
BOSTON UNIVERSITY 

COLLEGE OF ENGINEERING 

Dissertation: 

 

LAMP: TOOLS FOR CREATING 

APPLICATION-SPECIFIC FPGA COPROCESSORS 

 

By 

THOMAS DAVID VANCOURT 

B.S., Cornell University, 1978 
M.S., Boston University, 2001 

 

 

Submitted in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

2006 

 



APPROVED BY 

 

First  reader: __________________________________________ 

   Prof. Martin Herbordt, Ph.D. 
   Professor of Electrical and Computer Engineering  
 

Second  reader: __________________________________________ 

   Prof. Roscoe Giles, Ph.D. 
   Professor of Electrical and Computer Engineering  
 

Third  reader: __________________________________________ 

   Prof. Allyn Hubbard, Ph.D. 
   Professor of Electrical and Computer Engineering  
 

Fourth  reader: __________________________________________ 

   Prof. Sandor Vajda, Ph.D. 
   Professor of Biomedical Engineering  
 

Chair:  __________________________________________ 

   Prof. Wei Qin, Ph.D. 
   Professor of Electrical and Computer Engineering  



 

 iii 

 

 LAMP: TOOLS FOR CREATING 

APPLICATION-SPECIFIC FPGA COPROCESSORS 

(Order No.                      ) 

THOMAS DAVID VANCOURT 

Boston University, College of Engineering 2006 

Major Professor: Martin C. Herbordt, Ph.D. 

     ABSTRACT 

Field Programmable Gate Arrays (FPGAs) have begun to appear as accelerators for 

general computation. Their potential for massive parallelism, high on-chip memory 

bandwidth, and customizable interconnection networks all contribute to demonstrated 

100-1000× increases in application performance relative to current PCs. FPGA 

coprocessors have been available in niche markets for years, and are now appearing in 

mainstream supercomputers from vendors including Cray and Silicon Graphics. 

Available development tools do not address developers of computing applications, 

however. Traditional FPGA design tools meet the gate-level needs of logic designers, but 

present a computing model that vanishingly few software developers can use. Likewise, 

logic designers understand logic structures for high computing performance, but rarely 

know the biology, biochemistry, or other applications that need acceleration. Logic 
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designers and application developers must both participate in creating efficient, useful 

accelerators, but their different kinds of participation are not supported by current tools. 

This work presents two major sets of contributions. The first is proof by example that 

FPGAs give 100-1000× speedups for large families of applications in bioinformatics and 

computational biology (BCB), including sequence alignment, molecule docking, and 

string analysis. These demonstrations also provide the beginnings of a library of reusable 

computing structures.  

The second set of contributions appear as novel features of accelerator design tools 

based on Logic Architecture by Model Parameterization (LAMP). The LAMP tools 

address broad, customizable families of applications, not point solutions to narrow 

problem statements. LAMP also separates the logic designers, who create efficient 

hardware computing structures, from the application specialists who tailor the accelerator 

to specific members of the application family. This separation enables accelerator 

hardware customization without access to hardware design skills. Finally, LAMP 

provides mechanisms for automating the tradeoff between complexity and quantity of 

parallel processing elements (PEs), allowing fewer large PEs or larger numbers of small 

ones, subject to the the FPGA’s resource constraints. This creates a unique ability to 

allocate the FPGA’s computing resources differently for each member of an application 

family, according to the datatypes and functions specific to that family member. 

Performance results based on prototype LAMP tools are presented, using sample BCB 

applications. 
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implemented by an application, allowing its execution environment to access 

that application, using sequencing and control defined by the execution 
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1 RETHINKING TOOLS FOR FPGA-BASED COMPUTATION 

Researchers in many fields have a seemingly insatiable need for high-speed computation. 

When single workstations lack the necessary computing power, users traditionally turn to 

super-computers and computing clusters for increased computing capacity. These create 

their own problems, however, so the search continues for affordable ways to put massive 

computing capability into more researchers’ hands. Field programmable gate arrays 

(FPGAs) offer a promising approach to acceleration of a wide range of computing 

applications. Unlike fixed-function processors, FPGAs allow the developer to create 

computing structures customized to the application at hand. The FPGA contains a pool of 

uncommitted computing resources, which can be built into hundreds of task-specific 

processors. Properly configured, FPGA-based coprocessors have demonstrated 100-

1000× speedups relative to PCs [Con04, Van04, Van04a, Van05]. 

The FPGA programming model is fundamentally different from the sequential-

program model of computing. A stored program in a standard computer distributes the 

steps of an algorithm over time by ordering many successive uses of a few predefined 

functional units. An FPGA program distributes parts of an algorithm spatially by ordering 

concurrent use of hundreds or thousands of customized functional units. FPGAs have 

only recently emerged as computation accelerators from their origin as a replacement for 

discrete logic. As a result, the most popular hardware design languages (HDLs), VHDL 

and Verilog, still address the bit-level needs of the logic designer, at a semantic level 

below the barest layer of assembly programming. High level languages (HLLs) including 
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C, Java, and derivatives have been compiled into FPGA logic, but current commercial 

products [Mit05] claim only 10-30× typical performance increase over a standard CPU. 

Achieving the FPGAs’ 100-1000× performance potential requires a new generation of 

tools for implementing application logic. That is the goal of this work: to create new 

programming tools able to exploit an FPGA’s full capability, while presenting a familiar 

interface to the application specialist that has the computing needs.  

FPGAs have long, successful history in digital signal processing (DSP) applications. 

Vendors have created FPGA design tools specifically for DSP applications [Xil02d].  The 

fundamental hypothesis of the current work is that FPGAs are ready to expand beyond 

this narrow domain, and into broad areas of computationally intensive applications. 

Although many application areas could benefit from FPGA-based acceleration, this 

research focuses on applications in bioinformatics and computational biology (BCB). In 

developing a number of BCB/FPGA applications, it became apparent that such 

applications tend to be used in many variant forms. Addressing the whole range of 

variants required insight into the science of each application and also manual 

development procedures impossible within the scopes of exiting tools. 

Our tools address these observations with three central ideas. The first is that two skill 

sets are required for FPGA accelerator development, skills that rarely (if ever) occur 

together in one developer. The application specialist must bring broad, deep 

understanding of a BCB algorithm and its many different variations. A logic designer is 
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also needed for casting the algorithm into terms that an FPGA can implement efficiently. 

The second idea is to extend the underlying HDL to allow data types and functional 

behavior to be expressed as component parameters, and to allow kinds of reuse not 

possible within the HDLs’ current standard. The third idea is to create new optimization 

techniques that derive parallelism from the logic usage in application-specific processing 

elements, up to the capacity of the FPGA's fabric. LAMP tools automate maximal use of 

FPGA resources for each specific application, and allow larger FPGAs to improve 

performance without source changes to the application. 

We have integrated these ideas into a proof-of-concept version of the Logic 

Architecture Model Parameterization (LAMP) design tools. With LAMP, a logic 

designer, working together with an application specialist, can create an application 

environment corresponding to a family of applications. Once created, many application 

specialists can then use the environment, independent of the logic designer, to create 

FPGA accelerator instantiations specific to the details of their respective applications. In 

the language of software design patterns, LAMP allow a logic designer to create 

accelerators with detailed behavior phrased as a parameter, to “implement the invariant 

parts of an application once, and leave it up to the [application specialists] to implement 

the behavior that can vary” [Gam95]. 

This first chapter starts by describing the FGPA’s basic capabilities and the kinds of 

problems best suited to FPGA-based computation. Based on case studies created during 
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this research, this chapter develops the idea of an application family. Family members 

have the same flow of data, memory access patterns, and synchronization structures, but 

differ in the details of data types and specific functions. This also introduces the different 

participants in designing FPGA-based accelerators: the application specialist with a 

computation need, and the logic designer able to create efficient computing structures 

using FPGA logic. Conflicting requirements for FPGA design tools arise from these basic 

facts of technology, applications, and participants. The result of this research is a set of 

novel tools that resolve these conflicts, enabling kinds of FPGA applications and 

application families that are not feasible with existing tools. 

The second chapter presents a set of sample applications that we created in order to 

evaluate state of the art FPGA design language, and to gain understanding about the 

needs of FPGA-based application acceleration. This chapter starts with a brief description 

of factors that predispose an application to successful FPGA implementation. Next, this 

chapter examines a set of case studies in biochemistry and computational biology (BCB) 

that create the conceptual basis for the current work. These case studies are interesting in 

themselves, but also demonstrate the application demands that current HDLs do not 

address. In particular, these case studies demonstrate the idea of application families, 

groups of different applications that share a common computation structure. This chapter 

ends with an examination of features common across different application families, 

despite the very different structures of their computations. These common features 
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suggest a set of requirements for design tools aimed specifically at application 

acceleration.  

Chapter three examines previous work, and shows how current logic design software 

fails to meet the needs of accelerator design. It opens with a brief survey of the hardware 

systems that have been used for BCB computations. The first part of the survey examines 

a representative sample of hardware systems that have been demonstrated, or that are 

emerging as platforms for high performance computing. These systems all suffer 

problems in technology or usability, and FPGAs are shown to address many of these 

problems. The second section of the survey examines major categories of logic design 

tools that have been used for FPGA applications. These cover a number of different 

approaches to software design and logic specification, but generally present computing 

paradigms that do not match the needs of high-performance computation. Chapter three 

ends with a discussion of object-oriented (OO) programming languages, with emphasis 

on the ways in which hardware environments demand reconsideration of traditional OO 

semantics. 

Chapter four summarizes the requirements for accelerator design tools, as distinct 

from any other logic design task, in terms of the background information provided in 

chapters two and three. It ends with a discussion of design decisions behind the 

implementation of the LAMP tool set in its current form. 
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Chapter five explains the LAMP tool flow, the steps taken by the different people 

involved in the design process, as well as the technical content of the tools and data 

involved. Next, this chapter provides a description of the LAMP tool features, showing 

how the meet they demands and implement the concepts laid out in previous chapters. 

This chapter presents the details of defining an application family using the LAMP tools, 

and how the LAMP specifications translate into synthesizable FPGA designs. 

Chapter six summarizes the results of this research: the approach is effective in 

addressing families of application accelerators, and the LAMP tools are effective in 

implementing that approach. The chapter recapitulates the basic problems in creating 

application accelerators using FPGA coprocessors. It then shows how the LAMP tools 

address those problems, and summarizes the novel features of the LAMP tools. Finally, it 

suggests areas in which the LAMP tools can be extended, to improve their usability, 

robustness, and semantic richness. 

In order to keep the discussions of chapters 1-6 concise, significant but lengthy 

supporting information has been moved to the appendices. Appendix A describes the 

LAMPML design language in detail. This is an XML-based representation, and is the 

basic definition of LAMP tools. Although XML is a poor interface for application 

development, it is a clear and well-supported representation for machine interpretation. 

As such, it is a useful intermediate, internal representation of the LAMP models. All 

other representations of LAMP applications rely on the semantics of this format. 
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Appendix B lays out the notion of a computation’s growth law, the algebraic 

description of the resources needed for computing arrays of different structure and 

connectivity. This concept is central to the idea of repeating arrays of processing 

elements, since it specifies permissible and desirable array sizes. Combined with 

information about application details and FGPA resource limits, this provides the basic 

idea underlying automatic sizing of computation arrays. 

The final appendix, C, analyses a detailed example of LAMP usage, including the 

logic for sizing computation and memory arrays according to available FPGA resources. 

This omits the VHDL code that would be needed for synthesis, but demonstrates how 

LAMP features are used in defining efficient, configurable application accelerators. 

The rest of this introduction starts with a basic statement of this work’s goals. It 

briefly describes how FGPAs differ from traditional processors, in both their strengths 

and their weaknesses. This leads to a discussion of the kinds of computations suited to the 

FPGA platform, and sketches of case studies of applications that take advantage for 

FPGAs’ unique strengths. Basic features of FPGAs and lessons from the case studies 

present contradictory demands to the tool developer, described in section 1.5. Section 1.6 

outlines LAMP’s answers to these conflicting requirements, and section 1.7 summarizes 

the basic contributions of this research. This introduction ends with a description of 

typographic and diagrammatic conventions used through the other chapters of this 

presentation. 
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1.1 Summary of goals 

The primary objective of this work is to examine the factors that make existing logic 

design tools unsuitable for developing FPGA-based application accelerators, and to 

demonstrate prototype tools that fix these defects. The tools’ major goals include support 

for: 

⋅ 100-1000× acceleration of selected application families relative to PC performance, 

through application-specific configuration of processing and communication 

elements, not through incremental improvements in existing computing structures. 

⋅ Families of applications, related by common control and communication structures 

but differing in details of data types and “leaf” computations. 

⋅ Reusability of FPGA accelerators across different FPGA chips and different 

applications, with modest incremental cost in design for reuse.   

⋅ Automated exploitation of computing resources, by adapting the degree of 

parallelism to the problem at hand and resources available, as opposed to fixed-size 

processing arrays. 
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⋅ Effective collaboration between hardware designers who understand efficient 

computing structures and application specialists who know the details of each 

different usage of the acceleration hardware. 

⋅ Application specialists’ ability to modify an accelerator’s data types and operations 

within the framework of the application family, without direct support from 

hardware designers. 

Having stated the goals of this research, it is equally important to set constraints that 

bound the scope of the study. The problem space as a whole is huge, and requires a focus 

of attention that necessarily sets aside other considerations. In particular, the following 

are not among the goals of this work: 

⋅ Point solutions to individual problems. Feasible hardware accelerators must be 

widely applicable, but still deliver the performance of custom designs across many 

users’ different forms of a given computation. 

⋅ Complete generality of solution. The current work addresses only problem families 

where dramatic increases in performance warrant the cost and effort of using an 

FPGA accelerator. Many problems do not embody the features that work well with 

FPGA-based computation, and no effort is made to fit them to an inappropriate 

platform.  
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1.2 Emergence of FPGA computing 

FPGAs have been available since the 1980s, but have only recently started to become 

popular as computation accelerators. In order to understand why, it is necessary to 

understand something about their basic technology. That technology explains the FGPAs’ 

strengths and limitations as application accelerators, and shows why FPGA programming 

is so different from traditional kinds of application programming. 

1.2.1 FPGA technology 

FPGAs are reprogrammable chips containing large numbers of configurable logic gates, 

registers, and interconnections. FPGA programming means defining the bit-level 

configuration of these resources in order to create a circuit that implements a desired 

function. The FPGAs of interest store their configuration data in static RAM cells 

distributed across the chip, so they can be reused indefinitely for different computations 

defined by different logic configurations. Recent families FPGAs also contain dedicated 

multipliers and on-chip RAMs, along with vastly larger amounts of the traditional logic 

resources.  

These are the same logical building blocks that go into a CPU’s arithmetic units, 

registers, caches, and other subsystems. The smaller FPGAs of the past were sometimes 

used to created dedicated processing elements, especially for digital signal processing 

(DSP) applications. CPU designers had a long head start, however, and cheap, fast 

processors gave adequate performance at lower cost in all but a few applications. Still, 
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FPGAs grow [But03, Tre04] according to a loose interpretation of Moore’s law, a 

doubling of capacity about every 18 months [Pag04]. Their overall capacity has reached a 

threshold at which they have begun to look cost effective for general computation. Recent 

product announcements support this claim: Cray [Cra05] and Silicon Graphics [Sil04] 

have new FPGA-based add-ons for their standard supercomputer products. These main-

stream vendors joins specialty vendors that have sold FPGA based processors or 

accelerators for many years, including Star Bridge Systems [Sta04], SRC Computers 

[SRC05], Nallatech [Nal05], and Annapolis Microsystems [Ann05].  

FPGAs differ from application-specific integrated circuits (ASICs) in one basic 

feature: the ASIC’s capabilities fixed when the chip is fabricated, but the FPGA’s 

behavior is set differently by each application’s configuration data. As a result, FPGAs 

usually require more transistors and more power for any given operation, and typically do 

not achieve the performance that ASICs get from transistor-level tuning. In their favor, 

FPGAs are commodity parts. They allow custom logic implementations without the 

expense and development time of custom integrated circuits. They amortize the one 

general-purpose chip’s development costs across many applications. They also avoid 

obsolescence, since FPGA vendors offer new or enhanced products at frequent intervals. 

ASICs upgrades usually require a new investment of some or all of their original 

development cost, and may cost more than the original as costs of fabrication masks 

continue to rise.  
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1.2.2 FPGA application development 

Creating an FPGA application (often called FPGA programming) differs fundamentally 

from programming of standard CPUs. The stored-program model uses a CPU of fixed 

configuration, with fixed memory, registers, arithmetic or logical units, and fixed 

connections between them. Programming consists of writing instructions that sequentially 

reuse these resources to perform a desired algorithm. Developing an applicaiton for an 

FPGA means defining the set of function units, registers, and interconnections that create 

a hardware implementation of the algorithm. Individual CPUs execute instructions one at 

a time (or appear to), but all of an FPGA’s logic executes in parallel. This is where the 

FPGA’s potential for computing performance arises: hundred or thousands of concurrent 

operations, contention free access to hundreds of memory busses and registers, and 

communication networks with arbitrary topology and nanosecond latency. Standard 

hardware implementation techniques also contribute to FPGAs’ performance advantage: 

massive pipelining can often eliminate costs due to load/store operations, memory 

indirection, and loop overhead.  

Most of the FPGA’s logic resources operate at the bit level, so they must be ganged to 

form the larger data elements that represent an application’s logic: integers, address, and 

other values. Programmers familiar with a few fixed data sizes find this surprising in two 

ways. The first is that every word size must be specified individually. The second and 

bigger surprise is the range of word sizes that can be chosen, from one or two bits to 

thousands. Dozens or hundreds of register arrays, functional units, and on-chip memory 
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banks can be configured with the same flexibility, but with the same need for low-level 

design specification.  

Tools for creating FPGA-based designs have not caught up to the abrupt opening of 

this new field of FPGA usage. The two most popular HDLs for large FPGA-based logic 

designs are Verilog and VHDL. They have some syntactic resemblance to the HLLs C 

and Ada, respectively, but profoundly different semantics.  

One difference between HDLs and conventional HLLs is that all statements in an 

HDL program execute concurrently, except for a few special constructs. The other major 

difference is that HDL programmers must create function units and registers in their 

custom processors, instead of using the ones provided by a CPU designer.  

HDLs offer low levels of semantic representation, well below the assembly level of 

standard CPUs. They meet the needs of logic designers dealing with pervasive 

parallelism, gate-level resource allocation, and harsh timing requirements, not the needs 

of scientific application developers dealing with complex algorithms. HDLs expose 

nearly all of the FPGA’s capability and concurrency, but also expose the circuit level 

complexities that have traditionally distinguished logic design from software 

development. They are effectively unusable by the large majority of people developing 

compute-intensive applications. 



 

1.2.3 FPGAs as computation accelerators 

Despite at least fifteen years of discussion [Gra89], FPGAs have had limited acceptance 

as platforms for general computing. One reason is that logic design is rare skill compared 

to standard programming, leading to the objservation that that “10×-100× of performance 

... has been at the cost of 10×-100× increase in difficulty in application development.” 

[Gok00]. Another reason is that, FGPAs did not have enough computational capacity to 

justify the difficulty in using them, except in research or niche applications. Several 

factors have recently combined to make FPGAs more attractive as computation engines, 

however. 

The most obvious factor is recent, rapid increases in the amount of computing capacity 

per FPGA. The Xilinx Virtex-II Pro family, for example, features up to 444 hardware 

multipliers, 99K programmable logic elements, 7.9Mb of block RAM, twenty multi-

gigabit IO ports, and over 1000 uncommitted IO pins [Xil04]. Newer chip families have 

even higher capacity in many of these dimensions. Because FPGAs are now said to be 
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drivers of chip process development, a role formerly held by DRAMs [But03, Tre03], 

one should expect exponential growth similar to Moore’s Law. 

The large capacity of current and anticipated FPGAs has a surprising benefit, shown 

qualitatively in Figure 1. One might expect FPGA applications to become increasingly 

complex, in proportion with the number of programmable elements per chip. If true, the 

performance per unit of development effort would have remained roughly constant, or 

perhaps worsened due to O(N2) pairwise interaction effects. This is not necessarily the 

case, however. Experience shows that many FPGA-based computations are repetitive, 

scalable arrays of computing elements. Maximum array size increases with FPGA 

capacity, and potential application performance increases directly with array size. Array 

design effort, however, is largely independent of array size. The result is that larger 

FPGAs have the potential for higher performance per unit of application development 

effort, because multiple PEs multiply the value of the effort in designing the PE. Larger 

FPGAs only increase the potential number of PEs, and further increasing the value of the 

development effort. Superlinear increases in performance are also possible, if larger 

FPGAs can reduce the overhead incurred by partitioning the problem into pieces that fit 

into the FPGA. Also, newer generations of FPGAs sometimes introduce dedicated 

functions such as multiplication blocks, and incorporate other technological changes that 

increase performance. 



 

1.2.4 Acceleration’s possibilities and limits 

It is commonly observed that a small portion of any program consumes the majority of its 

computation cycles. This is often true in BCB applications and becomes more true over 

time, as new applications reduce older ones to individual steps. For example, alignment 

of biological sequences is a common, basic operation. It is repeated many times in 

finding a best match within some set of sequences. Best-match searches happen 

repeatedly in building a phylogenetic tree, and many individual trees combine to make a 

consensus tree [Fel04]. Consensus trees of multiple species, in turn, are combined in 

studying cophylogeny of host/parasite or other biological relationships [Pag03]. Each 

layer of algorithms multiplies the time saved by accelerating alignments; each additional 

layer of algorithms multiplies the time savings by another factor.High overall 

performance improvement often comes from accelerating small program segments. This 

creates a good match to the physical relationship between a CPU and an FPGA 

accelerator. Multi-GB memories are typical for current processors, and are able to hold 

programs at least 108 MB in length. FPGAs, however, contain only about 104 to 105 

programmable logic elements. Without trying to equate some number of logic elements 

to a byte of program code, the FPGA clearly has far smaller programmable capacity than 

the CPU. Assigning a small but performance-critical part of the program to a small but 

performance-enhancing accelerator creates a good match of application demand and 

hardware availability. Amdahl’s law [Amd67] originally described a different computing 

model than the single CPU with accelerator, but it provides a quantitative measure of 
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accelerated fraction. 

the smallest Tacc) occurs when Facc approaches 1 and Sacc is large. 

High F  is in fact found in many compute-intensive BCB applications, and Sacc values 

of 100 to 1000 or more have been reported in FGPA acceleration of a number of 

applications.  

1.3 Computations amenable to FPGA acceleration 

potential speedup that still applies. Equation 1 derives Tacc, the accelerated execution 

time, from Torig is the original, unaccelerated execution time, Facc is the fraction of 

execution time eligible for acceleration, and Sacc is the factor of speedup of the 

The ideal case (i.e., 

acc

Any computing platform works better for some applications than for others, partly 

because of the physical structure of the computing hardware. In order to understand 

which problems work best with FPGA acceleration, one must understand the general 

structure of the FPGA acceleration hardware and its relationship to the rest of the 

computing system. 

Equation 1. Potential speedup in 

accelerated applications [after 
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1.3.1 FPGA and accelerator hardware  

Figure 2 illustrates the most common kinds of system configuration. Typical 

configurations are based on PCs or multi-CPU supercomputers. The host system has one 

or more CPUs, one or more main memory units, and standard disk and network IO. The 

exact type of system interconnect varies:  PCs typically have PCI busses, Silicon 

Graphics products use their proprietary NUMAlink, and other vendors use other 

interconnection hardware. One or more FPGAs are built into a board or board set, along 

with some amount of on-board memory. Memory configurations differ significantly 

between specific accelerator products, but often feature several separately addressable 

memory banks per FPGA totaling a few MB to a few hundred MB – far less than host 

memory. If multiple FPGAs are present in one accelerator configuration, connections 

between them can total tens of Gb/s bandwidth and latencies well under a microsecond. 
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Some configurations allow the FPGA accelerator access to the host memory, but with 

significantly worse bandwidth and latency than access to the local memory. Host access 

to the accelerator board’s local memory is limited by the system interconnect bandwidth, 

further slowed by on-board switching and arbitration. Some accelerator boards have 

additional IO features, but those are not used in the applications being addressed.  

The FPGA has a few Mb of on-chip RAM, and typically a few MB to a few hundred MB 

RAM local to the FPGA accelerator. This creates an FPGA-centric memory hierarchy of 

on-chip RAM, on-board RAM, and host memory. Bandwidth and latency worsen by an 

order of magnitude or more at each step away from the FPGA, but capacity increases 

dramatically. Some host systems introduce additional levels of hierarchy, due to the costs 

of disk IO and potentially complex memory access networks. 

1.3.2 Characterization of good FPGA candidates 

The physical facts of the FPGA accelerator define the kinds of problems that it handles 

best. Problems with the following characteristics are generally good candidates for 

FPGA-based acceleration: 

⋅ Massive, open-ended parallelism. BCB applications are highly parallel, with the 

possibility of thousands of operations being executed concurrently. Many BCB 

applications also feature open-ended parallelism, in the sense that there is effectively 

no upper bound on the number of PEs that can be applied to the calculation. These 
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applications map well onto devices with thousands of concurrent processing 

elements (PEs). 

⋅ Dense, regular communication patterns. Communication is generally regular and 

local: on any iteration, data only need to be passed to adjacent PEs. The FPGA’s 

large number of communication paths ensures that all PEs can send and receive data 

every cycle, while the local communication ensures low latency. 

⋅ Manageable data set sizes. Working sets are often on the order of a few MBs. This 

fits comfortably into on-chip memory or memory local to the FGPA accelerator 

hardware, minimizing relatively slow access to host memory. For many applications, 

there is massive reuse with each element being used at least O(N2) times. 

⋅ Deterministic data access. When the working sets are too large to fit on-chip, they 

usually have predictable reference patterns. This allows the relatively high latency of 

off-chip transfers to be hidden by the high off-chip bandwidth (500 signal pins). In 

extreme cases, such as when processing large databases, data can be streamed 

through the FPGA at multi-Gb rates by using the dedicated I/O transceivers. 

⋅ Data elements with small numbers of bits. Reducing the precision of the function 

units to that required by the computation allows the FPGA to be configured into a 

larger number of function units. 
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⋅ Simple processing kernels. Many computations are repetitive with relatively simple 

processing kernels being repeated large numbers of times. The fine-grained resource 

allocation within an FPGA allocates only as many logic resources as needed to each 

PE. Simpler kernels, requiring less logic each, allow more PEs to be built in a given 

FPGA – a tradeoff of computation complexity versus parallelism not available on 

fixed processors. 

⋅ Associative computation. FPGA hardware works well with common associative 

operators: broadcast, match, reduction, and leader election. In all of these cases, 

FPGAs can be configured to execute the associative operator using the long 

communication pathways on the chip. The result is that rather than being a 

bottleneck, these associative operators afford perhaps the greatest speed-up of all: 

processing at the speed of electrical transmissions. 

Many important problems match that profile, not just in BCB. Many BCB problems, 

however, embody a number of the factors that work toward success in FPGA 

implementations.  

Not all problems work well in FPGAs, however. Floating point calculations generally 

consume so many logic resources that there is little opportunity for on chip parallelism. 

In many cases, however, applications implemented in floating point on standard 

processor can be re-implemented in fixed point or other arithmetic, with little or no cost 

in accuracy. 
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1.4 Case studies 

The initial phase of this work used standard FPGA development tools to create examples 

of application accelerators and families of accelerators. Experience with these 

applications creates the conceptual foundation underlying the idea of reusable accelerator 

families. Chapter 2 discusses each case study in more detail, including the lessons learned 

from each one. Two features recurred throughout these studies.  

First, the performance-critical subsystems within each accelerator generally come 

from insights specific to the computation at hand, using reasoning that could not credibly 

be automated. This makes it clear that a skilled logic designer must participate in 

accelerator design, contradicting the idea that a programmer of typical skill with a “C to 

gates” compiler can achieve the performance levels reached in these studies.  

Second, the reusable subsystems in each application are the patterns of 

communication, parallelism, synchronization, and memory access, not the leaf data types 

or calculations. This inverts the usual idea of hardware components: that they are 

indivisible “black boxes,” and that component-based application development consists of 

creating connections between them and to the system memory. Instead, the application-

specific functions and data types must be treated as parameters to the design of an 

application accelerator. In the language of software design patterns, it should be logic 

designer’s job to “implement the invariant parts of an application once, and leave it up to 

the [application specialists] to implement the behavior that can vary” [Gam94]. 
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Analysis of microarray data 

DNA microarrays measure the amounts of many different RNA transcripts in a cell or 

tissue. Different transcripts can be associated with life processes in normal and diseased 

states, and hold promise as tools for medical diagnosis and for determining response to 

treatment [Kim01]. This accelerator parallelizes the linear regression using dedicated 

PEs, connected to custom memory and bus subsystems [Van03, Van04]. The memory 

subsystem and distribution network create high levels of data reuse, reducing the amount 

of host communication required. The data distribution network also provides a striking 

example of the complexity of the relationships between the sizes of computing arrays in 

different parts of a system.  

Sequence alignment 

Smith-Waterman, Needleman-Wunsch, and related algorithms are staples for 

approximate string matching in bioinformatics and other areas. This application is 

noteworthy for its many options in data types, scoring algorithms, and gap and end rules, 

affecting different structural levels of the implementation. It is equally noteworthy for the 

brittleness of the hardware implementations that have been made public [e.g. Yu03], their 

complete inability to accommodate any variation in any of the choices made affecting the 

algorithm’s behavior. This case study [Van04a] presents a wide and extensible range of 

behavioral options. It also demonstrates the performance benefit of fine-tuning each 

application accelerator to its specific task, and shows some of the weaknesses of 

mainstream FPGA design tools in handling highly configuration logic designs. 
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Rigid molecule interactions 

Since its introduction [Kat92], 3D correlation has become a staple in estimating the 

strength of interactions between two molecules. Transform techniques are commonly 

used to reduce the polynomial complexity of the problem. This case study [Van04b] 

demonstrates a significant speedup using direct summation on hundreds to thousands of 

PEs implemented in one FPGA. This allows generalized correlations able to model 

chemical phenomena that are infeasible or impossible using transform techniques. It also 

uses dedicated logic for three-axis rotation and data filtering to reduce dealys caused by 

host interactions.  

Molecular Dynamics 

The rigid molecule interaction application examines fixed points in time, using fixed 

positions for the effects of each atom in the system. Molecular dynamics (MD) allows 

each atom to move independently, subject to spring-like forces due to bonding, 

electrostatic effects, and van der Waals interactions. This case study examines the 

consequences of converting floating point MD applications to FPGA-compatible fixed 

point [Gu05, Gu06]. The results show that fixed point calculations give acceptable 

accuracy and numerical stability, and show how new analysis of the algorithm offers 

many different opportunities for optimization. 
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Sequence analysis 

Sequence alignment is the best-known of the techniques used for analyzing biological 

sequences, but does not answer all kinds of questions. Palindromes define the structure 

and therefor function of many RNA molecules, and repeating sequences help identifying 

medically important mutations in pathogens and in human genetics. This study [Con04] 

examines both palindromes and repetitions. Similar computing structures show hundred- 

to thousand-fold speedups relative to PCs, given a streaming data source. This application 

again demonstrates the value of reusable, customizable components, and the value of 

associative operations in extracting meaning from large arrays of data.  

Object recognition in 3D voxel data 

Although correlation is a standard step in many 2D object recognition, it suffers “the 

curse of dimensionality” when extended to 3D applications. Data grows from O(N2) to 

O(N3), in for edge size N. Discrete rotations, however, go from O(N) to O(N3). The 

problem as a whole jumps from O(N3) in two dimensions to O(N6) in three. This case 

study [Van05] re-applies the structures used in rigid molecule interaction to the 3D 

recognition problem. The computing structure handles multispectral data in a natural 

way, but also handles the spatially oriented data that occur in some medical imaging 

technologies, and reuses image rotation logic for correcting the anisotropic sampling 

grids that often occur. 
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Iterative optimization 

This case study notes that many optimization techniques execute iteratively. They start 

with one candidate solutions, try some set of variations based on the best solutions to 

date, and use one of those results as the starting candidate for the next iteration. This 

highly general statement of the algorithm matches hill-climbing, simulated annealing, 

Gibbs sampling, and others. Variations include a randomized Metropolis criterion for 

acceptance of a new solution, as well as different strategies for generation of the next 

variations from the current candidate. 

1.5 Basic contradictions in FPGA programming 

Experience with these applications shows many weaknesses in current design tools’ 

support for application acceleration. Those weaknesses arise, in part, form the tools’ 

attempt to address three sets of contradictory demands imposed accelerator development. 

First, even closely related applications require significant customization in order to 

approach their performance potential, but an accelerator must be applicable to a wide 

range of problems for development to be cost-effective. Second, application specialists 

must have the ability to modify the data types and leaf computations to their unique and 

changing requirements, but even experienced software developers are generally 

unfamiliar with efficient structures for FPGA-based computing. Third is that application 

developers want to use the full capacity of their computing platform, but do not want to 

change their applications when additional computing resources become available. 
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1.5.1 Customization vs. generality 

Customized application accelerators can fail in several ways: through over-generality, 

over-specificity, or (paradoxically) both at once. Consider a string-alignment application, 

applied to DNA sequences, to protein sequences, or to natural language text. DNA’s four-

letter alphabet can be encoded in two bits, but ASCII encoding represents English text in 

eight bits. The eight-bit data path can clearly handle the two-bit alphabet, but wastes 75% 

of its data path doing so. Those idle hardware resources could have been dedicated to 

active computing elements.  

The eight-bit data path can also handle the 20-letter (five-bit) alphabet of protein 

sequences. Biological sequence comparisons, however, rarely use a binary match/no-

match equality test. Instead, character comparisons report a graded goodness of match, 

according to the biological importance of a chemical difference. Text-based equality 

hardware can not adapt to this ‘soft’ comparison. A text-oriented application is both too 

specific to handle protein sequences, and also too general to give good performance in 

particular cases. Experiments have shown, for the string alignment problem, a 4:1 

performance improvement for the dedicated DNA solution over a similar, over-general 

structure [Van04a, Van06], and 7:1 performance improvements for tailored accelerators 

for rigid molecule interactions [Van04b, Van06a]. 
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1.5.2 Hardware design skills vs. end-user programming 

Chapter 2 describes case studies of important families of applications in biochemistry and 

computational biology (BCB). Most of those use computation structures that can not be 

deduced from a straight forward representation of the algorithm in any high-level 

language. Hardware designers are able to employ design idioms such as 1000-stage 

pipelines, 1000-bit data words, low-latency broadcast networks, customized memory 

interleaving, and associative operations. Full exploitation of the FPGA’s potential 

requires such techniques, not just a recreation of the standard sequential processor in 

FPGA logic. Software developers can not be expected to develop systolic, multi-bus 

structures, assuming they can be represented in a high level language at all. 

Some few software developers do have experience writing highly parallel programs 

for clusters and supercomputers, but those skills are not readily transferable to the 

FPGA’s kind of parallelism. Supercomputers, clusters, and grid computing commonly 

offer hundreds to thousands of processing elements, as FPGAs do. Parallelism in 

traditional computers favors large quanta of work per processor, tasks requiring seconds 

or longer, with communication latencies upwards of milliseconds. Parallelism within an 

FPGA differs radically. It favors small quanta of work, down to individual arithmetic 

operations, and allows massive on-chip communication with latencies in the nanosecond 

range.  
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The entry of software application developers into the FPGA design world requires 

rethinking of traditional truisms. For example, “the electronic design automation industry 

has … given us a sustained 23% annual increase in designer productivity over decades. 

In a saner world, this would qualify electronic design automation for a major industry 

award. The problem, however, is that this 23% increase falls way short of the 60% or so 

increase in complexity each year coming from the underlying technology, such as 

Moore's Law” [Pag04]. This statement includes the hidden assumption that designer skill 

holds roughly constant. Application developers without appreciable hardware skill can 

not be expected achieve the same productivity with those tools as logic designers, so that 

the combined productivity change due to the combination of tools and tool users falls 

well below the 23% cited. Given this new population of developers, hardware is pulling 

ahead of productivity faster than ever. 

Even with the use of hardware design languages (HDLs) like Verilog and VHDL, 

current hardware design environments operate at a low semantic level. They require bit-

level algorithm specifications, using state machines instead of familiar control structures. 

One might even draw an analogy to the earliest programmable computers with delay-line 

memories, where the exact timing of each instruction or data item had critical effect on 

performance. Hardware design still concerns itself with pipeline synchronization at a 

similar conceptual level, VHDL or no. 
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As noted above, application specialists must customize accelerators to get the 

computation behavior they require at performance levels approaching the FPGA’s 

potential. BCB application specialists do not generally have hardware design skills to 

make the changes, and rarely have access to hardware designers. In fact, even if a 

hardware designer’s service cost only $100K per year, performance-per-dollar 

considerations would probably favor a 100-node cluster instead. The hardware designer’s 

contribution must be used, and used differently, by many application specialists, to 

amortize the cost of development.  

Both the logic designer and the application specialist must contribute to the accelerator 

design. Further, one logic designer’s work must serve many application specialists. Deign 

tools should allow both to make their contributions independently, at different times, with 

no need for direct interaction between them. 

1.5.3 Full utilization vs. changing loads and capacity 

Performance in an FPGA-based accelerator generally comes from high parallelism, and 

FPGA parallelism is constrained by three things: the structure of the application family, 

logic resources used by data elements and operations specific to a member of the 

application family, and the amounts of computing resources available on a given FPGA. 

Many algorithms scale in highly nonlinear ways. Hardware computation structures 

such as square convolution kernels and binary trees grow in predictable but irregular 
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increments. Also, hardware implementations of many algorithms involve multiple 

computing structures with interdependent sizes. Often, the growth of different subsystems 

is constrained by availability of different FPGA resources. It is not, in general, adequate 

to assume linear growth of computing arrays with additional computing resources.  

Even within an application family, different family members typically use data values 

and operations of different complexity. The fine grain of FPGA logic resources allows 

fine resolution in deciding whether to allocate more logic to each processing element 

(PE), or to reduce the amount of logic per PE in favor of more PEs. Within one 

accelerator, different subsystems typically use different types of data and operations, 

which further complicates sizing decisions. 

FPGAs’ computing capacity also grows according to Moore’s Law. PC users have 

some to expect Moore’s Law to deliver 2× performance improvements every 18 months 

or so, with no change to existing applications, or at most recompilation. Users of 

accelerated applications will surely expect similar improvements, also without source-

level changes to their applications.  

Performance of FPGA accelerators comes largely from their capacity for parallel 

processing. Increased parallelism depends on nonlinearities in problem scaling, on 

application-specific implementation details, and on the amounts of one or more different 

limiting resources in a given FPGA. Changes to application-specific details or use of a 
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larger FPGA should automatically drive non-linear changes in an accelerator’s degree of 

parallelism, but no known FPGA design tools can perform that tradeoff.  

1.6 LAMP in brief 

LAMP addresses the contradictions of section 1.5 with a prototype tool set. These tools 

have the following major features: 

⋅ Two-level accelerator implementation. LAMP recognizes the necessary and very 

different contributions of the logic designer and the application specialist in creating 

a customized application accelerator. Logic designers use VHDL (with LAMPML 

annotation), in order to exploit as much as possible of the FPGA’s performance 

potential. Application specialists customize the accelerator using syntax similar to 

that used in main-stream OO programming languages like Java and C++. 

⋅ Object oriented (OO) system design. The LAMP design language, LAMPML, uses 

OO design techniques to create the interface between the accelerator’s general model 

and its specific application. The logic designer defines the LAMP for an accelerator 

family using abstractions of the functions and datatypes. The application specialist 

tailors the accelerator by creating concretions for those abstract declarations. OO 

interface techniques allow flexible but clearly specified interfaces between the 

abstract model and the accelerator concretion, so the application-specific details can 
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be filled in without changes to the HDL text. This also allows multiple levels of 

specialization of a widely applicable accelerator.  

⋅ Data polymorphism. The OO features of LAMP allow application data types to be 

changed and extended, while offering a high level of type safety. Since LAMP data 

and functions are cast into VHDL for synthesis, this requires a degree of type 

flexibility not present in pure VHDL. LAMP semantics extend VHDL, allowing a 

new degree of type-safe component reusability. 

⋅ Automated accelerator sizing. The LAMP tools provide primitives for estimating 

the amount of logic needed for concretions of data types and functions. These 

application specifics combine with the logic designer’s understanding of the 

accelerator structure and the FPGA’s specific resource pools, in order to create the 

best-performing accelerator for any specific member of the accelerator’s application 

family. 

⋅ Integration with existing HDLs. Current HDLs give the logic design a familiar 

interface to the FPGA’s logic resources, and have good support in optimizing 

compilers from many vendors. LAMP takes advantage of existing HDLs wherever 

possible, because of the advantages in vendor support and user familiarity. This lets 

the LAMP tools focus on novel semantics, rather than reinventing the whole world 

of logic synthesis. 
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Together, these features address the contradictions of section 1.5.3. LAMP offers the 

efficiency of a highly customized accelerator with the ability to target the accelerator to 

wide ranges of choices within a family of applications. It allows many different 

application specialists to customize their accelerators independently, without ongoing 

support by the logic designer. This separates the computing skills of the application 

specialist from the hardware skills of the logic designer, both in the logical structure of 

the accelerator and in the time at which each user participates in design of the customized 

accelerator. Automated sizing also lets the application specialist trade the degree of 

parallelism in the accelerator against the complexity of each processing element (PE) in 

it. This grants automated access to a unique capability of FPGAs: the ability to reduce 

logic usage some set of PEs, then recommit those logic resources to creation of additional 

PEs.  

The prototype LAMP tools run as Java command line programs. The primary input is 

LAMPML, and XML-based notation. LAMPML defines the abstraction for the 

application model, implements the application-specific concretions, and integrates the set 

of definitions needed for any one application family or family member. A secondary 

format, CLAMP, serves many of the same purposes in a more intuitive syntax.  

1.7 Summary of contributions 

The major contributions of this research fall into three major categories: accelerator 

implementations, LAMP tool features, and reusable computing components. The 
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implementations address BCB problems that had not previously been reported in the open 

literature, and offer levels of flexibility far beyond those reported in solutions to 

traditional problems. Novel LAMP tools address accelerator development problems that 

have not previously been addressed, including automated sizing of computation arrays to 

the resources available.     

BCB application accelerators 

At the time this research began, it was not at all clear that FPGA acceleration would be 

effective in more than a few isolated BCB applications. The first contribution of this 

research is proof by example that FPGA acceleration can and does yield speedups of 

100× or more for BCB applications and application families that differ widely in the 

structure of their computaitons. Individual applications, especially various forms of string 

alignment, have been demonstrated in the past, including some that have not appeared in 

open literature. This work, however, shows that statistical applications, computational 

chemistry, and string algorithms (both traditional and novel) all respond well to FPGA 

acceleration. Based on these experiences, there is every reason to believe that many other 

applications would respond equally well, if they were to be studied.  

