Portability and Accountability Act.
http://www.hhs.gov/ocr/hipaa/.

Abva, A., BoLosky, W. J., CasTro, M., CHAIKEN, R., CERMAK, G., DOUCEUR, J. R., HowELL, J., LorcH, J. R.,
THEIMER, M., AND WATTENHOFER, R. 2002. FARSITE: Federated, available, and reliable storage
for an incompletely trusted environment. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI). USENIX.

Baker, M., Suan, M., RosentHAL, D. S. H., Roussorouros, M., Maniartis, P., Giuri, T., AND BUNGALE,
P. 2006. A fresh look at the reliability of long term digital storage. In Proceedings of EuroSys,
221-234.

BreLLARE, M. AND BoLDYREVA, A. 2000. The security of chaffing and winnowing. In Proceedings
of the Advances in Cryptology 6th International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT’00). Lecure Notes in Computer Science, vol.
1976, Springer, Berlin, 517-530.

BHATKAR, S., DUVARNEY, D. C., AND SEKRAR, R. 2003. Address obfuscation: An effcient approach to
combat a broad range of memory error exploits. In Proceedings of the 12th USENIX Security
Symposium, 105-120.

CHang, F., J1, M., LEung, S.-T. A., MacCoRrumICK, J., PERL, S. E., AND ZHANG, L.  2002. Myriad: Cost-
Effective disaster tolerance. In Proceedings of the Conference on File and Storage Technologies
(FAST). 103-116.

CHor, S. J., Youn, H. Y., anp LEg, B. K. 2003. An efficient dispersal and encryption scheme for
secure distributed information storage. Lecture Notes in Computer Science, vol. 2660, 958-967.

CLARKE, 1., SANDBERG, O., WiLEY, B., AND Hong, T. W. 2001. Freenet: A distributed anonymous
information storage and retrieval system. Lecture Notes in Computer Science, vol. 2009, 46—66.

CLEVERSAFE. 2006. Highly secure, highly reliable, open source storage solution.
http://www. cleversafe.org/.

ForresT, S., Somavasi, A., AND AckLiy, D. H. 1997. Building diverse systems. In Proceedings of the
6th Workshop on Hot Topics in Operating Systems (HotOS-VI), 67-72.

Grapney, H. M. anp Lorig, R. A. 2005. Trustworthy 100-year digital objects: Durable encoding
for when it’s too late to ask. ACM Trans. Inf. Syst. 23, 3, 299-324.

GOLDBERG, A. V. anD Yiantos, P. N. 1998. Towards an archival intermemory. In Proceedings of
the Conference on Advances in Digital Libraries (ADL98), 1-9.

GoopsoN, G. R., WyLIE, J. J., GANGER, G. R., aND ReTER, M. K. 2004. Efficient Byzantine-tolerant
erasure-coded storage. In Proceedings of the International Conference on Dependable Systems
and Networking (DSN’04).

Gunawr, H. S., AgrawaL, N., Arraci-Dusskeau, A. C., ArPacI-Dusseau, R. H., AND SCHINDLER, J. 2005.
Deconstructing commodity storage clusters. In Proceedings of the 32nd International Symposium
on Computer Architecture, 60-71.

HagBERLEN, A., MISLOVE, A., AND DrRUSCHEL, P.  2005. Glacier: Highly durable, decentralized storage
despite massive correlated failures. In Proceedings of the 2nd Symposium on Networked Systems
Design and Implementation (NSDI). USENIX.

ACM Transactions on Storage, Vol. 5, No. 2, Article 5, Publication date: June 2009.



5:34 o M. W. Storer et al.

Hanp, S. anD Roscog, T. 2002. Mnemosyne: Peer-to-peer steganographic storage. Lecture Notes
in Computer Science, vol. 2429, 130-140.

IYENGAR, A., CaHN, R., GARray, J. A., aND JuTLa, C. 1998. Design and implementation of a secure
distributed data repository. In Proceedings of the 14th IFIP International Information Security
Conference (SEC’98), 123-135.

KavrvaHALLA, M., RIEDEL, E., SWAMINATHAN, R., WANG, Q., AND Fu, K.  2003. Plutus: Scalable secure
file sharing on untrusted storage. In Proceedings of the 2nd USENIX Conference on File and
Storage Technologies (FAST). USENIX, 29-42.

Keeton, K., Santos, C., BEYER, D., CHASE, J., AND WILKES, J. 2004. Designing for disasters. In
Proceedings of the 3rd USENIX Conference on File and Storage Technologies (FAST).

King, S. T. anp CueEn, P. M. 2003. Backtracking intrusions. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP’03), 223-236.

Kortra, R., Arvist, L., anp Darnin, M. 2007. SafeStore: A durable and practical storage system. In
Proceedings of the USENIX Annual Technical Conference, 129-142.

Maniartis, P., Roussopouros, M., Grunl, T. J., RoseENTHAL, D. S. H., AND BAKER, M. 2005. The LOCKSS
peer-to-peer digital preservation system. ACM Trans. Comput. Syst. 23, 1, 2-50.

MrLiER, E. L., Long, D. D. E., FreemaN, W. E.; anp ReED, B. C. 2002. Strong security for network-
attached storage. In Proceedings of the Conference on File and Storage Technologies (FAST),
1-13.