Experience in creating these applications also raises the level of the targets of FPGA 

acceleration, from point solutions to customizable application frameworks. Reports in the 

open literature generally present brittle solutions to precisely specified computing 

problems. These computing problems, however, present themselves in broad families 
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characterized by common synchronization, parallelism, and communication structure. 

The broad application family is the most attractive target of acceleration, not any one 

specific member of the application family. These examples demonstrate several different 

families, and many more families exist than this effort had resources to examine.  

Even with their very different structures, the application families all benefited from the 

FPGA’s massive parallelism. The accelerators are all built around computing arrays of 

several sorts, and larger arrays are preferable in all of the cases examined. Many 

computations consist of interlocked computing arrays, subject to multiple nonlinear 

constraints, dependent on application specifics, and limited by multiple FPGA resources. 

This combination of factors turns array sizing into a difficult choice. 

These examples demonstrate serious weaknesses in existing logic design tools when 

applied to application accelerators. First, current HDLs present a basic model of 

computation unfamiliar to the application specialists who define the details of any 

computation. Second, current tools do not permit parameterization of the kinds needed to 

support families of applications, including handling of data types and functions as 

parameters. Third, current tools do not support the designer in choosing the maximal 

computing array for a given application on a given FPGA. Together, these failures of 

current tools distinguish accelerator design from traditional logic design, and suggest 

ways in which accelerator design tools should differ from existing tools. 
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Accelerator development tools 

Lessons learned in the application case studies suggest features for accelerator design 

tools that logic design tools do not address. These lessons informed the design of the 

LAMP tools developed during this research. In particular, LAMP tools demonstrate 

support for: 

⋅ Application families, not just point solutions. LAMP closes a historical gulf 

between specialized, brittle FPGA implementations of BCB algorithms and the 

versatility of the algorithms themselves. The LAMP tools embody the idea that an 

algorithm’s general structure is the reusable design element, and that different 

families of algorithms typically have very different structures. 

⋅ Functions and data types as design parameters. Existing HDLs have limited 

reconfiguration capability, based on selections from fixed lists or sizing in terms of 

integer values. LAMP introduces features of common OO languages to allow the 

data types and calculations in an application to change, while holding the 

communication structure fixed. This follows the “inverted” flow of control common 

in large software systems, but unlike traditional logic design. 

⋅ Automated sizing of computation arrays. The applications under study display 

open-ended parallelism, in the sense that more PEs can always be put to use in the 

computation. When applications display open-ended parallelism, the right size of 

computation array is “as big as possible.” That indefinite number depends on the 
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capacity of the given FPGA, the complexity of each computation, and the 

application’s communication and synchronization structure. The possible degree of 

parallelism can change each time the application specialist decides to use more or 

fewer bits per datum, or decides on more or less complex leaf calculations. The 

LAMP tools do not require the degree of parallelism as input. Instead, it is a 

consequence of other design decisions. 

⋅ Combination of design skills. A successful FGPA-based accelerator requires 

contributions from at least two participants with different skills: a logic designer, 

able to exploit the full potential of custom logic circuitry, and the application 

specialist with the idiosyncratic and changing computation needs. LAMP allows 

these users to make their respective contributions using different input 

representations and at different times, independently of each other. 

Some of these features have appeared in previous logic design tools, especially 

parameterization of functions and data types using object oriented language features. No 

other documented system addresses all of these design goals, however. 

Reusable computing structures 

Yet other results of this research arise from the specific case studies. One is the novel 

combinatorial memory network used in the microarray application (section 2.1.1), which 

can be put to use in any application based on small subsets of large data sets. Solutions to 

little-studied string analysis problems (section 2.1.5) address applications of scientific 
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interest in themselves. Some structures within those solutions are highly reusable, 

including the networks for examining substrings of many sizes, with or without insertions 

and deletions. Success in these applications suggests that many other areas of string 

analysis are amenable to FPGA acceleration.  Acceleration of rigid molecule interactions 

(section 2.1.3) also addresses a problem of scientific and commercial importance. It does 

not just solve forms of the problem from the open literature, but offers researchers new 

opportunities for modeling chemical phenomena not handled by standard techniques. It 

also demonstrates how techniques developed for one application area (computational 

chemistry) sometimes benefit problems emerging because of advances in other areas (3D 

data analysis, section 2.1.6). This application integrates components that had been 

developed for other application areas, but uses the LAMP tools’ capabilities to generalize 

the functions in ways not possible for other design tools. In addition, demonstrates the 

potential value of mining existing designs for efficient computing structures, and 

extracting useful communication and synchronization structures that could not previously 

be reused. 

These reusable components expand the traditional ideas of what can be reused and 

what is a component in a logic design. The familiar idea treats a component as a black 

box, with no visible internal structure; reuse means creating communication and 

synchronization around them. Instead, these components are communication and control 

structures reused by defining their inner content. 
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Also, this work demonstrates the practical value of object oriented design techniques 

and notations as an architectural tool for describing families of application accelerators. It 

also demonstrates informal use of parts of the UML standard as design and 

documentation aids for system design.  

1.8 Notational conventions  

Typographic conventions 

A term is printed in italics where it is first used and defined. Literal programming 

language keywords or examples of machine-readable text appear in mono-spaced text. 

Unless some particular language is specified, such text should be read as illustrative 

pseudocode, not necessarily valid code in any real programming language. If bold and 

plain mono-space are distinguished, bolded text represents keywords defined by the 

language and plain text contains symbols or data chosen by the programmer. 

Mathematical and formal notations are specified at the point where they are used. 

UML class diagrams 

The UML (Unified Modeling Language [OMG03]) is used to describe many aspects of 

system design and behavior. Although there are many subsets to the UML graphical 

notation, its class diagrams are used most commonly throughout this discussion. Figure 3 

summarizes the subset of class diagram notation used here. This discussion uses 

analogies to C++ or Java for explanatory purposes, not as a precise semantic definition. 



 

The actual system behavior differs in some ways, and need not correspond exactly to any 

previous language or system. 

AbstractClass 
Dependency  
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AbstOperation2() 

 41 

A class is an identified set of interface items: operations or functions, constant values, 

type declarations, and state, all of which are optional. The interface item is an externally 

visible portion of the class definition, whether or not an implementation (also called 

concretion or realization) is given. A concrete class is one in which all interface items 

have implementations. An abstract class, identified by italicized captions, is one in which 

implementations for one or more interface items have not been provided. A 

parameterized class is defined in terms of one or more values or types. It represents a 

family of class types, abstract or concrete, where a family member is uniquely identified 

by the parameter bindings. Figure 2 shows class Superclass with one parameter Param. 

C++ syntax would write this as Superclass<Param>. Concrete classes can be 

N Composition of  
 N objects  

Subclassing  

«Role» Named role 
in interaction 

Figure 3. UML class diagram notation 

Subclass 

Superclass DependentClass 

ContainingClass 

«Stereotype» Param 

ConcreteOperation() 
 

Count 
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instantiated, i.e. objects of that class type can be created. Abstract classes, because they 

are not completely specified, can not be instantiated. UML classes correspond to C++ or 

Java class constructs. UML abstract classes correspond to C++ virtual classes, to Java 

abstract classes, and to Java interface constructs. C++ and Java both allow default 

definitions for any, possibly all interface items in an abstract class. Meanings can be 

assigned to other languages, too – abstract classes arguably map to VHDL component 

definitions, and concretions to the bodies defined in entity/ architecture definitions.   

A subclass exports all the same interface items as its superclass, possibly more. It 

provides implementations for some or all of the superclass’ abstract interface items. It can 

also replace (or over-ride) implementations of any superclass interface item, as long as 

the superclass interface is preserved. If the subclass does not re-implement a concrete 

interface item of the superclass, the superclass implementation is used and the subclass is 

said to inherit the implementation. If the subclass does not implement an abstract 

interface item of the superclass, the subclass still exports the abstract interface item, but 

the subclass itself is abstract. No distinction is made between subclass inheritance and 

concretion of an abstract interface. 

The subclass relation creates a partial ordering over the classes of a system, and is 

transitive. If class C is a subclass of B, and B a subclass of A, then C is a subclass of A. 

When the distinction matters, C is said to be an immediate subclass of B, but not of A; the 

immediate subclass relation is not transitive. Since a subclass exports all interface items 
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that its superclass does, and since any class trivially exports its own interface, any class is 

normally considered a subclass of itself. The superclass relationship has a similar 

definition. It is also a transitive relation, and a class is normally considered to be a 

member of its own set of superclasses. 

The UML standard makes clear distinction between aggregation and composition as 

two ways of collecting several object references within some other object. Composition is 

a relationship in which the contained objects (at the head of the arrow) exist only with the 

containing object (at the tail of the arrow), and exist only as long as the container’s 

lifetime. For example, a bicycle is usually considered a composition of its parts – when 

the bicycle is discarded, all of its parts are automatically discarded. In aggregation, the 

parts have an existence independent of the collection. A project team is an aggregation of 

its human members, for example, but those people go on with their lives even if the team 

dissolves. Because of the static nature of hardware designs, dynamic association and 

dissociation of objects is not possible. As a result, this discussion refers only to 

composition, unless otherwise specified. Composition allows any number, zero or more, 

contained objects within a containing object. Constraints on the cardinality (e.g. “exactly 

one” or “one or more”) are indicated using text labels on the arrowhead indicating 

composition.  
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A stereotype label, enclosed in «guillemots», is used as identification. It most 

commonly refers to a role that one class plays with respect to others, where that role is 

given a narrative description in the related text. 

A dependency relation is a general statement that one class (at the tail of the arrow) 

makes use of another (at the head of the arrow), without specifying what kind of use is 

made. This could be a subclass relation, composition, or any other relation such that the 

dependent class’ behavior can change when the class on which it depends is changed. 

Navigability is the knowledge in one object or type that it has some relationship to 

another object or type. This property is not, in general, symmetric: object A’s ability to 

access B does not imply B’s ability to access A. Navigability is shown by the direction of 

the arrow, including the hollow-headed arrow used for subclassing.  

These definitions are intuitive rather than formal, and are described using familiar 

programming languages as examples. Those examples are only illustrative, not exclusive 

and not necessarily exact. Different languages have different subclassing rules, for 

example, so the exact meaning of a subclass relation is different in the C++ [Str97], Java 

[Gos05], C# [ECMA05], Smalltalk [Liu00], JavaScript [ECMA99], Eiffel [Mey92, 

ECMA05a], and Beta [Mad93] languages. Object instantiation must also be different in 

HDLs than in software-oriented languages. Both software and hardware instances must 

contain instance data. Hardware instances normally replicate the behavioral logic, as 

well, where software systems share one code instance among arbitrary numbers of data 
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instances. Since logic instantiation lies outside the UML standard, class diagrams should 

not be understood to represent logic instantiation. 

UML class diagrams are used to help improve the understandability of a system 

design. The full system of UML notation is rich and complex. No effort is made to apply 

every notational feature to every diagram, since excessive detail and visual clutter tend to 

work against the goal of clarity. Other notations than UML are used, as well, so diagrams 

based on UML class diagram notation are labeled as such. 
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2 CASE STUDIES IN FGPA APPLICATION ACCELERATORS 

The first phase of this research implemented a series of FPGA-base accelerators for BCB 

applications. These case studies gave crucial insight into the features that allow an 

accelerator to address a whole range of related applications, and gave direct experience 

with the problems that current logic design tools create for these applications.  

Section 1.3.2 identified a set of characteristics that predispose an application to 

successful FPGA implementation. Many computations, including those in bioinformatics 

[Ste01], embody those characteristics: 

⋅ Massive, open-ended parallelism. Processing of long strings parallelizes at the 

character level, and grid-based molecule interactions parallelize at the level of grid 

cells. Many BCB applications share this level of parallelism, despite their different 

basic units of computation. 

⋅ Dense, regular communication patterns. String processing, alignment by dynamic 

programming, 3D correlation, and other applications all meet this description. This 

allows well understood hardware techniques to be employed, including systolic 

arrays and pipelines with hundreds or thousands of steps. The communication pattern 

is often the reusable system component, connecting replaceable leaf computations 

with replaceable data elements. 
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⋅ Modest working sets and deterministic data access. Although BCB data sets can 

be large, they generally are often amenable to partitioning and to heavy reuse of data 

within partitions.  

⋅ Data elements with small numbers of bits. Many BCB applications naturally use 

small data values, such as characters in the 4-letter nucleotide alphabet, or bits and 

fixed-point values for grid models of molecules. Although standard implementations 

generally use floating point, analysis often shows that simpler values work equally 

well. 

⋅ Simple processing kernels. Although BCB calculations often benefit from large 

computing arrays, processing elements within the arrays are typically repetitive and 

relatively simple. This allows small definitions for large computing arrays, since a 

small repeating element and a relatively simple rule for repetition can define arrays 

of any size.  

⋅ Associative computation. High connectivity and massive on-chip communication 

rates allow complex calculations to be performed at electronic speeds. High fanout 

enables one data access to fulfill many data references, one kind of data reuse. High 

fanin works lets algorithm developers use priority encoders, wide OR-sums, and 

other large computations. 
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These are the features that open an application to acceleration using specialized 

hardware. Empirical results with common algorithms [Sal98] show great opportunities 

for parallelism. This means that common algorithms can be accelerated, but they are also 

likely to accelerate incrementally with incremental acceleration hardware. 

This section starts with brief descriptions of a number BCB computations that the 

current work has examined at various levels of detail. Discussion covers basic 

characteristics of the data involved and the general structure of the compute-intensive 

part of each application. It will be shown that a number of different applications share 

important characteristics, and that these characteristics can translate directly into 

hardware control structures.  

2.1 Summaries of case studies 

2.1.1 Analysis of Microarray Data 

Kim, et al. [Kim01] proposed the following problem: find the set of three genes whose 

expression can be used to determine whether cancer tissue samples are metastatic or non-

metastatic, by performing linear regressions of diagnosis against all size-3 subsets of 

gene expression levels. Instead of Kim’s data, this case study uses publicly available 

sample data from Charles Perou’s research [Per00], consisting of microarray data for 

roughly 100 samples, each of 104 genes. Each sample represents measurements from one 

biopsy. The set of biopsies included a few healthy controls, a number of diagnosed 



 

tumors, and some repeated samples from individual patients, before and after 

chemotherapy. The data do not contain any information that identify the individuals from 

whom the biopsies were taken. This study [Van03, Van04] implements Kim’s technique, 

but uses the cancerous vs. healthy state as the independent variable. 

In the Perou data set, that meant 1011 to 1012 sets of regressions needed to be 

processed, to cover all size-3 gene subsets. Although simple to implement, they reported 

that this computation was intractable even on their small cluster of PCs. Tests of a serial 

implementation concurred: for roughly 100 samples, 10,000 genes, and 13µs per 

iteration, the computation would have taken nearly three weeks on a 1.7GHz Pentium 4. 

This FPGA implementation resulted in a speed-up of a factor of more than 1500×, 

resulting in an estimated compute time less than 20 minutes. The computation of each set 

requires three steps: dot products and sums, covariance and inversion, and regression and 

correlation. To take advantage of the parallelism available in the FPGA fabric, processing 

ComputePipeline 
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Figure 4. Class diagram for microarray data processing pipeline 
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elements were maximally replicated. Data inputs to the computation array come from a 

vector store and data distribution unit based on a combinatorial design theory [Har94], 

optimized for reuse of the vector data. Other notable features of the implementation 

include the handling of missing data, speed-matching the components, and precision 

management. Besides the speed-up and the techniques invented as part of this solution, 

the significance of this case study also lies in the ease with which it can be extended to 

many other microarray data analysis applications. Figure 4 illustrates the general 

structure of the calculation.  

The computation pipeline as a whole has a fixed structure, composed of a vector store, 

a data distribution array, vector processing unit, and a result store. The two main 

application data types are the vector element and the result value, although values 

representing intermediate results arise internally to the vector processing unit. Numeric 

parameters, not shown in Figure 4, control the sizes of RAMs within the vector store, the 

size of the distribution array, the number instances of vector processing units, and the size 

of the result store. The vector elements and result values are shown as abstract 

definitions, so exact definitions need to be supplied for any specific application. The 

vector processing unit is also shown in abstract form, indicating that the general structure 

for supplying vector data and collecting results can be reused for different calculations. 

Two calculations have been prototyped, the linear regression of Kim’s original request 

and a linear classifier [Joh02]. 
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The vector store and distribution network are illustrated in Figure 5 and Figure 6, 

respectively. The distribution network of uses a relatively small number of data memory 

accesses to supply size-3 sets to a large number of processing elements. Given m values 

from the X data vectors, this distributes C3
k = (k!)/3!(k-3!) sets of size three to the 

computation array, for the cost of reading k values from memory. Y, the dependent 

variable, is used by all PEs for all regressions. When k = 9 that means C3
9 or 84 PEs can 

be supplied with X data values, 252 data elements total, for 28× reuse of each X data 

Y 

VecSel 

isel 

jk 

jy 

j1 
x1 k ×

sel j2 
x2 

Xi 
and 
Y xk 

Figure 5. Vector store for combinatorial distribution network 
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Y 

… Vector Store PE0 PE1 PE2 PE3 PE4 

Figure 6. Combinatorial data distribution bus 
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value. When k = 10 elements of X data are available, C3
10=120 sets of 3 or 360 data 

elements total are presented to the computation array, for 36× reuse of every X value read 

from memory. 

Figure 5 shows the data store that supplies the distribution network. This two-level 

structure consists of a vector selection memory, labeled VecSel, and storage for the X and 

Y vector data. There is only one instance of the Y vector, the dependent variable 

(diagnosis), and that is reused in every correlation. Figure 5 also shows k memories of X 

data, the microarray samples or independent variables. Vectors in the X memories are 

reused many times so as to create different subset of X vectors for the distribution 

network, where each set of X vectors is defined by one word of the VecSel memory. It is 

the host’s job to select the set of X vectors to be loaded into each X memory, and to create 

the set of index values to be stored in the VecSel memory.  

The isel index fetches each set of selection indices from the VecSel memory 

sequentially. Each selection index in the set points to the start of a vector within one of 

the X vector memories. That initializes one j counter value for each for the X vector 

memories to the starting position of the vector chosen from that memory. The Y vector is 

reused across all sets of X vectors. A single set of calculations consists of sequential 

access to each element of the chosen vectors, so that corresponding elements from all 

vectors are presented in any one memory access cycle. Once the j counters have walked 

the length of their respective vectors, the isel value is incremented, a new set of indices is 
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read from the VecSel memory, and the next set of vectors is processed. Careful pipelining 

allows back to back processing of successive sets of vectors. 

In this example, the FPGA fabric could have held a few more processing elements 

than the number that could be supplied by the combinatorial network. The combinatorial 

network is crucial to this application’s performance, however. It reuses X data elements at 

two levels, within the distribution network, and in multiple combinations of other X 

vectors chosen by the VecSel memory. Both kinds of reuse take advantage of fast, on-

chip communication resources within the FPGA. Without that, the system as a whole 

would have been limited by the host’s ability to send X values across the system bus. 

Although the combinatorial network does not support the highest computation parallelism 

possible for the FPGA fabric, it offers such an advantage in communication speed that it 

more than makes up for the slight loss of potential parallelism. RAM resources within the 

FPGA are not adequate to hold the entire data set at the same time, so X vector storages 

and VecSel index tables need to be reloaded repeatedly to complete the calculation. The 

vector store of Figure 5 can hold produce a large number of combinations from a modest 

amount of X vector RAM, so the entire structure can be double-buffered. Part or all of a 

vector store can be reloaded while the other is in use, minimizing idle time for loading of 

data. 

This case study provided valuable insight in several areas. The most important result is 

that effective use of FPGA resources often requires a thorough rethinking of the problem. 



 

The stated problem was to process all possible subsets of size three, taken from a set of 

data. Code Sample 1, below, shows a straightforward implementation of that statement. 

There is no logical path from the serial implementation of Code Sample 1 to the memory 

structure of Figure 6 and Figure 5. Cases like this reinforce the belief that effective use of 

FPGA resources demands a hardware designer’s insight – no credible amount of 

automated optimization could achieve the same level of performance. 

1. for i = 0 to nDataItems-1 

2.   for j = 0 to i-1 

3.    for k = 0 to j-1 

4.     process(data[i], data[j]

Complex relationships between different parts of t

this case study. Problem decomposition yields a n

with its own resource constraints and “magic 

imposed by the combinatorial network made it cle

not necessarily make maximal use of the FPGA’

performance comes from combinations of resourc

of any one term.  

Data used for testing this implementation were

in which over 3% of all data items were recorded

tissue sample contained missing data elements for
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genes had missing values for at least one sample. Missing data could not be ignored, and 

imputation (estimation) of missing values was problematic. Instead, this implementation 

took missing values into account, including genes where absence of control samples 

made analysis meaningless. This required a rephrasing of many arithmetic operations in 

terms of missing values and in terms of “quality control” failures in the data and 

computations. 

This case study also suggested a revision of a traditional belief in hardware design, 

that reusable components are necessarily leaf components and that communication 

between them is not reusable. This example’s vector store and distribution network form 

a reusable component, most readily described as one that can contain a variety of 

different vector analysis components. 

2.1.2 Sequence alignment  

Sequence alignment using dynamic programming based methods [Van04a], including 

Smith-Waterman and similar methods for approximate string matching, are perhaps the 

most accelerated applications in BCB. Aside from expensive commercial solutions (e.g. 

[Tim05]), however, most of these implementations have been extremely brittle, 

addressing only one or a few of a large number of possible options [Yu03], and with 

debatable biological significance.  



 

There is an obvious gap between clever accelerator design and biologically significant 

control over what is being accelerated. The combinatorics for the problem explain part of 

the gap: there are just too many useful variations, and biologists keep coming up with 

new ones. If a fully generalized accelerator could possibly be designed, it would suffer 

inherent inefficiency due to feature bloat. The second reason for the gap between design 

and biological significance is that the users, biologists, are often unable to express their 

requirements in mathematical terms explicit enough for hardware implementation 

[Bia04].  
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This case study implements a broad range of behavioral options (e.g. complex scoring 

functions) without losing efficiency due to feature bloat. This family of implementations 

computes from 2 to 10 billion cell updates per seconds, according to the options chosen. 
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Figure 7. Approximate matching array.  

(A) 2D structure of the computation, showing order of grid cell evaluation.  

(B) Linear computation structure for cells evaluatable at one time step. 
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C code running on a 3GHz Xeon processor runs at 29 to 46 million cell updates per 

second, 77 to 210× slower. Figure 7A shows the standard form of the computing array for 

dynamic programming of the type found in Smith-Waterman, Needleman-Wunsch and 

other sequence processing algorithms, labeled with the time steps at which each 

computation cell’s dependencies are satisfied. Figure 7B extracts the one antidiagonal 

row from Figure 7A, showing a linear structure for the computation array. With proper 

assignment of computation data types to each of the cells, this can easily be implemented 

in FPGA logic. 

This family of dynamic programming algorithms for approximate matching has 

variations in several dimensions. First, there are a number of common choices for 

character data types, including amino acids (normally a 20-letter alphabet), nucleotides 

(four), IUPAC ambiguity codes (16), or codons (64). Mixed comparisons are possible, 

including IUPAC wildcards vs. nucleotides or codons vs. amino acids. Second, there are 

at least sixteen overlap rules in the Needleman-Wunsch algorithm, which set the policy 

for scoring when one string is allowed to be a substring of the other [Dur98]. Third, gap 

penalties are usually scored with affine functions dependent on gap length, but arbitrarily 

complex functions have been suggested [Wat76]. Finally, there are many different 

policies for goodness of match scores when comparing dissimilar characters. At least 

eight different models underlie scoring for DNA string comparison, phrased in terms of 

two, four, or more free parameters [Nei00]. At least 83 different amino acid (protein) 

substitution matrices have been reported [Kaw00], reflecting different beliefs about 



 

evolution [Dim02], protein function [Ng00], and background probability models [Yu05]. 

Many of these substitution matrices are parameterized, for example the PAM N matrices 

which are defined as matrix exponentiation (PAM 1)N, creating effectively infinite 

families of matrices. 

Figure 8 summarizes the computing structure used for approximate string matching. The 

Sequencer object selects between two kinds of matching tasks: finding just the score 

representing goodness of match between the two strings in one pass, or a second 

traceback pass through the computation yielding to find the character by character 

alignment. The MatchCell component implements the logic for one of the two 

recurrence relations, Needleman-Wunsch global alignment or Smith-Waterman local 

alignment. These differ in two ways: first, global alignment has 16 variations for special 

handling of mismatches or overhangs at the ends of strings but local alignment does not. 

Second, global alignment maintains only enough information in each computation cell for 

scoring from the string start to the current position in the array. Local alignment also 

holds information about the best local score found anywhere so far. The character rule 

N 1
CharRule 

DNA 

IUPAC  

MatchCell 

Needleman-
Wunsch 

Smith-
Waterman 

… 

Amino acid Traceback ScoreOnly 

Figure 8. Class Diagram: Approximate String Matching 
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(labeled CharRule) defines the data types of the characters in each string, not necessarily 

the same, and the substitution matrix that performs individual character comparisons. 

(Despite its name, the “matrix” is often a procedurally defined function.) As noted earlier, 

substitution matrices are usually parameterized. At a minimum, it’s often desirable to 

scale the range of values, allowing the tradeoff of higher scoring precision at a cost of 

more logic per comparison and fewer comparison units. Other multiple parameters have 

application-specific meanings, such as evolutionary closeness, background probabilities 

of nucleotides, or likelihoods of different kinds of mutation events. In general, each 

substitution matrix has some set of control parameters, the number and meaning of which 

are unique to that matrix. 

This case study emphasizes a number of points regarding accelerator design. First, it 

shows the value well designed interfaces and interchangeable implementations of them. 

In Figure 6, the top level structure of the accelerator is captured in the Sequencer, 

MatchCell, and CharRule component definitions, all of which are abstract. Any 

combination of choices of concrete definitions for components is acceptable, as long as 

only one choice is made for all instances of a given component type. Much of the 

system’s flexibility comes from the multiplicative effects of the independent choices. 

This level of configurability exceeds VHDL’s capability, because of significant changes 

in parameter date types. As a result, component selection is done using file-swaps, 

outside of the VHDL language definition. The second important point demonstrated by 

this study is the importance of configurability, where different components are expected 
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to have different numbers of tunable values, with different meanings, and of different 

types. Again, this level of flexibility was difficult for VHDL, and was solved largely by 

replacing the generic parameter list with one generic string, able to encode any 

desired set of options and parameters, parsed ad hoc by the various configurable 

components. Almost as much as component selection, this bypassed most of VHDL’s 

configurability features. The third major point brought out by this case study is the 

performance advantage of application-specific configuration. If one general, 

programmable accelerator had been used, it would have required a character data path 

wide enough for the largest data type expected, six-bit codons. It would also have 

required the most general, RAM-based structure for substitution matrices, a significant 

amount of hardware per computation cell, and the global maximum score information 

required by Smith-Waterman but not Needleman-Wunsch. This general engine could 

certainly have handled two-bit nucleotide values, by letting 2/3 of the character data path 

stand idle. It could also implement exact scoring based on exact equality or inequality of 

nucleotides, even though simple combinational logic would have required fewer gates 

and shorter signal delay. According to performance measurements, the DNA-specific 

implementation with gated equality tests would run at least 4× faster. About half of that 

gain comes from the larger number of computation cells possible when each cell uses 

fewer resources, and half from faster logic within each cell.  



 

2.1.3 Rigid Molecule Interactions 

This application [Van04b] deals with interactions between a protein of biological interest 

and a second, small molecule. The goal is to determine whether the small molecule is 

expected to have a strong interaction with the protein. If so, that compound (or a close 

relative) could have pharmacological activity. Although real molecules often have bonds 

that flex or rotate, it is prohibitively expensive to simulate such motion when screening 

104 to 105 molecules for potential activity. Instead, it is common to select one or more 

configurations of the molecule and protein, and perform a six-dimensional search for the 

most favorable three-axis offset and three-axis rotation (or pose) between the two fixed 

configurations. One common approach performs the correlation in three translational 

dimensions at many (typically 103 to 105) three-axis rotations [Kat92], and collects the 

best-scoring among the poses. These algorithms digitize the two molecules, A and B, onto 

3D voxel grids, then perform a generalized 3D correlation to detect a match between the 

molecule surfaces:  
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In order to allow for errors due to approximation and digi
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complex numbers, tuples, vectors, or any other value needed to represent the chemical 

phenomena of interest. In some applications the substrate and ligand molecules have 

different representations [Che02], suggesting that different data types be used for the two 

molecules’ voxel values. Data types of interest have included 

⋅ Rewards for surface interaction and penalty for interior collisions [Kat93], 

⋅ Hydrophobicity [Vak94], 

⋅ Surface normal vector opposition, solid angle complementarity, and other shape 

descriptors [Gol00], and 

⋅ Electrostatics, counts of neighboring atoms, and atomic contact potential models of 

desolvation energy [Che03a, Che03b]. 

This list just indicates some of the phenomena and combinations that have been used in 

the scoring function F, with no attempt at completeness. It is widely accepted that 

pharmaceutical companies have proprietary and highly confidential scoring functions. 

For a scoring technique to have commercial value, such customers must be able to 

modify an accelerator in order to implement their proprietary scoring functions.   

When function F in Equation 2 is a product or linear combination of products, it is 

common to compute the result using Fourier transforms. While asymptotically favorable, 

this introduces far more precision than is usually needed and also makes it impossible to 



 

apply non-linear force models. Instead, this implementation uses an FPGA algorithm 

based on the direct summation. It uses a well-known systolic design extended to three 

dimensions [Swa87]. Using the hardware pipeline suggested by Figure 9 and a simple 

force model, a prototype implementation achieved a speedup over 200× relative to a PC 

implementation based on a standard FFT implementation, for problems of similar size.  

Correlation data path 

 63 

Figure 9 illustrates the basic structure of the accelerator’s computation pipeline, reading 

the major components of the correlation data path in left to right order. These 

components are: 

⋅ Rotated image traversal. This eliminates three-axis rotation as a separate step, by 

performing optimized linear transforms on traversal indices, so the molecule image 

is indexed and padded in rotated order. There is no additional memory buffer for the 

Figure 9. Class diagram of docking application 
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rotated image, and only a modest cost in addressing logic and padding. Logic delays 

can be pipelined, so the rotated traversal has no effect on system throughput.  

⋅ Substrate voxel memory. The larger molecule voxels are stored in the FPGA’s on-

chip memory. This is a RAM of conventional structure, with indexing logic for the 

three-dimensional grid containing the molecule image. This stores the voxel values 

for the larger of the molecules, typically 50×50×50 to 100×100×100, depending on 

the number of bits per voxel and the capacity of the FPGA’s on-chip RAM.  

⋅ Optional voxel rotation. Some models of chemical interaction involve spatially 

oriented vector values. Examples include normal vectors for checking that molecule 

surfaces are roughly parallel, or values representing the directional specificity of 

hydrogen bond donors and receptors. Although architecturally present in every 

instance of this pipeline, it’s an identity transform (pass-through) when voxel values 

do not contain spatially oriented components. 

⋅ Systolic 3D correlation array. This consists of a three-dimensional array or 

processing elements (PEs). The array serves two purposes: each processing element 

stores one voxel value for the second molecule, and it performs the scoring and 

summation arithmetic. Because FPGA logic can hold fewer voxels than the block 

RAMs can, this array stores the smaller of the two molecule grids. This also includes 

RAM-based FIFOs for holding partially summed score values. 



 

⋅ Data reduction filter. The correlation result could consists of 106 or more individual 

scores, but only the highest-scoring positions in the correlation result are of interest. 

Instead of transferring the whole set to the host processor, this block summarizes the 

best scores in the correlation. Because of approximations in the computation, and 

because of the possibility of multiple binding sites, this collects summaries of 

multiple different high-scoring poses.  It is well known that large values often cluster 

around local maxima [Che03b]. To avoid the problem of repeated reporting of broad 

maxima, the filter collects one scoring maximum from each of many regions of the 

correlation result. That allows multiple local maxima to be recognized, even when 

large numbers of point-scores in the correlation represent one broad maximum. 

Figure 10 illustrates this scheme for reporting multiple maxima. 
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Figure 10. Data reduction filter: Region-based score selection  
reduces  multiple reports of broad maxima. 



 

The initial implementation of this structure used a fixed “score summary” function for 

reducing the volume of data output by the correlation array: a strict maximum of all 

scores found in some 3D subregion. As Figure 11 suggests, however, energetically 

favorable but entropically inaccessible solutions are not often useful. There is some belief 

that, rather than a deep, narrow minimum, a broad “funnel” in the energy surface is 

preferable, since it allows more approach paths for the partially docked system. There is 

no general agreement on how to quantify the funnel-like character of a minimum. It does 

seem likely that any such measure would combine scores for regions of the molecule 

interactions, and therefore fit the summary scheme in this computing structure, at least 

approximately. Two such summary functions have been implemented, in addition to the 

max described above. In one, each of the sub-regions of   maintains a count of poses that 

exceed some threshold score. In the second experimental summary function, each 

subregion does not just count the number of poses exceeding some cutoff, but rewards 

such poses according to the amount by which they exceed the cutoff. The chemical 

validity of summaries based on alternative summary functions has not been compared to 

the max-score summary. The architectural fact has been demonstrated, however: 

Figure 11 . Sketch of free-energy 

landscape of a molecule interaction,  

after [Koz05] 
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alternative summary functions have been implemented, and application specialists are 

welcome to create new ones.  

The RAM-based FIFOs inside the correlation array deserves special attention. Figure 

12 shows how each plane within the cubical array consists of some number of rows. Each 

row is a systolic array with a FIFO for matching intermediate sums to the input data 

schedule. FIFO words, in this example, are 10 bits wide. The entire array runs on the 

same clock, so all of the fixed-length FIFOs accept input and generate output 

synchronously. Initially row were phrased as the set of computation cells plus FIFO, as in 

Figure 12A. Each was allocated a separate RAM for implementing its FIFO. Since RAMs 

come in indivisible units 36 bits wide, each FIFO wasted 72% of the width each RAM. 

Systolic rows
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An improved design (Figure 12B) made the FIFO into a component of the plane rather 

than the row of computation cells. Since the FIFOs run synchronously, results from all 

rows in a plane are concatenated into one word, 140 bits wide in one implementation. 

That 140 bit word, when read, is broken up into its original 14 words of 10 bits. Four 

RAM blocks can be ganged into one FIFO to handle that 140-bit word. The ganged width 

is 36×4=144 bits, of which four bits are wasted – 97% efficient use of RAM width, up 

from 28%.  

One implementation detail inside the data reduction filter came from consideration of 

the chemistry problem being addressed. It would have been straightforward to subdivide 

the correlation result along the axes of the correlation result’s grid. As different iterations 

processed different three-axis rotations of the substrate, however, different subsets of the 

substrate molecule would correspond to a given subdivision within the collecting grid. 

This would make it difficult to compare results from different rotations, since the 

summary values from corresponding elements of the data reduction filter’s memory 

would not represent the same substrate voxels. Instead, the rotated index from the rotated 

image traversal logic is used. That leads to an irregular reference pattern in the data 

reduction filter’s memory, which is handled within the filter pipeline using the FPGA 

RAM’s dual-porting feature. Together, these allowed the filter to run at the full speed of 

the computation array. The result was that a given subdivision within the data reduction 

memory always corresponded to the same set of voxels in the substrate memory, making 

it much more meaningful to combine results of multiple rotations. 
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This case study reinforces the lessons learned previously. First, there is a wide range 

of force laws in the open literature, and a common belief that pharmaceutical companies 

use their own proprietary and closely guarded force laws. As a result, efficient use of 

FPGA resources requires support for user-defined scoring functions, and requires data 

paths that can trade off computational complexity against degree of parallelism. Second, 

good performance demands a broad understanding and analysis of the computation being 

performed. The users’ initial request was that their 3D FFTs be made to run faster. If that 

had been done, only modest speedups would have been possible. By implementing the 

correlation sum directly, this solution uses well-studied signal processing structures that 

make effective use of the FPGA’s capabilities. In addition to accelerating the generalized 

correlation, this also enables use of nonlinear scoring functions, which are impossible to 

the transform-based implementation. Third, this application demonstrates that 

implementation idioms natural to hardware designers bear little resemblance to software-

oriented forms of the problem statement.  

It is not credible that automated translation could convert any normal representation of 

correlation into the computing structure used here: a systolic array supplied by a 

broadcast network, interleaved with RAM-based FIFOs. Neither is the wide-word FIFO a 

software idiom or simple deduction from the problem statement. Likewise, hardware 

dual-porting and elaborate pipeline control were needed to achieve single-cycle operation 

of the data reduction filter. That would have been, at best, difficult and un-natural to 
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express in any standard programming language. It is doubtful that any automated analysis 

would derive any of these structures from typical HLL code describing the problem.  

2.1.4 Molecular Dynamics 

Molecular dynamics is the study of molecule behavior over time, whether one molecule 

(as in protein folding), two (as in substrate-ligand interactions), or many (as in water 

molecule or cell membrane interactions with large biomolecules). The simplest 

approaches use a family of spring-and-ball models to represent atoms bound covalently, 

requiring O(N) computations at each time step, for the known covalent interactions. Other 

forces, including desolvation effects and hydrogen bonding, define the molecule’s local 

or secondary structure, global or tertiary structure, and intermolecular interaction. 

Because, in principle, any atom in a molecule can twist around into interaction range of 

any other atom, all-to-all or O(N2) force interactions must be computed. This is generally 

the dominant phase of computation at each time step, and 104 to 107 time steps may be 

required for understanding some molecular behaviors. 

This can be hard to accelerate using FPGAs because of the precision needed for 

accuracy in the simulation, and because of the limited support for floating point on 

FPGAs. At least one previous attempt actually resulted in a slowdown [Azi04] relative to 

a PC. This study [Gu05] has two aspects: implementing the most time-consuming 

computations (modeling the long range forces and motion updates) and a conducting a 

rudimentary examination of simulation accuracy as a function of precision. We found 
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that with conservative assumptions we could obtain a speed-up of more than 40× while 

with relaxed, but viable, assumptions we could obtain a speed-up of over 80×. Work 

continues in extending this work to periodic boundary conditions. 

This case study also required careful analysis of the application. Force computations 

are normally computed using single- or double-precision floating point vales. Analysis 

and testing showed that fixed-point values of reasonable size could meet the precision 

requirements. Parts of the analysis were complicated by the fact that the many-body 

computation is chaotic. Even small variations in initial conditions or computation 

technique can cause solutions to diverge. This is unavoidable, and it is realized that 

“obtaining a high degree of accuracy in the [particle] trajectories is neither a realistic 

nor a practical goal” [Rap95]. Instead, different solutions are considered as different 

samples drawn from the distribution of possibilities. Not the exact solution, but the 

general, statistical character of any new solution must be compared to that of accepted 

solutions, and quality control measurements (e.g. conservation of energy and momentum) 

must be made and verified.  

2.1.5 Sequence analysis  

Although sequence alignment, or approximate string matching is the mostly widely 

known of sequence analysis problems, other kinds of analysis have been reported. 

Tandem repeats are consecutive repetitions of a sequence of nucleotides, possibly with 

nucleotides changed, inserted, or deleted. They are associated with gene regulation, 



 

polymorphisms useful for identifying individuals or phylogenies [Fon04, Che05], 

bioterror agent identification [Jac98] and human hereditary illness, including fragile-X 

syndrome and Huntington’s disease [Ben99].  

Palindromes are paired nucleotide sequences, back to back or with a short gap in the 

middle, where one is the reverse or complemented reverse of the other. They largely 

define the structure of functional RNA molecules, are associated with some cancers, and 

have biological significance in other contexts. Both palindrome analysis and tandem 

repeat analysis are complicated by various kinds of mismatches, and by the fact that the 

Len=4 Len=3 Len=2 Len=1

 72 

Figure 13. Systolic array for palindrome detection 
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length of the substrings of interest are typically not known in advance. Hardware 

accelerators for both problems have been built [Con04], offering computation speedups 

of 250× to 6000× over PC-based implementations.  

Both search operations, tandem repeats and palindromes, can be implemented using 

linear systolic arrays. Figure 13 shows the array for palindromes. As a string streams 

through the Character comparison portion of the array, it is folded back on itself. The 

center of the fold is considered to be position 0. Characters at positions +n and –n relative 

to the fold are stored in the same cell and compared, giving a value of +1 for matching 

success or 0 for failure. The 1 and 0 outputs are summed across the length of the folded 

string, starting from position 0. As long as the sum at position n has the value n, then all 

characters from the fold to that point match and the palindrome is exact. Rather than 

create a summing chain (and propagation delay) the full length of the character 

comparison array, this implementation pipelines summation so that only one addition is 

performed per clock cycle, but two or more additions per level could be used instead. 

Summation results are lagged so that all of the length totals for a single time step exit the 

Length summation section together.  

Perfect palindromes have exact character matches in each position, but biological 

processes often create errors in the replication. Even with small numbers of mutations, 

the palindrome could still have biologically significance. For example, a score of 9 at 

position 10, given an exact character match at position 10, means that the palindrome has 
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length 10 allowing for one mutation. Longer palindromes might allow increasingly many 

mutations, reflecting any probability model that the researcher considers meaningful. The 

Threshold detection section of Figure 13 determines whether the number of matching 

characters identifies a palindrome or not, according to the thresholds (T1, T2, …) chosen 

by the researcher. The Length reporting row of Figure 13 examines the thresholding 

results, working right to left, to determine the first point at which the length threshold 

check fails – everything up to that point is part of the identified palindrome. If short 

palindromes, lengths, from 1 up to some minimal length, are not of interest, they need not 

be presented to the priority encoder. If exact matches are required, however, the entire 

Length summation and Threshold detection sections can be omitted and the Character 

comparison results fed directly to the priority encoder. The position of the palindrome 

within the input string is implicit in the time at which the Length reporting section’s 

output is examined. 

Figure 13’s structure does not allow for insertions or deletions (indels). Although 

conceptually simple, the brute force implementation is tedious. In the Character 

comparison section of Figure 13, each incoming character n is compared to outgoing 

character n, as shown. It is also compared to outgoing character n+1, to detect a deletion 

on the inbound side with respect to the output, and to character n-1 to detect an insertion. 

If multiple indels area allowed, comparisons to n±2, n±3, etc. are added as well. 

Realistically, indels may be tolerated (and indel logic added) only for palindromes of 

some minimum length L1, double indels may be tolerated only above some other length L2 



 

> L1, and so on. The analysis array (summation, thresholding, and reporting) must also be 

modified in any of several ways, according to the detection and reporting policy chosen. 

This approach, allowing q indels in palindromes up to length L, requires qL comparators, 

and possibly qL columns for summation and thresholding, depending on reporting policy. 

Tandem repeats can be detected by a similar computation array. Figure 14 illustrates the 

basic logic of this array. Given some fixed length L of the rep-unit to be detected, select 

some point as the reference point at the end of one rep-unit and just before the second 

rep-unit. At the each time step, shift the entire string right by one position, to represent 

data streaming through the computation array. One new character moves into the array, 

and one old character moves out. If the new character entering the array matches the 

reference character, increment a counter. If the old character leaving the array matches 

the reference character, decrement the counter. Together, the four possible combinations 

of entry and exit matches can increment the counter, decrement it, or leave it unchanged. 

The array of Figure 15 implements this logic, folded in the middle, where each cell in the 

Rep-unit #1 Rep-unit #2 
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Figure 14. Detecting repetions (length 4 shown) 



 

array handles a different length L. Because all cells operate concurrently, all lengths L are 

checked in every cycle. Broadside output from this linear array is handled much the same 

way as for palindromes, including tolerance for occasional mismatches.  
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Tandem repeats require different analysis from that used for palindromes. For example, 

counters can be added to measure the number of consecutive cycles in which a length-3 

repeat (3-mer) is detected, indicating multiple back to back repetitions. Repetitions have 

other complexities in their analysis, as well. Suppose that a long string of repeating 6-

mers were detected, and also a long string of 3-mers. The 6-mer report would be 

redundant, because it would just be reporting pairs of 3-mers (e.g., AGTAGT). Detecting 

6-mers but not 3-mers would indicate that the smallest repeating unit in fact has length 6 

(e.g. AGTCCA). This kind of logic can easily be added to the analysis array (not shown) 

that processes the length-specific outputs of Figure 14. 

These two applications have strong similarities: the initial comparison array accepts 

serial data, creates large numbers of comparison results at every clock cycle, and uses 

vector-reduction operations to detect phenomena of interest in the input. Each task has a 

== == == ==
Figure 15. Systolic array 

for tandem repeat 

Len=4 Len=3 Len=2 Len=1 
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variety of processing options, including thresholding, indel, and minimum length 

policies. Another option, not shown in Figure 13, allows some gap between the forward 

and reverse substrings, modeling RNA structural motifs of biological significance. 

Dramatic speedups were demonstrated in the computational core of these applications, 

shown in Figure 13 and Figure 15. 

The most interesting aspect of these demonstrations was in the over-all system design. 

These are essentially streaming applications, but the PC/coprocessor model is built 

around the batch processing paradigm. These applications accept data of effectively 

infinite length and make one pass over each string. Even with filtering, result output 

appear at rates up to the input clock rate. This does not make effective use of the 

PC/accelerator architecture under consideration. Accelerator performance is limited by 

IO rates from the host, presenting strings to analyze and collecting results. When that 

happens, it’s very often the case that the host could have performed the calculation 

roughly as fast as it could transfer data to and from the coprocessor. Impressive 

performance in the FPGA’s computation core does not always translate to comparable 

performance in the application as a whole. It can, however, be valuable in emerging 

hardware environments where streaming data occurs naturally [Cha05a]. 

2.1.6 Object Recognition in 3D Voxel Data 

This addresses the problem of template-based 3D pattern recognition in volumetric data 

[Van05]. Volumetric data sets arise many applications, including medical imaging (e.g. 
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X-ray tomography, magnetic resonance imaging, positron emission tomography) and 

confocal microscopy. The goal of this effort is to take template-based pattern recognition, 

long a staple of 2D image processing, and extend it to three dimensions. This is exactly 

the problem addressed by the accelerator for rigid molecule interactions, with somewhat 

different interpretation placed on the juxtaposition of voxels in the image and template. It 

solves several problems that would otherwise make correlation unattractive for 3D 

pattern recognition: 

⋅ Support for multispectral data types. Confocal images, for example, commonly 

produce data on multiple fluorescence channels. The generality of this computing 

structure adapts readily to application-specific voxel data types not foreseen in the 

original design, and to scoring functions involving cross terms between elements of 

tuple values. The architecture also supports different data types for the template and 

image, allowing additional flexibility in specifying the pattern to be matched and the 

volumetric data acquired by the collection instruments. 

⋅ Recognizing multiple instances of a pattern. Many applications allow the 

possibility of more than one instance of an object appearing a 3D image, with the 

goal of finding all instances. Naively, that would require examination of the entire 

correlation result, in order to find multiple peaks indicating multiple matches to the 

template. This computation pipeline, however, contains a filtering stage that reduces 
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the volume of result data by two or more orders of magnitude, but still reports 

multiple maxima in the result. 

⋅ On-the-fly generation of rotated images. Two-dimensional template matching 

applications often precompute rotated forms of the template image, and repeat 

correlation at each of the rotated orientations. Precomputation of rotated templates 

quickly becomes infeasible in three dimensions, where there are three axes of 

rotation instead of one. For example, there are 36 one-axis rotations at 10° steps, but 

more than 104 three-axis rotations at 10° intervals. There are 72 one-axis rotations at 

5° resolution, but roughly 105 three-axis rotations. The pipeline used eliminates 

storage of all the rotated images, and eliminates transfers of the rotated images to the 

accelerator. 

⋅ Support for spatially oriented data types. Diffusion tensor tomography, for 

example, generates volumetric images representing 3D fields of diffusion vectors. 

This computation pipeline provides architectural support for spatially oriented voxel 

values, where three-axis rotation of oriented voxel elements is needed in addition to 

rigid rotation of voxels with respect to each other.  

⋅ Direct handling of anisotropic sampling grids. Scanning technologies commonly 

have finer resolution within a scanning plane than between scanning planes. As a 

result, the volumetric image is captured with non-cubical voxels. Traditionally, “Any 

deviation from cubic voxel shape causes serious problems for … template matching 
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operations.” [Rus95] Normally, this would require a separate resampling step to 

convert the anisotropic axis steps into uniform ones. The address rotation logic, 

however, performs an arbitrary linear transform when converting the image traversal 

coordinates into array indices in the three-dimensional array that stores voxel values. 

Non-uniform scaling of axes can be combined with rotation through proper choice of 

transform coefficients, allowing the use of arbitrary parallelepipeds as voxels. 

Addressing logic converts indices for images traversal into indices for access to image 

voxels using an arbitrary linear transformation. This implies that searching for matches to 

a template’s mirror image is also possible, with no change of accelerator hardware. 

Rotation and isotropic or anisotropic scaling have already been mentioned as helpful in 

template matching. Shear transformations, the remaining kind of linear transformation, 

are also possible for the indexing hardware, but practical applications have not yet been 

proposed.  

This application makes it clear that some accelerators are applicable to apparently 

dissimilar applications. In fact, only one part of the application requires reconsideration. 

The rotated addressing logic in the rigid molecule application assumes isotropic axes for 

the 3D grid in which the image is traversed and for the 3D grid that stores the voxel data. 

This assumption affects the number of bits of precision needed for the linear 

transformation arithmetic that converts traversal indices into storage indices. Anisotropy 
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of axes increases the precision required. It is striking that such different application areas 

require so little reconsideration of the acceleration engine. 

2.1.7 Iterative optimization 

Many problems, including many in bioinformatics, can be phrased as some kind of 

optimization: finding the best (or near-best) solution among very many. Search spaces in 

bioinformatics problems can be huge. Finding common motifs among k length-N strings 

covers a search space of size proportional to Nk, for example. The search spaces are often 

non-differentiable, so traditional optimization for differentiable variables is not 

applicable. Iterative, heuristic techniques can locate high quality solutions for many such 

problems, when exact optimality is not a requirement. Common techniques include: 

⋅ Hill climbing. This is a basic search technique, often used by itself or as a 

refinement step in more complex optimization algorithms. Starting from some point 

in the search space, a simple form of hill climbing creates one or more points nearby, 

along one or more search axes, and tests the function value at each point. Depending 

on the function value[s] found, the algorithm should step to the neighboring point 

with the highest value, adjust the step size and try again, or declare the search to be 

ended. 

⋅ Simulated annealing. This is just the hill-climbing algorithm, with different criteria 

for accepting a solution. It samples neighboring points, and accepts improved 
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solutions unconditionally. If, however, the new solution gives a lower function value, 

it is accepted with some non-zero probability, usually dependent on the amount by 

which the new solution is worse. Occasionally accepting inferior solutions is 

intended to prevent the search from getting stuck at a local maximum, hopefully 

allowing the search to restart near another local maximum. The analogy to 

metallurgical annealing refers to gradual reduction over time of the chance of 

accepting an inferior solution, somewhat the way reduction in temperature gradually 

stabilizes a metal’s crystal structure. Although usually phrased in terms of successive 

samples take one at a time, it is quite reasonable to evaluate multiple samples at each 

time step.  

⋅ Gibbs sampling. This technique searches a many-dimensioned space one dimension 

at a time. Each iteration samples a different axis of the search space, possibly taking 

many samples along that axis. As with simulated annealing, inferior solutions are 

sometimes accepted in order to avoid getting stuck at local maxima. This technique 

has been especially useful in locating functional and regulatory motifs in biological 

sequences [Hug00]. 



 

⋅ Genetic algorithms. This technique holds many possible solutions at any one time. 

Each step generates a large number of candidate solutions by randomly combining 

parts of two solutions, or by modifying (‘mutating’) parts of one solution. Many 

different strategies are available for creating new candidate solutions and for 

selecting among them for the next iteration. 
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All of these techniques, and others, follow the same computational schema, illustrated in 

Figure 16. The system starts with some initial estimate of a solution, X
0
. At each iteration, 

new proposed solutions 1X, 2X, 3X, … are generated from the intermediate solution X
i
, 

according to an application-specific rule. Each of the newly proposed is scored, using 

separate instances of the scoring function F(). The scores are evaluated relative to each 

other, and used to select one of the proposed solutions as the next intermediate solution, 

X
i+1

. Iteration continues until some termination condition is met. 

X0 

Xi 

1X 2X 3X 

F(1X) F(3X) F(2X) 

Xi+1 = Next[F(1X), F(2X), F(3X), …] 

Figure 16. Computation structure for iterative optimization 



 

The units labeled 1X, 2X, 3X, … in Figure 16 each differ in some parameter setting, so 

as to generate different updated NX values from a given X
i
. Some rules for creating 

proposed solutions behave differently at each iteration, e.g. where Gibbs sampling 

explores different axes or in where simulated annealing applies different random 

perturbations. It is assumed, at least in initial implementations, that the scoring function 

F() is relatively simple.  

IterControl 
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Despite its potential for complexity, this application has the simple logical structure of 

Figure 17. Difficult aspects of the design come from potentially complex data elements 

and functions. As a result, this application suggests the need for multiple levels of 

specialization. For example, common features of the simulated annealing computation 

could be phrased as a subclass that partially implements the abstract interface, with 

application-specific features phrased as a second level of specialization. 

InitX0 F Next EndCondition 

XdataType 

UpdSolution 

1N 1 N1

Figure 17 . Class diagram for interative optimzation 
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2.2 Features common across applications 

Although very different in structure, these case studies have a number of features in 

common. The following list summarizes these similarities:  

⋅ 100-1000× acceleration is possible. FPGAs accelerate some classes of applications 

by orders of magnitude, compared to a PC. They offering attractive performance 

without the expense, installation, and management penalties of clusters and MPPs. 

⋅ Applications come in families. Strings have different data types with different kinds 

of character comparisons, rigid molecule interaction testing allows many different 

scoring functions, and so on. 

⋅ Performance requires rethinking the application. Every level of an algorithm has 

the possibility of changing when recast from PC-compatible terms into an FPGA 

implementation. At the lowest level, fixed point data types might IEEE floating 

point; higher level changes include correlation by transforms on a PC, but by direct 

summation on FPGA platforms.  

⋅ Application accelerators use scalable computation arrays. Many accelerators of 

interest use repetitive arrays of processing elements, so that application performance 

depends on the degree of concurrency. Larger arrays are assumed to be better, for 

higher throughput, for finer resolutions of modeling grids, or for handling problems 

of larger sizes. 
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⋅ Communication and control are reusable components. Although clear from these 

examples and familiar to software developers, data exchange and parallelism 

structures are not generally considered reusable hardware components. Existing logic 

tools handle this kind of reuse poorly, if at all. 

⋅ Hardware expertise and application knowledge are both required. The 

application specialist that who has the need for acceleration can’t be expected to 

have logic design skills, and logic designers aren’t biologists or chemists. Both skill 

sets are needed, to ensure that the accelerator solves the specific problem at hand and 

to apply the idioms of hardware design for best performance. 

2.3 Conflicting demands in accelerator design 

Systems for automating logic design have been under development for at least forty 

years, and the fundamental problem of easy specification of complex and efficient logic 

has not yet been solved. It is not the goal of this work to create the solution that has 

eluded so many other researchers for so long. Instead, the goal is to identify the 

conflicting forces that appear to create ineradicable tensions, and to address each conflict 

separately. The first contradiction is that an accelerator’s logic design must be highly 

tuned to its specific application in order to achieve the 100-1000× speedups desired, but 

must still be general enough to handle wide ranges of applications. The second is that end 

users of application accelerators must be able to modify algorithms at will, but efficient 

accelerator design requires significant hardware expertise. The third is that accelerator 
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users want to use the full capacity of the most powerful FPGAs available, but do not want 

to change their accelerator designs when porting to FPGAs with larger capacity. 

2.3.1 Application tuning vs. general usefulness 

An FPGA application must be highly tuned in order to realize the full potential speedup 

in a candidate application. Application specificity creates problems at two levels, 

however. At the lower level, users require hundreds or thousands of variations any one 

applications, each optimized for the unique version of the problem it addresses. At the 

higher level, a generally useful toolset must address problems of widely different 

structure and resource requirements. 

The higher level of application flexibility addresses the desire to handle problems of 

very different character, not just variations within one family of closely related problems. 

Block generators of various types have existed for years, and are still and important part 

of commercial logic design. They tend to be highly specialized, however, and unable to 

handle functions even a little different from the ones originally targeted. Such systems 

sacrifice generality for optimized performance in a single problem domain. General 

purpose HDLs represent the opposite end of the spectrum: ability to handle any kind of 

application, with no explicit support for any one application domain. Domain-specific 

languages represent an intermediate level of application specificity and optimization, but 

addressing multiple different problem domains would require multiple different 

languages. 
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At the lower level, consider variations on the Needleman-Wunsch string matching 

algorithm. There are three major ways in which variant algorithms differ from each other. 

First is the component that defines the character rule. This embodies the type of each 

character in the string. It also defines the substitution matrix that rewards exact or near 

matches and penalizes mismatches between two characters, which creates another level 

of customization after the string data types are chosen. Substitution matrices are usually 

symmetric, but not necessarily, and may be procedural functions rather than declarative 

lookup tables. Note that the two strings need not have the same type: in one example, a 

query string consists only of the four nucleotides in DNA, but the reference string 

consists of IUPAC ambiguity codes (wildcards), requiring a different number of bits for 

representation. The second difference between algorithms is the matching cell, the 

component that implements one unit of the 2D recurrence relation by which whole strings 

are compared. Any matching cell can work with any string rule, since the recurrence 

relation depends on matching scores and not on the type of the strings being matched. 

Some matching cells allow variant behaviors, such as the 16 possible end-overlap rules in 

the Needleman-Wunsch algorithm. The highest level component is the sequencer, which 

controls the basic flow of string data and matching results through the system. 

One solution would be to create a different and highly tuned accelerator for each 

variant on the problem. There are thousands of variations, though. Creating a new 

accelerator for each one, in advance of demonstrated need, would be repetitive and 

tedious. It would be wasteful, since combinatorial completeness would create systems 
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that never get used. It would also be limiting since biologists create new substitution 

matrices all the time, and a novel matrix is inherently impossible to implement in 

advance. 

Another solution would be to create a highly generalized matching engine, able to 

handle any of the known variations of the problem. Substitution matrices could be 

implemented as RAM lookup tables, data paths would be allocated for the largest 

character size, and so on. This would be inefficient for any one application, however. 

DNA strings require only a two-bit alphabet, but codons require six bits. If an accelerator 

had the capacity to support codons but was used for nucleotides, two thirds of the 

character string data path would be wasted. Also, RAM tables are slow compared to 

logic, and may become the limiting resources in an FPGA implementation. Exact-

equality comparisons between strings can be implemented efficiently in logic. That 

would allow faster circuitry, would release RAM resources for other use, and would 

allow more character PEs by evading the RAM resource limit. And, no matter what 

fixed-size data path were chosen, it would preclude some applications of interest. A six-

bit limit would prevent the string processor from handling ASCII text; an eight bit limit 

would lock out internationalized Unicode applications. Any fixed solution would, 

ironically, be too general for maximum performance at the same time that it was too 

specialized to handle all applications of interest. 
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Creating a highly tuned accelerator on demand is the ideal. Although the number of 

distinct applications in a family is large, the number of choices to make is modest. 

Intelligent tools should recommit resources according to application requirements. For 

example, a narrower data path generally requires fewer logic elements per PE. Reducing 

the number of gates per PE not only reduces the logic delay, in many cases, it also frees 

logic resources that can be used to create larger numbers of PEs. Likewise, a generalized 

PE would require resources for choosing between its potential modes of behavior. A hard 

coded application can recommit those resources away from configuration control and 

towards the application’s payload logic, and also reclaim any logic resources used only in 

other operating modes.  

Even without considering configuration resources, experiments have demonstrated a 

4:1 performance difference between complex comparisons of protein sequences and 

simple nucleotide comparisons [Van04a]. The most complex of these string comparison 

accelerators is also the most general, and could be used to implement the simpler 

operations. If that were done, however, the simplest application would run at only ¼ of 

its potential speed. 

All of these approaches presume one step of abstraction, from the language or design 

system primitives to the synthesized system. Two or more steps of abstraction are 

sometimes more effective: first, a highly generalized set of primitives for system 

specification, then one or more levels of increasing application specificity and domain 
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knowledge, then finally the synthesized result. This, in fact, is the basis of any OO 

language with inheritance: specialization of general utilities by means of application-

specific subclassing, with as many different levels of specialization as the programmer 

desires.  

2.3.2 Application customization vs. hardware-based implementation 

Application specialists have varied and changing computation demands, even within a 

single application family. It seems clear that good application performance demands a 

hardware implementation tuned to the application specifics, but very few application 

specialists have the hardware design skills needed for making changes to the logic design 

of an FPGA-based accelerator. Accelerator design tools create this conflict by offering 

bit-level implementation tools to developers working at the algorithmic level.  

The semantic gap is the name given to the conflict between high-level representation 

of computational problems and high-efficiency implementation in some technology 

[Sni01]. Traditionally, this has meant the gap between a high level language’s semantic 

definition and the instruction set of the machine into which a program is compiled. The 

semantic gap has long been recognized in the software development world, and has led to 

fruitful cooperation between compiler writers and instruction set designers.  



 

The semantic gap between application accelerators and FPGA fabric is even wider. 

The application-specific logic of an accelerator operates at a higher level than the logic of 

a programming language, because it embodies so many more assumptions about the 

meanings and basic techniques implied by the application. At the same time, the FPGA 

fabric operates at a lower level than the processor’s instruction set. For example, FPGA 

hardware requires selection of data word size, something fixed in a standard CPU, and 

often requires new word size choices at many points in the design.   

Application knowledge 
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It seems safe to assume that the semantic gap will remain a fact of life throughout the 

visible future. Despite the optimistic claims of some tool developers, a clever logic 

designer can often create a computation structure unimagined by the tool developer, and 

therefore inaccessible to the tools. Biologists, chemists, and other potential users of 

application accelerators can not be expected to equal a logic designer’s creativity in using 

logic resources, or even basic competence in creating systolic arrays, reduction networks, 

Transistors 

Gates 

Logical 

Machine instructions 

Program statements 

Application- 

Reusable components specific  

HLL hardware 

accelerator 

design 

Figure 18.  The semantic gap: high-level design vs. low-level implementation 
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and other native kinds of hardware solutions. As a result, one commercial accelerator 

builder asserts that it is necessary to “[adapt] established algorithms to run on our FPGA 

Accelerator Arrays by reinterpreting from first principles.” [Tim05] There is both 

practical and theoretical reason to believe that direct compilation of standard algorithms 

does not generally synthesize into the most effective hardware implementations.  

Since the semantic gap can not be closed, in the general case, it is necessary to address 

application development in terms of that gap. This acknowledges the application 

specialist (with high-level knowledge) and logic designer (with low-level design skills) as 

different individuals. They differ in their needs and responsibilities, and must work 

together to create the application accelerator. It follows that the design tools’ 

responsibility is not to convert application specifics into a logic design, but to connect 

between application specifics and an efficient logic design. 

Skilled logic designers are relatively scarce, and are not likely to become more 

common in the near future. As a result effective tools must not require logic design skills 

for making minor, routine changes to an application accelerator. The logic designer’s 

contribution must be highly reusable, so it can serve many application specialists without 

the designer’s intervention for each one. Finally, in order to decouple the logic designer 

from the application specialist, it must be possible for them to work at different times.  
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2.3.3 Exploiting the fabric vs. reusability 

Whatever the computation array and FPGA capacity, the accelerator designer generally 

wants one thing that no current design tools are able to state explicitly: as many PEs as 

possible, given the resource utilization per PE and FPGA capacity.  

Current design tools require that exact numbers of PEs be specified as inputs to the 

design; they have no direct support for open-ended parallelism. The desired number of 

PEs, the largest number possible, depends on other system inputs: the amount of logic 

required for each PE, the allowable sizes of the computing arrays, and the logic capacity 

of the FPGA platform. If the application details change so that a different amount if logic 

is required to implement the repeated PE, then the number of PEs could change, also, up 

to the limit defined by the FPGA’s capacity. 

Given the rapid pace of FPGA product development, it seems likely that useful FPGA-

based applications will outlast one or more generations of acceleration hardware. Users 

of PC applications expect performance improvements when they recompile their 

applications for new processors; users of FPGA applications will surely expect the same. 

FPGA accelerator speed depends largely on the degree of parallelism, so performance 

improvements on larger FGPAs depend largely on the increased number of PEs that the 

new FPGA can support.  

Although the highest possible degree of parallelism is a consequence of other design 

inputs, current design tools require the developer to provide that number as a system 
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input. That, in turn, requires gate-level knowledge of the PE and accelerator design, the 

kind of knowledge an application specialist is expected not to have. Instead, accelerator 

design tools should automatically expand an accelerator to the maximum size allowed by 

the computing structure, application details, and FPGA capacity. For any one application 

family’s computing structure, that size should change automatically in response to 

changes in application-specific details or in the FGPA platform. 
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3 PREVIOUS WORK: BCB COMPUTING AND FPGA DESIGN TOOLS   

This chapter examines existing systems for high performance computing in order to 

characterize the advantages of FPGA accelerators relative to competing technologies. 

The first section within this chapter examines the kinds of hardware systems that have 

been used in high performance computing, showing a variety of advantages of FPGA-

based accelerators. It is neither feasible nor useful to present the complete history of 

high-performance computing systems, nor of the applications areas in which they have 

been applied. Instead, section 3.1 offers representatives of the kinds of computing 

hardware systems that have been used for BCB problems. The focus on BCB is not meant 

to exclude other application areas, but to focus the kinds of systems currently in use for 

the application areas that have been examined in detail. 

Next, section 3.2 presents a survey of logic design systems that have been used for 

specifying the structure and behavior of FPGA-based systems. As in section 3.1, the goal 

is not to present a complete history of the field. Instead, this section shows how 

traditional kinds of logic design tools have evolved to meet needs vary different from 

those in accelerator design. Many different conceptual bases have been proposed for 

logic design systems, but it will be seen that none address the full range of demands 

placed on them by the applications described in chapter 2. 

Finally, section 3.3 examines object orientation as it applies to hardware description 

languages. This shows that object orientation in fact covers a wide range of linguistic 
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concepts, many of which must be reconsidered when applied to hardware description 

languages. It also presents a range of alternative and complementary semantic constructs 

available for the design of OO hardware design tools. 

3.1 Hardware systems 

BCB problems have huge commercial and scientific value, but also huge computation 

loads. As a result, just about every kind of processing architecture has been applied to 

BCB problems, including standard processors and supercomputers, ASICs for specific 

problems, graphics processing units (GPUs) retargeted to general computation, and 

FPGA-based configurable logic. There have been so many different efforts within each 

category that it is impossible to list them all. Instead, this section describes a few systems 

that should suffice to represent each group.  

Hardware systems have been built for computations other than BCB applications. 

Even within the BCB field, there are many omissions. Excessive detail would not meet 

the current need, however: to examine the kinds of hardware solutions that have been 

implemented and to determine which factors in each one define its strengths and 

weaknesses. Similar systems have been omitted in the interest of brevity and clarity. 

3.1.1 Serial processors, clusters, grid computing 

PCs based on Linux, Windows, or other operating system, are cheap, distributed, and 

flexible.  Large amounts of PC-based software are available, freely, commercially, or for 
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academic use, and PCs probably contribute the largest number of CPU hours to the BCB 

total. The drawback is computational power: it is common that algorithms of up to only 

O(N2) complexity (for common data sets) are run on large data sets. This means that PC 

applications make liberal use of assumptions and heuristics to limit computational 

complexity. Also, the complex higher order computations described above are completely 

out of reach for PCs. 

In 2002, only five of the world’s top 500 supercomputers [Top03] were said to be 

dedicated to biology, pharmaceutics, and the life sciences. This statistic probably under-

represents the number of supercomputers in bioinformatics. About half of the systems 

listed had no assigned application area, and over 200 were listed as research or academic 

machines – the load mix in those machines could well include BCB applications. Other 

applications (e.g. chemistry or databases) could also support BCB computing.   

IBM’s Blue Gene project was originally targeted for protein folding applications, but 

can be used for any parallelizable computations. Blue Gene/L’s maximum configuration 

is intended to provide 360 TFLOPs, using 65,536 PowerPC processors connected in a 3D 

torus, and a total of 32TB RAM [Gar05].  

SIMD arrays have also been successful on some problems [Bla90, Bor94, Gra01]. To 

date, none have had lasting commercial impact. Still, new SIMD processors continue to 

appear. For example, ClearSpeed’s PCI-compatible accelerator uses the CSX processor, 

with 96 “poly” (SIMD) processors. CSX-based CSX600 boards have been put to work in 
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GROMACS molecular modeling systems [Cle05] and in Bristol University’s Dockit 

[Cle05a].  

Cray has showcased AMBER’s molecular modeling as a successful application 

[Cra00]. Silicon Graphics Inc. addresses biocomputing with their Origin supercomputer 

family. They publish benchmarks and free executables for a number of popular 

applications, including BLAST and CLUSTAL W [Sil01].  

Clusters represent a second approach to massively parallel computing, not always 

distinct from multiprocessor computing, except that some clusters support heterogeneous 

processor types. Compared to typical multiprocessors, cluster architecture exacerbates 

three problems: system administration and management, load distribution and scheduling, 

and IO sharing and data distribution. Cluster vendors address these issues explicitly, and 

often with the same tool suite [Sun02a]. Administration issues are more complex than 

traditional LAN management, because of the need to harness many systems to one task. 

For many installations consist of multiple clusters, geographically distributed cluster 

management covers several ranges of administrative control and communication cost 

[Sun02b]. IBM’s cluster control software, for example, includes HACMP for local cluster 

management, Workload Manager for load distribution, GeoRM for synchronizing data at 

different locations, and HAGEO for resilience against cluster loss [IBM02, Sun02]. 

Cluster performance is up to P-times better than a PC for P processors. For small 

clusters (fewer than 16 nodes), the hardware cost can be slightly less than P-times that of 
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a PC. Larger clusters, however, e.g. those with more than 64 nodes, often have special 

housing, network, power, and cooling requirements. Those costs, plus network 

administration, add to the cost of ownership without adding system capability. Fujitsu 

Computer Corporation and Orion Multisystem have both addressed the need for office-

environment processor clusters. Orion’s DS-96 offers 96 processors in a deskside box  

[Ori05], and Fujitsu’s BioServer offers 128 processors deskside or up to 1,920 processors 

rack mounted, without need for special power or environmental control [Fuj05]. Still, 

there is far less cluster software available than uniprocessor software, and programming 

for clusters is a relatively rare skill. 

The many varieties of Unix clusters include supercomputers and MPPs, such as those 

at national centers and commercial server farms [Adi02, Cel00, Cra00, Sil01, Sun02]. As 

with PC clusters, performance is up to P times better for P processors. Because of tight 

coupling and homogeneous processors, scalability and ease of programming are often 

better than in heterogeneous grids and irregular clusters. MPP costs are high, though, 

both in acquisition and system maintenance, and the convenience often low. Researchers 

must apply for supercomputer time, scalability studies are often required, programs must 

be submitted batch with substantial turnaround times, and users are rarely permitted more 

than a small fraction of the resource. 

Special software addresses the problems of multiple servers, replicating data, striping 

a single file across multiple servers, and managing redundant paths between files and 
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clients [IBM02a]. Higher-level services organize disparate types of biological data into 

coherent “warehouses”. Whole companies exist selling only software for load distribution 

and system management [Pla02]. Even acceleration hardware is sold as a cluster 

component [Tim02], rather than an isolated solution. 

 Grid computing extends the ideas of cluster computing to a much larger scale. Where 

clusters normally consider of physically close, heterogeneous processors, grids often span 

geographic regions, administrative domains, and processor types. This introduces new 

problems not seen in local, homogeneous cluster configurations, including relatively 

large and unpredictable networking latency and bandwidth issues. The Globus Toolkit is 

under development by a non-profit consortium of industry and academic users. It works 

within the Open Grid Services Architecture to standardize APIs and services for 

distributing computation [Glo02]. Other groups are working to standardize grid practices 

for management, scheduling, etc. [GGF02]. 

A related concept has variously been called “utility computing”, “pay-per-use 

computing” [Sun05], or “deep computing capacity on demand” [IBM03]. It’s based on a 

conventional server farm or MPP, but is generally owned by one organization for use by 

other organizations. The system’s owner sells CPU time to clients that have only 

occasional need for massive computation. This isn’t really a difference in technology, 

however, but a difference in ownership and business models around the computation 

hardware. 
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3.1.2 Graphics Processing Units – GPUs 

GPUs, driven by the multibillion dollar gaming industry, were originally developed for 

fast rendering of scenes containing complex geometry, color, and other features. Current 

GPUs have dozens SIMD and MIMD computation pipelines [3Dl04], specialized for 

different kinds of calculations, supported by on-board memory busses up to 512 bits 

wide. Their primitive data types commonly include booleans, 32-bit integers, 16- and 32-

bit floating point, and possibly a fixed-point format [Ros04]. Typical GPUs have 

hardware support for vectors to length four [Eng04, Ros04, NVI05], though larger 

vectors and arrays can be defined. Despite their non-standard and profoundly constrained 

computing capabilities [Gra03], their raw speed and modest cost have made them 

attractive as general purpose computation engines - GPGPUs. To help ease the task of 

creating GPGPU applications, the Brook language has been proposed as a vehicle for 

encoding general computations for GPGPUs and similar systems [Buc04].  

GPGPUs have been programmed to perform phylogenetic tree-building [Cha05], 

matrix operations [Mor04], computation of Voronoi regions [Hof99], database operations 

[Gov04], distance fields [Sud04], statistical summaries [Gov05], 2D FFTs [Mor03], and 

other operations. GPGPU surveys [Man05, Owe05, Tra05] list these applications and a 

variety of others. 

GPU clusters have been built [Fan04], but most research has been done in the 

hardware context of a typical PC graphics accelerator. PC configurations with multiple 
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GPUs have been marketed, however, with the goal of improved graphics performance. 

According to the company product documentation, 3Dlabs’ Realizm 800 graphics card 

contains two GPUs, called “visual processing units.” This configuration includes a 

processor (‘vertex/scalability unit’) with multi-GPU coordination responsibilities 

[3Dl04a]. ATI sells a two-GPU PC motherboard based on the PCI Express bus standard 

and their Crossfire bus communications chip [ATI05], similar to Nvidia’s two-GPU 

motherboard built around their “scalable link interface” (SLI) and “media and 

communications processor” (MCP) [NVI05a]. Evans and Sutherland’s simFUSION 

simulator product uses up to four ATI GPUs [Eva03]; their RenderBeast product line puts 

up to 64 GPUs in one server [Eva03a]. 

As demonstrations of GPGPU interest, day-long courses on GPGPU processing were 

presented at SIGGRAPH 2004 [Har04] and 2005 [Har05], and at IEEE VIS 2004 

[Lef04]. Term GPGPU courses have been presented at The University of North Carolina 

at Chapel Hill, University of Aarhus (Denmark), CalTech, and the University of 

Pennsylvania. 

3.1.3 ASIC-based systems 

Special-purpose computers have a long history, even within bioinformatics. Some 

research systems have been dedicated specifically to BCB computations. Other research 

systems (e.g. Kestrel) have had general-purpose capabilities, and have addressed BCB 

problems as targets of opportunity. Yet other systems have been highly specialized for 
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particular computations with BCB applications, but sometimes work in other application 

areas as well. Hardware systems for self-organizing maps (SOMs) fall into that last 

category. 

Self-organizing maps represent one family of unsupervised clustering algorithms, 

noted for heavy use of matrix multiplication and comparisons across vectors. SOMs are 

not exclusive to bioinformatics, but have found some use in the field. Kohonen [Koh01] 

reviews a number of hardware accelerators for SOM algorithms. Kohonen notes that, to 

make implementation feasible, some hardware implementations accept limits: maximum 

size of data handled, suboptimal communication paths, limited precision, or simpler but 

less-desirable algorithms. Although SOM speedups were impressive, ASICs implemented 

as late as 1997 were still limited to 16MHz clock speeds. It is also interesting that all 

applications reviewed used fixed-function ASICs or general-purpose processor 

ensembles, not FPGAs.  

Shortly after publication of the Needleman-Wunsch (NW) DP algorithm for DP AM 

in 1970 [Nee70], it became the de facto standard technique for AM in biological 

sequence matching. Because of the computation’s regular structure, limited data types, 

and simple computation element, it has been a target for hardware acceleration for at least 

two decades [Lip86, Lop87, Cho91, Hoa93, Bor94, Blu00, Yu03]. It also became the 

target of many variations, including the Smith-Waterman technique for substring 
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alignment, “end space free” variants [Gus97], Smith-Eggerton repeated alignment, and a 

theoretically unbounded number of different gap-penalty strategies [Dur98]. 

Customized implementations of general-purpose processor arrays have also been 

applied to bioinformatics applications. The USCC Kestrel project [Dah99, Hir96, Hug95, 

Mes01] is one such system. It is a SIMD array of eight-bit processing elements (PEs), 64 

to 512 of them in different implementations. Each PE shares a register bank with two 

neighboring PEs. This effectively connects the array into a bidirectional ring. The 

architecture is reportedly designed for comparisons like Smith-Waterman alignment, but 

executes hidden Markov model and other algorithms as well.  

SAMBA (Systolic Accelerator for Molecular Biological Applications) [Lav96, Lav98] 

is another experimental processor tailored for Smith-Waterman string comparisons. It 

claims an array of 128 twelve-bit processors. Although the processors themselves are 

fixed-function ASICs, their interconnection appears to be a reconfigurable FPGA.  

These are just some of the recent architectures designed or adapted for bioinformatics 

applications. They have many predecessors, though, including: 

⋅ P-NAC (Princeton Nucleic Acid Accelerator), one of the earliest well-known LSI 

implementations aimed specifically biological computations [Lop87]. This 1987 

system used multiple chips, each with 30 PEs, and implemented a dynamic 

programming for of string comparison.  
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⋅ BISP (Biological Information Signal Processor) followed a few years later, in 1991 

[Cho91]. It also accelerated dynamic programming for string comparison. Initial 

configurations used 16 chips, each containing 16 PEs. Even at 12.5MHz, the system 

outran a Cray-2 by a factor over 100. The authors claimed a cost/performance ratio 

well over 104× better than the Cray. The system could, theoretically, have been 

expanded to 218 chips with near-linear speedup for long comparisons. 

⋅ RFDH-1 [Fai93], able to compare up to 2048 pattern characters to an input string. 

Although this implemented only shift-and-add comparisons, it was able to handle 

several patterns at a time, and had some ability to handle regular expressions. 

⋅ The BioSCAN processor [Sin93], consisting of 16 ASICs with 812 processors in 

each. Although it handled parallel comparisons against patterns up to 12992 

characters, it had no explicit support for gapped comparisons. It did, however, 

support comparisons with different matching scores for each possible pair of 

characters. 16-bit scoring values are more than adequate for representing common 

BLOSUM or PAM matrices.  

⋅ The MGAP (Micro-Grain Array Processor) claimed over 0.75 teraop of performance 

when coupled to a 1995-era desktop workstation [Baj94, Bor94]. This unusual 

architecture consisted of a rectangular mesh of 214 one-bit processors, configurable 

as words of various sizes. Dynamic programming was only one of the applications 

demonstrated on this system. 
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⋅ The RAPID-2 processor [Arc94, Fau95], a SIMD processor. This was based on an 

associative memory model of computing. This allowed matching algorithms in the 

dynamic programming style, as well as many other kinds of computations, but 

required an unusual programming model.  

⋅ String-matching accelerators, often designed for non-biological applications, cover 

more than two decades of hardware technologies [Muk79, Fos80, Lip85, Muk89, 

Du94, Sas95, Ran96, Lee97, Ran7, Meg90, Smi90, Tim02, Che03, Mac04, etc.]. 

String matching has been a favorite target for acceleration because of the bounded 

nature of the problem and high regularity of elementary computations. 

⋅ Stanford’s Merrimac [Dal03] is being built around custom “stream processing” 

chips. Although not specifically a BCB engine, it is being applied to a customized 

version of the GROMACS molecular modeling application [Ere04].  

Paracel was one of very few companies to commercialize ASIC BCB accelerators. Its 

GeneMatcher systems performed matching operations using dedicated ASICs configured 

in chains [Ull00], claiming over 1000× speedup [Par01]. Paracel systems were 

“Designed as a high-performance network server,” to be shared by multiple members of 

one work group. It is interesting that Paracel was spun off from TRW to commercialize 

the fast data finder (FDF) chip, originally a classified weapon in the NSA’s Cold War 

communication intelligence arsenal [Yu88]. 
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The MD GRAPE family of ASICs has also been commercialized. The original 

GRAPE processors of the 1980s were designed for handling force calculations in 

astronomical N-body calculations. Current generations are intended for molecular 

dynamics (MD), and appear in commercial, four-chip PCI-bus accelerator cards [Con04a] 

rated at 64 GFLOPS. Related chips are also being built into other systems, including the 

ambitious Protein Explorer, a 128-node PC cluster expected to contain 5,120 MD 

GRAPE 3 chips and to reach 1015 FLOPs performance levels [Tai02]. 

3.1.4 Reconfigurable processors 

FPGA coprocessors are not the only way to combine configurable logic with a processor 

of fixed structure. The Garp processor architecture integrated a MIPS-based processor 

with configurable logic [Hau97]. Its configurable elements were aligned with the fixed-

function data path of the MIPS CPU, in order to ease insertion of new functions into 

existing logic structures. PipeRench [Gol99] is similar, in containing a configurable logic 

array tuned for data path applications, but without a fixed-function processor. The 

Tensilica [Ten04] processors, with their Tensilica Instruction Extension (TIE) features, 

and Philips’ discontinued TriMedia TM1100 [Phi99] processor follow similar strategies, 

but differ dramatically in the amounts of reconfigurable resources available.  

The Xilinx Virtex-II Pro FPGAs are somewhat opposite the Garp structure: they 

consist of a fabric of 103-105 fine-grained configurable logic cells and a few dozen to a 

few hundred dedicated multipliers and RAM buffers. One or two PowerPC cores [Xil04] 
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are embedded within that fabric, normally for high-complexity and low-speed control or 

computation functions. Members of the newer Virtex-4 product family [Xil05] vary in 

logic capacity, but also in the balance between fine-grained configurable logic, dedicated 

arithmetic functions, IO, and hard PowerPC cores.  

Soft CPU cores can also be implemented on most modern FGPAs, and customized as 

desired. ARC International’s product line [ARC05] consists entirely of synthesizable 

processor cores. The distinguishing feature of the ARC products is that they are designed 

with the specific intent that the customer modify the cores by adding application-specific 

instructions. 

Many other commercial and experimental combinations for fixed-function CPUs and 

configurable logic have been proposed, far too many to enumerate here [Har01, 

Com02a]. As shown, they span a wide range of system- and chip-level architectures, 

representing many kinds of configurability and relationships between fixed and 

configurable computing elements. To date, they have generally addressed high-volume 

applications, especially multimedia and communications. They are, however, well suited 

to BCB applications as well. 

3.1.5 FPGA systems 

Reconfigurable accelerators for fixed-configuration processors have been studied for over 

forty years, starting with systems based on logic modules built from discrete transistors 
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and diodes [Est63]. In the early 1970s, the Macromolecule Modeling System was built, 

using MSI logic modules, specifically to handle BCB applications using reconfigurable 

logic attached to a LINC processor [Ell73]. The author noted that “experiments were 

carried out largely by temporary hardware modifications which were easier to effect than 

program changes.”  

Since shortly after their commercialization, the reconfigurable logic in FPGAs has 

attracted attention as an engine for general computation [Gra89]. Today, the list of FPGA 

accelerators includes commercial PC coprocessor boards [Ann05, Gid05, Nal05], fixed 

configurations of PCs and multi-FPGA coprocessors [Sta04], FPGAs in clusters [Bar04, 

Tom05] and large-scale clusters of FPGAs [Cha03, Gid05, Nal05a, Syn05]. There is also 

a long history of research-oriented systems. The Splash-1 VME board set [Gok91, 

Hoa93] was an early and well-known example, based on 32 Xilinx XC3090 FPGAs in a 

serial systolic array, and was specifically intended for sequence comparison algorithms. 

Turn-key BCB accelerators are available in the TimeLogic [Tim05] product line from 

Active Motif. These consist of clusters with dedicated FPGA-based accelerators, 

claiming 100-1000× speedup, depending on the application [Tim02a]. These have had 

only moderate success because of high cost and low flexibility. They are packaged as 

self-contained units, with dedicated processors and storage [Tim02]. Perhaps even more 

importantly, these systems can only run those applications supplied by the vendor – 

BLAST, HMMer, and Smith-Waterman. Only the vendor or close business partner can 
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modify the algorithms being used. Biocceleration BioXL and Bioccelerator product lines 

(formerly sold by Compugen Ltd.) are comparable [Bio05], and also FPGA based. Like 

Paracel’s products, Time Logic and Biocceleration market their accelerators as shareable, 

networked resources. Since these systems are based on commodity FPGAs, they have the 

advantage of being able to track improved fabrication technologies more readily than 

ASICs [Tim02b]. 

Commercial processors from SRC [Boh04] and MPPs from Cray and SGI now have 

FPGAs tightly integrated into their processor nodes [Cra05, Sil04]. In addition, the FPGA 

High Performance Computing Alliance (FHPCA) was launched in May 2005, with the 

goal of creating a TFLOP computer based on reconfigurable logic [Cla05].  

3.1.6 FPGAs vs. other computing systems 

Single, serial processors are by far the most common computers available, but simply do 

not have the capacity to perform many important BCB computations in reasonable time. 

Clusters of N nodes offer (at best) N-fold faster computation. Cluster costs are also 

typically N-fold as high as for single nodes, and often more: they often incur additional 

costs for controlled environments, power supply, and system administration. MPPs and 

supercomputers, often clusters themselves, have many of the same drawbacks. The 

largest supercomputers now require special building construction, multi-megawatt power 

supplies, and air conditioners rated upwards of a hundred tons of cooling capacity. Total 

costs must also include obsolescence and replacement every few years. Although SPMD 
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systems give good speedups for a wide range of applications, programmers able to 

exploit their full capacity are relatively scarce and often unfamiliar with the application 

areas being addressed. 