OxrLEy, M. G. 2002. (H.R.3763) Sarbanes-Oxley Act of 2002.

Prang, J. S. 1997. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems.
Softw. Practice Exper. 27, 9, 995-1012. Correction in James S. Plank and Ying Ding, Tech. rep.
UT-CS-03-504, University of Tennessee, 2003.

QUINLAN, S. AND DORWARD, S. 2002. Venti: A new approach to archival storage. In Proceedings of
the Conference on File and Storage Technologies (FAST). USENIX. 89-101.

RaBiN, M. O. 1989. Efficient dispersal of information for security, load balancing, and fault tol-
erance. J. ACM 36, 335-348.

RuEa, S., EaToN, P., GEELS, D., WEATHERSPOON, H., ZHAO, B., AND KUBIaATOWICZ, J. 2003. Pond: The
OceanStore prototype. In Proceedings of the 2nd USENIX Conference on File and Storage Tech-
nologies (FAST), 1-14.

Rivest, R. L. 1998. Chaffing and winnowing: Confidentiality without encryption. CryptoBytes,
4,1, 12-17.

SANTRY, D. S., FEELEY, M. J., HurcHinson, N. C., Veirch, A. C., CartoN, R. W.; aND OFIR, J. 1999.
Deciding when to forget in the Elephant file system. In Proceedings of the 17th ACM Symposium
on Operating Systems Principles (SOSP’99), 110-123.

ScuwARz, S.dJ., T. AND MILLER, E. L.  2006. Store, forget, and check: Using algebraic signatures to
check remotely administered storage. In Proceedings of the IEEE 26th International Conference
on Distributed Computing Systems (ICDCS’06).

SHAMIR, A. 1979. How to share a secret. Comm. ACM 22, 11, 612-613.

Stinson, D. R. 2002. Cryptography: Theory and Practive, 2nd ed. The CRC Press Series on Dis-
crete Mathematics and its Applications. Chapman and Hall (CRC), Boca Raton, FL.

STONEBRAKER, M. AND ScHLoss, G. A. 1990. Distributed RAID—A new multiple copy algo-
rithm. In Proceedings of the 6th International Conference on Data Engineering (ICDE’90),
430-437.

STORER, M., GREENAN, K., MiLLER, E. L., AND MarrzanN, C. 2005. Potshards: Storing data for the
long term without encryption. In Proceedings of the 3rd International IEEE Security in Storage
Workshop.

StorER, M. W., GREENAN, K. M., AND MILLER, E. L. 2006. Long Term threats to secure archives. In
Proceedings of the ACM Workshop on Storage Security and Survivability.

StorER, M. W., GREENAN, K. M., MILLER, E. L., AND VorucanTi, K.  2007. POTSHARDS: Secure long-
term storage without encryption. In Proceedings of the USENIX Annual Technical Conference,
143-156.

SusBiaH, A. aND BroucH, D. M.  2005. An approach for fault tolerant and secure data storage in
collaborative work environements. In Proceedings of the ACM Workshop on Storage Security and
Survivability, 84-93.

ACM Transactions on Storage, Vol. 5, No. 2, Article 5, Publication date: June 2009.



POTSHARDS—A Secure, Recoverable, Long-Term Archival Storage System . 5:35

Troncoso, C., DE Cock, D., AND PRENEEL, B. 2008. Improving secure long term archival of digitally
signed documents. In Proceedings of the ACM Workshop on Storage Security and Survivability,
27-36.

WaLbpman, M., RusiN, A. D., AND CRaNOR, L. F.  2000. Publius: A robust, tamper-evident, censorship-
resistant Web publishing system. In Proceedings of the 9th USENIX Security Symposium.

Wang, X., L1, Z., Xu, J., RErter, M. K., KiL, C., aND CHo1, J. Y. 2006. Packet vaccine: Black-Box ex-
ploit detection and signature generation. In Proceedings of the 13th ACM Conference on Computer
and Communications Security (CCS’06).

Wong, T. M., Wang, C., anD WinG, J. M. 2002. Verifiable secret redistribution for threshold sharing
schemes. Tech. rep. CMU-CS-02-114-R, Carnegie Mellon University. October.

Wy, J. J., Biarica, M. W., STRUNK, J. D., GANGER, G. R., KiLiggoTE, H., AND KnHosra, P. K. 2000.
Survivable storage systems. IEEE Comput., 61-68.

Xy, J., Ning, P, Ki, C., ZHar, Y., anD Booknorr, C. 2005. Automatic diagnosis and responses to
memory corruption vulnerabilities. In Proceedings of the 12¢h ACM Conference on Computer and
Communications Security (CCS’05), 223-234.

You, L. L., Porrack, K. T., anp Long, D. D. E. 2005. Deep store: An archival storage system
architecture. In Proceedings of the 21st International Conference on Data Engineering (ICDE’05).

ZHANG, Z., LiaN, Q., LiN, S., CueN, W., CHEN, Y., AND JIN, C. 2007. BitVault: A highly reliable
distributed data retention platform. ACM SIGOPS Oper. Syst. Rev. 41, 2, 27-36.

Received September 2008; revised January 2009; accepted February 2009

ACM Transactions on Storage, Vol. 5, No. 2, Article 5, Publication date: June 2009.