PC-class processors have shown and continue to show impressive performance gains 

over time. Many of these gains have come from larger on-chip caches, branch prediction, 

speculative execution, and related additions to the processor core. Although helpful, it is 

interesting that these features are not directly related to the CPU’s nominal task: carrying 

out logical and arithmetic operations. Likewise, storing more cache lines on chip suggests 

that proportionally fewer cache lines deliver payload code and data values per memory 

cycle. Even on-chip, cache access is throttled by the von Neumann bottleneck. Both 

factors mean that processor performance per transistor had plummeted as more transistors 

have been added to the processor chip. Successive generations of FPGAs add transistors 

also, but a larger percentage of the added transistors are visible as added logic elements, 

communication resources, and independently accessible memory elements. FPGAs come 

much closer to the ideal of linear increase in computing capability with increase in 

transistor count.  

FPGAs vs. GPGPUs 

GPGPUs are emerging as affordable processors delivering performance on the order of 

1010 FLOPS today and 1011 within a few years, for selected applications. They are readily 

available in PC boards with retail prices of a few hundred dollars – on the order of US$10 
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per GFLOPs and falling. The GPU programming model is severely constrained, however, 

and GPGPU programming is a narrow sub-specialty within the specialty of GPU 

programming. Relatively few non-graphics applications have been mapped into GPU 

programs, and those usually appear to be isolated acts of cleverness. The GPU’s basic 

programming model is of interest, however. The user provides relatively simple leaf-node 

computations to the processing system, roughly corresponding to a scalar computation to 

be performed at each element of a vector or array. This allows the GPU complete 

freedom in organizing high degrees of parallelism and in accessing operand and result 

memory for best throughput. It also makes performance improvements automatic when a 

better-performing GPU becomes available, since system-specific scheduling and data 

access are managed separately from the application logic, and can be handled differently 

according to the GPU’s different internals. 

GPGPUs offer exceptional performance for some kinds of numerical computations, 

and offer floating point capabilities that current FPGAs lack. Still, GPUs achieve their 

demonstrated levels of performance by constraining the kinds of computations that can be 

supported. Clever implementers have put GPUs to use in a number of surprising non-

graphical computations. In some cases, it appears that the GPUs’ raw computational 

power makes even indirect and inefficient implementations run well: a 10 GFLOPs 

processor run at 20% capacity still beats a 1 GFLOPs processor 2:1. Despite impressive 

demonstrations, GPGPU applications are still isolated rarities, achievable only by 

programmers with unusual skills. 
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FPGAs offer advantages over GPGPUs in many respects. The biggest is their potential 

for generality: the FPGA application is free to use any data types, pipeline structure, 

memory access pattern, and internal communication network desired. Multi-GPU 

configurations exist, but are rare. Even two-GPU configurations require specialized 

processor boards, creating doubts about the scalability of multi-GPU solutions. Multi-

FPGA configurations exist commercially, as add-ins to existing host hardware, and 

current FPGAs come with numerous serial links to 10Gb/s, plus hundreds of general-

purpose pins that can be configured for communication. Their hardware, at least, is 

readily scalable far beyond existing multi-GPU configurations. 

Also, although skilled FPGA developers are hardly common, there is an existing base 

of logic designers with FPGA skills. It’s possible that there are larger numbers of 

programmers with GPU experience than there are FPGA developers, but GPGPU skills 

are still extremely rare.  

FPGAs vs. ASICs 

ASICs deliver the best performance for a given amount of silicon. They offer wide 

flexibility in the kinds of computations available, up to the moment of manufacture – 

once built, however, the function is fixed permanently. ASIC design is a rare skill, and 

nearly never found among BCB application developers. Non-recurring costs for a new 

chip are high, also: said to be about US$10M for high-end ASICs, and US$1M for an all-

new mask set [Bur05]. These costs have to be amortized over the production run of the 
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chip, and must be spent again, at least in part, each time a new ASIC or variation is 

required, including changes to take advantage of fabrication process improvements. As a 

result, ASICs make sense in applications: 

⋅ where incremental performance improvements justify large costs, as in some defense 

applications,  

⋅ where huge production runs amortize initial costs over many units, as in many 

consumer products, or 

⋅ where exotic devices are required, as in some research efforts.  

None of these descriptions match the cost-sensitive and fast-changing computing 

systems needed for commercial use. 

FPGA-based systems offer many advantages of ASIC-based systems, but at far lower 

cost, partly because one FPGA mask set is reused by many customers. FPGA designs can 

be simpler than ASIC designs, partly because only the application logic needs to be 

specified, where ASIC design requires attention to many more circuit- and device-level 

details. FPGA designs can be simpler than ASICs in some case, because any errors or 

omissions in an early version of a design can be rectified later. The initial design does not 

need to anticipate all future requirements. FPGAs are reprogrammable at run time, so one 

chip can be time-multiplexed to accelerate many different applications. Designers with 

FPGA skills are rare, but somewhat more common than ASIC designers. The current 
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trend towards reconfigurable logic in mainstream computers makes it likely that 

application development will become easier, as the computer developers create tools to 

make their products attractive. 

3.1.7 Summary: advantages of FPGA accelerators 

In summary, FPGA-based accelerators seem to offer the preferred combination of 

benefits:  

⋅ super-computer or cluster levels of performance without the expense and 

administration,  

⋅ ASIC-like compactness and application-specific efficiency, but with lower costs in 

tracking technology and with higher flexibility, and 

⋅ GPGPU-like performance and integration with familiar PC environments, but higher 

flexibility in the kinds of computations supported. 

FPGA accelerators now cost more than commercial GPU hardware, but those costs 

should drop if they reach the manufacturing volume of graphics cards. In all other ways, 

however, FGPA hardware offers attractive advantages over other kinds of computing 

platforms. 

Application developers nearly never access the hardware levels of their computing 

platforms, however. Processor hardware is accessed through compilers for high-level 
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languages. GPUs are used with elaborate graphics libraries and device drivers. For FPGA 

hardware to be attractive as a system for implementing applications there must be 

comparable kinds of development and application-support tools. That issue is addressed 

in the section that follows. 

3.2 Logic design tools 

This section summarizes the current state of software tools for analyzing and designing 

FPGA-based systems. The primary goal of this survey is to examine the conceptual bases 

of logic design tools at a coarse level, in order to learn how tools for creating application 

accelerators might need to differ from logic design tools.  

First, this gives a brief summary of the kinds of tools commonly used in creating 

FPGA designs, and how different tools are combined for handling different parts of the 

logic design process. Next, this presents a review of the HDLs used by the large majority 

of commercial logic designers. The remainder of this section gives a brief survey of the 

kinds of design tools used, at least experimentally, in recent years. These include 

numerous HDLs without object orientation, standard programming languages used as 

logic specification languages, design based on commercially available libraries, mixed-

language approaches, visual design entry, tools for partial reconfiguration of FPGA logic, 

and object oriented design systems. 



 

3.2.1 Typical design flow 

A suite of logic design tools is often described as a flow. The same term often applies to 

the practice of using those tools. Figure 19 outlines the data and tools in a typical, 

possibly simple tool flow. The logic design is specified using one or more different inputs 

and tools, including hardware design language (HDL) source code, circuits entered 

visually using schematic capture tools, outputs from special-purpose block generators, 

and black box instantiations of commercial IP blocks.  

Details vary between different design flows, but the next step typically converts the 

input format into an abstract logic design. Many optimizations are possible at this point, 

including constant propagation, elimination of redundant and unused logic, etc. 
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Additional inputs to this step guide the process of logic synthesis, for example different 

ways of encoding finite state machines or fanout constraints. Output from this step 

commonly includes preliminary performance estimates, including timing and hardware 

utilization, and functional models, suitable for behavioral simulation. 

Once the logic is phrased in terms of chip-specific primitives, design elements are 

allocated to actual hardware resources and wiring (routing) is created between them. This 

is the placement and routing (PAR) phase. Designers often provide additional constraints 

at this step. Floor planning, for example, provides broad guidelines for location of design 

elements within the FPGA. User constraints state that particular logic signals must be 

connected to particular pins on the FPGA package. Timing constraints require that 

particular wiring delays stay within specified limits. After placement, connectivity 

resources are allocated. PAR is typically an iterative process. Placements and wiring 

allocations are tried, tested against user constraints, and successively refined. It is 

possible for a user to specific exact placements and routing resources, but this is highly 

chip-specific and rare in practice.  

Output from PAR includes accurate estimates of circuit performance, based on 

particulars of the FPGA technology and on the exact logic and routing resources used. 

The post-PAR model includes accurate timing information, so can be critical for finding 

subtle errors in timing relationships. The most important PAR output is the bit file, the 
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exact data image that will be loaded into the FPGA. This includes all lookup tables, 

switch settings, and other state required for the FPGA to implement the design.  

Xilinx offers a Java API for some of its FPGAs, JBits [Xil03], that manipulates the bit 

file directly. That can be useful for highly skilled developers who create custom design 

tools, or who want to make minor changes (such as RAM initialization or some 

arithmetic constants) to the finished design. The JBits API is highly specific to the chip 

for which the file is intended, and is not available for all chip types. As of this writing, it 

is not available for the Virtex-II Pro chip family, the intended target of the prototype 

system. 

FPGA vendors offer tools for downloading the bit files into FPGAs, or the user may 

load the data into ROM or Flash memory. Once loaded, debug tools built into the logic 

design help the designer analyze and debug actual system performance in the running 

circuit. Debug tools, possibly including JTAG serial data access, would have been 

incorporated into the design at early stages, typically as IP blocks provided by the FPGA 

vendor. The analogy to debug compilation of C code is loose but meaningful.  

Some times, the entire flow is one unified package provided by one vendor. More 

commonly, though, a user’s flow will include schematic capture, IP or block generators, 

HDL processors, synthesis tools, and simulators from different vendors. As a result, 

commercial and research tools for logic design vary widely in their input and output 
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formats, depending on the subset of design responsibilities addressed by a particular tool 

or tool set.  

The flow is also open to many variations. Some features of Figure 19 have inner 

detail, not show – graphical or compiler-based design entry need not be the single unit 

suggested by the illustration, but a family of interacting tools. The HIDE tools, for 

example, generate specific placements of logic elements within an FPGA, but use the 

vendor’s tools for routing [Bel03]. It is also common for tool vendors to define vendor-

specific pragmas in their HDL compilers for various kinds of synthesis constraints. 

Figure 19 summarizes the kinds of inputs provided to typical design tools, but the 

specific sources of different kinds of data vary widely. 

3.2.2 Verilog/VHDL 

The two dominant HDLs are Verilog [IEEE01] and VHDL [IEEE97, IEEE02, IEEE02a]. 

Although popular within different design communities, these languages offer similar 

levels of abstraction. Practical application of these languages is generally at the RTL 

design level, no matter what the claims of each language’s proponents.  

These offer modest isolation from the idiosyncrasies of the underlying FPGA’s fabric 

of logic primitives. For example, the design could specify addition of an eight-bit and a 

ten-bit value yielding a ten-bit result. The language and synthesis tools automatically 

sign-extend the one value, hide use of specialized hardware resources (e.g. carry-
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propagation logic), and allocate enough bit-level resources to create the multi-bit values, 

logic, and registers. These HDLs also support division of the application into multiple 

modules, allowing hierarchical decomposition of problem statements and designs. 

These languages share two main strengths: some independence from the logic 

primitives offered by any particular implementation technology, and a high degree of 

control over the allocation of logic resources. Platform independence is often illusory, 

though. Real systems introduce non-portable pragmas [Alt03], maybe hundreds of them 

[Xil02], to instruct that specific HDL constructs be synthesized in particular ways. 

Vendor-specific support libraries [Act01, Xil02a] also expose the underlying primitives. 

This supports the traditional style of logic design, in which the best designer was the one 

who could use the idiosyncratic capabilities of the hardware to the fullest extent. 

Because an HDL permits fine-grained control over logic resource allocation, it 

generally requires users to exercise that low level of control, too. High-performance 

applications commonly wish to replicate a computation as many times as will fit into the 

hardware resources available on a specific chip – no current system allows that kind of 

open-ended request for parallelism. Also, HDLs tend to be constrained to a subset of the 

optimizations used in standard programming languages [Xil02b]. They may be able to 

extract common sub-expressions, for example, or reduce logic through constraint 

propagation. More aggressive optimizations, such as loop unrolling, are generally 

missing from HDL compilers, though. This is reminiscent of the 1970s programming 
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languages like K&R C [Ker78], which relied less on optimizing compilers and more on 

optimizing programmers. 

System Verilog [Acc04] is emerging as a successor to Verilog, but has not (as of this 

writing) gained wide acceptance. It has many OO extensions that are said to be useful for 

simulation and modeling. The OO features appear not to lie within System Verilog’s 

synthesizable subset, however. System Verilog includes standard Verilog as a subset, and 

its synthesizable subset is expected to be System Verilog’s as well. 

3.2.3 Non-OO design languages 

Many HDLs have been proposed and implemented; a few have even been 

commercialized. Each one represents a somewhat different conceptual basis, different 

logic specification philosophy, and set of design tradeoffs. Non-object oriented languages 

predate OO systems, so they have a longer history. Also, partly because of relatively slow 

infiltration of software design concepts into hardware design practice, non-OO HDLs 

continue to hold a strong position on HDL research.  Although they vary widely, recent 

HDLs seem to cluster around four major conceptual centers: 

⋅ Customizations of existing languages, typically C, for behavioral specification. In 

these HDLs, familiarity of the base language is generally considered an asset, as way 

of easing the involvement of standard programmers in hardware design. This also 
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lets the language designers focus on their novel aspects, without having to solve 

basic language design issues all over again. 

⋅ Geometric design, confusingly called “‘structural” design by some authors. In these 

systems, it is taken as a premise that the 2D arrangement of logic elements on a chip 

is as fundamental as the behavior of the logic elements, usually for performance 

reasons. Most geometric HDLs do not require absolute 2D addresses. They do, 

however, require design in terms such as “A to the right of B”, “C north of D”, and so 

on. 

⋅ Structural design, as distinct from geometric. In structural design, hierarchical 

composition of logic components is the central concept. The hierarchy reflects 

logical structure only, and does not have any direct effect on the placement of logic 

elements within the FPGA fabric. Behavioral or functional specification need not 

even be part of the language, but relegated to primitive components defined outside 

the system. Verilog and VHDL can be used this way, in terms of vendor-specific 

component libraries, but are more often used as a combination of behavioral and 

structural HDLs. 

⋅ Interface-based design, often an extreme form of structural design. Here, the 

externally visible features of a logic component are central, and automate 

connections within or across levels of hierarchy. 
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Of course, real systems generally emphasize one conceptual base while including others, 

in varying degrees.  

Language customizations for behavioral specification 

HardwareC [Ku90], SpecC [Dom98, Dom02], Bach [Kam01], Handel-C [Cel03], dbC 

[Gok97], Streams-C [Ags95], Transmogrifier C [Gal95], Mitrion-c, [Mit05], Impulse C 

[Imp05, Pel05], and SA-C [Rin01] represent a category of behavioral languages with 

syntax based more or less closely on ANSI C, but with extensions representing specific 

hardware concepts. In HardwareC, those concepts include block composition, fine-

grained parallelism, and tri-state busses. In SA-C, a set of common image processing 

kernels (2D convolution, histograms, etc.) have been identified, then represented as a 

fusion of loop control constructs and array handling. Other mainstream programming 

languages been modified for use as HDLs, as well [Sni01]. 

One category of FPGA tools based on sequential languages “is designed with 

embedded processors in mind” [Imp05], or implements applications in terms of “virtual 

processor” [Mit05]. Perhaps this technique is meant to appeal to programmers with 

typical backgrounds, or to offer some benefit in compilation and scheduling of 

operations. At an extreme of this style, one finds the X-Acute Tcl [Acr05] and JOP Java 

[Sch05] bytecode processors implemented in FPGAs. Processors inside of FPGAs, 

especially soft cores, typically run at clock speeds one to two orders of magnitude lower 
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than those of typical CPUs, so this technique has trouble exploiting much of an FPGA’s 

inherent parallelism.  

Celoxica’s Handel-C is said to be “based on the syntax of conventional C” [Cel03]; it 

is very loosely based on C, and introduces a number of incompatible constructs. It adds 

language elements for parallelism, for replication of logic, for reset operations and for 

Occam-like communication channels between elements executing concurrently. It omits 

the union declaration, but adds declarations of memories and signals. It also adds novel 

syntax similar to bit fields in a C struct, allowing explicit bit allocation to particular 

variables. It allows pointers, but places severe constraints on the ways they are allowed to 

be used. It redefines main() to be a clock domain – an application with more than one 

main() entry point implicitly has more than one clock domain. As with Forge, Handel-C 

keeps large parts of the syntax of the base language (C in this case), but creates semantic 

differences that make it quite unlike its parent language. 

SA-C [Boh01, Dra00, Ham99, Ham01, Rin01] differs from the Forge, Handel-C, and 

System-C in two significant respects. First, it is a research vehicle, not a commercial 

product. More importantly, it does not claim to address the general problem of compiling 

any application into any hardware engine. It addresses a specific set of computations that 

are known to occur in image processing. Its authors claim it to be a single-assignment 

variant of C. If a C “variant” is allowed utterly novel control flow, array indexing syntax, 

declaration types, and syntax for variable references, then that could be true. 
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SA-C embodies a number of concepts that appear useful in contexts other than image 

processing. Its single-assignment rule simplifies data flow analysis, but is almost 

obviated by other language features. It eliminates normal looping constructs in favor of a 

few custom constructs. These have been chosen for broad utility within the application 

domain. One loop type implicitly iterates over all indices of a two-dimensional array, as 

needed for typical whole-image operations. Other loop organizes 2-D window operations 

or 1D row and column operations within the 2D image. Yet another co-indexes several 

vectors, as needed for sums, dot products, etc. SA-C invites the application writer to fill 

in the loop bodies with application logic. By enforcing the use of well-understood loops, 

SA-C creates a highly predictable flow of data. That flow is amenable to many 

optimizations that can not feasibly (or at all) be derived from highly generalized language 

constructs. 

Since SA-C prohibits ordinary hand-coded loops, loop bodies must be basic blocks 

(except for possible conditionals). This dramatically simplifies automated analysis of the 

code. The single-assignment rule, in particular, makes it possible to analyze all 

expressions fully – there is no possibility of open-ended growth of a sum, for example, 

because of open-ended iteration of a loop construct. It is worth noting that “shaders” in 

ATI’s Radeon, NVIDIA’s GeForce, and similar GPUs [ATI02] are programmed using a 

similar construct: the application writer provides vertex or pixel computation code, 

without control constructs or with profoundly limited ones, and that code is iterated over 

pixel ranges of interest by the GPU’s control logic. Limits on shader control constructs 
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include “static branching” and “static looping,” where branch selection and number of 

iterations are decided at compile time [Eng04], allowing compilation to branchless 

instruction sequences. Some GPUs also imposed limits on the number of instructions in a 

shader, 96 for pixel shaders and 256 for vertex shaders in Microsoft’s DirectX 9, shader 

2.0 [NVI05]. Other constraints, such as limits on specific kinds of instructions (e.g. 

texture vs. arithmetic), also simplified the system controller [NVI04]. The OpenGL 

shading language is built around the same separation of computation and control [Ros04]. 

Another analogy to SA-C is that GPUs control all access to application data by the 

application-specific code. In SA-C’s case, this allows advanced memory optimizations 

and data sharing between loop iterations, but GPUs use this to hide task scheduling and 

the presence of parallel evaluation pipelines. 

Geometric design 

For current discussion, a design is geometric if it is phrased in terms of the spatial 

placement of logic elements with respect to each other, whether or not an exact 

coordinate system is used for placing design elements. This has been called “structural” 

design by some authors, but current discussion reserves a different meaning for that term. 

It has been asserted that “[geometric] design techniques often still result in circuits 

that are substantially smaller and faster than those developed using only behavioral 

synthesis” [Hut99]. It is also widely realized that the place-and-route (PAR) step of 

FPGA design can be time consuming – overnight runtimes are common for large, dense 
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designs. Geometric design often constrains the placement problem and eases the routing 

problem enough that PAR is omitted or minimal, a fact that appeals to people impatient 

with hours-long PAR times. 

Many languages and systems make geometric features first-class parts of the design 

statement, including µFP [Luk89], Pebble [Luk98], JHDL [Hut99], and HIDE [Ben02, 

Bel03]. Languages including Ruby1 [Jon90, Guo95, Sin95] express geometric constraints 

in less explicit terms. Lava [Bje99] assigns additional geometric semantics to features 

that already existed in the base language from which it is derived.  

Geometric information is not present in standard HDLs. It can, however, be added in 

the form of floor-planning directives to the place and route steps of standard tool flows. 

Other design constraints can force logic assignment to exact resources within the FPGA, 

define relative placement between design elements, or create connections to specific IO 

pins [Xil02]. These constraints can be inserted into VHDL using custom values for the 

language’s standard attribute mechanism, or into Verilog using specially formatted 

code comments. Extensions like these do not qualify either VHDL or Verilog as truly 

geometric design tools, but as structural or behavioral tools with non-standard geometric 

semantics added. 

 

1  Not to be confused with a more recent scripting language by the same name [Tho04]  
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Structural design 

A purely structural design specifies logic elements as blocks composed of other blocks 

and connections between them, down to black-box primitives. Mainstream HDLs 

including VHDL and Verilog combine behavioral and structural design styles, but can be 

used in a completely structural way, when combined with vendor-specific libraries of 

primitives [Xil02c]. Systems such as JHDL [Hut99] and Balboa [Dou03] support only 

connection of design blocks, assuming that leaf blocks will be created externally to the 

design system. Vendors like Xilinx provide extensive libraries “cores” as simple as 

adders or as complex as network MAC protocol handlers. Other research has proposed 

systems for block generation [Che90, Meg01], without direct reference to connection 

between blocks, or to minor customizations of complex algorithms [Chu98]. Block-

generators such as PAM-Blox have been useful for packaging specialized designer 

knowledge about CORDIC algorithms [Men00], boolean satisfiability [Men99], or 

floating point [Lia99]. Such systems often address varying kinds of configurability 

[Giv00]. 

Interface-based design 

Throughout this discussion, the term interface is intended, at least loosely, in the 

following sense [OMG03 p.3-50]: “An interface is a specifier for the externally-visible 

operations of a class, component, or other … without specification of internal structure. 

… Interfaces do not have implementation”. Although this definition is most commonly 

applied to software systems, it is compatible with the component definition in the VHDL 
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specification [IEEE02 sec4.5]: “A component declaration declares an interface to a 

virtual design entity that many be used in a component instantiation statement” – 

implicitly, without knowledge of the component implementation. It is also compatible 

with the Java language’s interface construct. 

When design blocks are created or bought as black-box units, only the block’s 

interface is visible to the designer. This has prompted interface definition as a task in 

itself [Neb96, VSI97, Row97, Vah98, Len00, Dou03, OCP01, Oli02, Sin02]. As will be 

seen in later sections, well structured interfaces are central to both object oriented design 

and division of responsibility within the design system.  

3.2.4 Synthesis from standard programming languages 

A number of different approaches have been taken to increasing the conceptual level at 

which an HDL represents a design by basing the HDL directly on a familiar 

programming language. Xilinx, for example, has created the Forge programming 

language. It is syntactically derived from Java, but with a number of constraints described 

in the language’s Source Style Guide [Xil03a]. This Style Guide states the restrictions that 

make Forge a subset of Java. The restrictions, rather than being points of programming 

“style,” create such profound constraints that normal, object-oriented Java programming 

style is largely impossible.   
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System-C [OSC03] is another derivative language, based on C++. Since it supports 

templates, operator overloads, and user defined type-casts, it can implement complex 

semantics with syntax that looks superficially straightforward. Like Handel-C, it supports 

interfaces (a bit of syntax that might descend from Java.) Although Synopsis advertises 

support for System-C, it appears not to have gained broad acceptance within the logic 

design community. This language appears to rely on a sophisticated front end, possibly 

more complex than the input phases of standard C++. That complexity makes it 

unattractive as a research vehicle.  

Other systems use standard programming languages as a means of exploring the space 

of hardware/software partitions. They vary widely in the degree of automation they 

provide. ASC [Men03, Men06] starts with a C++ compiler, but adds libraries of macros 

and hardware-oriented data types. Under the control of macros, operator overloads, and 

coding features, the programmer specifies a subset of the application to be synthesized. 

Approaches differ, but ASC uses a well-established library of logic blocks [Men02] for 

generating synthesizable output. HLLs with parallel constructs have also been used or 

adapted, including Ada [Bar85], parallelized Prolog [Gre85], Occam [Man85, Pee00, 

Pag95], and Haskell derivatives [Odo02]. 

To raise the level of abstraction of HDLs, several projects have integrated useful 

compiler functions such as generating graph representations and performing 
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optimizations [Gal95, Sod98, Gok00, Mar00, Kam01, Moi01, OSC03, Xil03a]. Others 

compile efficiently to particular hardware models [Hau97, Wai97 Gol99, Ye00].  

However, direct compilation of standard C code to hardware, even when possible, 

does not overcome the basic problem – that “concurrency is fundamental for efficient 

hardware, yet C-like languages impose sequential semantics and nearly demand the use 

of sequential algorithms”. Further, “automatically exposing concurrency in sequential 

programs is limited in its effectiveness” [Edw04], and “compilers are generally able 

neither to detect enough of the necessary parallelism nor to reduce sufficiently the inter-

processor overheads” [Str05]. This is due to unintended introduction of unnecessary 

dependencies, which are very difficult to remove [Sny86, Cul99]. Even without 

unnecessary dependencies, “two designs synthesized from two semantically equivalent 

but syntactically different descriptions may differ significantly in quality,” with optimal 

designs potentially being unreachable [Voe01]. As a result, it is both correct and 

misleading to assert that “system design is essentially a programming activity” [Gup97]. 

Reconfigurable system design is programming, to the extent that it uses keyboards and 

compilers as its main development tools. This statement disregards the fact that FPGAs 

represent a fundamentally different kind of computing fabric than any fixed processor, a 

different type architecture, [Sny86]. As a result, that statement gives the impression that 

standard, sequential programming languages can represent massively parallel FPGA-

based implementations as effectively as they represent sequential programs – a 

questionable assertion, at best.  
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It has long been known that superscalar ILP (Instruction-Level Parallelism) provides 

only modest speedups on typical applications [Ris72, Jou89, Wal93]. Some mathematical 

applications are amenable to loop unrolling and other aggressive optimizations, but non-

vector code derives little benefit from N-way parallel instruction dispatch, for N greater 

than about 4 to 10. Given FPGAs’ relatively slow clock rate, massive parallelism must be 

a major factor in achieving high speedups over processor-based implementations. These 

results provide little hope that automated analysis of existing applications can extract the 

level of parallelism required to make FPGA acceleration attractive. This leads to the 

statement that “… the C-to-gates approach … doesn't work because of the parallel nature 

of hardware. This shouldn't be too much of a surprise, because optimizing a sequential 

program onto a parallel machine has long been known to be computationally intractable 

…We might hope there would be compiler algorithms to do a "good enough" job despite 

the complexity. … Unfortunately, and despite 40 years of parallelizing compilers for all 

sorts of machines, these algorithms don't work terribly well.” [Pag04] 

3.2.5 IP libraries 

There is burgeoning industry built around intellectual property (IP) blocks for use in logic 

designs. Xilinx, for example, offers a large library of “cores,” designed by Xilinx or by 

other vendors. Some are as simple as parameterized accumulators, or as complex as 

JPEG decoders and whole microprocessors. Actel offers over 100 cores [Act03] covering 

a similar range capabilities. Altera has a similar library, and offers a “DSP Builder” 
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product [Alt03]. This offers several dozen computation-, memory-, and filter-oriented 

blocks, parameterized in a variety of ways, with semi-automatic aggregation into 

dedicated data paths. Licensing arrangements vary widely, according to the vendor and 

complexity of each block.  

These cores have a number of obvious advantages: they offer complex functions 

(including Reed-Solomon codecs, FFTs, and PHY-level network protocols), already 

debugged, and ready to add to the standard logic design flow. It would be difficult to use 

many of these functions in BCB applications, though. First, the functions offered have 

little to do with BCB or other general computations. Even blocks that look promising at 

first, such as Viterbi decoders, may have very different meanings in applications like 

hidden Markov models [Kos01] than they do in the context of error-correcting 

convolutional codes [Swe02]. 

3.2.6 Mixed-language approaches 

Logic designs are commonly defined using more than one kind of representation. The 

purely structural design style of VHDL or Verilog is one example, where the leaf IP 

blocks, cores, and primitive components [Xil02c, Act03] are defined outside the 

language. Several vendors allow DSP functions to be modeled in Matlab, then converted 

into logic [Xil02d, Alt03]. Component generators [Luk98, Men99] and domain-specific 

compilers [Men01] represent other ways of using different specification languages for 

creating parts of a logic design. The question is rarely whether multiple representations 
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should be used in a logic design, but the way in which the different representations are 

integrated. 

The conceptually simplest way to combine logic representations in one logic design is 

to define components separately, using the different representations. Components are 

then integrated at a late stage in synthesis or PAR. This is analogous to the software 

modules written in different HLLs (e.g. Fortran and C), converted to a object code 

format, and integrated in their converted forms by a linker. In the normal Xilinx tool 

flow, EDIF is the common low-level representation, output by compilers, graphical 

schematic capture tools, block generators, etc. This is the most flexible way of combining 

different representations, since it eliminates any dependencies between the different 

formats.  

A related approach uses different representations at different levels of hierarchy. 

Balboa [Dou03] is built around the idea of integrating leaf components from undefined, 

external sources. This uses at least three different representations: one or more formats 

for creating the leaf blocks, C++ as a Split Level Interface (SLI) adapter from external 

format to a common representation, and a Component Integration Language (CIL) for 

composition of leaf blocks into complete designs. The CORBA Interface Definition 

Language (IDL) [OMG01] is another integration language. IDL is similar to Balboa’s 

CIL in providing a unified mechanism for establishing communication between 
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components of differing interfaces. IDL differs in that it creates adapters to enable 

communication but does not create communication pathways.  

IDL also differs from CIL in being an OO language, of an odd sort. It supports classes, 

polymorphism, and inheritance, but does not itself support objects. Instead, it uses OO 

concepts to describe objects created using standard programming languages, like Java, 

Ada, or C++. 

Other language combinations used mixed representations within a single body of 

source code. The C language’s macro preprocessor, cpp [Ker78], is one familiar example. 

Although macros are commonly treated as part of the C language itself, the macro 

preprocessor typically runs as a separate compilation phase. Macros in C code always 

contribute to the C application, and are eliminated from the source code at an early stage 

of compilation.  

Javadoc annotation [Fri95], including an HTML subset, is embedded in Java source 

code as comments, so has no effect on the Java application. Instead, Javadoc annotation 

is processed separately into hypertext that describes a Java implementation. This is 

related to Knuth’s Literate Programming [Knu92], in which alternative processing would 

extract either Pascal code or TEX-formatted text from a file containing both. This differs 

from Javadoc a number of ways, but most obviously in that a literate Pascal program is 

not a valid Pascal program itself, but must be “tangled” before compilation.   



 

Other language combinations include HTML with embedded JavaScript code 

[ECMA99], PHP programs with embedded HTML [Gil01], SQL embedded as string data 

in other programming languages, tool constraints embedded in VHDL attribute 

declarations [Xil02], and so on. A full catalog of language combinations and relationships 

between combined languages is far beyond the needs of current discussion. It suffices to 

say that multiple different languages can successfully be combined in a single source file, 

allowing each to take responsibility for a different aspect of the whole system’s 

definition. The possible combinations and ways of extracting the different elements are 

limited only by an implementer’s creativity. 

3.2.7 Visual design entry 
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Figure 20. Graphical 

form of expression 

X = 3*A + 7*B

B 
Design entry systems are the point at which a 

programmer or logic designer states the intended 

behavior of an FPGA-based system. Two styles of 

interface dominate contemporary commercial practice: 

register transfer level (RTL) programming languages, 

described above, and schematic capture [Xil02a].  

Schematic capture uses a visual editor, with the 

familiar glyphs for AND gates, OR gates, inverters, and 

other design elements. The design consists of various 
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instances of the selected primitive objects and blocks representing other design 

components in hierarchical aggregation. Connectivity is strictly visual, consisting of lines 

representing wires connecting the circuit elements. Although natural to some hardware 

designers, particularly those experienced at the transistor and discrete component level, 

schematic capture is not suitable for representing BCB applications. The problem is not 

that visual representation is necessarily inappropriate to BCB, it is that the design 

primitives available are poor matches to BCB applications. More than just the logic 

elements offered, the techniques for creating design hierarchy, control constructs, and 

logical relationships are not suited to high-level software design.  

In addition, the need to create a legible spatial arrangement adds to the number of 

design criteria and constraints, even though that spatial arrangement is irrelevant to the 

computation. Figure 20, for example, illustrates a typical representation of the phrase 

X=3*A-7*B, nine typed characters. The visual representation requires manipulation and 

placement of eight blocks representing signals, constants, and operations, plus seven 

connections between them. It also includes the task of placing blocks and wires in 

visually logical arrangements. This visual placement is generally not geometric design, in 

the sense of section 3.2.3, since it does not affect the placement of logic elements within 

the FPGA fabric. That arrangement is work required of the user by the design tool, but 

that is irrelevant to the logic design. 
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Star Bridge’s Viva system [Sta05] can operate at a similar or even lower level than 

typical schematic capture, exposing the structure of the Xilinx FPGA’s Configurable 

Logic Block (CLB), the finest unit of configurability in the FPGA. Applications built 

from such device-dependent libraries are difficult or impossible to port, even to other 

products from the same vendor. The Viva tool set does, however, contain higher-level 

blocks, such as adders and multipliers, parameterized for number of bits. At higher 

functional levels, its feature set is comparable to that of other box-and-wire visual design 

tools. Annapolis Micro Systems has also announced its CoreFire design system, based on 

a library said to contain over 1000 block types. This library is heavily oriented towards 

signal processing functions, and its usefulness in general computation is not clear. It also 

appears to be locked to Annapolis hardware, further limiting its usefulness. 

Xilinx has created a set of libraries, the System Generator for DSP, that work with 

MatLab’s SimuLink [Xil02d, Mat03]. These allow a user to define signal processing data 

paths using point-and-click, drag-and-drop interface. The basic units of the design library 

include elements to generate constant values, multiply by a constant, add two values, or 

compare two values. There are more complex blocks as well, up to the complexity of 

FFTs or microprocessor cores. This is different from schematic capture systems, since the 

blocks have no direct correspondence to logic functions, and since synchronization and 

buffering are handled automatically. Other tools, such as Accelchip [Acc03] and Match 

[Per99], convert Matlab applications to FPGA-compatible logic.  
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Other visual tools exist, including floor planning tools and circuit-level design tools. 

These in fact have a close relationship between an element’s position in the visual field 

and it position in the FPGA fabric. Floor planning has little or no effect on the logical 

function of a system. Given 100K available gates, design at the level of individual gates 

can not be effective except in rare, isolated, and small parts of a design. As a result, 

neither kind of tool is considered important for the functional design of large 

computations. 

UML for visual representations 

OMG [Sel98, OMG03, OMG03a], ObjecTime Ltd. [Sel94], and many others have 

proposed visual representations for software designs. These systems tend to share several 

characteristics. First, they address the general problem of representing all possible 

software systems, or vast categories of systems. Although sometimes applicable to 

hardware design, they tend to address hardware concepts tangentially or in unfamiliar 

terms. Second, they tend to be complicated, using a variety of notations to represent 

different aspects of system behavior. Third, they tend to lack clear relationships between 

the graphical and textual encodings of different parts of the system specification. In 

particular, the division of responsibility between visual description and source code 

representation tends to depend on specific CASE tools rather than the notations 

themselves. Finally, these representations are often vehicles for specific design 

methodologies [Sel94, IBM04]. There is a growing realization that these methodologies 
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address projects involving thousands of work-years of development effort, but do not 

always suit smaller designs [Bec00].  

Still, UML has gained wide acceptance as software design and even implementation 

tool, so it is no surprise to see UML applied to logic design, too. It includes a variety of 

notations for representing state machines, object composition, object interactions, and 

other useful concepts. The YAML2 system [Sin00] uses UML’s “component diagram” 

notation as the input format for synthesizing control structures. In order to strengthen the 

design entry metaphor, YAML also uses some geometric design. Others have used 

UML’s activity diagrams for specifying state machine behavior [Bjö02], generating 

synthesizable code using tools reminiscent of the Model Driven Architecture’s 

transformations between abstraction levels [Kle03]. Another effort uses UML class 

diagrams to automate creation HDL code skeletons, which are then filled in by hand 

[Dam04]. This work also parameterizes component definitions (called metaprogramming 

by those authors), using UML’s template class notation. The authors note that UML’s 

containment and physical composition map neatly into structural hardware design, but 

use the term “logical composition” to map multiple inheritance to a component that 

exports more than one interface. Although the conceptual mapping is meaningful, the 

 

2  Distinct from YAML Ain’t Markup Language, proposed as a simpler alternative to XML. 

(http://yaml.org/spec) 
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authors have created a new definition for the term “composition” in a way likely to cause 

confusion to people familiar with UML’s composition in other contexts. 

Newer features in the UML family are also appearing in the hardware design 

literature. MDA (Model-Driven Architecture) is based on automated conversion of PIMs 

(Platform-Independent Models) to PSMs (Platform-Specific Models), or automated 

adaptation of high-level system specifications to technology-dependent implementations 

[Kle03]. UML’s OCL (Object Constraint Language) [War03] is designed to add 

semantics constraints a system description, so serves some of the same purposes as the 

assertion statement of SystemVerilog [Acc03].  

3.2.8 FPGA reconfiguration tools 

FPGA reconfiguration, and especially partial reconfiguration, is not properly a kind of 

design tool, although tools have been built to support it. Instead, partial reconfiguration is 

a technique for reloading part of an FPGA’s programming pattern while leaving other 

parts untouched. Some FPGAs and accelerator implementations allow reconfiguration of 

part of the FPGA while other parts continue to deliver service. Since partial 

reconfiguration has the potential for modifying small functional elements within a larger 

body of logic, it is worth considering as one possible way of creating customized 

accelerators. 
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Standard FGPA development combines IP blocks and circuit-generator outputs with 

custom logic designs, possibly based on graphical circuit capture or text-based languages 

like VDHL and Verilog. This design technique generates a single bit file representing the 

entire definition of the FPGA’s programmable state. A manufacturer can release new bit 

files to reconfigure an FPGA-based system, to correct errors or to enhance features – 

compile-time configuration, as some authors call it. Some systems choose between 

multiple bit files at run time, loading new ones as needed to switch between operating 

modes. This is called dynamic or run-time reconfiguration, sometimes called temporal 

partitioning of logic [Hut95]. It allows the use of smaller FPGAs, since only the active 

subset of application logic needs to be held on chip at any moment, reducing logic costs 

and power consumption. Said differently, it can “increase the functional density” of a 

system [Eld96]. 

Developers have also realized that bit files could be customized on the fly, to make 

application- and context-specific changes to functionality or data values. This added 

flexibility allows hard-coded efficiency, for example in string-matching applications 

[Lem95] or in filters with variable coefficients [Wir97]. When Xilinx published its JBits 

API [Guc99a] for the XC4000, descended from the JERC6K tools for the XC6200, it 

allowed full access to the bit file. This enabled new uses for application-specific 

customization of bit files [Guc02]. Other, similar APIs also enabled application 

composition on the fly, from libraries of fixed components, resolving placement 
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mismatches between input and output ports at composition time [Guc99]. Still these 

approaches all loaded or re-loaded the entire FPGA programming pattern. 

As early as 1988 [Kea88] it was realized that subsets of the FPGA’s state could be 

reprogrammed without changes to the rest of the FPGA logic definition – partial 

reconfiguration, occasionally called local run-time configuration. This offers several 

advantages over complete reconfiguration, including faster time to reconfigure, 

preservation of state in untouched parts of the FPGA, and the possibility of continued 

operation during reconfiguration [Cur05]. The feature was first commercially 

implemented in Xilinx’s XC6200, and has since been used in many FPGAs from Xilinx 

and other manufacturers. 

Current tools for partial reconfiguration address different parts of the problem. 

PARBIT [Hor01] takes a full bit file and extracts the region to be loaded. The swappable 

component must be built using synthesis constraints to define the region of chip in which 

it is to be loaded, and the chip coordinates at which connecting wires must be located 

[Hor04]. JRTR [McM00] analyzes two different bit files in order to determine which 

FPGA regions differ and must be reloaded.  

Design techniques for partial reconfiguration also address different aspects of the 

problem. Early papers covered basic concepts, such as kinds of reconfigurations most 

amenable to partial reconfigurations [Had95]. Other authors address issues of two-

dimensional fit between logic elements that change at different times, whether 



 

 146 

rectangular [Baz00] or not [Com02]. Coverage of partial reconfiguration issues is erratic, 

though. It is still true that “Currently available CAD tools are a very poor match for local 

RTR [run-time replacement] implementations.” [Hut95] 

3.2.9 Object Oriented Hardware Design Languages 

As noted above, Java and C++ are two mainstream OO programming languages that have 

been adapted for hardware specification. Despite numerous proposals for other OO HDLs 

over the years, they not had wide acceptance. The IEEE 1577 standards committee was 

formed to study OO extensions to VHDL, but was terminated without producing a 

standard. 

Lola [Wir95] was a relatively early and stripped-down HDL. Like Pascal (and by the 

same creator), it was intended as an educational language. Although Lola uses the idea of 

objects for representing hardware elements, it lacks other features generally associated 

with OO languages, notably classes and inheritance. 

SystemVerilog [Acc04] is an object oriented extension to standard Verilog. At this 

writing, it has some industry support, and is in draft form as IEEE standard 1800. 

Acceptance of the final IEEE standard is not complete, however. A number of companies 

have announced support for SystemVerilog, most often as a design verification language. 

SystemVerilog’s extensions beyond the original Verilog language OO include classes, 

class objects, and inheritance. According to the SystemVerilog standards committee, 



 

 147 

however, a “class is not intended to be synthesizable but useful for testbench and system 

level modeling.” [Ger03] If the OO language features are not synthesizable, current 

discussion does not consider this an OO HDL. 

It has been claimed that VHDL is an object oriented design language [Eck96], because 

of the static form of polymorphism supported by the configuration/architecture 

language construct. The claim that VHDL, in its current form, supports inheritance 

requires a notion of inheritance that very few would accept. 

At least one design system [Dam04] uses UML notation to create OO descriptions of 

logic designs. The system described, however, uses OO techniques only for the design 

hierarchy and for defining the ways in which components are parameterized. Leaf-level 

implementation of the design is left to unspecified “generators.” Also, the examples and 

discussion do not demonstrate significant use of UML’s OO subset – using an OO-

capable design tool without using its OO features is difficult to consider OO. 

3.3 Object Orientation and HDLs 

Various authors have described at least three meanings for an “OO design system:”  

⋅ The design system itself is implemented using OO technology [Gup89, Men99, 

Men01], irrespective of how the resulting hardware is modeled or specified. 
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⋅ The simulatable model of the hardware system is phrased in OO terms [Hut01, 

OSC03, Acc04], irrespective of how the logic is implemented or how the hardware 

design is specified. 

⋅ The synthesizable hardware design is specified in OO terms [Wir95, Bje99, Hut99, 

Xil03a], at least in part. 

The first definition is not of interest for current purposes. It refers to the implementation 

technology used by the tool-builders, and says nothing about how the hardware’s 

structure and function are defined. 

The second definition, the hardware model, is not necessarily of interest either. The 

hardware model is the design specification only if it can be translated directly and 

automatically into a logic design. Not all modeling systems have this property. Such 

systems require at least two representations of the hardware design, one for modeling and 

simulation, and a second for synthesis. This includes oddities, such as versions of 

SystemC that use C++ with inheritance for modeling, but exclude inheritance from the 

synthesizable subset [Gim03]. It also includes methodologies that separate OO 

architectural design and functional representation for logic specification [Jan00].  

OO systems in the third category actually use OO techniques to specify all or part of a 

hardware design. Lola, an early object-based HDL [Wir95], used objects to represent 

components, and object state to represent component state. One Java-based design system 
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mapped Java’s component model, called JavaBeans, to hardware components [Kuh00], 

and otherwise maintained the semantics of large parts of the Java language. JHDL, 

another Java-based effort [Hut99], used Java syntax for connecting leaf components, 

defined outside of the system. It is worth noting that, although JHDL allows all of Java’s 

semantics for compile-time configuration, its synthesizable mechanism for passing data 

(the Wire class) supports only untyped bitstrings. Other research have described fixed-

depth [Ver00] and more general [Neb96] inheritance hierarchies for component reuse. 

Despite lengthy discussion in the 1990s, Objective VHDL [Rad98] and other OO 

extensions to VHDL (e.g. [Sch95]) never entered the mainstream, and IEEE efforts at 

standardization have been discontinued. 

3.3.1 OO language features 

Definitions and categories of object oriented (OO) programming languages have varied 

over the course of time [Weg87, Liu00], and even now differ between authors. Whatever 

the other differences in their definitions, writers seem to agree on these features as central 

to object orientation [Cab95]: 

⋅ Use of objects, discrete entities that define some set of operations and, optionally, 

manage some internal state. Different instances of an object type have identical 

operations, but each has its own replica of at least some of the state values, 
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⋅ Inheritance, a set of policies for defining new objects in terms of one or more 

existing objects or interfaces, and 

⋅ Polymorphism, rules that allow objects with a given interface to be handled the same 

way, irrespective of the object’s type and of how the interface is implemented. 

⋅ Classification, or presence of language constructs (commonly called classes) that 

create a distinction between an object interface and object implementation.  

This consensus admits large numbers of variations. Classes (including Java interfaces 

[Gos05], etc) define object types in terms of methods, data values, etc, but do not define 

instances of the type, and are not a necessary part of an object-oriented type system 

[Bru02]. Object oriented languages without classes are often called object-based. 

JavaScript [ECMA99] and Self [Ung97] are object based languages that support 

inheritance. Some early object based languages, including Modula [Wir82] and the 

educational HDL Lola [Wir95] had only objects but not inheritance. Since the distinction 

between object oriented and object based is not important for current discussion, the 

distinction will not be mentioned again.  

Genericity is also known as class parameterization, parametric polymorphism [Bru02] 

or let-polymorphism [Pie02]. Despite historical debate [Mey86], genericity and 

inheritance-based polymorphism are generally considered complementary rather than 

competitive, and genericity is not a requirement for object orientation. Genericity 
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mechanisms appear in C++ templates [Str97] and in the somewhat richer mechanisms in 

CLU [Lis84], Eiffel [Mey92], and Java 5.0 [Gos05], for building complex types in terms 

of other types. Ada [Ada95] defines the generic language construct, which allows 

datavalues well as types for class parameters. VHDL [IEEE02] borrows Ada’s generic 

implementation, but allows only data values as parameters, not types, and the same is true 

of SystemVerilog’s module, interface, and class parameterization [Acc04]. As a 

result, the VHDL generic and SystemVerilog parameter constructs affect only range 

limits on values and array indices. For purposes of current discussion, this is not 

considered a significant change to the parameterized class; only types passed as generic 

parameters qualify for genericity. 

 These language features can appear together or separately, in different combinations, 

as suggested by Table 1, adapted from [Liu00]. HDLs in this table are considered to 

support objects, classes, or inheritance only if those language features appear in the 

language standard’s synthesizable subset. As a result, Table 1 reports both SystemC 

[Gim03] and SystemVerilog [Ger03] as lacking inheritance. VHDL and Verilog both 

have published standards stating their synthesizable subsets. Some vendors include more 

features in the vendor-specific synthesizable language subset, but the published standard 

is used for this categorization. 

Examples of objects include instances of a Java class, a VHDL architecture, a 

Verilog or Modula module, or a CLU cluster. Java’s class and interface 



 

constructs count as classes, because they both specify object interfaces, as does VHDL’s 

component.  

Verilog’s module and SystemVerilog’s new interface constructs can be instantiated 

to create hardware objects. In both cases, the interface definition is implicit in the 

Table 1: Comparison of Object Oriented Features for Selected Languages 

Language Objects Classes Inheritance Type generics 

C, Fortran, Pascal - - - - 

Modula, Lolaa, 
Veriloga, 

SystemVeriloga 

Yes - - - 

VHDLa Yes Yes - - 

Ada83, CLU Yes Yes - Yes 

JavaScript, Self Yes - Yes - 

Java 1.4 Yes Yes Yes - 

CORBA IDL - Yes Yes - 

SystemCa Yes Yes (b) Yes 

Java 1.5, Beta, 
C++, Eiffel 

Yes Yes Yes Yes 

(a) This language is an HDL. All others are HLLs. 

(b) Yes, if the construct is in the compiler’s synthesizable language subset, no 
otherwise. 
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implementation. Although these languages have hardware objects, they do not have 

classes. In VHDL, however, the component (object interface) and architecture 

(implementation) are different. Using the configuration construct, one component 

reference can be made to use different architecture implementations in different 

contexts. It’s a crude but valid form of polymorphism.  

 Code references allow another kind of code sharing, and even a limited form of 

interface definition, but are not, but themselves, polymorphism features. They have the 

form of function pointers [Ker78], procedure parameters [Jen91], C# delegates 

[ECMA05], or other similar constructs. These refer to individual functions, which allow 

creation of different implementations of a given function signature, but do not refer to 

whole objects. Another system, Star Bridge’s Viva, claims to be object oriented because 

it implements operator overloading and polymorphism [Sta05]. Operator overloading, 

though convenient, has little to do with the definition of object orientation: Java, a 

strongly OO language, lacks operator overloading; VHDL, a non-OO language, 

implements it. One could also argue that ANSI C’s void * references and Java 1.4’s 

collections of Object elements implement a form of polymorphism, since they are 

compatible with arbitrary reference types. Viva’s “polymorphism” is somewhat more 

expressive than void * or Object, but not enough to qualify the system as OO, despite 

the vendor’s claims. 
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OMG’s CORBA Interface Definition Language (IDL) has the distinctive feature of 

being an “object oriented” language without having objects of its own [OMG01]. IDL is 

not intended as an application development language by itself. Instead, IDL is meant to 

enable component assembly in systems built from heterogeneous processors, networks, 

operating systems, and languages. IDL defines object interfaces, and defines methods that 

pass object references, but does not create object instances itself. In this, it closely 

parallels the intent of hardware design tools that focus on component assembly with 

relatively little regard to component content [Dou03]. 

3.3.2 Type and object resolution: static vs. dynamic 

Polymorphism is one of the hallmarks of OO design. It is the property that objects of 

different underlying implementations export a common interface, and can be accessed 

interchangeably through that interface. In languages like C++ and Java, this implies that a 

given instance of some variable can refer to different objects at different times during 

execution. Those objects may be of different types, and therefore have different code 

implementing operations on those objects.  

Software systems implement new object instances by allocating storage for the 

object’s data, including references to any data shared across classes and to the code that 

implements the object’s behavior. It is generally assumed that all instances of a single 

object type all share one body of code, but have unique data. This differs significantly 

from component instantiation in hardware design systems. Component instances do 
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allocate storage, in the form of registers or on-chip RAM, for the component data unique 

to that instance. Hardware component instances normally create new instances of the 

component’s logic, as well. That requires allocation of gate-equivalents, connections, and 

possibly other kinds of FPGA resources. This is roughly the behavior one might expect if 

the C++ inline declaration applied to each instance of a C++ class, instead of applying 

to each reference to the function. An inline function has the possibility of generating 

different code at each reference, due to local optimizations. Likewise, different instances 

of a component’s logic can generate somewhat different circuitry, according to the circuit 

environment in which it is instantiated. 

Typical software systems also pass references to application data (other than primitive 

types), but hardware systems pass the data values themselves. The choice of data 

instances on which a hardware component operates typically involves multiplexers and 

demultiplexers for collection of operands and distribution of results. RAM indexing can 

be used for both, but runs into problems when concurrent access is needed to many 

different objects, since multiported RAMs or careful assignment of objects to different 

RAMs becomes necessary. 

At least one author has proposed a hardware mechanism that acts as if different 

objects (possibly of different types) are selected at hardware run time [Sin02]. Others 

have attempted to determine a fixed list of data items that a C pointer can refer to, and 

emulate that selection using hardware multiplexers [Sém01]. It has been much more 
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common, however, for HDLs to require that types and object references be completely 

resolvable at compile time [Neb96, IEEE02, Xil03a]. 

Although VHDL supports some notion of classes and objects, in the form of 

component usages that each instantiate an architecture of some entity, it lacks 

object references. Each instance is statically bound to its inputs and outputs at the point 

where it is instantiated. Instance names can only accessed only by configuration 

statements, which can not affect the association of signals to instance inputs and outputs, 

and those instance symbols can never refer to another instance. Verilog does support 

object references, in the form of hierarchical names based on named module instances, 

but does not allow one reference to be assigned to another. There is a permanent 

correspondence of references to instances; names are considered constants that can not be 

reassigned. Also, Verilog does not support polymorphism at all, and VHDL resolves the 

implementation of a component instance under the manual control of configuration 

statements and at compile time. Neither language requires run-time resolution of object 

references or of object types.  

C++ and Java support variable object references; popular HDLs (Verilog and VHDL) 

have either constant object references or none at all. The C++ and Java language type 

systems enforce elaborate rules ensuring that variables (including the implicit references 

in parameter passing, return values, and thrown exceptions) are never assigned object 

references of incompatible type. It is therefore worthwhile to reconsider the type system 
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of any new HDL with object instantiation like that in VHDL or Verilog. Many of the 

C++ or Java type system’s rules are predicated on ensuring type safety of variables that 

reference different object instances of different types. Those rules could be overly 

restrictive for any new HDL that lacks variable object references. 

3.3.3 Object instantiation and hardware design 

Object oriented programming languages generally share one major assumption: that an 

object instance is a new allocation of data storage, and that one instance of executable 

logic is shared across all objects. This certainly makes sense in the strict model of a 

sequential processor, where one instruction at a time executes, and the code is reused 

sequentially across references to potentially many objects. It also makes sense in a system 

with multiple hardware threads, cores, or processors and with shared memory – all 

execution contexts, at least in principle, have access to the same instruction store. Copies 

of code in one or more cache memories don’t invalidate the basic model, because caching 

generally maintains the illusion of a single memory. The model even works, given a loose 

interpretation, in clusters and network-based multi-processors. Java’s remote method 

invocation (RMI) extends the image of a single thread of execution to multiple 

homogeneous virtual machines, and OMG’s CORBA includes features for maintaining 

the appearance of homogeneous processing on heterogeneous multiprocessors. 

Logic design, including FPGA design, achieves parallelism through multiple instances 

of the executable logic. Many times, the data (registers) and code (logic gate equivalents) 
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will be instantiated together. Other times, one instance of executable logic sequentially 

handles multiple data instances. No fixed relationship exists between code instances and 

data instances. The main stream of OO language theory [e. g. Aba96, Bru02, Pie02] 

appears unaware of this basic fact of logic design and implementation.  
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4 FPGA ACCELERATOR DESIGN TOOLS: REQUIREMENTS AND IMPLEMENTATION 

Chapter 2 summarizes a set of case studies that expose many issues in FPGA-based 

accelerator design. The lessons of these studies suggest a number of requirements for 

tools intended for designing FPGA-based application accelerators. Chapter 3 exposes 

weaknesses in existing design tools and techniques. These experiences and analyses 

combine to suggest requirements for a new generation of design tools, presented in 

section 4.1. Implementation choices follow from the specifications, so section 4.2 

presents the major architectural decisions made for creating new tools to implement the 

requirements of section 4.1. 

The LAMP tools implement the choices of section 4.2 in order to meet the 

requirements of section 4.1. Chapter 5 describes the techniques used in selected parts of 

the LAMP compiler. Many different input representations could have been used to 

implement these semantic features.  

Since the LAMP language syntax follows from and supports the more important 

design stages, it is presented in Appendix A. Next, Appendix B describes theoretical 

aspects of how computing arrays can be sized to give maximum parallelism for any 

specific application and FPGA platform. Finally, Appendix C presents the important 

deatures of a case study in using the LAMP tools. 
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4.1 Requirements  

Case studies of applications, described in Chapter 2, suggest a number of basic features 

that meet two basic demands: exploitation of the FPGA’s performance potential, and 

accessibility of that potential by the application specialists with the computing needs.  

⋅ Families of applications. Applications tend to appear in families of related 

computations more often than as isolated point solutions. Application families differ 

from each other significantly in their basic structure, however. Design tools must be 

able to define families of applications where families differ widely in their basic 

structure, but members of any one family differ only in the details embedded in the 

family’s common structure. 

⋅ Multiple participants: logic designer and application specialist. At least two 

different skill sets, not generally found in any one person, are needed for creating 

successful application accelerators: a logic designer and an application specialist. All 

participants must be able to work with a reasonably familiar notation for their part of 

the system, but not necessarily the same notation. Dependencies between the 

participants must be reduced so that routine changes to the accelerator can be made 

by the application specialist alone, without direct support by the logic designer. 

⋅ Reuse of non-leaf components. Traditional logic components are solid black boxes, 

with no accessible inner structure. The case studies show, however, that structures 

for memory access, communication, and parallelism are often the reusable 
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component. Differences between family members are generally differences of leaf 

functions and communicated data items. Accelerator design tools must be able to 

treat customizable communication and control as the reusable component. 

⋅ Automated sizing of computation arrays. Performance of FPGA accelerators 

generally depends on the degree of parallelism that the FPGA can support, which can 

be a complex function in terms of the application family’s structure, the details of the 

application family member, and the resources available in a given FPGA platform. 

Tools must support automated choices of computing array sizes, in order to 

maximize each family member’s performance on a given platform.  

⋅ Reusability across platforms. Although major computer vendors have only shipped 

one generation of FPGA-based accelerators, it seems certain future FPGA-based 

products will appear, and will offer increased computing capability. Tools must be 

able to exploit the additional resources, without the need for changes to the 

application logic. 

The rest of this section presents justification for each requirement, and adds detail to the 

broad points mentioned above. 

4.1.1 Families of applications 

The case studies show that, although the application areas have computation structures 

that differ significantly from each other, any one application area covers a wide range of 
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related applications. String alignment and scoring applications differ in the string data 

types they address, the scoring functions, local vs. global alignment, and many variations 

within each category. Rigid molecule interaction applications differ in the rules used for 

grading interactions. Iterative optimization applications different in objective functions, 

halting criteria, algorithms for selecting proposed solutions, and rules for selecting new 

tableaux from scored proposals.  

It is not effective to construct accelerators that address individual members of the 

application family. No one family member is assumed to be of interest to many users. It 

is not feasible to create a range of point solutions intended to span the application 

family’s range; it is not even possible to anticipate all possible members of many 

application families. At the same time, highly general, programmable solutions are 

inefficient at handling any one member of the range of applications. As a result, tools for 

developing cost-effective accelerators must allow developers to create highly tuned 

computation structures that are also highly reusable and customizable. 

These examples do not cover the whole range of computation types, or even the whole 

range for which FPGA-based computation is a good match. They do, however, cover 

enough of a range of computations for several conclusions to be drawn. The case studies 

each have a distinct pattern of memory usage and a distinct pattern of communication, 

parallelism, and synchronization. They have different ways of using the various FPGA 

resources, and different rules for creating arrays of processing elements. Accelerator 
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development tools need not handle every possible computation to be widely useful, but 

must be able to handle many applications of widely differing character. 

4.1.2 Logic designer vs. application specialist 

The biggest barrier to acceptance of FGPA accelerators may be the dual skill sets 

required for creating an effective application accelerator: “engineers conversant with 

programming in C or assembly language are often unfamiliar with digital design” 

[Hwa01]. An application specialist, such as a biologist or chemist, is the end user who 

defines the problem to be solved. Efficient hardware designs, however, require a logic 

designer’s specialized knowledge.  Perhaps some of the computing structures examined 

in chapter 2 could have been inferred using aggressive compiler-based optimization. The 

case studies of sections 2.1.1 and 2.1.3, however, are counterexamples; structures like 

these require the logic designer’s insight into each unique design problem. Design idioms 

like 1000-bit data words, 1000-stage computation pipelines, systolic arrays, and dozens 

of memory busses are needed for exploiting the FPGA’s potential, at the same time that 

the application specialist must worry about the details of molecular evolution or 

biochemical interactions. 

There is also cost associated with finding and applying reusable components, leading 

to the claim that “... if the time to reuse a part is greater than 30% of the time required to 

design the part from scratch, design reuse will fail.” [Gir93]. When the intended users are 

biologists or computation experts with little skill in logic design, it is reasonable to expect 
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them to take longer “design the part from scratch” than a logic designer. Suppose it were 

only two or three times as hard for a computational chemist to create an effective 

application accelerator as it would be for a logic designer. Then 30% of the time for a 

user to design the part from scratch would be 60-90% of the time it would have taken a 

logic designer. The original statement assumed an apples-to-apples comparison of 

implementers’ logic design skills, which is not likely to be the case for application 

accelerators. Other estimates of the development cost saved by component reuse, 

possibly as much as 85% [Reu99], also assume that the people reusing a component are 

also logic designers, and therefore underestimate the value of reuse in application 

accelerators. 

For the foreseeable future, both logic designers and application specialists will be 

required for development of FPGA accelerators. There is no reason to believe that logic 

designers will become more common any time soon, however. Together, increased 

demand for logic design skills and [near-] constant availability of logic designers suggest 

that new multipliers are needed, to enable reuse of one logic designer’s output. Many 

different application specialists should all be able to use a given logic design, for their 

different applications, without involving the logic designer in the details of each 

application. This creates two requirements for FPGA-based accelerator tools. The first is 

that the tools acknowledge the two categories of developers, with their different design 

responsibilities and different ways in which they prefer to state their design. The second 
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is that the tools allow the two to contribute to the design independently of each other, 

even at different times.  

4.1.3 Reuse of non-leaf components  

The fixed, reusable component in each application is its high level structure, including 

parallelism, communication, memory access, and synchronization. Reuse consists of 

replacing leaf components within the fixed communication structure: application-specific 

data types and functions. 

This runs contrary to the general style of reusability in hardware components. The 

reusable component, such as a ROM or digital filter, is generally treated as a black box 

with no accessible internal structure. Components are parameterized in many ways, as in 

the case of a filter accepting signed or unsigned inputs, adjustable ranges of values, and 

selectable coefficients and numbers of taps. Still, it is virtually unheard of to have a 

reusable component that contains other components, to be chosen by the application 

developer.  

Design and documentation of reusable leaf components is recognized to be more 

difficult than designing components for one-time use [Reu99]. A widely applicable 

application accelerator can, however, meet the criteria for successful reuse. If it offers a 

100× performance improvement over a serial processor implementation, then the 

economic value, compared to a PC cluster of similar performance, is high. If the 
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accelerator is used by large numbers of people, then the cost is amortized over many 

instances. As a result, effective tools must address reuse and parameterization directly. 

Part of the problem stems from the design tools available. Languages such as VHDL 

and Verilog make it easy to specify the interface exported by a component. Such 

languages, however, have no constructs that make it practical for a component to specify 

an interface that it imports, i.e. that must be provided to it by some other component. 

Common object oriented techniques solve all of these problems, however. The 

requirement is that data types and functions be parameterizable, not just singly but as sets 

of related items, and existing language technology offers many ways to fulfill that 

requirement. 

4.1.4 Automated sizing 

Traditional logic applications have well defined numbers of processing elements and data 

values. For application accelerators, more processing elements generally give better 

performance or allow larger problems to be addressed. The desired number of processing 

elements is “as many as possible.” Computation pipelines generally consist of several 

stages or subsections. The computation array in each section is subject to size constraints, 

according to the structure of the computing array and the FGPA resources available for 

its implementation. Interconnection between subsystems creates interlocked constraints 

of the connected subsystems. Chapter Appendix B addresses these issues in detail. 
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The concept of automated sizing is familiar to programmer who program grid or MPP 

applications, in distributing an application across however many processors are available. 

It is not, however, supported by current FPGA design tools. Repeating structures are 

supported, but the numbers of repetitions must be specified explicitly. Given the observed 

complexity of sizing issues, because of “magic numbers” in permitted sizes, interlocked 

structures, and application-dependent resource utilization, sizing of computation arrays is 

a non-trivial task, with answers that are likely to change at almost any change of 

application-specific data or functions. Clearly, tools for accelerator design must support 

automated sizing of computation arrays, so that each unique application accelerator can 

make the most of the FPGA hardware available to it. 

4.1.5 Reusability across platforms 

New generations of FPGAs appear every year or two, offering successively larger 

amounts of computing resources and higher potential performance. Between generations, 

FPGA vendors offer smaller performance increments within FPGA families, including 

larger family members, faster clock speeds, and lower cost per unit of computing 

resource. Often, an FPGA with larger capacity will be “footprint compatible” with a 

smaller one, allowing use of the new chips in old hardware systems, unchanged. It seems 

safe to assume vendors of FPGA accelerator hardware will track these technology 

changes as eagerly as PC vendors track changes in processors and system integration 
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technologies. Rapid evolution of FPGA platforms must be taken for granted. 

Applications must be highly reusable across FPGAs, and tools must support that reuse. 

Ideally, an old processor-based application should be binary-compatible with new 

processors, while still taking advantage of most or all of the new processor’s performance 

improvements. Another solution, usually considered acceptable, is to recompile and 

relink the old code to take advantage of instructions and new libraries. Source code 

changes for new platforms are generally considered undesirable, and increasingly 

undesirable with increasing complexity of changes required for the new platform. When 

special personnel are required for ports to new platforms, logic designers in particular, 

acceptance of new platforms will be problematic. Should a logic designer’s effort be 

necessary for porting an existing application to a new platform, those changes should be 

made once and reused by all of the application clients. Tools for FPGA-based 

applications must support the kind of inter-platform portability that application 

developers have come to expect. 

Reusability has a second dimension, too: not just within product families, but between 

product families. Multiple vendors now offer incompatible FPGA hardware, and more 

seem likely. If an FPGA-based application is popular, however, it should be able to run 

with minimal changes on the different platforms. If changes are required, they should be 

made only once per application family, applied generally to all family members, and 

incorporated through normal compilation and relinking (or analogous operations). 
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This differs in basic ways from traditional FPGA-based logic design. System builders 

have generally specified a particular FPGA part early in the design cycle, and taken that 

choice as an application constant. There has been some reuse of logic designs across 

successive generations of FPGA-based products, but that reuse has generally been 

accompanied by major redesign of the application, to make the most cost-effective use of 

hardware resources. As a result, existing FGPA design tools do not support the kind of 

application portability needed for widespread acceptance of FPGA accelerators. New 

tools must offer that kind of portability. 

4.2 Implementation decisions 

4.2.1 Bridging the semantic gap 

The semantic gap is the name given to the conflict between high-level representation of 

computational problems and high-efficiency implementation in some technology [Sni01]. 

Traditionally, this has meant the gap between a high level language’s semantic definition 

and the instruction set of the machine into which a program is compiled. The semantic 

gap has long been recognized in the software development world, and has led to fruitful 

cooperation between compiler writers and instruction set designers.  

The semantic gap between application accelerators and FPGA fabric is even wider. 

The application-specific logic of an accelerator operates at a higher level than the logic of 

a programming language, because it embodies so many more assumptions about the 
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meanings and basic techniques implied by the application. At the same time, the FPGA 

fabric operates at a lower level than the processor’s instruction set. For example, FPGA 

hardware requires selection of data word size, something fixed in a standard CPU, and 

often requires a new word size choice at many points in the design.   

It seems safe to assume that the semantic gap will remain a fact of life throughout the 

visible future. Despite the optimistic claims of some tool developers, a clever logic 

designer can often create a computation structure unimagined by the tool developer, and 

therefore inaccessible to the tools. Biologists, chemists, and other potential users of 

application accelerators can not be expected to equal a logic designer’s creativity in using 

logic resources, or even basic competence in creating systolic arrays, reduction networks, 

and other native kinds of hardware solutions. As a result, one commercial accelerator 

builder asserts that it is necessary to “[adapt] established algorithms to run on our FPGA 

Accelerator Arrays by reinterpreting from first principles.” [Tim05] There is both 

practical and theoretical reason to believe that direct compilation of standard algorithms 

does not generally synthesize into the most effective hardware implementations.  

Since the semantic gap can not be bridged, in the general case, it is necessary to 

address application development in terms of that gap. This acknowledges the application 

specialist (with high-level knowledge) and logic designer (with low-level design skills) as 

different individuals. They differ in their needs and responsibilities, and must work 

together to create the application accelerator. It follows that the design tools’ 
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responsibility is not to convert application specifics into a logic design, but to connect 

between application specifics and an efficient logic design. 

An effective tool suite is built around the idea of two different kinds of user: the logic 

designer and the application specialist or end user. One application specialist would be 

the computational chemist interested in using the molecule interaction application domain 

for pharmacological research. That is the user with a computational task in need of 

acceleration, and the one who needs control over the application-specific details of the 

computation. The application specialist needs to modify the details of the computation 

being performed, but is assumed not to have logic design skills.  

The logic designer is responsible for creating an efficient memory, computation, and 

communication structures for each application domain. The logic designer is assumed to 

have little knowledge of the application area, but is able to paraphrase the critical 

computations in terms amenable to efficient FPGA implementations. The design 

assumptions allow application specialists at different sites, and allow application 

specialists to use the accelerators long after the logic designer has finished the generic 

logic model for the application domain, so it is assumed that the logic designer can not 

participate in tailoring the accelerator to the application specifics. 

Any solution must also recognize that skilled logic designers are relatively scarce. An 

effective solution must not require logic design skills for making minor, routine changes 

to an application accelerator. The logic designer’s contribution must be highly reusable, 
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so it can serve many application specialists without the designer’s intervention for each 

one. Finally, in order to decouple the logic designer from the application specialist, it 

must be possible for them to work at different times.  

4.2.2 Need for new design representation 

Two questions summarize the most important issues in deciding whether new design 

concepts require new design tools: 

⋅ Why create a new design language when so many exist already?  

⋅ Why not create a language that addresses the whole issue of accelerator design? 

The LAMP system requires semantic constructs and combinations of constructs that do 

not exist in current HDLs, so new language features are certainly required. Lack of 

semantic features is even more compelling reason to move away from existing languages. 

It is certainly possible to define a new language as a subset of an existing one, but the 

result tends to cause confusion. Well designed languages are built around interlocking 

semantic concepts. Removing any one from the language can leave gaps that can not be 

bridged in any natural way. Adding and removing semantic concepts while leaving a 

viable language is especially difficult when the base language is as complex as, for 

example, C++. A logically consistent whole would be impossible within an existing 

language, if the new semantic requirements diverge too much from the semantic content 
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of that base language. LAMP semantics are described in Appendix Appendix A, showing 

how LAMP’s conceptual base differs from that of existing languages. 

In answer to the second question, LAMP is built around the idea that there are at least 

two groups of designers involved in creation of an application accelerator: a logic 

designer and an application specialist. The logic designer is responsible for the reusable 

control and synchronization features of an accelerator, and the application specialist 

defines the features that customize the accelerator to a specific application. The logic 

designer must be given the greatest degree of access to the FPGA platform’s logic 

resources, and is responsible for interfacing the accelerator’s logic core to the hardware 

environment defined by the FGPA accelerator board and host system. An application 

specialist, on the other hand, is assumed not to have logic design skills. The full 

capability of an HDL would not just be useless to the application specialist, it would be a 

positive source of confusion and difficulty. The application specialist is responsible for 

“filling in blanks” left by the logic designer; it is important that the application specialist 

not “color outside the lines” of the blank spots in the accelerator structure. Natural 

representation and semantic control both argue that the application specialist and logic 

designer use different representations for their different parts of the accelerator’s design. 

It must also be understood that LAMP is a research vehicle. It explores a bounded set 

of design concepts, without attempting to create the level of generality demanded by 

industrial logic design. All parts of the tools must be open to modification, without 
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license encumbrance. The tools must express new semantic concepts as needed, and must 

also be able to omit features that have no place in the LAMP framework. Creating new 

tools ensures freedom from legal encumbrance, and obviates the problems of semantic 

mismatch between the new tools and existing bodies of source code. A disadvantage is 

that new code requires recreation of features already present in existing tools, but it 

avoids the problems associated with retrofitting legacy code to novel use.  

New code also allows clear separation of the novel concepts from established 

technology. Current EDA tools, especially compilers and PAR tools, have been 

developed over the course of decades. It would not be practical to recreate the huge 

amount of work embodied in tools that are readily available from EDA and FPGA 

vendors. It is also a goal of the LAMP project that it be able to use newer, larger FPGA 

fabrics as they become available. Tool and chip vendors are already committed to 

supporting new FPGAs as they become available. By integrating their work, LAMP gets 

the full benefit of new technologies in synthesis, PAR, and FPGAs, but without changes 

to the LAMP tools themselves. Instead, use of existing tools allows LAMP research to 

deal exclusively with its novel content. 

4.2.3 Event-driven systems and inverted flow of control 

The classic C program starts when its execution environment hands flow of control to the 

main() function in the program. Until the main() function executes a return 

statement, normal flow of control is explicitly defined by the application. Applications 
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relinquish temporarily when a system service is requested, but even that is an explicit 

request by the application. 

Event-driven systems invert that flow of control. The execution environment 

dispatches service requests to the application whenever significant events occur. 

Programs based on graphical UIs (GUIs) are almost always written in an event-driven 

way. The system owns the display and input devices. When input an event occurs, 

including mouse activity or a keystroke, the system records any data items (e.g. character 

input from the keyboard) and determines which visual element is associated with event’s 

the screen coordinate. The system manages many routine UI tasks, such as changing the 

cursor image when it enters specific parts of the screen, or highlighting active elements in 

the GUI. The system also determines whether the application has associated any activity 

with that event type at that UI element. If so, it passes data describing the event to the 

event handler. Web servers work in a similar way, dispatching network requests to 

various scripts, servlets, web applications, and other network event handlers according to 

the URLs in the arriving HTTP requests, and many other application domains adapt the 

technique to their various kinds of system events and data elements. In any case, the 

application has little or no explicit control over the order in which event handlers are 

invoked. Unlike the main() program, code fragments of the event-driven program occur 

in an order specified by the execution environment. 
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This style of programming offers many advantages to the application developer. GUIs, 

for example, tend to be highly standardized and complex systems. The main() paradigm 

would require every GUI-based application to recreate the major GUI responsibilities all 

over again: managing the display, interpreting input events, and dispatching the event’s 

data content to the application logic responsible for its handling. Other event-driven 

systems, such as Sun’s Java 2 Enterprise Edition (J2EE) [Sun05b], take on even more of 

the overall system’s behavior, including transaction integrity assurance, audit trails, 

authentication, migration between service processors, and more. Pushing such 

responsibilities into the execution environment does a lot to simplify application 

development and to ensure uniform, reliable handling of routine but complex application 

duties. 

Inverted control in GPUs 

Graphics processing units (GPUs) implement a form of this software paradigm. They 

implement a well-defined computation pipeline, starting with geometric objects, and 

lighting models, and ending with pixels drawn in display memory. The computation 

pipeline has a fixed structure, with two points at which application-specific logic can be 

inserted. Graphics programmers create vertex shaders and pixel shaders, small pieces of 

code to be inserted into that pipeline to represent the geometry and the visual presentation 

of the object. 
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The first major feature of this programming model is that the application writer has 

little or no control over the order in which code elements are executed or data items are 

processed. This gives the GPU designer many choices about memory structure, 

scheduling, pipeline structure, and parallelism, all of which contribute to GPUs’ 

impressive execution speeds. The inputs and outputs to shaders are so tightly constrained 

that data dependencies have limited and explicit form, and control dependencies are non-

existent or nearly so. Standard CPUs deal with uncertainties about data and control 

dependencies using clever tactics like speculative execution, branch prediction, register 

renaming, and instruction reordering. GPUs, because of their tightly controlled 

dependencies, can replace all of that logic with additional arithmetic capability. Caches in 

standard CPUs reduce the effect of unpredictable access to program and data memory. In 

GPUs, highly predictable reference patterns allow most memory access costs to be 

hidden by pipelines or by scheduling of runnable tasks. GPUs move most decisions about 

code and data reference patterns out of the application and into the processor architecture, 

allowing a different distribution of processor resources than in standard CPUs. 

GPUs also constrain the set of operations available to shader writers. They provide a 

rich set of arithmetic operations on vector data. Early shaders, however, were constrained 

to some small number of instructions, 8 to 64 [Gra03]. The instruction set did not include 

conditional execution; even tests and loops based on compile-time constants were 

innovative when they were introduced. Newer generations of GPUs allow longer 

programs and some conditionals (though they may be discouraged for performance 
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reasons), but still offer a severely constrained programming model compared to what a C 

programmer is used to. These constraints are considered acceptable, however, because 

they are still well matched to the specific graphical tasks being performed.  

Applicability of inverted control in FPGA accelerators 

This paradigm offers an attractive way to involve hardware-naïve users in the design of 

application acceleration hardware. Within any one application family, large parts of the 

behavior and structure of the application are common across all family members. The 

common subset of an application family generally includes data access, system interface, 

synchronization of multiple parallel processing elements, interface to the host system, 

hardware resource allocation, and handling of communication between processing 

elements. Some of these, such as data access, are dramatically different in von Neumann 

or Harvard architectures than in an FPGA with hundreds of independently addressable 

memories. Communication and task allocation are also very different in a typical MPP or 

computing cluster than in an FPGA. Systems with multiple processors generally favor 

large units of parallelized work with infrequent, low-volume communication. FPGAs 

offer the opposite, fine-grained parallelism, down to individual arithmetic operations, and 

massive on-chip communication bandwidth –broadcast operations at every clock are 

often feasible. Even if a programmer is skilled in parallel application development, that 

skill is probably tuned to MPP and cluster programming, the opposite in most ways of 

what works well in FPGAs. 
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The event-driven paradigm consists of two parts, system control that acquires and 

dispatches application data to the proper handlers, and the application-specific handlers 

themselves. This dichotomy is a good description of an effective FPGA based application 

accelerator. Data access, synchronization, resource allocation, and dispatch are tasks well 

suited to a hardware designer’s skills. The problem, then, is to phrase the application 

specialist’s part of the accelerator as an event handler. In a software system, that would 

be a “callback”, a function of defined interface to be filled in by the application 

developer.   

There are many ways to describe the application specialist’s additions within the 

framework created by the hardware designer. Using an analogy to the standard C library, 

one treat the application specifics much the same way as the comparison function 

parameter to the qsort() function [Pla92]. That allows one sorting framework to sort 

any data type, according to any specified order, by phrasing the ordering function as a 

parameter. This, however, violates the belief that parameterization is defined in terms of 

“… feature[s] that can be modified … without affecting the application’s essential 

functionality,” [Giv00] where common examples include buffer sizes or ROM 

dimensions. The communication subsystem can also be considered as a reusable 

communication component, with empty slots inside in which communicating sub-

components are instantiated. This also goes against the common belief that reusable 

components are necessarily leaf components, and that “Reuse is in the first place a matter 

of reusing functionality, not structure.” [Sch99] Others have claimed that 
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“parameterization of functionality … has taken the form of operating modes. … This 

allows optimization to automatically remove unused circuitry as appropriate.” [Gir93] It 

is implicit in this school of thought that the component creator must anticipate every 

possible set of behaviors for the component, and allow the component user to select 

among subsets of that choice. Despite the general trend towards treating components as 

leaf components with more or less fixed inner function, some authors have addressed the 

idea of reusable communication components [Ver00].  

Reuse of non-leaf components, with parameters that embody functions, is well 

established in the software development world. Non-OO languages like ANSI C, as noted 

above, support function parameters. OO languages offer other mechanisms, as well. The 

Template Method and Strategy design patterns [Gam94] suggest techniques quite similar 

to each other. Both assume that the missing inner component is defined by an abstract 

class interface. The Strategy pattern is built around composition of an undefined object 

into the fixed application logic, and Template Method assumes compile time resolution 

by subclassing. Given the static nature of object binding in logic design, the line 

separating the two patterns becomes indistinct. 
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5 LAMP TOOLS: DETAILS OF OPERATION 

This chapter describes the LAMP tool flow and the basic features of LAMP tool 

operation. It starts with descriptions of the responsibilities of the two participants in 

accelerator design, the logic designer and the application specialist. Next, it places each 

one’s responsibilities in the context of the LAMP tool flow as a whole. Section 5.3 then 

presents the LAMP model, the set of files that defines the accelerator family its 

customization to a particular application.  

Those sections define the input to the LAMP tools. The remainder of the capter 

describes how that input is processed. Section 5.4 describes the process that connects 

abstractions in the LAMPML input language to actual instances of VHDL logic. Section 

5.5 outlines the connection between LAMPML functions or type definitions and their 

VHDL representations, taking into account LAMP’s type polymorphism and VHDL’s 

lack of it. Section 5.6 shows how LAMP declarations are integrated with the model’s 

annotated VHDL code. Finally, section 5.7 addresses the synthesis estimation algorithms 

in the initial version of LAMP, including some of the factors that cause accuracy 

problems in the estimates. 

This chapter uses parts of the XML-based LAMPML markup language and the 

CLAMP high-level notation defined in Appendix A. Although different in appearance, 

they are alternative representations of largely the same semantics. Because of 

complications caused by integrating LAMPML with HDL code, CLAMP notation can 
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not be used for HDL annotation. LAMPML can be used to represent all parts of a LAMP 

accelerator design; CLAMP is a semantic subset of LAMPML with enhanced readability.  

5.1 Logic designer and application specialist 

Normal use of LAMP tools has two major phases, corresponding to the two classes of 

developer involved in accelerator design. The first phase is entirely the job of the logic 

designer, or the group of people working together to create the logic design. The second 

phase comes when the logic designer hands off the accelerator model to the application 

specialists. The application specialist and logic designer are assumed to be independent 

of each other. In practice, however, application specialist will likely advise the logic 

designer about algorithms, features, and options needed in the accelerator. 

The logic designer creates the parameterized structure of the accelerator during the 

first phase. That includes the annotated HDL for the accelerator, the application 

abstraction used by the application specialist, and the FPGA resource descriptions. This 

job is essentially that of a logic designer in any other context, but with additional 

responsibilities. One is that the logic design must be parameterized using LAMPML 

markup, so that application-specific data types and leaf computations can be replaced. 

Normal HDLs allow only parameterization in terms of data values but LAMP allows 

types and functions as design parameters, so this is more complex than normal 

parameterized design. Still, it’s just an extension of normal HDL parameterization. 
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The logic designer has a fundamentally new responsibility, however. It is assumed that 

most accelerators are built around memory and computing arrays that can vary in size, 

and that larger arrays give better application speedup. As a result, the logic designer must 

phrase the various computation and memory arrays in terms of their sizes and FPGA 

resource estimates, in order to determine the values of structural parameters that give the 

most desirable accelerator possible. Section B.1 states the general mathematical 

formalism for sizing the computation arrays optimally, section 5.7 describes LAMP’s 

technical support for synthesis estimation and sizing, and appendix B gives an example of 

sizing logic represented in LAMP code. 

This is not as radical as it might sound at first. Logic designers always have to deal 

with FPGA resource limitations, and with getting the most capability out of the most 

economical hardware. The difference is that the sizing knowledge must be phrased 

algorithmically, parameterized for all the features that affect and constrain accelerator 

sizes, and packaged in LAMP code as part of the accelerator model. 

The second phase of the accelerator’s life comes after the logic designer has verified 

the accelerator’s LAMP model. At that point the logic designer has no further role, unless 

additional features are required or porting between FPGA platforms becomes necessary. 

The model is turned over to the application specialists, who put it to use in their 

computations. Although logic design is generally the job of one developer (or 

development team), there is no limit on the number of different application specialists 



 

that use any one model. In some cases, the person who customizes the accelerator model 

will not be the person who uses the accelerator, and any number of end users could share 

one customization of an accelerator. It simplifies discussion to assume that the 

application specialist both customizes and uses the accelerator, and that application 

specialists are generally independent of each other.  

5.2 LAMP tool flow 

The following discussion traces construction of an accelerator through the LAMP design 

flow. Each of the following subsections corresponds to one of the items of Figure 21. At 

this writing, Figure 21’s LAMP programming environment is being planned. Application 

specifics are LAMPML or CLAMP text. LAMP Compilation Tools exist as prototypes. 

Application 
specifics1 
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The Standard Synthesis Tools are any of the available VHDL compilers, along with 

placement and routing tools and other tools needed for converting VHDL code into a bit 

file. 

Logic designer’s input 

The first inputs for any accelerator are defined by the logic designer, using XML-based 

LAMPML (LAMP Markup Language). The Application Abstraction is the first of the 

logic designer’s inputs, an abstract description of the data types and functions that that 

are left undefined by the Annotated Hardware Model (or just model). The FPGA 

Resource Description describes the amounts of each computing resource available on a 

given FPGA. 

Assuming the Rigid Molecule Interaction application of section 2.1.3, the application 

abstraction contains formal definitions for interfaces to the functions and data types that 

describe and score molecule voxels, not tailored to any specific scoring strategy and 

voxel representation. The Annotated HW model of Figure 21 specifies the communication 

paths, control mechanisms, and host interface items that are constant across all members 

of the application family. Section 5.3 discusses the application abstraction, model, and 

resource definitions in detail. 
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LAMP programming environment 

At present, the LAMP programming environment is under consideration but has not been 

implemented. Its place is currently held by the text editor that the application specialist 

uses for creating LAMPML or CLAMP specializations of the application abstraction. 

The foreseen programming environment will accept the application abstraction as 

input. This abstraction identifies the functions and data types that are used but undefined 

in the model. Based on the application abstraction, the programming environment will 

create a semi-graphical user interface for supplying the information needed by the model. 

Extensions to LAMPML (and possibly CLAMP) will probably become necessary or 

helpful in preparing the model for GUI presentation. 

Application specialist’s input 

The application specialist makes configuration decisions at the programming 

environment’s UI. Application specialists enter data type definitions and function 

definitions in a simple C-like representation, similar to the one described in section A.3, 

filling in text fields within the GUI. The programming environment saves the human-

readable form of input for UI purposes, but converts it into validated LAMPML for 

further processing. If the user needs to make further changes, the programming 

environment re-opens the user input data, edits the data according to user input, and 

creates new copies of the intermediate format output. 
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LAMPML intermediate format 

Although LAMPML is editable text data in XML format, very few users would find it a 

natural or convenient way of expressing application logic. The XML intermediate format 

is readily machine readable, however, and separates the input and parsing issues from the 

compiler’s internal processing. This corresponds to the compiler’s intermediate code, a 

step between a compiler’s front end and back end that is normally not visible to the user. 

Because LAMPML is a text-based XML format, it can be edited manually. In order to 

focus on the central LAMP design issues, this is currently used as the primary input 

format. A more complete system would hide this level from nearly all users, and allow a 

more natural means of expressing the application-specific logic of the accelerator. The 

Convenience LAMP (CLAMP) language is one such representation, described in 

Appendix A.3. It is not, however, a functionally complete representation of LAMPML. 

LAMP compilation tools 

LAMP accepts the hardware model, defined in terms of the application abstraction, and 

combines it with the LAMPML from of the user input. This phase includes synthesis 

estimation and scaling, allowing the largest possible computation array for the logic 

resources available and required. The output from this compilation is Figure 21’s HDL 

for synthesis. 

These tools do the real work of combining the application-specific code with the 

hardware model. This stage integrates user logic with the HDL application framework. It 
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also performs synthesis estimates for the code provided by the user, and evaluates 

estimation functions provided in the hardware model. Together with the FPGA resource 

information, these imply the largest number of PEs that the available FPGA fabric can 

support.  

The compilation phase should also generate interface code fragments for the host 

programming environment. This small amount of code in ANSI C establishes the 

common data formats shared between the host application and the hardware accelerator. 

These code fragments supplement the vendor’s device drivers, and are not intended as 

replacements. Generation of the interface modules form LAMP code has not yet been 

implemented, however. 

Synthesizable HDL output 

LAMP tools do not perform low-level synthesis directly. Instead they create output in a 

synthesizable HDL, and hand synthesis, placement, and routing to other tools. This has 

the advantage of keeping as much as possible of the LAMP tools and hardware model 

independent of specific FPGAs, allowing easier porting to new accelerator hardware or to 

FPGAs with larger amounts of resources. 

For users familiar with standard programming environments, this corresponds roughly 

to the assembly-language output from a compiler, before conversion to binary format. In 

this case, however, the output is in a synthesizable HDL. Although this form of the 

application is human-readable, it is not intended for human use or modification. Still, 
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some logic designers seem more comfortable with design tools when they have at least 

the possibility of hand-tuning the code generated automatically, just as some 

programmers have been known to hand-tune a compiler’s assembly output. 

Standard synthesis tools 

The LAMP tool set works with any available synthesis tools; it has no architectural 

dependency on any particular HDL or compiler. That said, it is understood that tool-

dependent pragmas or VHDL attributes in synthesizable HDL code are sometimes critical 

for achieving performance and resource allocation goals. To date, those tool-dependent 

features have all been managed within the annotated HDL model.  

LAMP tools interact with an HDL and generate HDL code, but do not depend 

fundamentally on any particular HDL. VHDL has been chosen for the initial LAMP 

implementation, and parts of LAMP are written speicifically with VHDL in mind. 

LAMP’s architecture identifies and isolates those dependencies, allowing a new HDL to 

be supported without basic changes to the LAMP tool structure. 

Executable accelerator 

The final product is a bit file for implementing the accelerator in the target FPGA. 

The applicaiton user treats this roughly as executable code to be run on the hardware 

accelerators. This is analogous to a graphics shader programs in compiled form, ready to 

load into graphics accelerator hardware. It is also possible for the user to create and reuse 



 

multiple bit files that serve different purposes, much the way a graphics programmer 

writes shaders for different purposes. 

It is not generally necessary for each application specialist to recompile the accelerator 

for each usage. Most application specialists are likely to try a few combinations, then find 

the one (or few) that best serve their use of the application. It’s been assumed that 

application specialists act independently of each other. Sharing of application data or 

compiled accelerators is likely, especially between members of one research team, but is 

not relevant to the basic idea of how the application accelerators are most likely to be 

used. 

5.3 The LAMP “Model”  

Figure 22 shows the parts of the LAMP model. All of the blocks in that diagram represent 

LAMP design input, in LAMPML. CLAMP offers convenience, but serves the same 

purpose. HDL input is contained in and annotated with LAMPML elements.  

«Client» 

Model instance 
«Context» «Strategy» «ConcreteStrategy» 
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Figure 22. Structure of LAMP’s accelerator model 
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Stereotype labels are roles in the Strategy design pattern [Gam94]. A design pattern is 

a widely used and very generic solution to a recurring problem in system design. 

Although design patterns arose in the software development literatures, they are gradually 

becoming accepted in discussion of hardware systems. In this case, the Strategy pattern 

defines a specific set of relationships between the design components that implement the 

fixed high-level structure and the swappable low-level steps of an algorithm.  

5.3.1 Accelerator model components. 

Figure 22 contains the following blocks: 

⋅ Model instance. This is the aggregate of all the LAMPML design blocks. When the 

AppConcretion blocks for a specific member of the application family is provided, 

this can be processed by the LAMP compilation tools to generate HDL for synthesis. 

This normally does not contain any application logic itself, but acts as an index to the 

other blocks in the accelerator as a whole. A generic model instance describes the 

accelerator in the abstract, and specific instances modify for the AppConcretion 

blocks and bindings that define a particular member of the family of applications. 

⋅ Family-specific components. These are the annotated HDL, parameterized so that 

specific data types and functions can be provided to tailor the model to a specific 

member of the application family. 
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⋅ HWabstraction. This contains the definition of the salient FPGA resources in 

abstract form. This isolates the rest of the model from the exact numeric values for 

each resource 

⋅ HWconcretion. A different HWconcretion represents each different FPGA by 

creating concrete definitions for the resource abstractions defined by the 

HWabstraction. The logic designer creates one of these sets of definitions for each 

FPGA platform of interest, but only one can be used at a time. In the ideal case, 

where different hardware accelerators differ only in being built from different 

footprint-compatible members of one FPGA family, a the HWconcretion in the 

Model instance would be changed to represent the new FPGA’s resource amounts. 

The model would be recompiled with no further source changes.  

⋅ AppAbstraction. This abstraction isolates the common logic of the application 

family (in the Family-specific components) from the unique logic of the family 

member (in the AppConcretion), and vice versa. It defines the set of data type, 

function, and value abstractions needed to customize the model for any one member 

of the application family. 

⋅ AppConcretion. This is the only design block that the application specialist 

modifies, unless lack of tools requires hand-editing of the Model instance. The 

AppConcretion contains the application-specific implementations of the definitions 

called for by the AppAbstraction. 



 

 193 

Only the Model instance and AppConcretion change for different members of the 

application family. The AppConcretion comes from the application specialist, and is the 

only block in that diagram that is not properly part of the model. The Model instance is 

largely indexing information that must be customized to each application’s specific set of 

design blocks. All other blocks represent data provided by the logic designer.  

In LAMPML terms (Appendix A) the Model instance is an application element, 

the Family-specific components are entityDef and possibly class elements, and the 

others are all class elements.  

5.4 Object binding 

Although LAMP uses a standard HDL for synthesis, it is not limited to that underlying 

HDL’s capabilities. In particular, LAMP allows more flexibility in component signal 

typing than does VHDL. This section addresses a VHDL example using LAMP’s 

semantics for object instantiation, showing how it extends the capabilities of VHDL. 

Code samples in this section are fragmentary, but adequate to show the semantics of 

LAMP language constructs. 

Because LAMP uses two linguistic levels, LAMPML for integration and VHDL for 

logic implementation, there are two meanings for a component instance. VHDL 

component instances are the usual, familiar instantiations of synthesizable entities. 

LAMP adds the notion of a logical instance, a LAMP entity with its import symbols 
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bound to appropriate type names and values. It does not by itself create anything 

synthesizable, but provides a definition that can be instantiated by the HDL code. 

Loosely speaking, a LAMP entity with unbound type parameters corresponds to a C++ 

template class. A logical instance is one binding of type parameters to that template class, 

but does not imply C++ objects of that type-parameterized template. The VHDL 

component instance corresponds to a C++ object of that filled-in template type.  

Code sample 2 shows the original VHDL statement of the delay line’s interface. Data 

type Datum is assumed to be defined elsewhere in the application, and is not relevant to 

current discussion. For concreteness, assume that this defines a reusable component that 

implements a fixed delay of some number of clock cycles (set by delayAmt) Any Datum 

value presented at the datIn port will appear at the datOut port delayAmt cycles later, 

where a cycle is a transition from logic level 0 to 1 on the sysClk input. The actual 

function of the component does not matter, however. Current discussion addresses only 

the instantiation logic. 



 

Code sample 2. VHDL 

component declaration 

1. entity DelayLine is 

2.   generic(delayAmt:  natural) 

3.  port(sysClk:  in std_logic; 

4.   datIn:   in Datum; 

5.   datOut:   out Datum); 

The problem is that VHDL allows only one definition of the Datum data type, limiting 

the reusability of the component. The designer could, instead, have achieved reusability 

at the cost of typing by requiring the application data to be flattened into a 

std_logic_vector bit representation, which effectively defeats strong typing. LAMP 

allows both – strong typing and reusability, using a mechanism related to the template 

construct of C++ or Java. 

5.4.1 LAMPML entity definitions 

Component definitions for LAMP are written in LAMPML, an XML-based format. The 

top-level element of a LAMP component is an entityDef element, which starts as shown 

in lines 1-7 of Code sample 3.  

Code sample 3. 

LAMP entity 

declaration 

1. <entityDef name="DelayLine"> 

2.   <typeImport name="Datum" type="baseType"/> 

3.  <symImport name="delayAmt" type="natural" /> 

4.  <typeImport name="FpgaContent" type="FpgaResource" /> 
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5.  <symExport name="entName" type="symbol" > 

6.    <uniqueID prefix="delay_" /> 

7.  </symExport> 

Line 1 is the top-level element. It continues until </entityDef> appears in the file, like 

the closing parenthesis around the group of definitions. Line 2 states that a data type must 

be imported into this definition. The type attribute in this declaration constrains the data 

types that can be imported into this symbol – any valid import must be a subclass of 

baseType. Since baseType is the root of every inheritance hierarchy, any data type is 

allowed to be imported into this symbol.  

Line 3 takes the place of the generic declaration in Code sample 2. The delayAmt 

variable has been moved from VHDL to LAMP so that LAMP logic can use this value in 

synthesis estimation and sizing. Line 4 imports information about the FPGA platform, so 

that estimation and sizing can match resource utilization to resource availability. Details 

of estimation and sizing are described in detail in section 5.7, so will not be discussed 

further here. 

Line 4 states that symbol FpgaContent is used locally as a class name. The specific 

class to which is refers is defined elsewhere, but that class mut be a subclass of 

FpgaResource. This lets the current context use the symbol names defined by 

FpgaResource, but defer actual symbol definitions until the entity is used. 
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Lines 5-7 generate a data value in this entity definition, scoped to be visible outside of 

this compilation unit. The value assigned to is it a globally-unique symbol to be used as 

externally as the name of any logical instance of this entity. This is required by the HDL 

code, since different instances of this entity can have different bindings to the 

typeImport symbols – as if VHDL allowed generic parameters to specify data types, 

instead of just values. When LAMP generates an actual VHDL entity definition for this 

component, it will have the unique name specified by entName. This will be 

demonstrated in detail later in this example. 

VHDL code is interleaved with the LAMPML markup. The following code fragment 

appears later in the compilation unit of Code sample 3. Other VHDL code would also 

have been present in a real code file, but has been omitted for clarity. 

8. entity <varRef name="entName" /> is 

9.  port(sysClk:   in std_logic; 

10.   datIn:   in <symRef name="Datum" />; 

11.   datOut:   out <symRef name="Datum” /> ); 

This shows how closely XML-based LAMPML markup is tied to the VHDL code. Rather 

than using actual VHDL symbol names for the VHDL entity name and signal data types, 

LAMPML symbols are used. The way, the VHDL code can be generated differently for 

each logical instance of the entity created in the LAMP code.  
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Line 8 replaces an actual entity name with a reference to the entName symbol 

generated at line 5. Because this symbol has a different value for each logical instance of 

the entity, the VHDL code can be reused in ways that are not normally possible for 

VHDL. In particular, lines 10 and 11 show signals without explicit type definitions. 

Instead the type definition is refers to the symbol Datum. The Datum symbol resembles a 

formal parameter to a function. Its exact meaning is not known to the source code that 

uses the symbol. Instead, meaning is assigned by the binding of an actual type definition 

to the Datum symbol in a logical instance of this entity. 

The Datum symbol used in lines 10-11 is a LAMP definition, but must be converted 

into a HDL type definition accessible within this entity and the entities that pass signals 

to these ports.  When the type is one of LAMP’s primitives, boolean, integer, or 

natural, conversion to VHDL is straightforward. Ranges of integer and natural 

values also have obvious VHDL translations. LAMP also allows tuple definitions in 

typeDef declarations. If a symRef element makes use of one of those types, as in this 

example, LAMP generates a corresponding VHDL record declaration. Tuple elements 

may themselves be tuples, just as fields of a VHDL record may also have some record 

type. In those cases, one symRef triggers multiple VHDL type declarations, for as many 

levels of fields within fields as necessary. Recursive declarations are errors, so all LAMP 

tuple types can be cast into VHDL.  



 

5.4.2 Logical and synthesizable instances 

Lines 1-11 of Code sample 3 are just a small part of the whole LAMPML file. It 

continues with more VHDL and LAMPML code. Only the parts relevant to LAMP 

component instantiation have been shown. The example continues below, with code 

taken from a separate file where the DelayLine entity is actually used. 

1. <entityUse entity="DelayLine" name="audioDelay">   

2.   <bindType importSym="Datum" bindTo="audioSample" />  

3.  <bindType importSym="FpgaContent" bindTo="FpgaContent" />  

4.  <bind importSym="delayAmt">  

5.   <literal type="natural" /> 100 </literal> 

6.  </bind> Code sample 4. LAMP entity usage,  

creating a logical instance 7. </entityUse> 

The entityUse element at line 1 creates a logical instance of the DelayLine entity. The 

logical instance is named audioDelay.  

Import symbol Datum of DelayLine is bound to the locally defined data type symbol 

audioSample at line 2. The audioSample symbol need not have any meaning within 

DelayLine. Instead, the type referred to by audioSample should be thought of as an 

actual parameter to formal parameter Datum. The bindType element creates the 

association between the audioSample type and the Datum import symbol. 
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Line 3 performs a similar binding. This bindType element deals with two different 

uses of symbol name FpgaContent. The first, in the importSym attribute, refers to a 

symbol defined internally to the DelayLine entity. The second, in the bindTo attribute, 

identifies a symbol in the entity that is instantiating DelayLine. The two attributes use 

different symbol resolution scope, so the two different uses of FpgaContent refer to 

different things.  

Lines 5-7 assign a numeric literal value, 100, to audioDelay’s delayAmt symbol. 

Any natural-valued expression could have been used here, but details of LAMPML 

expression handling are deferred to Appendix A.1.4. 

This completes the definition of logical instance audioDelay of entity DelayLine. 

At this point, the LAMP tools resolve the meanings of all unbound symbols in 

DelayLine. The unique value of entName (line 5, Code sample 3) is assigned, and 

LAMP creates a synthesizable VHDL file with the symbol bindings replacing the symbol 

references in that file. 

The entityUse declaration does not, however, create a VHDL component instance. 

The VHDL code must do that explicitly, using a reference to the logical instance like the 

one below: 

8. AudioLag: component <varRef name="audioDelay:entName" /> 

9.   port map(sysClk, digitizerInput, laggedSample);  
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This is exactly a normal VHDL component instance, except that the entity name has been 

replaced by a LAMP variable reference. The varRef element fetches the value of the 

named variable. In this case, the name is scope-qualified. The colon “:” separator in 

LAMPML serves the same syntactic purpose as a period “.” separator in a C++ or Java 

program. It orders that later parts of the colon-separated sequence be resolved in the 

context defined by the first symbol. In this case, it requests the entName variable defined 

within the entity that audioDelay instantiates. That is the symbol uniquely generated for 

that logical instance of DelayLine. Definitions of the digitizerInput and 

laggedSample signals are not shown, but are assumed to be of type audioSample. 

Once the audioDelay logical instance has been defined, VHDL instantiation can 

create any number of synthesizable instances. LAMP’s extension to VHDL semantics, 

however, comes from the ability to create multiple logical instances of a single entity and 

to create synthesizable instances of them. For example, Code sample 4 could continue as 

shown below:  

10. <entityUse entity="DelayLine" name="pipelinedControl">   

11.   <bindType importSym="Datum" bindTo="controlPacket" />  

12.  <bindType importSym="FpgaContent"  

13.          bindTo="FpgaContent" />  

14.  <bind importSym="delayAmt">  

15.   <literal type="natural" /> 2 </literal> 
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16.  </bind> 

17. </entityUse> 

18. CmdBypass: component  

19.      <varRef name="pipelinedControl:entName"/> 

20.   port map(sysClk, cmdIssue, cmdPerform);  

The entityUse element follows the same pattern as lines 1-7, but binds a different type 

to the data ports of the delay line and a different unique name to the entity definition. 

This logical instance also has a different name, pipelinedControl rather than 

audioDelay. As shown in lines 18-20, that lets the VHDL developer choose which 

logical instance is to generate a synthesizable instance. 

5.4.3 HDL output for logical instances 

This generates a different VHDL entity definition than the audioDelay logical 

instance. Generated code for the two would have the following forms: 

entity delay_000139 is 

 port(sysClk:  in std_logic; 

  datIn:   in controlPacket; 

  datOut:   out controlPacket);  

  ... 
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and 

 entity delay_000076 is 

 port(sysClk:  in std_logic; 

  datIn:   in audioSample; 

  datOut:   out audioSample);  

  ... 

The entity names (delay_000139 and delay_000076) are only representative, because 

they are generated by the uniqueID expression at line 6 in Code sample 3. The prefix 

string delay_ was chosen by the developer, but the numeric suffix is chosen to 

guarantee global uniqueness of the generated symbol, and is not guaranteed to have any 

particular value or even a repeatable value. This LAMP mechanism allows a higher 

degree of type-safe reusability than is possible in the standard VHDL language.  

Although VHDL generics are not shown in this example, they are still available to the 

developer. The reason for moving Code sample 2’s delayAmt parameter from VHDL to 

LAMP was to make the value accessible to calculations (not shown) in the LAMPML 

markup, for evaluation during compilation. LAMP does not restrict the VHDL features 

available to the developer. Instead, LAMP adds additional features, which were used in 

this case. 
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5.5 Function synthesis 

One of LAMP’s goals is to be able to define functions that represent application logic and 

to integrate those functions into the synthesized HDL code. This problem has several 

parts: defining the expressions that represent application logic, passing those executable 

functions as parameters to the HDL code, and instantiating the functions as synthesizable 

HDL. 

5.5.1 LAMP functions and expressions 

As with all of LAMP input, expressions in LAMPML use XML-based syntax, described 

in Appendix A.1.4. This format is easily machine-readable, but unwieldy as a human 

interface format. For example, the expression X * 9 + Y * 7 would be written as: 

<functionCall name=”add”> 

 <functionCall name=”multiply”> 

  <varRef name=”X” /> 

  <literal type=”natural”> 9 </literal> 

 </functionCall> 

 <functionCall name=”multiply”> 

  <varRef name=”Y” /> 

  <literal type=”natural”> 7 </literal> 

 </functionCall> 

</functionCall> 
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Convenience LAMP (CLAMP), described in Appendix A.3, presents syntax more 

familiar to C or Java programmers. A translator has been written to convert CLAMP 

source text into LAMPML, but CLAMP can not handle HDL text. Rather than force the 

reader to wade through lengthy XML, this section uses CLAMP syntax for clarity. The 

reader must understand that this isn’t the actual format used by LAMP, but can be 

converted into the XML format.  

LAMP allows synthesizable functions to be written into the annotated HDL directly, 

or to be passed through a type import. LAMP processes the synthesizable form of the 

function the same way in either case. A LAMP function is not processed into 

synthesizable form if it is used only during LAMP processing, i.e. if its parameters are all 

LAMP constants or expressions that can be evaluated at compile time. Such function 

references generate control values and aid in decisions about LAMP’s processing of the 

HDL code. Once their values have been used, however, the function body does not need 

to be preserved.  

Generation of a functions synthesizable HDL form is triggered by the LAMPML 

construct that allows HDL text to be passed as a parameter into a LAMPML function, the 

passParam element, described in Appendix A.1.4, page 281. LAMP does not process the 

HDL text other than to place it verbatim into a function call, so error checking and type 

compatibility can not be verified for any use of this construct. In use, such a function call 

might look as shown in the following example of VHDL with LAMPML annotation: 



 

1. constant vhdlSym : natural := someVar + otherVar; 

2. constant symA : natural := 5 + 

3.  <functionCall name=”lampFunction”> 

4.    <varRef name=”lampSym” /> 

5.    <literal type=”natural”> 9 </literal> 

Code sample 5. Use of 

passParam in 

LAMPML function 

call 

6.   </functionCall> ; 

7. constant symB : natural := 2 * 

8.   <functionCall name=”lampFunction”> 

9.    <varRef name=”lampSym” /> 

10.    <passParam> vhdlSym * 9 </passParam> 

11.   </functionCall> ; 

Line 1 of Code sample 5 is plain VHDL code. It shows a simple expressions that 

evaluates to a constant when the VHDL compiler runs, using VHDL symbols only. The 

assignment at line 2 performs an assignment that combines VHDL and LAMP 

expressions. In this case, the LAMP expression is wholly in terms of LAMP values and 

constants, so it is evaluated entirely within LAMP. The generated HDL code replaces that 

functionCall element with the HDL constant to which it evaluates. This does not 

trigger generation of HDL code for the lampFunction definition.  

The assignment at line 7, however, does cause HDL code generation for 

lampFunction because of the passParam element at line 10. The functionCall 

element is replaced with a call to a VHDL function, and the definition of 
 206 
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lampFunction’s body is instantiated as a function definition local to this entityDef 

element. This, in turn, triggers HDL code generation for data type definitions used within 

that function. It also creates HDL code for any auxiliary functions invoked by the 

lampFunction body, and so on recursively. LAMP performs some optimizations having 

to do with constant values in expressions, but generally creates direct HDL 

representations of the LAMPML expressions. 

There are some restrictions on the functions that are used for logic synthesis. In 

particular, recursion is not permitted in synthesis. LAMP, however, uses recursion as its 

mechanism for performing repeated operations, in place of C-like loop constructs. As in 

the definition of VHDL functions, the developer must make sure that recursive functions 

are used only for compile-time constant expressions, not for synthesis. 

LAMP’s function syntax is straightforward, and VHDL equivalents for most of the 

primitive functions and data types should be obvious. LAMP’s if-then-else operator, 

however, requires generation of auxiliary functions. VHDL does include a similar 

construct, the assign-when form of signal assignment. This can only be used for VHDL 

signals, not variables, and can not be used in an arbitrary expression context. If 

considered as an operator, that conditional construct would have the weakest of all 

operator bindings, would be allowed on the right-hand side of assignments only, and 

would not be allowed inside of parentheses or function calls. This is far more restrictive 

than LAMP’s conditional operator, which is allowed in any expression context. 
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Each auxiliary conditional function has the following form, in VHDL: 

1. function sel_000013(tst: boolean;  

2.   ifT, ifF: someType) return someType is 

3. begin   

4.   if tst then return ifT; else return ifF; end if; 

5. end function sel_000013; 

The type name used for the someType symbol is deduced from the types of the operands 

to the LAMPML if-then-else. As many differently-typed selection functions are 

created as needed for handling if expressions of different types, each with a different 

numeric suffix. Specific numbers for suffixes in the generated names have no 

significance and can not be guaranteed. 

VHDL allows functions in signal assignments as well as constant expressions, so the 

HDL functions generated by LAMP can be used in signal expressions. This is the feature 

that connects the LAMPML or CLAMP input to the synthesized output. LAMPML 

function calls can accept signal inputs via the passParam element, that triggers HDL 

generation for the function called, and that in turn becomes synthesized logic. 

5.5.2  Class bindings in logical instances 

LAMP configurability is based on replacement of abstract superclass symbols by 

subclass concretions of those abstract symbols. The annotated HDL code defines a set of 



 

abstract data types, functions, and constants, and is customized by binding a concrete 

subclass to the abstraction.  

This example uses a reduction array, where a vector of data values is examined and 

one value produced as output, based on performing some operation down the length of 

the vector. This include vector sums, AND of all elements, parity computation, arithmetic 

max or min, priority encoding, and other functions. Using CLAMP notation (see 

Appendix A.3) for convenience, the variable parts of this array could be written as 

follows: 

1. class Reduction { 

Code sample 6. Reduction 

array abstraction 
2.   typeDef inputType; 

3.   typeDef innerResult; 

4.   typeDef finalResult; 

5.   const innerResult resultInit; 

6.   function innerResult reduceOne( 

7.    natural  curIndex, 

8.     inputType  curValue, 

9.    innerResult resultSoFar); 

10.   function finalResult makeFinal ( 

11.    innerResult lastResult); 

12. }; 
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This assumes annotated VHDL also exists to create synthesizable instances of reduction 

arrays based on these definitions. The VHDL code is assumed to expand to a structure 

resembling the one shown in Figure 23.  

curValue[N-1]
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Lines 2-4 state that the model uses some data type definitions for input values, for 

temporary results, and for results of the reduction operation. The types must be specified, 

and need not be the same. For example, a priority encoder would generate an integer 

result for binary inputs, so resultType could be defined as an integer range and 

inputType as a boolean value. Line 5 states that the reduction starts with some 

initialization value. That would be 1 for a product of all inputs, false for a boolean OR 

of all inputs, the lowest possible value for a max of all inputs, or any other value 

appropriate to the specific usage.  

Lines 6-9 specify the calling interface for the reduction function. The curIndex value 

is a convenience, the index number of the current element in the reduction array. It must 

be present syntactically, whether it’s used or not. If it is not used within the function 

body, however, it will be eliminated in synthesis. The curValue input represents the 

reduceOne[N-1] 

curValue[N-2]

resultInit 

reduceOne[N-2] 

inputType 

innerResult finalResult 

makeFinal 

Figure 23. Sample application: reduction 



 

value of the current element of the array to be reduced. The resultSoFar value is the 

intermediate result in the running sum. This function combines the current value with the 

running sum to produce the next value of the running sum for the next element in the 

reduction array. Lines 10-11 capture the idea that the computation, in some cases, 

requires some book-keeping values that are not part of the final answer, and defines a 

function that converts the computation into a final result 

Code sample 7 shows one concretion of this interface, for finding the array index that 

has the highest-valued element. This class would normally be stored in a file separate 

from class Reduction. 

Code sample 7 . 

Concretion of reduction 

array – position of the 

largest value 

1. class MaxPos extends Reduction { 

2.   const natural inpBits := 12; 

3.   const natural maxIndex := 31; 

4.   typeDef inputType integer[inpBits]; 

5.   typeDef finalResult natural[#maxIndex]; 

6.   typeDef innerResult { 

7.    finalResult index, inputType maxVal }; 

8.   const typeDef resultInit := new innerResult ( 

9.    index := 0, maxVal := 1 << (inpBits-1) ); 

10.   function innerResult reduceOne(finalResult curIndex, 

11.     inputType curValue, innerResult resultSoFar) 
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12.   { 

13.    innerResult thisIsMax := new resultType( 

14.     index := curIndex,  maxVal := curValue); 

15.    return if curValue >= resultSoFar.maxVal  

16.     then thisIsMax else resultSoFar; 

17.   } 

18.   function finalResult makeFinal(innerResult lastResult) 

19.    { return lastResult.index; } 

20. }; 

Lines 2 and 3 define constant values specific to this application – the number of bits in 

the signed input value, and the highest index value (starting from 0) to be used. These are 

not visible to parts of the system defined in terms of class Reduction. They could also 

have been expressions based on values defined elsewhere. Line 4 defines the input value 

to be a signed integer of some number of bits. Line 4 states that the input data value is an 

integer with specified number of bits. Line 5 says that the final result is an unsigned value 

with enough bits to hold the maxIndex value. Although the final result is an index value 

only, temporary results throughout the operation need to carry both the highest value to 

date and the index at which it occurs. Lines 8-9 create the constant that initializes the 

reduction: its index is irrelevant and set to zero, and its value is the most negative 

possible value. Although this uses a new operator like that in Java or C++, it does not 

result in any run-time allocation of memory. This executes at compile time, so it reduces 
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to a set of constant bit values by the time it reaches synthesis. The function in lines 10-17 

starts by creating the result that would needed if the current value were to be the highest 

to date in the reduction. Lines 15-16 decide whether this new value should be returned to 

the caller, or the previous best. Finally, lines 18-19 strip off the information needed for 

finding the highest value and return only the position at which it occurred. 

Clearly, MaxPos is only one of many possible concretions of abstract class 

Reduction. A sum over the inputs might have used an integer value for finalResult, 

and the same value for InnerResult. The makeFinal function, in that case, would need 

to be present for architectural reasons, but would just pass the input directly to the output.  

Assume that the system consists of (at least) two component types: Level1 and a 

component that it instantiates called Level2. The Level1 component is the top-level 

component instantiated by the system. In this case, the application as a whole might 

include the following files. 

1. entity Level2 { 

2.   import class AppSpecifics extends Reduction; 

3.   . . .  

4. } 

Although class names and file names have no fixed relationship, the LAMPML form of 

this file would normally be named Level2.xml. This component makes use of class 

definitions using a symbol named AppSpecifics. It is known only that AppSpecifics 
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exports all the symbols definitions found in class Reduction, defined above. All 

interface items are Reduction are abstract, however, so AppSpecifics can not actually 

be bound to Reduction. Class Reduction just defines the set of interface items 

accessible through symbol AppSpecifics. 

1. entity Level1 { 

2.   import class AppSpecifics extends Reduction; 

3.   . . . 

4.   instance Level2 innerL2 { 

5.    class AppSpecifics := AppSpecifics }; 

6.   . . . 

7. } 

The file Level1.xml is assumed to have the text above as its content. As in Level2, 

symbol AppSpecifics represents some class, not yet identified, which exports the 

interface defined by class Reduction. Entities Level1 and Level2 are different symbol 

definition scopes. As a result, definitions of symbol AppSpecifics in the two have no 

relationship to each other. Choice of the same name for symbols in the two different 

entities was arbitrary, but convenient for the developer. 

Line 4 in Level1 defines innerL2 to be a logical instance of entity Level2. The 

symbol binding at line 5 refers to a symbol defined in Level2, on the left of the 

assignment, and a different symbol on the right of the assignment, defined in Level1. It 
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means that class symbol AppSpecifics in innerL2 actually refers to the same class that 

AppSpecifics in Level2 refers to. At this point, however, the actual class bound to 

symbol AppSpecifics has not yet been determined, so innerL2’s class binding is not 

known either. 

The last file in this example contains the application definition that follows: 

1. application TestApp { 

2.   useClass “Reduction.xml”; 

3.   useClass “MaxPos.xml”; 

4.   use “Level1.xml”; 

5.   use “Level2.xml”; 

6.   root Level1 appRoot { 

7.    class AppSpecifics := MaxPos } 

8. } 

The actual file would be XML derived from this CLAMP text. Lines 2-3 state the names 

of the class definition files used by this application. Lines 4-5 state the names of files 

containing annotated HDL code. Line 6 states that the root component is an instance of 

Level1. The logical instance of the root component is called appRoot.  

The binding of line 7 states that the symbol AppSpecifics in logical instance 

Level1 shall refer to class MaxPos. This is valid, because AppSpecifics must name a 

class that is a subclass of Reduction, and MaxPos is such a subclass. Because of the 
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binding at line 5 in entity Level1, symbol AppSpecifics in innerL2 also refers to 

MaxPos. Symbol binding is a recursive process, and propagates to any number of levels 

of structural hierarchy. 

5.5.3 LAMP to HDL data conversion 

Some synthesis tools require std_logic bits and bit strings for specific constructs to 

synthesize properly. For example, Xilinx recommends that only those standard data types 

be used in synthesizable code [Xil03b], and inference of block RAMs fails for any stored 

data types other than std_logic and std_logic_vector. LAMPML code, however, 

encourages use of tuple data types. Although LAMP’s tuple types can be represented 

exactly as VHDL record types, such values cause problems where std_logic is 

required. 

LAMPML supports the std_logic and std_logic_vector types directly. The 

LAMP tools also provide two function for every data type, typeName:fromStdVec and 

typeName:toStdVec. LAMP automatically provides these conversions to and from 

every data type. All conversion functions have the same names, so scoping is required to 

disambiguate them. The a:x LAMPML syntax specifies the instance of x that is scoped 

within a, so that x is distinct from b:x, c:x, etc. The functions implicitly have the 

following LAMPML signatures: 
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function std_logic_vector[synthSize(typeName)] 

      toStdLogic(typeName) 

and  

function typeName 

     fromStdLogic(std_logic_vector[synthSize(typeName)]) 

As shown, the synthSize (described below) function works with these functions to 

define VHDL data items of sizes that match the LAMP types.  

These functions work the same way as any other, when being converted to 

synthesizable form. They respectively generate auxiliary VHDL functions named 

toStdLogic_nnnnnn and fromStdLogic_nnnnnn, where nnnnnn represents some 

unpredictable integer value. As many auxiliary functions are generated for a tuple type 

conversion as are needed to handle the types of each element of the tuple. 

They type name that scopes toStdLogic or fromStdLogic may be a name in a 

LAMP entity’s list of type imports. In that case the exact identity of the conversion 

function is not known until a logical instance of the entity is created by binding actual 

type definitions to the import symbols. Different actual types could be bound to a given 

import symbol in different logical instances. In that case, each logical instance has 

different conversion functions, according to the actual types bound to the import symbols.    
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5.6 Local and global definitions 

Section 5.4 described how VHDL entities with different component interfaces are 

generated when symbol bindings create logical instances. Section 5.5 described how 

HDL code generation works for LAMP library functions and for LAMP-defined data 

conversion functions. Additional VHDL definitions are created in generating VHDL code 

for LAMP data types and symbolic constants. Some of these definitions must be available 

globally, across all HDL code in an application. Other definitions are local, of interest 

only within one of the application’s compilation units.  

Either way, VHDL demands that definitions of different types be placed at different 

syntactic locations in the source files involved. LAMP does not perform syntactic 

analysis on the HDL files, so it has no direct way to determin where the generated code is 

syntactically allowed. Three LAMPML elements are involved in correct placement of the 

definitions: writeHdr, insertHdr, and insertLocal. These elements appear only 

within LAMPML entityDef elements, the elements that corresponds to the VHDL 

entity definitions for synthesizable component. 

5.6.1 Local definitions: the insertLocal element 

The insertLocal component normally appears exactly once. It has no attributes, and 

does not contain any other elements or HDL text. It identifies the point in the VHDL 

architecture definition at which the local symbol definitions can be inserted, which 

must be between the architecture-is part of the entity definition and the begin 
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statement that encloses the synthesizable logic of the component, and not within an 

incomplete VHDL declaration. Generated VHDL code has this element replaced by the 

set of automatically generated local symbol definitions. In the even that one entityDef 

element contains multiple VHDL architecture blocks, each one must have its own 

insertLocal. 

5.6.2 Global definitions: the insertHdr element 

The insertHdr element appears only once per HDL file, among the VHDL use 

statements that import library definitions. This creates a reference to a header file created 

by the LAMP tools, and used to share definitions required by multiple VHDL entities. 

The name of this file is not under programmer control.  

5.6.3 Creating globals: the writeHdr element 

The writeHdr element may be used as many times as desired within an entityDef 

element. The raw text and LAMP expressions in it are written to the global definition file 

referenced by insertHdr, and are not inserted into the HDL file for the current entity. 

Any expressions are evaluated before being written to the file. The main use of this 

feature is in creating new, globally visible VHDL component declarations for each 

LAMP logical instance. For example, consider the following LAMPML code fragment: 
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1. <entityDef name="EntExample"> 

2.   <symExport name="entName" type="symbol" > 

3.    <uniqueID prefix="conv3D_"/> 

4.   </symExport> 

5.   <typeImport name="portData" type="baseType"/> 

6.   entity <varRef name="entName" /> is 

7.    port(datIn:  in <symRef name="portData" />; 

8.     datOut:   out <symRef name="portData" />); 

See Appendix A for full descriptions of the XML elements and attributes used in this 

example. Line 1 opens the definition of a new entity the same way the CLAMP entity 

declaration does. The next lines, 2-4, create a symbol to be used for the entity name. This 

can not be an HDL symbol, because LAMP could create multiple logical instances of this 

entity with different bindings. Each logical instance must have its own name, so that 

HDL instantiation can refer to them differently. Because this uses uniqueID to create a 

symbol, it is guaranteed to have a different and unique value in every logical instance of 

the entity. Line 5 imports some data type for use by the component. 

Lines 6-8 are annotated VHDL code that starts the VHDL entity definition. Line 6 

uses the entName symbol defined at line 2, rather than using some specific VHDL 

symbol for the entity name. The actual VHDL entity name is not predictable, because 

uniqueID does not guarantee any particular symbol as a result. The entName symbol is 

an export from this LAMP entity, however, so any client of this logical instance can use 
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the actual VHDL entity name for creating VHDL instances of this component, no matter 

what is assigned by uniqueID.  Lines 7 and 8 define the two ports for this component, 

both of some type defined by the portData import at line 5. This creates a new VHDL 

component with port parameter types that could not be predicted by the VHDL 

developer. If multiple logical instances of this element are created, then multiple VHDL 

components with different port types are created, where each requires its own unique 

entity name. Note that this is a significant extension to basic VHDL semantics, because 

there are no VHDL language constructs able to perform data type substitutions like this. 

The VHDL developer can go on to create the rest of the VHDL architecture using any 

desired VHDL constructs, and using expressions based on the portData data type. The 

problem is that the global definition files, built around VHDL package statements, can 

not create component references to this VHDL entity. It was not known at the time this 

entity was defined what port data types would be used, or even how many different 

logical instances would be created. Because of the uniqueID entity name, even the client 

components that instantiate this one could not predict the entity name, so could not create 

their own component declarations. That would have been bad programming practice in 

any case. It would have distributed the declaration of the one logical instance across 

multiple different files. Deriving all definitions from one place reduces the possibility of 

“version skew” that occurs when the component definition changes, but the change is not 

propagated to all points at which it occurs. 
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Instead the VHDL developer should use this entityDef declaration to make visible 

all of the logical instances that derive from it. The following code continues the example 

above, in the same LAMPML source file: 

9.   <writeHdr> 

10.    component <varRef name="entName" /> is 

11.     port(datIn: in <symRef name="portData" />; 

12.      datOut:  out <symRef name="portData" />); 

13.    end component <varRef name="entName" />; 

14.   </writeHdr> 

The writeHdr element has no effect on the local file – it and its contents are removed 

when the HDL file for the logical instance is generated. It does, however, generate output 

in the global definition file referenced by the insertHdr element, once per logical 

instance of this LAMP entity. In addition, it generates a globally visible definition for 

type portData, if necessary, and for any other types on which portData depends.  

5.7 Synthesis estimation and sizing 

Synthesis estimation depends on three sources of information: the logic designer’s 

understanding of the HDL for the reusable parts of the application accelerator, the 

application specific details of leaf functions and data types, and the FPGA-specific pool 

of resources and allocation strategies. This section defines the basic tools and techniques 

of synthesis estimation and sizing, and Appendix B includes a detailed example. 



 

5.7.1 FPGA specifics 

FPGA-specific features are handled within the LAMP language. The logic designer is 

required to determine what FPGA resources are important to the application, to state the 

limits of each resource, and to provide any other FPGA-specific knowledge required for 

reasonably accurate synthesis estimation. Code sample 8 provides one example of a 

generic FPGA description, and Code sample 9 gives a specialization of that interface, to 

represent the actual amounts of rersources in a particular model of Xilinx Virtex II Pro. 

Both of these examples use the CLAMP language, defined in Appendix A.3. 

1. class FPGAresource { Code sample 8: Abstract 

definitions of FPGA 

resources 

2.  const natural logicCells;  

3.  const natural ramBlocks; 

4.  const natural hardMultiply; 

5.  function natural nRams(natural wordSize, natural nWords);  

6. } 

This interface definition describes any FPGA in terms of three constant values and a 

function, all of which must be given concrete meanings for any particular FPGA. The 

abstract definition – without actual values for the constants and with an actual strategy for 

allocating physical RAMs to logical structures – gives a set of symbols to use in FPGA-

specific allocation. By itself, however, it can not be used for allocation logic. All of its 

interface items must be given actual definitions for this to be useable. 
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1. class XC2VP70 extends FPGAresource { 
Code sample 9. 

Chip-specific 

resource description 

2.  const natural logicCells := 66176; 

3.  const natural ramBlocks := 328;  

4.  const natural hardMultiply := 328; 

5.  const natural ramBits := 16*1024; 

6.  const natural minWords := 512;  

7.  function natural nRams(natural wordSize, natural nWords) {  

8.   natural effWords := if nWords > minWords  

9.    then nWords else minWords; 

10.   return (wordSize * effWords + ramBits-1) / ramBits  

11.  }; 

12. } 

This provides implementations for all of the interface elements in Code sample 8, but 

also defines some values for its own use (ramBits and minWords).  

5.7.2 Application-specific estimation 

The LAMP tools define a function that reports the number of bits needed for a value of 

given type, or amount of logic for a function defined in the LAMPML language. This 

allows the developer to create synthesis estimation functions that do not depend on any 

particular choice of application-specific functions or data types.  
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The first form of the synthSize element accepts the name of a data type, defined by 

some typeDef element. In CLAMP notation, this appears as a function that has a type 

name as its input parameter, rather than a data value. When applied to a data type, the 

synthSize expression returns an integer value that specifies the number of bit in a value of 

that data type. 

The second form of the synthSize expression accepts a user-defined function name 

as input. Polymorphic functions synthesize differently according to their parameter types, 

so this use of synthSize requires the names of the actual data types corresponding to the 

values each of its parameters. As an example,  

 synthSize(func, ptype1, ptype2) 

performs estimation on function func. That function has two parameters. This expression 

considers the case where the first actual parameter to the function call has data type 

ptype1, which must be a subclass of func’s first formal parameter, and the second 

actual parameter type is ptype2, which must be a subclass of func’s second formal 

parameter. 

LAMP’s primitives are assumed to synthesize only into logic elements. As a result, no 

estimation is made for the number of block RAMs, dedicated multipliers, or other FPGA 

resources. 
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Precautions in using synthSize 

Synthesis estimation can never be 100% precise. The amount of logic generated for a 

given expression depends on a large number of factors, not all of which are visible to the 

LAMP tools. Even the choice the synthesis tool’s control options can affect the amount 

of logic generated. As a result, the user should be aware of the algorithms used by 

synthSize, including likely sources of estimation error. 

If the synthSize element’s name attribute refers to a data type, the expression returns 

the number of bits needed for allocating one value of this data type. This over-estimates 

the actual bit allocation if some or all of the value is constant or is never used. If any of 

the value’s bits are constant, synthesis often performs optimizations that combine the 

constant bits with other logic, eliminating those from the executable logic design. If some 

of the bits are never read or, transitively, are inputs only to bits that are never read, then 

the synthesizer need not allocate resources for them. 

When the name attribute of a LAMPML synthSize element specifies a function, the 

value is the number of logic elements estimated for one instance of the function logic. 

This is generally taken to be one logic unit per operation per bit of output. For example, 

logical OR of two six-bit values is assumed to synthesize into six logic elements. Some 

operations, such as bit concatenation and bit field extraction, do not allocate any logic. 

Multiplication and variable-amount shift operations are assumed to require n1×n2 logic 

units, where n1 and n2 are the numbers of bits in the operands.  
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Expressions involving HDL constants and expressions where the value is never used 

are likely to be simplified or eliminated in synthesis. That can not be forseen by the 

synthSize function, and tedns to cause over-estimation of logic utilization. Expressions 

where multiple operations may be combined in one unit of hardware logic may also be 

estimated as claiming more resources than in fact are allocated. For example, the bit 

expression (A AND B) XOR (C OR D) consists of three bit operations so would be estimated 

at three logic elements. In fact, this can be implemented in one of a Xilinx FPGA’s four-

input LUTs. If synthesis allocates a block multiplier in place of a discrete implementation 

of multiplication, or if a function is implemented as a lookup table in block RAM, then 

this over-estimates logic allocation and does not account for the resources actually 

allocated. 

In some cases, synthSize may underestimate the amount of logic allocated to a 

function’s implementation, or to the hardware allocated to a data element. This can 

happen, for example, when fanout or signal distribution issues lead the synthesis tools to 

duplicate logic elements, typically registers, in a way not specified by the logic design. It 

may also happen when synthesis implements a single logical memory using multiple 

block RAMs, and implicitly adds selection logic that lets the collection of RAMs act like 

a single memory. 

The synthSize logic assumes that logic utilization is strictly additive. For example, if 

function P(x) is Q(x) + R(x), synthSize estimates this by summing the estimates for Q, R, 
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and the addition. Many tools would flatten P during synthesis, exposing all of the logic of 

Q and R, somewhat the way an optimizing compiler may inline HLL functions. This 

creates additional opportunities for global optimization, for example by eliminating sub-

expressions common to the bodies of Q and R. As a result, the additivity assumption may 

overestimate the logic needed for P. 

Experiments to date have not found cases where estimation errors affected the validity 

of array sizing. Still, this is an open area for further exploration. Although the fact of 

synthesis estimation is central to the LAMP tools, the techniques for performing it are 

readily modified. Estimation improvements should be easy to implement without 

fundamental changes to the LAMP tools. 

5.7.3 Designer’s estimation of HDL code 

Because LAMP does not analyze the HDL code for an application accelerator, the 

developer must provide synthesis estimation. There is no fixed interface to which 

synthesis estimation functions must conform. The designer may use any strategy desired 

for performing synthesis estimation. 

In order to make synthesis estimation reusable, and to limit difficulty in maintaining 

the estimation functions, developers should put the estimation function for each HDL 

component in the LAMPML source file for that component. When the component is 

reused in another application, its synthesis estimates can be reused with it. When one 
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component contains instances of another, estimation of the outer component’s resource 

usage should be made in terms of calls to the inner component’s estimation functions. 

Synthesis estimation should not assume any particular set of import parameter values 

for a component. In particular, when a component is parameterized to generate selectable 

numbers of inner design units, the estimation function should accept that number as a 

parameter input. That allows the estimation function to be used for “what-if” explorations 

of different configurations. 

5.7.4 System sizing 

The reason for performing synthesis estimation is to support system sizing, i.e. making 

decisions about the actual sizes to use for the repetitive structures in the application 

accelerator. Ideally, the amount of logic resources required, x, and the structural 

parameter n would be related by some invertible function R(n) = x. Then for a given 

amount x’ of logic resources, the structural parameter n’ would simply be R-1(x’) = n’.  

The examples and discussion of section B.1, however, show that realistic systems do 

not necessarily have simple or invertible expressions for resource usage. Most credible 

applications will have only a few structural parameters, however, and a modest range of 

valid values for the parameters. Simply trying different parameter settings, using the 

assumptions stated in Appendix B’s Equation 4, is assumed to be an affordable way to 
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determine the solution to that optimization problem. Appendix C gives a detailed 

example in LAMP notation. 
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6 RESULTS, CONTRIBUTIONS, AND FUTURE DIRECTIONS 

The first result of this research is that BCB applications of many kinds are infact 

amenable to FPGA acceleration. They demonstrate speedups of 100-1000×, relative to a 

PC, for applications having widely differing patterns of communication and 

synchronization. Since these problems have scientific and commercial interest in 

themselves, that kind of speedup shows that FPGAs can have significant value as 

application accelerators. Sections 6.1.1 and 6.1.2 present quantitiave performance 

measurements, and show the importance of scaling each computing array to the largest 

size possible. Section 6.1.3 notes the relative ease with which customizations can be 

made using the prototype LAMP tools. 

Section 6.2 summarizes the contrinutions of the current research in several areas. It 

describes the BCB applications themselves, and observes that applications in other areas 

show many of the same features that made FPGA acceleration work so well in these 

cases. It describes novel features of the LAMP tools that distinguish it from traditional 

logic design tools and that enable development of application accelerators. Finally, this 

section describes the component reusability concepts presented in the case studies. Some, 

like reuse of control and communication, are distinctive features of LAMP; others 

demonstrate kinds of reusability that could have been implemented with other tools, but 

have not been noted elsewhere. 
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Finally, section 6.3 notes areas for future exploration. Additional case studies, of 

course, would serve many purposes, including usability testing and suggestions for future 

enhancements. Many additional enhancements to the tools are forseen, including 

improvements to the user interface and in integration with the logic design tools on which 

synthesis depends. 

6.1 Results 

The initial performance results of this research come from the hand-coded case studies, 

described in Chapter 2. They are summarized briefly, and their significance discussed. 

The LAMP tools are also evaluated, showing how they adapt computing arrays to 

available resources, according to the resource demands of individual applications and 

resource pools of specific FPGAs. 

These case studies demonstrate the FPGA’s potential for hundred-fold application 

acceleration, or more. Beyond that simple fact, these figures demonstrate the value of 

application-aware customization. Table 2 shows that customizing the accelerator to 

application specifics can mean roughly a 2:1 increase in the number of PEs for a given 

FGPA platform. That directly means a 2:1 increase in parallelism, and in the sizes of 

problems that can be addressed directly. Because PEs for different applications differ in 

circuit complexity, they also differ in maximum allowable clock rate, also by a factor 

around 2:1. Combining the two effects, this demonstrates a 4:1 performance 

improvement due to application awareness. 



 

Table 3 in section 6.1.2 shows the same benefit of application-specific customization, 

and shows it more strongly. These application-specific accelerators show a 7:1 

performance range. This implies a 7:1 performance improvement for the simplest cases, 

relative to handling the same logic with more general hardware.  

Table 2 . Approximate String Matching Performance 

Match 
Cell 

Character 
Rule 

String 

Type 

Logic 

(slices) 

Clock 

(ns) 

Cells in 

2VP30 

Speed 

GCUP/s 

Speedup 

NW 3GHz Xeon PC implementation 0.046  

NW Exact 
match 

DNA 109 12.9 125 9.68 210 

NW IUPAC 
wildcard 

DNA 108 13.7 126 9.19 200 

NW Fixed table DNA 111 14.6 123 8.42 183 

NW RAM table DNA 108 16.8 126 7.50 163 

SW 3GHz Xeon PC implementation 0.029  

SW Exact 
match 

DNA 190 13.3 72 5.41 186 

SW Fixed table DNA 193 15.9 70 4.40 152 

SW Exact 
match 

protein 205 13.0 66 5.07 175 

SW Fixed table protein 239 25.5 57 2.23 77 
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6.1.1 Approximate String Matching 

Table 2 [Van06] summarizes the performance results for the string matching family of 

applications, based on implementation for a Xilinx XC2VP30 FGPA. The leftmost 

column states whether the test used a Needleman-Wunsch (NW) global alignment or the 

more complicated Smith-Waterman recurrence relation. Speed is measured in 109 

character updates per second (GCUP/s), where each character update is one computation 

in one of the grid cells of Figure 7. The 77-210× acceleration, relative to a 3GHz 

processor, is worthwhile in itself, especially given the relatively small (VP30) member of 

the Xilinx Virtex II Pro family used. The real value of this application, however, is in 

showing the different resource utilization and clock rate for each member of the 

application family. The number of cells (degree of parallelism) varies by more than 2:1 

over the range of application family members, and the clock rate by almost as much. The 

result is that the performance of the demonstrated family members covers a 4.3:1 range. 

Although the “fixed table/protein” implementation could have been used to perform the 

“exact match/DNA” operation, given with proper constants, precise tuning to the 

exact/DNA case makes much better use of the FPGA resources. This clearly 

demonstrates the value of tuning an accelerator the application specifics. 

This also demonstrated the value of swappable components in an accelerator – the 

NW/SW choice of recurrence relations is orthogonal to the “character rule” and “string 

type” of Table 2. The actual implementation included end-gap options and idiosyncratic 
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parameters for several different substitution matrices (after Nei00 p.35) that can easily be 

expressed in LAMP notation, but poorly and indirectly in VHDL. 

6.1.2 Rigid Molecule Interaction 

Table 3 [Van06a] summarizes performance results for the convolution core for rigid 

molecule interactions. Table 3 uses score-accumulates per second (SAC/s) as the 

performance measure. This corresponds directly to measurements of multiply-accumulate 

operations per second (MAC/s) measure that describe performance of standard 

correlation, but replaces multiplication with the general scoring function of Equation 2. 

Molecule voxel values range in size from 2-7 bits per value, and scoring functions also 

differ in complexity. The current study constrains the correlation array to cubical aspect 

ratio, although non-cubical computation arrays may be of interest in some applications.  

The ACP force law uses a logic-based implementation of a lookup table. It requires a 

relatively large amount of logic per cell, since concurrent execution requires each cell to 

have its own instance of the table. The SNORM law uses a simplified surface normal 

vector, and uses the dot product to determine surface normal opposition. 
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Table 3. Correlation array performance by force law  

Force 
law 

Bits per 
voxel 

Correlation array 
size 

Clock 
MHz 

Performance 
109 SAC/s 

KK1 2 143 = 2744 98.9   271.4     

PSC2 7 123 = 1728 88.3   152.6     

GSC2 2 103 = 1000 59.8   59.8     

ACP3 5 83 = 512 72.6   37.2     

ES4 6 103 = 1000 72.8   72.8     

SNORM5 7 113 = 1331 90.4   120.3     

      

Notes: 1. Similar to Katzir-Katchalski [Kat93]. 2. Described in 

[Che02]. 3. Simplified atomic contact potentials. 4. Electrostatic 

force and collision detection. 5. Surface normals and collision 

detection [Hal02] 

Performance varies even more widely for this application than for approximate string 

matching, over a 7.3:1 range of values. Table 4 (after [Van04b]) compares performance 

of a different configuration, corresponding to the KK force law on a VP100 platform.  

This assumes transform-based correlation on the PC, as it would usually be performed; 

timing is for one transform-inverse pair only. This test used the 3D transform and inverse 

from a standard reference [Pre92], which required padding both molecule grids to 1283 or 

2563 (the sizes needed to handle worst-case rotations). The two tests use molecule grids 



 

of size 663 and 1003 for the larger molecule, and 143 for the smaller in both cases. The 

“average” FPGA result comes from averaging FGPA performance over all 3-axis 

rotations, which differ in the amount of padding required to hold the rotated images of 

their bounding boxes.  

Table 4. FPGA Performance vs PC implementation 

Result size FPGA (ms) 3GHz Xeon (ms) FPGA speedup 

66*14 (avg) 12.2 4250 209× 

100*14 (avg) 73.5 36840 501× 

    

In combining this result with Table 3, it must be remembered that PSC, GSC, and ES 

would each have required two transforms and an inverse, SNORM would have required 

four transforms and an inverse, and ACP sums over a nonlinear function that can not be 

handled at all using transform techniques. 

6.1.3 Programmability 

The proper measure of programmability would involve testing with volunteers, both in 

creating new LAMP models and in customizing models to new applications. The crude 

state of the initial LAMP tools would tend to give results that would not correctly 

represent a releasable form of the tools, however, and such testing lay outside the range 

of the current research. 
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Instead, the size of each application concretion, measured in lines of CLAMP code, is 

taken to indicate the amount of effort in customizing the accelerator to a specific 

application. For the rigid molecule interaction application application-specific voxel data 

type declarations and scoring functions totalled 24 (for KK) to 117 (for ACP) raw source 

lines, not stripped of blanks or comments. These small number suggest that even 

relatively complex customizations can be written in a modest amount of high level code. 

6.2 Summary of contributions 

This research makes contributions in several areas of FPGA-based acceleration of BCB 

applications. The first is that BCB applications of many different kinds are all amenable 

to FPGA acceleration. It seems likely that other scientifically and commercially 

important application areas would also benefit, but were outside the scope of the current 

work. The second area of contributions lies in the design and implementation of design 

tools for FPGA accelerators. It now seems clear that accelerator design is an activity 

distinct from traditional logic design, and that many features of logic design tools need to 

be reconsidered for the emerginf field of FPGA-based computation. The third area of 

contribution includes not only novel, reusable components, but novel reuse of existing 

components and novel categories of components for reuse. 
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6.2.1 BCB application acceleration 

When the current research began, FPGA accelerators had been reported for specific, 

hand-crafted forms of the string alignment problems, but very few other BCB 

applications. Based on existing literature, it seemed that few other areas were amenable 

to FPGA acceleration. It also appeared that each application would be a unique artifact, 

and that reuse even between closely related applications would be more of a happy 

accident than a goal of the design or the design tools.  

The case studies of chapter 2 decisively change that impression. In the first place, 

many computations of widely different structures have been shown to benefit from FPGA 

acceleration. Brief studies suggest that many more applications will also benefit, 

including point-point, point-grid, 3D interpolation, and new kinds of string analysis, with 

additional opportunities in areaws outside the BCB applications of this study. In the 

second place, it is clear that application families are attractive targets for acceleration, not 

just point solutions to special cases of algorithms.  

6.2.2 LAMP tool implementation 

The prototype LAMP tools demonstrate the concept that design of FPGA-based 

application accelerators is very different from traditional logic design. A number of 

distinctive features combine to give LAMP tools unique expressive power, including: 
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⋅ Support for families of applications. The initial case studies lay groundwork that 

show two major features of FPGA-based application acceleration. First, application 

specialists use many variations on the basic algorithms being accelerated. Point 

solutions have profoundly limited value. Second is that hardware design skills are 

generally needed for exploiting the FPGA’s full performance potential, but such 

skills are relatively rare. Customizable families of applications make it possible to 

amortize logic design costs over many uses, but still support the unique features 

needed by different application specialists.  

⋅ Separation of logic design from application-specific customization. Logic 

designers and application specialists must both participate in accelerator design, in 

many applications. LAMP tools allow each participant a reasonably familiar design 

notation, while making the application specialist independent of the logic designer 

for routine customization tasks. 

⋅ Automated sizing of computation arrays. Target applications use repetitive arrays 

of processing elements, and achieve high performance through parallelism of the 

PEs. LAMP tools enable automated exploitation of the highest possible parallelism 

for each unique application accelerator, on a given FPGA. This takes advantage of 

the FGPA’s fine-grained resource allocation, and automatically exploits the 

additional resources of larger FPGAs. No other logic design tools are known to 

support automated selection of the application’s degree of parallelism in this 
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application-specific and FPGA-specific way. Formalisms are presented for 

describing the different factors that go into deciding the degree of parallelism to use 

in any one instance, based on the general character of the application family, the 

specifics of the application family member, and the amounts of the various logic 

resources available in a particular FPGA. 

⋅ Synthesis of object oriented accelerator descriptions. Although SystemC and 

System Verilog are both OO languages, they do not include OO features in their 

synthesizable subsets. Although other experimental OO synthesis systems have been 

demonstrated, LAMP uses a unique combination of OO semantics to support close 

integration of high- and low-level system component specifications. 

⋅ Parameterization of data types and functions. OO system descriptions specify, in 

abstract form, the specifics that distinguish the different members of an application 

family. Interface inheritance provides a natural and familiar way for application 

specialists to provide the concrete details that specify their particular applications. 

Strong typing, enforced by interface inheritance rules, helps ensure proper 

implementation of application family members. This level of parameterization is 

impossible for standard logic design tools.  

⋅ Inverted flow of control. Parallelism, communication, synchronization, and 

memory access patterns commonly dominate the difficulty of FPGA design, and also 

dominate the performance of FPGA accelerators. Traditional design based on IP 
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blocks assumes that system-building is the task of creating communication networks 

between leaf blocks – i.e., supplying the difficult, performance-critical part of the 

design. LAMP tools assume that communication and parallelism are the reusable 

design components, and contain customizable leaf blocks. This corresponds closely 

to the “inverted flow of control” in GUI systems or component systems like Java’s 

Enterprise Beans, where the complexity of event processing and data access lies 

outside the application, and the control system invokes application-specific logic 

when data becomes available. 

⋅ Generality of applications. Many FPGA design tools implement a particular class 

of application accelerator. Examples include systems for 2D image processing 

[Rin01] or streaming data [Ags95, Men06]. LAMP tools address any application 

with reusable communication structure, and especially with variable-sized arrays of 

processing elements. 

Subsets of these features have appeared in other logic design tools. The combination of 

all of these features is unique to the LAMP tools, however. They distinguish LAMP from 

other logic design tools as a tool set for creating application accelerators. 

6.2.3 Reusability and reusable components 

Future development of the LAMP tools will rely, in part, on the availability of reusable 

structures for high-performance computing. Case studies to date have contributed in three 
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areas: novel computing structures for reuse, novel uses of known computing structures, 

and novel kinds of reusability for hardware components.  

The case studies developed several new computing structures, including the 

combinatorial data distribution network described in section 2.1.1 and the analysis 

network of section 2.1.5. Other structures from these case studies may also be new, at 

least to some readers. Yet others, such as application-specific memory interleaving, are 

also under development and may be expected to emerge from future case studies. 

The second kind of reuse extends widely accepted current practice. It appears, for 

example, in the rotated addressing and correlation arrays of section 2.1.3. Rotated 

indexing is well known in computer graphics applications. Two-dimensional convolution 

and correlation arrays have been well studied and widely reported in the signal 

processing literature, and those arrays can readily be extended to three dimensions. The 

novelty lies not just in their combination, but in their generalization to complex data 

types and in their applicability to chemistry applications far from their original uses.   

Finally, these examples employ reusability in terms of function and data type 

parameters, which are not widespread in the hardware world. That kind of reusability 

creates the possibility of reusing control and communication components in ways that 

current HDLs support poorly if at all. For example, the filter memory of section 2.1.3 

may not be wholly novel, although it was developed independently for the docking case 

study. Reuse of that component depends, in part, on the the novelty of reuse by 
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redefinition of the summarizing function. Likewise, the 3D correlation array used by the 

same application has been reported elsewhere. Its novelty lies not just in generalizing the 

correlation function, but in parameterizing that correlation structure in terms of inner 

components. The filter, in order to run at streaming rates, is a non-trivial control 

structure. The correlation array is largely a communication and synchronization structure. 

Both violate the general rule that function is reusable but control and communication are 

not, and violate the rule that reusable components are leaf blocks without accessible 

internal structure.  

These case studies offer not just reusable components, but new kinds of reuse and new 

possibilities for reuse of existing intellectual property. Reusable components multiply the 

value of their development effort by the number of ways they are used, but new kinds of 

reusability multiply the value of many different components. 

6.3 Future directions 

The LAMP tools uniquely address FPGA-based accelerator design as an activity distinct 

from traditional logic design. They explore new ways of combining the different skills of 

the logic designer and application specialist, without requiring the logic designer’s 

expertise for routine customizations to the accelerator logic. They represent only an 

initial investigation, however, and can be extended in many directions, including new 

case studies, user interface enhancements, and semantic extensions.  
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Case studies 

New case studies will exercise LAMP’s basic features more exhaustively. More 

importantly, they will also suggest new features to increase the usability or semantic 

capability of the tools. Additional data will also be helpful for increasing the accuracy of 

synthesis estimation. 

Case studies based on OO techniques will have additional value as examples of OO 

hardware design. Many OO HDLs have been reported in the past, typically with code 

samples a few lines long. These barely suffice to show the features of the language; few, 

if any reported examples have been large enough to demonstrate the real value of OO 

design. Additional case studies will have value for the applications they implement, and 

also serve as examples for demonstrating OO techniques to other logic designers. 

Tool extensions 

LAMP’s current UI uses text input only. Although CLAMP can be used in some parts 

of the LAMP model, the annotated HDL must still be hand-edited, so annotation is an 

important target for new tool development. A GUI would also be helpful for hiding some 

of the organizational details of data stored for each LAMP model, and for guiding 

application specialists in tailoring LAMP models to specific applications. Error reporting 

can be also be enhanced, to state the cause of compilation errors more user-oriented 

terms.  
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Semantic extensions to LAMPML will be suggested by additional experience with the 

tools, and by enhancements to the tool suite. LAMPML features, to date, have centered 

on the synthesizable accelerator code. LAMP UI tools may require new kinds of data in 

the model, including informational messages about model-specific features and selection 

menus displaying alternative components.  

Other major areas of extension would allow the application specialist more of the 

design freedom now reserved to the logic designer. “Drag and drop” design, for the 

system’s general structure, would support a reasonably familiar style of interface while 

hiding implementation details from the user. Experience suggests that pervasive use of 

visual metaphors becomes unwieldy at finer levels of detail. Textual representations of 

data definitions and arithmetic expressions are far more concise, and easily understood by 

the large base of experience software developers. 
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Appendix A. LAMPML REFERENCE MANUAL 

Many points in the LAMPML definition require some type to be a subclass or superclass 

of another. Loosely speaking, this means sub- or superclass at any number of steps of 

separation. More formally, both sub- and super-classing define transitive relationships. If 

type B is an immediate subclass of A, it means that type B’s definition refers specifically 

to A as its superclass. Type A is considered to be a subclass of itself, and any immediate 

subclass of a subclass of a subclass is also a subclass, recursively. The definition of the 

superclass relationship has the same general form. For reasons of notational convenience, 

rules for well-formed subclasses are presented in section A.3. 

Compile time vs. run time 

LAMP processing evaluates as many expressions as possible during the compilation step, 

before handing the application over for synthesis. The following expressions are 

considered to be compile time constant expressions (CTCEs): any decimal or 

hexadecimal constant, a boolean constant true or false, a typedef instance built from 

CTCEs, an operator expression involving only CTCEs, a function call in which all 

parameters are CTCEs, or any variable, field, or const symbol defined in terms of 

CTCEs. Other expressions, such as a multiplication by zero, may also be CTCEs, but 

those cases are not defined as part of LAMP’s guaranteed behavior. 
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Scoping and qualified names 

A LAMPML symbol is any contiguous string of characters, starting with an English letter 

or underscore character ‘_’, followed by zero or more English letters, digits, and 

underscore characters. Symbols are case sensitive, i.e. switching a letter form upper to 

lower case creates reference to a difference symbol. Symbol resolution always starts in 

the current scope: function, class, application, or entitydef. If the symbol is not found in 

the current scope, then superclass scopes are searched, and finally the scope containing 

the current scope (e.g. application surrounding a function definition). 

In many cases, those rules are not adequate for accessing a desired symbol. In those 

cases, scoped names may be used. A scoped name is a sequence of one or more symbols, 

separated by colon ‘:’ characters. The scoped name is interpreted recursively, by taking 

the symbols one at a time, in left to right order. Resolution starts in the current scope, and 

determines the scope in which the leading symbol is resolved. That scope becomes the 

scope in which the remained of the scoped name is resolved.  

Scoped names are used for extracting fields from a symbol to which a typedef instance 

has been assigned. Scope resolution proceeds as usual, until a function parameter, const, 

other symbol is found that holds a value. Then, the typedef (including its supertypes) 

becomes the scope in which name resolution is performed. This also operates recursively, 

in the case of a field holding a typedef value. 
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A.1 LAMPML markup 

LAMPML is the LAMP Markup Language, an XML-based notation. It has three logical 

subsets, for model definition, HDL annotation, and top-level integration. These subsets 

overlap in many areas, especially handling of arithmetic expressions.  

In XML terminology, an element is the basic unit of composition. Since an element 

may enclose other elements or text, it consists of starting and ending markers, 

<elemName> and </elemName> respectively. Different element types replace the logical 

elemName with some case-sensitive symbol unique to that element type. The start marker 

always appears before the end marker. If one element is nested inside another, its start 

and end markers must both be inside the start and end markers of the containing element. 

If two elements are both contained in some other, at the same nesting level, then the start 

and end markers of the first must precede the start and end markers of the second. One 

element type may be repeated within another. In general, the order in which markers 

appear is important, but specific elements may not assign significance to the order. If a 

marker does not contain any others and does not contain text, the start and end markers 

may be combined into one: <elemName />. 

Elements may have attributes, each with its own name. Attributes appear inside of the 

start marker or combined start/end marker, after the element name and separated by white 

space. Each attribute is written as a symbol name, equals sign and attribute value 

enclosed in double-quotes. Each attribute is specific to one or more element types. An 
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element may have zero or more attributes separated by white space, but no attribute may 

appear more than once in any instance of an element type. New lines within the marker 

have no significance. Order of the attributes within the element marker is not significant. 

An empty element with two attributes attr1 and attr2 may be written as <elemName 

attr1=“some Value” attr2=“other value” />, but the order of the two attributes 

has no meaning. 

Because HDL code is embedded in XML, a few systematic changes must be made. 

XML reserves several characters, including ‘<’ less-than, ‘>’ greater-than, ‘&’ 

ampersand, and apostrophe. Of course, these characters are also used throughout the 

HDL code. Since the characters themselves can not be used, XML defines replacement 

strings that take the places of those characters. Those characters must be replaced, 

respectively, by ‘&lt;’ , ‘&gt;’ , ‘&amp;’ , and  ‘&apos;’. 

The model definition subset of LAMPML creates definitions of classes, data types, 

functions, and constants. The interface between the annotated hardware description and 

the application specialist is expressed in this notation. The application specialist uses this 

notation to create application-specific definitions for an instance of an accelerator. XML 

elements in that subset are summarized in the following table. 

 



 

 

Table 5: LAMPML elements for model definition 

class   Abstract or concrete interface definition 

 constant  Abstract or concrete constant 

 typedef  Abstract or concrete data type   

  field Defines one of the values within a tuple 

 function  Abstract or concrete function definition 

  param Name and type of formal parameter to the 

function 

  setVar Computation variable used within the 

function 

  returnValue Value to be returned from the function 

The HDL annotation subset interacts with the HDL definitions for the accelerator family. 

It inserts LAMPML application logic into HDL code, and extends some of the reusability 

features of the base language. The following table summarizes the HDL annotation 

subset of LAMPML. 
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Table 6: LAMPML elements for HDL markup 

entityDef   Container element for an annotated 

compilation unit of HDL. 

 class 

function 

typedef 

See Table 4 Symbol definitions for local use 

 entityUse  Create an instance of another entity 

  bind Create a value binding for a symImport 

element in a structurally nested entity. 

  bindType Create a type binding to a typeImport 

element in a structurally nested entity. 

 insertHdr  Inserts a reference to an automatically-

generated header file at the current point in 

the HDL.  

 insertLocal  Inserts the automatically-generated local 

symbol definitions at the current point in 

the HDL. 

 message text 

expression[s] 

Generates messages at standard output 
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Table 6: LAMPML elements for HDL markup 

 symDef  Create a computation symbol for use 

locally 

 symExport  Create a computation symbol with a value 

that’s readable from a containing entity 

 symImport  Create a computation symbol with a value 

that can be set by a containing entity 

 typeImport  Create a type symbol, such that any 

containing entity can change the type to 

which the symbol refers  

 writeHdr  Export text into the shared definition file 

  HDL text  Literal HDL text representing the logic 

content of the entity 

    

The integration subset indexes the set of files used for an accelerator family, and creates 

bindings that define a family member. An application element may define the 

application family as a whole, by collecting the HDL components and interface classes 

together. It can also define a specific instant of an application accelerator, by starting with 
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the family information and adding concrete class definition that implement application-

specific data types and functions.  

Table 7: LAMPML elements for application integration 

application  Lists the set of classes and HDL entities in 

an accelerator or accelerator family. 

 class 

constant 

function 

typedef 

See Table 4 Symbol definitions for local use 

 message text 

expression[

s] 

Generates messages at standard output 

 root  Defines the entity used at the top level of 

the structural hierarchy 

   bind Assigns a value to a symImport symbol in 

the root entity 

  bindType Assigns a type to a typeImport symbol in 

the root entity 
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Table 7: LAMPML elements for application integration 

 use  Specifies a file containing an entity 

definition 

  useClass  Specifies a file containing a class definition 

A.1.1 Model definition 

The model definition subset of LAMPML creates the abstract definitions that connect 

application-specific logic to the HDL code, and allows concrete definitions of the 

application-specific data types and functions. 

Element: class 

This element defines a class, an interface definition that defines functions, constants, and 

data types.  

Appears in: Top level  

application

 Outermost element in source file that defines a 

class. Also used in an application element to 

create definitions specific to that application. 

Attributes: name required Symbol name for this class. 
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 extends optional Qualified symbol name of the superclass, if 

present. If no superclass is specified, the 

superclass is implicitly the special class 

baseType. 

Contains: constant ≥ 0 Define a concrete or abstract constant definition 

as part of this class interface. 

 function ≥ 0 Define a concrete or abstract function definition 

as part of this class interface. 

 typedef ≥ 0 Define a concrete or abstract data type definition 

as part of this class interface. 

Element: constant   

Defines a symbolic constant. If the constant value is not provided, then the constant 

definition is considered abstract.  

If the constant has the same name as a constant defined in a superclass, then the 

current definition over-rides that superclass definition. In that case, the declared type of 

the constant must be a subclass of the type that the superclass used for the constant. The 

type of the value assigned to the constant (if any) must be a subclass of the constant’s 

declared type. 
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Appears in: class 

application

  

Attributes: name required Symbol name, must not already be in use by 

another field or constant in the current scope, 

unless this definition over-rides another in the 

superclass. 

 type required Qualified symbol name for the data type of the 

named constant. If this definition over-rides a 

superclass constant, then it must be a subclass 

of the superclass constant’s type. 

Contains: expression 0 or 1 If present, this is the constant value. If missing, 

this defines an abstract constant. 

Element: describe 

Adds descriptive commentary. This element is a comment, and has no effect on the 

semantics of the containing element. It is allowed anywhere that another element could 

be used, except at the top level. This is used in all LAMPML subsets. Because it is 

allowed so pervasively, no special mention is made of it, even when a description of 

some LAMPML element specifies a list of other elements that it may contain. 

Appears in: Many places  Descriptive text, has no semantic effect. 
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Contains: Freeform text  Used for descriptive comments 

Element: field 

Defines one of the fields in a typedef tuple definition. 

Appears in: typedef   

Attributes: name required Symbol name, must not already be in use by another 

field in this typedef, unless this definition over-

rides another in the superclass. 

 type required Qualified symbol name for the data type of the field 

value. If this definition over-rides a superclass 

typedef, then it must be a subclass of the over-

ridden field’s type. 

Contains: expression optional If present, this is the field’s default value. Fields 

with default values do not need to be assigned when 

the type is used in an instance element. 

Element: function   

Defines a function interface. If a function body is provided, then this function may be 

called from any scope in which it is visible. Otherwise, this creates an abstract function 

definition that must be over-ridden before being used. 
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If there is already a function by this name in some superclass, then this function 

definition is an over-ride of the superclass definition. It may be abstract or concrete, 

irrespective of whether the suprclass definition is abstract, or concrete. It must have the 

same number of parameters as the function definition in the superclass, and each 

parameter type must be a subclass of the parameter type for the corresponding parameter 

in the superclass. 

If one or more elements are present after the list of param elements, then this is a 

concrete function definition. It may be used in a functionCall element in any context 

where a compile time expression is required. Elements after the last param must be zero 

or more setVar elements, and the last must be a returnValue. The setVar elements 

must each assign values to variables with different names, and none of the variables may 

have the same name as a parameter. Each setVar variable may be referenced in any 

expression within the function body, after the setVar in which it is defined. The 

returnValue element contains the expression that the function returns as its value. 

Functions may be defined recursively, but recursive evaluation is limited to compile 

time. 

Appears in: application

class 

entityDef 

 Contexts in which a function may be defined. 

Abstract functions may be defined only in class 

definitions. 
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Attributes: name required Symbol name, must not already be in use by 

another function in this class, unless this 

definition over-rides another in the superclass 

 returns required Data type of the function’s return value. If this 

definition over-rides a superclass function 

definition, then it must be a subclass of the 

superclass function’s return type. 

Contains: param ≥ 0 Definitions of the function’s formal parameters. 

All formal parameters must have distinct names. 

If this function definition over-rides a superclass 

function definition, then the number of 

parameters must be the same and the new 

parameter types must be subclasses of the 

corresponding types in the superclass definition. 

 setVar ≥ 0 Computation variables. Each setVar symbol 

must be distinct from other setVar and param 

symbols in this function. If present, 

returnValue must also be present 
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 returnValue 0 or 1 If present, must be last. Defines the expression 

to be used as the function’s return value. If 

absent, the function is abstract. 

Element: param 

Defines a formal parameter to a function. This always appears as an element within a 

function element. The parameter name string must not be not be the name of another 

parameter to the same function.  

Appears in: function   

Attributes: name required Must be a valid symbol name, not already used as a 

parameter name in this function 

 type required Qualified symbol name of the parameter type 

Element: returnValue 

This appears exactly once in each function definition. It is the last (and possibly only) 

element, and defines the expression to be used as the function’s return value. 

Appears in: function  Occurs once, as the last element. Not present if the 

function definition is abstract. 
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Contains: expression  

required

Expression to be passed as the function’s return 

value. 

Element: setVar 

Defines a symbol for local use. This symbol is not visible externally. It must be assigned 

a value at the time of definition. The name string must not already be in use in the local 

scope as a formal parameter or in another setvar element. 

Appears 

in: 

functionDef   

Attributes: name required Must be a valid symbol name, not already used as 

a parameter name or setVar variable in this 

function 

 type required Qualified symbol name of the variable type 

Contains: expression required  

Element: typeDef 

A typedef element defines an application data type, either a tuple value (like a C 

struct or Ada record), or a scalar. If the type name repeats a type name already used 

in a superclass of the containing class, then this is an over-ride of that supertype 

definition. If the type explicitly extends another, then the extended class is the supertype. 
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Any fields not mentioned in this typedef are inherited from the supertype. Any field 

in this supertype and also in the superclass typedef must be redeclared with a subtype of 

the definition in the supertype. Any field in this supertype that is not present in the 

supertype is an extension to the supertype. 

Appears in: application

class  

entityDef 

  

Attributes: name require

d 

Symbol name for this data type. 

 extends optiona

l 

Qualified symbol name of the supertype, if 

present. 

Contains: field ≥ 0 Defines one of the data elements in this type. If 

the field name is the same as a field name in the 

supertype, then this is an over-ride definition. In 

that case, the field type must be a subclass of the 

type of the field being over-ridden.  
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A.1.2 HDL annotation  

The HDL annotation subset of LAMPML integrates LAMP logic with the HDL 

components that comprise the accelerator logic. The HDL code is enclosed in an 

entityDef element, and has LAMPML annotation mixed in freely. 

Element: bind 

Create a binding of a value import, defined in the entity specified by the enclosing 

element, to a value defined in the current context. The imported value must be a subclass 

of the type specified by the import declaration in the entity. This must be provided for 

all importSym declarations that do not have default values assigned. 

This is used both in the entityUse element in the HDL annotation subset of 

LAMPML, and also in the root element of the integration subset. 

Appears in: entityUse 

root  

  

Attributes: importSym required Symbol name defined in an importSym element of 

the entity being instantiated. 

Contains: expression   required Expression or text string to bind to the named 

symbol. 
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Element: bindType 

Create a binding of a type import, defined in the entity specified by the enclosing 

element, to a type defined in the current context. The imported type must be a subclass of 

the type specified by the typeImport declaration in the entity. It does not necessarily 

need to be a concrete class definition, however, unless the entity uses it in a way that 

requires concrete definition. This must be provided for all importType declarations that 

do not have default types assigned.  

This is used both in the entityUse element in the HDL annotation subset of 

LAMPML, and also in the root element of the integration subset. 

Appears in: entityUse 

root  

  

Attributes: importSym required Symbol name defined in an importType element 

of the entity being instantiated.  

 bindTo required Qualified name of a defined data type or class type. 

Element: entityDef 

Each annotated HDL file consists of exactly one entitydef element. This is the top-

level element that contains all information about the annotated HDL. 

Appears in: Top level  This is never contained in another element. 
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Attributes: name  Must be a valid symbol name. 

Contains: Text ≥ 0 HDL language statements 

 expression ≥ 0 Evaluate to values to be inserted into HDL code 

 entityUse ≥ 0 Instances of entities internal to the current one 

 function ≥ 0 Defines a function for use within the entity 

 insertHdr  1 Defines position at which automatically generated 

header file is to be inserted. 

 insertLocal 1 Defines position at which automatically generated 

local definitions are to be inserted. 

 message ≥ 0 Generates text at standard output 

 symDef ≥ 1 Defines a symbol for local use and assigns it a 

value 

 symRef ≥ 1 HDL reference to a LAMPML symbol 

 symExport ≥ 1 Defines a symbol readable from outside the current 

scope, and optionally assigns it a default value 

 symImport ≥ 1 Defines a symbol assignable in bind elements 

outside the current scope, and optionally assigns it 

a default value 
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 typedef ≥ 0 Defines a type definition for use within the entity 

 typeImport ≥ 1 Defines a type symbol assignable in bindType 

elements outside the current scope, and optionally 

assigns it a class constraint 

 writeHdr ≥ 1 Exports text from the current entity to the common 

header file shared across all entities and generated 

by the LAMP tools. 

Element: entityUse 

Creates an instance of a new logical entity nested within the current entity. This creates 

the logical structure of the entity only, and does not actually instantiate logic. Instead, this 

works with the HDL’s instantiation mechanisms, and adds capabilities not present in the 

underlying language. Use and behavior of this construct are described in detail in section 

5.4, and usage examples are given in Appendix C. 

Appears in: entityDef   

Attributes: name required Symbol name of the entity to be used as the 

component instance.  
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Contains: bind ≥ 0 Binds a value to one of the value import symbols 

defined by a symImport statement in the 

instantiated entity. 

 bindType ≥ 0 Binds a class type to one of the type import symbols 

defined by a typeImport statement in the 

instantiated entity. 

Element: insertHdr 

Defines the point in the HDL file at which reference to an automatically generated header 

file is to be inserted. 

Appears in: entityDef  Must appear exactly once per entityDef element 

Element: insertLocal 

Specifies the point in the HDL file at which automatically-generated local definitions are 

to be inserted. This appears once in the declaration area of a VHDL architecture. If 

multiple architectures appear in one entityDef source file, the insertLocal element 

should be repeated once in the declaration area of each one. 

Appears in: entityDef  Usually appears exactly once per entityDef 

element. 
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Element: message 

Generates text at standard output, usually the console output. This is useful for examining 

values assigned to application symbols and for other user-defined status reporting. 

Appears in: application

entityDef 

 Displays user message at stdout 

Contains: expression  Value to be output. 

 unformatted 

text 

 Literal text is copied verbatim to standard output. 

Newlines (carriage returns) in the text appear in the 

output. 

 symRef  Displays symbol resolution in the message context 

Element: symDef 

Creates a local symbol definition, accessible only within the current entity. Must be 

unique at a given lexical scope, but replaces any symbol with the same name defined at 

an outer scope and may be replaced by another definition and a more deeply nested 

scope. 

Appears in: entityDef  Defines a values used locally in calculations. 
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Attributes: name required Symbol name visible both inside and outside the 

containing entity. The symbol must not already be 

in use in the current scope. 

 type required Qualified symbol name for the value type 

Contains: expression required Value to be assigned to the symbol. Must be a 

subtype of the declared type. 

Element: symExport 

Creates a local symbol definition, accessible outside of the current entity. The symbol’s 

value must be assigned when the symbol is defined, and can not be changed. 

Appears in: entityDef   

Attributes: name required Symbol name visible both inside and outside the 

containing entity. The symbol must not already be 

in use in the current scope. 

 type required Qualified symbol name for the value type 

Contains: expression required Value to be assigned to the symbol. Must be a 

subtype of the declared type. 
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Element: symImport 

Creates a local symbol definition within the current entity, such that the symbol value 

may be over-ridden wherever the current entity is instantiated. The symbol may be 

assigned a default value, to be used if the entity instantiation does not bind a new value to 

the symbol. If a default value is present, the instantiation need not bind a value. If the 

value is missing, however, the symbol binding at entity instantiation is required. 

Appears in: entityDef   

Attributes: name required Symbol name visible both inside and outside the 

containing entity. The symbol must not already be 

in use in the current scope. 

 type required Qualified symbol name for the value type 

Contains: expression optional If present, defines the default value for the symbol 

Element: symRef 

Symbol reference, inserts symbol into HDL code.  

This is distinct from the varRef element used in expressions. A varRef element is 

replaced by the data content of the variable named. A symRef element is replaced by the 

symbol itself. This is used with symbols defined in a typeImport element, which are 

bound to some named type by default bindings or by bindType elements where the 

component is instantiated. When a symRef element names one of these typeImport 
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symbols, the element is replaced by the name of the type to which the symbol is bound. 

This may imply additional HDL text elsewhere, to define symbols or function bodies in 

synthesizable form. 

Appears in: entityDef   

Attributes: name required Qualified name of symbol being referenced.  

Element: typeImport 

Defines a type input to the current entity. The name string is the name by which the type 

is referenced locally. The type symbol defines a superclass type for the type symbol. 

When the current entity is instantiated using an entityRef or root element, a 

bindType must assign an actual type to this import symbol. That actual type must be a 

subclass of type. The binding may be omitted if type is concrete, in which case name 

refers to type itself. 

Appears in: entityDef   

Attributes: name required Symbol name visible both inside and outside the 

containing entity. The symbol must not already be 

in use in the current scope. 
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 type required Name of the type bound by default to the named 

symbol. If a root or entityUse element refers to 

this class, it may over-ride this type definition with 

a bindType element.  In that case, the new binding 

must be to a subclass of this type. 

Element: writeHdr 

Inserts text into the system-generated header file. The LAMP tools create a header file 

containing definitions that are to be shared by the whole set of HDL files generated 

during compilation. If some HDL component has definitions to export to other 

components, it uses a writeHdr element to add text to that file. 

Appears in: entityDef   

Contains: expression  Value to be assigned to the symbol. Must be a 

subtype of the declared type. 

 unformatted 

text 

 Literal text is copied verbatim to standard output 

 symRef  Inserts a HDL-compatible form of the LAMP 

symbol, including any necessary auxiliary 

definitions. 
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A.1.3 Integration subset 

The LAMPML integration subset handles the top-level indexing and aggregation 

functions. It lists the entire set of files required for any one application family. 

Element: application 

There is exactly one application element in any model or model instance. This is the 

top level aggregate, the one contains all other definitions. The application as a whole is 

identified by the symbol specified in the name attribute.  

The application element is used in two ways. First, it aggregates the set of entities 

and classes that define an application family. This application normally lacks the concrete 

application and FPGA-specific definitions needed for creating an instance of an 

accelerator. In the second form, the abstract application definition is copied and 

additional data provided for a specific application. That second, fully specified 

application can be used to instantiate an accelerator for some application 

Appears in: Top level   

Attributes: name required Symbol name of the entity to be used for the 

application.  
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Contains: class  

const 

function 

typedef 

≥ 0 Define symbols specific to this application 

 message ≥ 0 Generates text at standard output 

 root 1 Binds a class type to one of the type import symbols 

defined by a typeImport statement in the root 

entity. Must be the last element in the 

application. 

 useClass ≥ 1 Load one or more class declarations from the 

named files. 

 use ≥ 1 Load an annotated HDL entity from the name file. 

Element: root 

Defines an instance of an entity, defined in an entityDef declaration in one of the 

preceding use statements. Bindings contained in the root definition refer to imported 

symbols defined in the named entity, for import symbols representing both types and 

values. A binding must be provided if the symbol is not assigned a default value where it 

is declared in the entity. If a default value is provided, it replaces the symbol value in this 

instance of the root entity. 
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Appears 

in: 

application   

Attributes: name required Symbol name of the entity to be used as the root 

instance.  

Contains: bind ≥ 0 Binds a value to one of the value import symbols 

defined by a symImport statement in the root 

entity. 

 bindType ≥ 0 Binds a class type to one of the type import 

symbols defined by a typeImport statement in 

the root entity. 

Element: use 

Specifies an annotated HDL file to be included in the model or instance. The file name 

must resolve to a valid entry in the local file system, and must contain valid LAMPML 

syntax. Outside of that, the character string used for a file name has no significance. In 

particular, it has no relationship to the definitions it contains, and need not use any 

particular suffix. 

The use elements in one application must all refer to entityDef elements with 

different name symbols. 
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Appears in: applicati

on 

  

Attributes: fileName require

d 

Character string representing a file containing an 

annotated HDL entity. The entity name symbol 

must not duplicate any other symbol in the current 

scope. 

Element: useClass 

Imports one or more class definitions to be used in the current model. The file name must 

resolve to a valid entry in the local file system, and must contain valid LAMPML syntax. 

Outside of that, the character string used for a file name has no significance. In particular, 

it has no relationship to the definitions it contains, and need not use any particular suffix. 

The useClass elements in one application must all refer to class elements with 

different name symbols. 
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Appears in: application   

Attributes: fileName required Character string representing a file containing a 

class definition. The symbol used as the class 

name must not be used elsewhere in the current 

scope. 

A.1.4 Expressions 

Computed expressions appear in all subsets of LAMPML. The syntax of expressions is 

recursive, allowing expressions of arbitrary complexity. Expression values may be of any 

type, including integer, boolean, bit-string, and user defined types. The following 

elements create expressions. 

Element: functionCall 

Invokes a LAMPML function. The functionCall element is evaluated and logically 

replaced by the value to which it evaluates. The named function must have a concrete 

definition at the point where it is invoked. 

If all of the parameters are compile time expressions, then the functionCall 

reference is also a compile time expression. If HDL symbols are passed to the function, 

the functionCall element is treated as a run-time expression. HDL symbols must be 

passed as the contents of a passParam element. When passParam is used in place of a 



 

 279 

LAMPML expression, type checking can not be performed. Any errors in type matching 

will be detected during synthesis. 

Compile time expressions may use functions recursively, but run-time expressions 

may not use recursion. 

Attributes: name required Qualified name of the function to be invoked. 

Contains: expression 

passParam 

≥ 0 Actual parameters to the function. The number of 

values must match the functionCall declaration. 

Parameter value types must each be of a subtype of 

the corresponding formal parameter’s type. 

Return 

type: 

  Highly dependent on specific usage. 

Element: instance 

Creates an instance of some data type defined by a typeDef element. The type attribute 

specifies the name of the type for which an instance is being created. This must contain 

one setvar for each field in the type, where the variable name in the setvar refers to 

the field name. The setvar for some field may be omitted only if the field has a default 

value assigned in the definition of type, in which case that default value is used for the 

field value. It may be used anywhere an expression is expected 
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Attributes: type required Qualified symbol name specifying the type of 

which an instance is required. 

Contains: setVar ≥ 0 Each one assigns a value to one field of the type.  

Return 

type: 

  Specified by the type attribute. 

Element: literal 

Create a value of some primitive type 

Attributes: type required Qualified name of the data type to be instantiated. 

Contains: Raw text required Unformatted text, a string interpreted as the 

primitive value. 

Return type:   Specified by the type attribute. 

Element: paramType 

This is not itself an expression element, but an element within synthSize. See the 

description of the synthSize element for information on using this.  

Appears in: synthSize   

Attributes: name required Qualified symbol representing a data type. 
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Element: passParam 

This element appears only inside of a functionCall element, not as an expression 

itself. It is used to pass HDL values to LAMPML functions, so may be used only in 

function parameters for function calls made within an entityDef element. See the 

functionCall description for information on using this element. 

Appears in: functionCall   

Contains: text  HDL expression to be passed to the LAMP 

function. 

Element: synthSize 

Estimate the number of units of logic resources necessary for creating one instance of a 

data type or function. See section 4.4.6 for a discussion of accuracy issues in synthesis 

estimation. This is useful only when the function or data element is instantiated for 

runtime evaluation. Compile time functions and values do not necessary have any direct 

effect on the synthesized output, so synthesis estimation of compile time expressions is 

not meaningful. 

If the name attribute refers to a data type, this returns the number of bits needed for 

allocating one value of this data type. If the name attribute specifies a function, the 

returned value estimates the number of logic elements needed for one instance of the 

function.  
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Contained paramType elements are meaningful only when the name attribute refers to 

a function. If absent, synthesis estimation uses the parameter types specified as formal 

parameter types in the function definition. It is always valid, however, to pass an actual 

parameter that is a subtype of the formal parameter. Depending on differences between 

the subtype and declared type of the formal parameter, that could have significant effect 

on resource estimation.   

Use the paramType elements when the actual parameters to a function instance differ 

from the formal parameter types. When used, there must be one paramType element per 

formal parameter. Each paramType must name a data type that is a subtype of the 

corresponding formal parameter. 

Attributes: name  Qualified symbol of a data type or function. 

Contains: paramType ≥ 0 If the name attribute refers to a function, then type 

specifications for each parameter may be supplied. 

Each paramType element corresponds, by position, 

to one of the function’s formal parameters and must 

be a subtype of the corresponding parameter. 

Returns: integer  Estimated number of logic elements required 
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Element: uniqueID 

Creates a symbol that is guaranteed to be globally unique. In particular, one instance of 

the uniqueID element in one entity will generate different, unique values for each 

instance of the entity. This expression generates a value of type symbol. 

Attributes: prefix optiona

l 

String to use as leading substring of the generated 

symbol.  

Returns: symbol  Result is of primitive type symbol. 

Element: varRef 

This element is replaced by the data content of the variable. It is used to substitute the 

compile time constant value of the variable into an expression or fragment of HDL text. 

Appears in: expressions   

Attributes: name required Qualified name of the symbol whose value is to be 

used in the current position. Must be visible in the 

current scope. 
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A.2 Predefined symbols 

The following symbols are predefined by the LAMP tools, and are available to the 

LAMPML developer. 

A.2.1 Predefined types 

The predefined types are the primitive data types from which more complex types are 

built.  

baseType 

This data type is the base class for inheritance. Every class except this is a subclass of 

some of other. If no explicit superclass is named using the extends attribute, then a class 

is implicitly a subclass of this type. 

boolean 

Boolean data has the conventional logical meaning. Two primitive values exist in this 

type: true and false. These are returned by relational tests, are required as test values 

in if function calls, and are inputs and outputs of logical functions. 

integer 

This type covers the full range of signed 64 bit integer values. Subtypes of integer 

restrict the range of the value, and affect the number of bits allocated to each value. 
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natural 

This covers the full range of unsigned 63-bit values. This is a subtype of integer. 

std_logic 

Use this data type for LAMPML logic that represents VHDL values with type of the 

same name. The LAMPML type supports only bit values 0 and 1, not the full set of 

generalized bit values allowed by the VHDL standard. 

std_logic_vector 

This maps closely to the VHDL data type of the same name, with the same restrictions on 

bit values as std_logic. Subtypes of this type specify a number of bits n, and the range 

of bit values is implicitly 0 to n-1. 

symbol 

Symbol values are used for on-the-fly generation of names for different instances of a 

single entity. 

A.2.2 Predefined functions 

The following functions are provided as primitives available in LAMPML. 

Function: add 

Arithmetic sum of two or more values.  

Parameters: ≥ 2 integer 
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Result:  integer sum of parameter values. 

Function: and 

Logical AND of boolean parameters. 

Parameters: ≥ 2 boolean 

Result:  boolean Logical AND of all parameters. 

Function: bitcnt 

Determine the number of bits required for a value, ⎣log2 x⎦ . If the parameter is a negative 

value, the number of bits for its positive form is reported, plus one. If the parameter is 

zero, the value is one. 

Parameters: 1 integer  

Result:  integer Number of bits required to represent the value, as 

described. For compile-time use only, not for 

synthesis. 

Function: divide 

Integer division of first value by the second. If the first is not an exact multiple, the result 

is truncated. This should be used only for compile-time expressions. 
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Parameters: 2 integer  

Result:  integer Result of dividing first parameter by second. 

Function: eq 

Equality test between two values. The initial implementation restricts this to comparison 

between integer values. 

Parameters: 2 integer 

Result:  boolean True if values have same bit pattern. 

Function: extract 

Extracts a bit field from a value. The first parameter is the value from which a bit field is 

to be extracted. The second parameter is the position at which the bit field starts. The 

least significant bit is numbered zero, and more significant bits have higher positions – 

negative values are not allowed. The third parameter specifies the number of consecutive 

bits to extract, starting at the given position and working towards higher significance. The 

number must be positive, zero- and negative-length fields are not allowed. The start 

position plus the field width must not exceed the width of the first parameter. 

Parameters: 1 integer 

std_logic_vector

Value from which to extract bits 
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 2 integer Start position and field width 

Result:  Same as type of

first parameter 

Bit field extracted from the original value. 

Function: tName:fromStdVec 

Converts a bitstring value to a LAMPML typed value. LAMP defines a different form of 

this function for each data type named tName, and the function name is scoped under that 

type as shown. This function is normally used in annotated HDL code, to convert typed 

data to bitstrings in context where only bitstrings are allowed. 

Parameters: 1 std_logic_vector Bitstring to convert. The length of the 

bitstring is given by synthSize(tName) 

Result:  tName Typed value, according to the type in 

which the fromStdVec function is scoped.. 

Function: ge 

Inequality test between two values.  

Parameters: 2 integer 

Result:  boolean True if first parameter value is greater than or equal 

to the second. 
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Function: gt 

Inequality test between two values.  

Parameters: 2 integer 

Result:  boolean True if first parameter value is greater than the 

second. 

Function: iand 

Bitwise AND of arithmetic values.  

Parameters: ≥ 2 integer 

Result:  integer Bitwise AND parameter values. 

Function: if 

This function returns a value selected according to the boolean condition[s] provided. If 

corresponds to the following logic: 

if (b1)    then v1 

elseif (b2) then v2 

… 

else   vN ; 
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There must be an odd number of parameters. Starting from parameter number 1, the first, 

odd-numbered parameters are boolean test conditions, except the last parameter. Even-

numbered parameters and the last parameter are values from which selection is made. 

All of the value (as opposed to test) parameters contribute to determining the type of 

the expression. The return type one of the parameter types, and is the one of which all 

others are a subtype. If the parameter types of the values do not include one that is the 

supertype of all other, then the expression is not correctly formed. 

Parameters: Odd N = 2I+1 mixed Alternation of boolean and other data types. 

 # 2i-1, 1≤ i≤ I boolean Test conditions. The values are tested in order, 

until one is found true. In that case, the value is 

parameter number 2i. If none are true, the return 

value is parameter number 2I+1. 

 # 2i, 1≤ i≤ I 

# 2I+1 

any Possible expression values, selected as described 

above. 

Result:  any Selected according to logical conditions. 

 

Function: inot 

Bitwise inverse of arithmetic value.  
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Parameters: 2 integer 

Result:  integer All parameter bits inverted. 

Function: ior 

Bitwise OR of arithmetic values.  

Parameters: 2 integer 

Result:  integer Bitwise OR parameter values. 

Function: le 

Inequality test between two values.  

Parameters: 2 integer 

Result:  boolean True if first parameter value is less than or equal to 

the second. 

Function: lshft 

First argument arithmetically shifted left by the amount of the second argument. The 

second argument, shift amount, must have a non-negative value for compile-time 

evaluation. 



 

 292 

Parameters: 2 integer  

Result:  integer First argument, left-shifted by second argument’s 

amount. 

Function: lt 

Inequality test between two values.  

Parameters: 2 integer 

Result:  boolean True if first parameter value is less than the second. 

Function: mod 

Integer remainder when first parameter is divided by the second. This should be used 

only for compile-time expressions. 

Parameters: 2 integer  

Result:  integer Remainder after dividing first parameter by second. 

Function: multiply 

Arithmetic product of two or more values.  

Parameters: 2 integer 
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Result:  integer Product of parameter values. 

Function: ne 

Inequality test between two values. The initial implementation restricts this to 

comparison between integer values. 

Parameters: 2 integer 

Result:  boolean True if the parameters differ. 

Function: negate 

Additive inverse of the value. The result is the original arithmetic value with the sign 

changed. 

Parameters: 2 integer 

Result:  integer Arithmetic negation (unary ‘-’). 

Function: not 

Logical negation. 

Parameters: 2 boolean 

Result:  boolean Logical inverse of parameter. 
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Function: or 

Logical OR of boolean parameters. This is not a short-circuit operator, i.e. it evaluates all 

parameters even if the result is already known to be true. 

Parameters: 2 boolean 

Result:  boolean Logical OR (parity) of all parameters 

Function: rshift 

First argument arithmetically shifted right by the amount of the second argument. The 

result is sign-filled. The second argument, shift amount, must have a non-negative value 

for compile-time evaluation. 

Parameters: 2 integer  

Result:  integer First argument, right-shifted by second argument’s 

amount. 

Function: subtract 

Arithmetic difference of two values.  

Parameters: 2 integer 

Result:  integer First parameter minus second. 
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Function: tName:toStdVec 

Converts a LAMPML typed value into a bitstring. LAMP defines a different form of this 

function for each data type named tName, and the function name is scoped under that 

type as shown. This function is normally used in annotated HDL code, to convert 

bitstrings back into typed data from contexts where only bitstrings are allowed. 

Parameters: 1 tName Typed value to convert 

Result:  std_logic_vector Bitstring to resulting from conversion. The 

length of the bitstring is given by 

synthSize(tName) 

Function: xor 

Exclusive OR of boolean parameters 

Parameters: ≥ 2 boolean 

Result:  boolean Exclusive OR (parity) of all parameters 
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A.3 High level syntax 

XML notation, though easily machine-readable, makes a poor representation for human 

use. Although the XML-based LAMPML defines the fundamental semantics of the tools, 

an alternate representation, Convenience LAMP (or CLAMP) may be used as well. This 

section defines CLAMP syntax, with references to the LAMPML elements that 

implement them. The HDL annotation subset is can not generate marked up HDL 

directly, because of the tight textual coupling between the markup and the HDL text 

itself. Instead, this subset is a convenience for the HDL developer. It allows the developer 

to express design concepts in a relatively readable format (unlike XML), and is parsed 

into XML. The developer then uses the generated XML to annotate HDL files, or uses it 

as a skeleton in which to add HDL text. 

CLAMP differs from existing languages in too many ways to call it a “version” or 

“derivative” of some more familiar language. That said, CLAMP syntax owes much to 

C++ and especially to Java. Where CLAMP expresses a familiar concept, it often uses 

familiar notation; novel appearance for its own sake is not a goal. 

Literal CLAMP symbols are shown in bold. A symbol or punctuation mark that it 

italicized is part of the metalanguage, used for defining the syntax but not to be used 

in actual CLAMP code. Parentheses ( ) in the metalanguage indicate grouping in the 

usual way, and are distinct from parentheses ( ) that are actually used in CLAMP code. 
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Square brackets [ ] indicate that the contents may be inserted in CLAMP code or 

omitted, and are distinct from square brackets [ ] used in CLAMP code. An asterisk * 

indicates that the one item to the left may be repeated zero or more times. A group of 

items separated by vertical bars | represent alternatives, of which exactly one should be 

chosen. Metalanguage symbols
1
 may be subscripted. The subscript has no meaning, but 

helps in clarifying a description where a single metasymbol is used more than once in a 

definition.  

The symbol metasymbol refers to any LAMP symbol: an underscore character ‘_’ or 

English letter, followed by any number of English letters, digits, and underscore 

characters. The scopedSymbol metasymbol refers to a sequence of one or more symbols, 

separated by period ‘.’ characters. The meaning of a scoped symbol is described at the 

beginning of section Appendix A. LAMPML and CLAMP separator characters are 

different (colon vs. period), but scoped symbols have the same meanings in all other 

ways. 

Comments may use either of the C++ forms. A comment may start with a // digraph 

outside of quotation marks, and continue to the first following new-line or end of file. 

The second form starts with a /* pair, not quoted, and continues to the next */ pair, 

irrespective of new-line characters. The /* and */ do not nest like parentheses, so /* /* /* 

/* */ is one valid, complete comment. Presence, absence, and content of comments are 

irrelevant to the meaning of CLAMP code in which they appear. 
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A.3.1 Model definition subset 

class symbol [extends symbol]  

  { ( typedef ; | const ; | function ; )* } 

This is a top-level definition, represented by a class element in LAMPML. If the 

extends clause is present, it defines the superclass of which this is subclass. All symbols 

defined in the class are accessible from outside the class. Every typedef, const, or 

function must have name unique within the class, even among definitions of other 

kinds. For example, it is an error for a typedef and a const declaration to create the same 

name. 

A subclass exports all the symbols that its superclass does, and possibly more as well. 

It is also free to over-ride any symbol defined in the superclass, as long as the over-ride is 

of the same kind (typedef, const, or function) as the over-ridden symbol, and 

follows additional over-riding rules defined below. If the subclass contains a symbol not 

defined by the superclass, that is an extension to the superclass interface. 

const scopedSymbol symbol [ := expression ] ; 

The const declaration defines a data value exported from the containing class. The 

scopedSymbol names the data type of the value, and the symbol defines the name by 

which the constant value is accessible. The type may also be specified by one of the 

primitive symbols, boolean, integer, or natural. 
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When there is an expression assigned to the symbol, it is a concrete constant 

definition. Omission of the initializer creates an abstract constant definition. Like its 

concrete counterpart, an abstract constant is part of the interface defined by the class, and 

can be used in expressions where its type is appropriate. An abstract constant can not be 

evaluated, however. Instead, the const declaration must be over-ridden by a subclass, and 

assigned a value in the subclass. The subclass definition, accessed through its abstract 

interface, can be evaluated. 

If symbol is also defined in the superclass, it must also be a const symbol. The type 

of the subclass constant may be redefined, as long as the subclass constant’s type is a 

subtype of the type used by the superclass const declaration. The subclass definition 

may be concrete or abstract irrespective of concreteness in the superclass. 

typedef symbol
1
 [ extends scopedSymbol

1
 ]  

  [ { [scopedSymbol
2
 symbol

2
 ; ] * } ] 

or 

typedef symbol
1
  

  ( boolean | integer [ expression ] | natural [ expression ] )  

Defines symbol1 to be a data type. A type may be a tuple of named fields, or may be 

based on one of the primitive types boolean, integer, or natural. 

The first syntactic form defines a tuple. It consists of a set of fields, each named by a 

symbol2. Every symbol2 must be unique within the typedef. The scopedSymbol2 defines 
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the data type of the field, and must be a valid type name or primitive. No guarantees are 

made about the HDL representation of the type. 

The typedef may be a subtype of another typedef, named in the extends clause. In 

that case, the new typedef contains all the fields in the supertype, and may contain 

additional fields. Fields in the supertype may be over-ridden, by reusing a superclass field 

name in the subclass definition. In that case, the type of the over-riding field must be the 

same as that in the supertype, or a subtype of it. 

If the class containing the typedef is extends another class containing a typedef of the 

same name, then the new typedef is implicitly an extension of the one in the superclass. 

This also implies that, if symbol1 is used in the superclass, that it is also a typedef 

definition. 

If the bracketed list of field definitions is missing, then the type definition is abstract. 

It may be referenced wherever a type name is required, but must be assigned a meaning 

by a subclass definition. An abstract type with no extends clause may be over-ridden by a 

subclass definition of either syntactic form. 

The second syntactic form treats the symbol as an alias of one of the predefined types. 

The expression value in the integer or natural declaration states the number of bits to be 

assigned to the value. An integer value includes a twos-complement sign bit, natural 

values are unsigned. If the field is over-rides a superclass definition, the superclass 
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definition must be of the same type, and the new type must contain at least as many bits 

as the superclass type. The value of the expression, if present, must be at least 1 and no 

more than 32. 

function scopedSymbol
1
 symbol

1
  

  ( [ scopedSymbol
2
 symbol

2
 [ , scopedSymbol

2
 symbol

2
 ]* ] )  

  [ { [ scopedSymbol
3
 symbol

3
 := expression ; ]*  

    return expression } ] 

This defines a function named symbol1, with return type scopedSymbol1. The list of 

formal parameters is enclosed in parentheses, and may be empty. If nonempty, it consists 

of a set of formal parameters name symbol2, each with its type specified by 

scopedSymbol2. Every formal parameter’s name must be unique within the parameter list. 

If the function body is omitted, then the function is abstract. It may be used in 

expressions, but must have a body provided by a subclass over-ride before being used. If 

the function body is present, the function body is concrete. The body consists of zero or 

more variable definitions, and ends with a return statement. Each variable must have a 

symbol3 name distinct from all others in that function, and distinct from all parameter 

names. The variable’s type is specified by its corresponding scopedSymbol3. 

Any function name may be used only once in a class. If the function name is used in 

the superclass, then it over-rides that function definition. The over-ride may be concrete 

or abstract irrespective of the concreteness of the superclass definition. An over-ride must 



 

 302 

have the same number of parameters as the over-ridden function definition, must have a 

return type that is a subtype of the over-ridden function’s, and must have parameter types 

that are subtypes of the over-ridden function’s. Parameter names need not be the same as 

in the over-ridden function. 

The function may be defined recursively, but recursive functions can only be 

evaluated at compile time. It is an error to synthesize a recursively defined function. This 

applies whether or not the recursion is indirect, i.e. through some sequence of other 

functions that eventually call the current function. 

A.3.2 Integration subset 

application symbol {  

  (useClass | use | const | typedef | function | class)* root } 

This aggregates all of the files used for an application: class definitions, annotated HDL 

files, and a designated root component. As a convenience, is also allows auxiliary 

definitions of any kind. All const, typedef, function, and class definitions must 

have distinct names, and must be distinct from the class names defined by useClass 

statements 

useClass “filename string” ; 

Accesses a file containing a class definition. The class and all of the symbols it defines 

are available after this statement. Every class in one application must have a unique 

name, which is not related to the name of the file in which it is contained. 
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use “filename string” ; 

Accesses a file containing annotated HDL, i.e. containing an entity definition. All of 

the symbols exported from entity are available after this statement. Every entity in one 

application must have a unique name, which is not related to the name of the file in which 

it is contained. 

root symbol [ { binding [ , binding ] * } ] 

This defines one entity as the root component, i.e. the top-level component that is 

instantiated once and in turn instantiates all other components. Bindings have one of the 

two following forms: 

class symbol
1
 := symbol

2
 or  symbol

1
 := expression     . 

In the first case, the symbol1 must be one of the symbols named in an import class 

statement in the root entity. The symbol2 must name a class definition compatible with 

any constraints set in the import class statement in the entity definition. In the second 

case, the symbol1 must be one of the symbols named in a value import statement in the 

root entity. Then, the expression must have a type compatible with the symbol type 

declared in the import statement. Every symbol imported by the root entity must appear 

in a binding, unless it is declared with a default binding. No symbol1 may appear twice in 

the list of bindings. 
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A.3.3 HDL annotation subset 

entity symbol { ( typedef | function | import | instance |  

   scopedSymbol symbol := expression ; )* } 

In addition to local definitions for defining the HDL model, this describes the hierarchy 

of entity inclusion references. Assignment statements (with a := operator) declare a type, 

a variable name, and a value for the variable. The assigned value must have type 

compatible with the declared type, and the variable name is exported from the entity 

definition. The variable name must not appear elsewhere within the entity declaration, 

either in an assignment, import, or other symbol definition statement. The typedef and 

function definitions have the forms described in section A.3.1. Only the instance and 

import statements are new to the HDL annotation subset of CLAMP. 

instance symbol
1
 symbol

2
 [ { binding [ , binding ] * } ] ; 

This defines instantiations of other entities. Note that this does not create an HDL 

instance (or component in VHDL). It does, however make component definitions of 

entity type symbol1 available, with the bindings given, using the name symbol2. This 

translates into an entityUse element in LAMPML, and creates a logical instance. See 

that element’s description for a more complete description of this statement’s semantics. 

Bindings have the same syntax and meanings as in the root statement of section A.3.2. 

Instance names (symbol2) can be used in scoped names, to allow access to constants and 

functions defined in those entity declarations. 
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import ( class symbol
1
 [ extends symbol

2
 ] 

 | scopedSymbol symbol
3
 [ := expression ] ) ;  

These two forms of the import statement correspond to LAMPML’s  typeImport and 

symImport elements, respectively. Their meanings are described in section A.1.2. 

A.3.4 Expressions 

Expressions may evaluate to any type, whether primitive or defined by a typedef 

statement. A primary expression is one of the following: 

( expression )  Used for grouping 

scopedSymbol   Refers to a field, constant, or variable 

integer literal  Use C syntax for hex or decimal constants, to 64 bits 

true | false  Literals for boolean values 

function call  Invokes a user-defined function 

typedef instance  Creates an instance of a tuple value defined by a typedef 

“string”   Quoted character string. 

Character strings are also used to std_logic and std_logic_vector literals. Those 

string may use only the characters 1 (one) and 0 (zero) between the quotes. 
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A function call has conventional form, a scopedSymbol function name followed by 

parentheses enclosing zero or more expressions for actual parameters. The number of 

actual parameters must be the same as the number of formal parameters in the function 

definition, and the expression types must match the types of the corresponding definitions 

of formal parameters. A typedef instance has the following form: 

 new scopedSymbol ( [symbol := expression  

    ( , symbol := expression ) * ] ) 

The scopedSymbol names a type to instantiate. Each symbol names a field in the type, 

whether defined directly or inherited from a supertype. Every field in the type must 

appear in one assignment, unless it has a default value assigned. No field may be 

assigned twice in one instance. 

Operator expressions 

Operator expressions have one of the following formats: 

1. a binaryOp b    

2. unaryOp a     

3. a[ b : c ]  

4. if b1 then a1 [ elsif b2 then a2 ]* else a3 
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Expressions of formats 1 and 2 resemble constructs in most familiar programming 

languages. Operators (binaryOp and unaryOp) and precedence are defined in Table 8. 

Expression format 3 extracts a bit field from the primary expression a.  

Expression format 4 expresses conditional execution, a choice between the several 

values a according to boolean tests b. Exactly one of the expressions a will be evaluated. 

First, expression b1 is evaluated. If true, expression a1 is evaluated and used as the 

expression value. If b1 is false, then expressions b2 (if any) are evaluated, in order until 

one is found to be true. In that case, the corresponding expression a2 is evaluated and 

used as the expression value. If none of the b values are true, then a3 is evaluated and 

used as the expression value. This compile-time behavior makes it safe to define 

recursive functions, since deeper recursion or recursion termination is controlled by the 

decision about which a and b expressions to evaluate. 

Post-synthesis behavior of the if expression is different. In that case, all a and b 

expressions are evaluated. This means that synthesized logic can not use recursive 

definitions. Since all branches of the if expression are evaluated, recursion can not be 

halted. 

Table 8 lists the available operators and their precedence. Operators of higher 

precedence bind their operands more tightly than operators of lower precedence. For 

example, the ‘*’ operator has higher precedence than ‘+’, so the expression a*b+c has 

the meaning (a*b)+c . 
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Table 8: CLAMP operators and precedence 

Operator Prece-
dence 

Result 
type 

Operand 
type[s] 

Meaning 

if then 

elsif else 

0 (*) (*) *Conditional execution. Operand 

types and result types are defined in 

section A.2.2 

a || b 1 boolean boolean Logical OR 

a ^^ b 2 boolean boolean Logical exclusive OR (XOR) 

a && b 3 boolean boolean Logical AND 

a = b 4 boolean integer Equality test 

a > b 4 boolean integer Inequality test 

a < b 4 boolean integer Inequality test 

a >= b 4 boolean integer Inequality test 

a <= b 4 boolean integer Inequality test 

a != b 4 boolean integer Inequality test 

a | b 5 integer integer Bitwise OR of integer values 
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Table 8: CLAMP operators and precedence 

Operator Prece-
dence 

Result 
type 

Operand 
type[s] 

Meaning 

a ^ b 6 integer integer Bitwise exclusive OR (XOR) of 

integers  

a & b 7 integer integer Bitwise AND of integer values 

a << b 8 integer integer Arithmetic left shift. Zeros fill the 

MSB of the result value. 

a >> b 8 integer integer Arithmetic right shift. Sign-filled for 

signed a values, zero-filled for 

unsigned a values. 

a + b 9 integer integer Twos-complement addition 

a - b 9 integer integer Twos-complement subtraction 

a * b 10 integer integer Twos-complement multiplication 

a / b 10 integer integer Twos-complement division. Should 

be used only in compile-time 

expressions. 
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Table 8: CLAMP operators and precedence 

Operator Prece-
dence 

Result 
type 

Operand 
type[s] 

Meaning 

a % b 10 integer integer Arithmetic modulus operation. Should 

be used only in compile-time 

expressions. 

-a 11 integer integer Twos-complement negation 

~a 11 integer integer Bitwise negation 

!a 11 boolean boolean Logical negation 

#a 11 natural integer Number of bits needed to represent an 

integer value, as described in the 

bitcnt function. Should be used only 

in compile-time expressions. 



 

 311 

Table 8: CLAMP operators and precedence 

Operator Prece-
dence 

Result 
type 

Operand 
type[s] 

Meaning 

a[b:c] 12 integer integer Bitfield extraction. Expression b 

specifies the LSB to return, starting at 

0 and counting up. Expression c has 

specifies the positive number of bits 

to extract, and should be a constant 

for post-synthesis evaluation. 

If the type of expression a is 

std_logic_vector, then the result 

of the expression also has type 

std_logic_vector. 
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Appendix B. SIZING OF COMPUTATION ARRAYS. 

Whatever the computation array and FPGA capacity, the accelerator designer generally 

wants one thing that no current design tools are able to state explicitly: as many PEs as 

possible, in order to maximize parallelism in between the PEs. This depends on the 

resource utilization per PE, permissible sizes for computation and memory arrays, and 

FPGA capacity.  

There are three sources of information that affect an application accelerator’s 

implementation: the choice of FPGA, which specifies the available amounts of each 

computing resource, the pattern of usage (or growth law) common across a given family 

of related accelerator designs, and the resource utilization specific to a particular member 

of the application family.  This section discusses how those factors combine to define an 

application-specific accelerator.  

FPGA resources 

The FPGA resources are simply the programmable logic, hardware multipliers, block 

RAMs, and other features accessible to the logic designer. (Connectivity resources are 

usually allocated by development tools, and not directly available to the logic designer.) 

A larger FPGA in a given product family contains more of some or all resources, 

potentially allowing a larger computation array for a given application’s accelerator. The 

resources of interest are expected to differ between applications or application families; 
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one family member may require hardware multipliers where another does not, for 

example.  

Care must be taken in creating the resource abstraction since some resources are 

available only in specific quanta, such as block sizes for RAM bits. Extra care must be 

taken when the abstraction must cross FPGA product lines, since resources from different 

vendors are not always directly comparable. Block RAMS typify resource differences 

between vendors: the Xilinx Virtex-II Pro products contain 18Kb block RAMs, but 

comparable Altera Stratix-II chips offer a combination of 512b, 4Kb, and 512Kb RAMs.   

Computation arrays and resource-limited growth 

Different members of a given family of applications generally require different amounts 

of each FPGA resource for implementing a single PE in a computation array. Data paths 

can differ in bit width, and basic computations differ in the complexity of the calculations 

performed. Either way, the number of gates to implement a single PE will generally 

differ. As a result, the number of PEs that can be implemented in a given FPGA’s 

resource budget will differ according to the specific computation.  

Large FGPAs contain multiple different kinds of resources including hardware 

multipliers block RAMs as well as programmable logic elements. Different members of 

an application family differ in not just the quantity of resource needed per PE, but also 

the kind of resource. For example, simple docking applications use only logic resources 

for scoring voxels that overlap. Other family members may require RAM-based lookup 
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tables for scoring, or hardware multipliers. Because different members of an application 

family consume different FGPA resources, different resouyrces limit the number of PEs 

per FPGA in each case. For example,  a RAM-intensive applicationwould use only a 

small part of the FPGA’s logic resources if RAMs required for more PEs are not 

available. 

Many accelerator designs consist of more than one scalable design component. For 

example, the docking application consists of a logic-intensive computation array that 

interacts with RAM-based FIFOs. The sizes of the computation array and the FIFO array 

are determined by different features of the accelerator design. The two arrays also 

consume different kinds of resources: the computation array size is limited by the 

FPGA’s logic resources, but the FIFO array is limited by available RAM resources. It is 

worth noting that the two array sizes are not wholly independent of each other. 

B.1 Array growth laws 

In addition to application-specific resource usage per PE, and FPGA-specific resource 

availability, a third factor affects the size of the PE array that fits into a given FPGA: the 

array’s growth law. This is the set of arithmetic rules that define the set of allowable 

array sizes. A crucial feature of the growth laws, explained in the next section, is that 

they invert the sense of the structural parameters commonly used for specifying numbers 

of component instances in some logic design. In this analysis, the set of parameter values 



 

is not supplied by the designer, but chosen by the tools to create the most useful 

accelerator possible given the resources available. 

For generality and for ease of discussion, the same formalisms address arrays of 

memory elements, computing elements, and combinations. The goal of the discussion is 

to characterize repeatable arrays of computing resources, whatever the resource may be.  

Figure 24 suggests growth laws for several kinds of computation array. Figure 24A, a 

linear array, is the simplest. It allows an array of size N for any positive integer value of 

the structural parameter N. If, as in Figure 24B, an array has rectangular shape, then there 

are two different structural parameters, N1 and N2, giving the two dimensions of the array. 

Figure 24C demonstrates an exponential rather than polynomial growth law, as just one 

Figure 24. Growth of computation arrays 
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example of growth laws of arbitrary complexity. The case study of section 2.1.1, shown 

in Figure 6, uses a bus structure based on combinatorial Steiner systems.  In that example, 

a term in the growth law involves an expression n∈ {C3
i | i=4,5,6,…}, where Cj

i = i!/j!(i-j)!, 

a polynomial with j terms. 

Figure 24D illustrates multiple coupled structures, possibly representing a cubical 

computation array, a square array of row reductions, and a linear array of column 

reductions, where the sizes of the structures are locked to each other. Each structure has a 

different constant value (k1, k2, k3) representing resource utilization per computation cell. 

In this case, the growth law is represented by a polynomial with separate terms for each 

of the inter-related structures. Of course, all complicating features can occur in the 

growth law for any one system: multiple structural parameters describing nonlinear 

relationships between coupled structures. 

Except for a linear structure, the growth law constrains the set of sizes available to a 

computation array. Suppose some system has a square computation array, with a growth 

law of N2. The system could have enough logic resources to assemble (for example) 20 

PEs. The biggest array that can be built from that set of resources has 16 PEs, the largest 

square integer less than or equal to 20. Resources for the other four possible PEs are not 

wasted, they are simply unusable given the problem constraint.  
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Figure 25. Sample application: Two-dimensional convolution, with resource 

Figure 25 shows a hypothetical application, 2D convolution of an image with some 

kernel. For simplicity, it is assumed that both image and kernel are square. Both have 

different and arbitrary edge dimensions set by structural parameters np for the image 

plane and nk for the kernel. As in Figure 24B, the two structural parameters are 

decoupled. FIFOs are needed in this application to hold partial sums of incomplete terms 

in the convolution, and RAMs are needed for the original image and convolution result. 

Assume that the kernel array uses only logic resources, and that the memories use 

negligible logic resources. Then the logic and RAM resource utilizations are 

approximated by the expressions labeled Equation 3, below. 
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Logic = gk nk
2+ gc 

  

RAM(bits) = bp np
2 + bs np nk + bs(np+ nk)2 

 

   

Equation 3. Resource usage 

for a sample system 

where gk, gc, bp, and bs are application-dependent coefficients representing (respectively) 

logic elements per kernel PE, a fixed overhead of IO and control logic, number of bits per 

image pixel, and number of bits per convolution sum. Additional analysis is likely to 

show that gk depends on the values of bp and bs. This does not change the basic form of 

the relationships, but adds more terms to the expression. 

Sizing the accelerator 

The initial assumption was that accelerator arrays should be as big as possible, subject to 

the a) the resources defined by a given FPGA, b) the exact resource usage implied by a 

given member of a computation family, and c) the growth law specific to that family of 

applications. Given these, it becomes possible to state the array size in terms of one or 

more structural parameters ni. The ideal implementation is defined by the relation shown 

in Equation 4. 

arg max U(N) 

N | V(N) ∧ ∀j : rF
j ≥ Cj(N, B) 

 
 

Equation 4. Determining 

maximum sizes of computation 
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 Equation 4 uses a familiar hardware design concept in an unfamiliar way. The 

familiar concept is, as shown in Figure 22, an array of hardware elements where array 

sizes are set by some set of structural parameters N. In traditional design, N is an input to 

the system. Here, however, the values of N emerge from other aspects of the system 

design. Vector N is not a set of constants to be plugged in, but a set of variables for which 

solution is sought.  

Table 9 . Terms in resource constraint computation. 

Term Meaning Origin 

N=(n1, n2, …nI) 
Non-negative, integer-valued structural parameters 
ni that describe the accelerator configuration 

Family 

V(N) 
Predicate that tests whether(n1, n2, …nI) meet 
architectural validity criteria, irrespective of the 
resource usage implied 

Family 

Cj(N, B) 
Functions stating consumption of resource j for 
design parameters N and application-specific 
coefficients B 

Family 

U(N) Utility of an accelerator described by design 
parameters N 

Family 

RF=(r1, r2, … rJ)F Integer amounts of resource j available in FPGA F FPGA 

B=(b1, b2, … bK)
Coefficients bk giving application-specific resource 
utilization per repeatable element of the accelerator. 

Member 

   

Table 9 gives the meaning of the symbols used in Figure 2. The origin of each term is the 

source that provides the required information: the choice of specific FPGA, the family of 
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related applications, or the specific member of the application family for which an 

accelerator is to be realized. 

Vector B identifies the amounts of logic resources used by each application-specific 

data type or function in a specific member of the application family. This vector should 

not be an explicit input to the design tools. Instead, the application-specific resource 

demands should be self evident, based on the actual functions and data type declarations 

used in a member of the application family. 

Utility is a scoring function such that higher values indicate preferable accelerator 

configurations. If U(N1) = U(N2) ∧ N1 ≠ N2, then configurations 1 and 2 are different but 

equally desirable; either could be chosen. Absolute values of the utility function have no 

significance. The ranks of utility values simply establish the ordering of more and less 

desirable solutions.  

The validity predicate V(N) captures the idea that some systems allow only certain sets 

of values for the structural parameters N. Validity constraints on structural parameters 

apply not only individual parameters, but to arbitrary relationships between sets of 

parameters. In Figure 23, for example, it is reasonable to apply the constraint np ≥ nk, i.e. 

that the image is at least as big as the convolution kernel. Predicate V does not verify 

coefficients B, the resource usage specific to any one member of the application family, 

since it is assumed that they are constructed correctly by the design tools and do not need 

to need further checking.  
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Equation 4 suggests that the most desirable accelerator is the largest one that fits the 

FPGA-specific resources, once application-specific usage demands and constraints are 

known. Maximization of U for configuration parameters N is, in general, a difficult 

problem, the exact solution of which is beyond scope of this discussion. Because realistic 

parameter sets N have modest cardinality and modest integer ranges, exhaustive search of 

the configuration space defined by V is assumed to be acceptable. 

Without loss of generality, the U, Cj and V are assumed to be monotonic, although in 

slightly different senses. Let N and N’ be sets of structural parameters, such that N’ is 

identical to N in all positions except one, where ni < ni’. It is assumed that predicate V is 

monotonic in the sense that, if V(N) is false, then V(N’) is false as well. This means that, 

after some value of ni, all larger values (holding all other parameters constant) are also 

invalid. It is also assumed that U(N')≥ U(N), i.e. that the value of an accelerator increases 

with at least weak monotonicity in all  components (and subsets of components) of N. 

Functions Cj are assumed monotonic in the same sense as U, for any given application 

family member characterized by some fixed B. 

These constraints are not strictly necessary for Equation 4 to be valid. There is 

intuitive appeal in the idea that larger ni represent larger computation structures so have 

utility U at least as high, and in the idea that larger structures consume at least as much of 

each FPGA resource Cj. The real reason for monotonicity, however, is pragmatic. 



 

Monotonic objective functions U are far easier to maximize than non-monotonic 

functions.  

Table 10 . Resource constraint terms for sample application (Figure 25) 

Term Meaning 

N  Tuple of architectural parameters 

 np Edge dimension of the square image array, in units of pixels 

 nk Edge dimension of the square convolution array, number of 
coefficients in the convolution kernel. 

U(N) nk × np Utility function. Desirability of the solution improves as either 
architectural parameter value increases 

B  Vector of application-specific implementation parameters.  

 bp Number of bits per image pixel 

 bs Number of bits per convolution sum 

 gk Number of gate resources needed to implement one cell of the 
square convolution array 

 gc Constant representing fixed overhead for control logic, 
irrespective of the specifics of the accelerator. 

V(N) np ≥ nk The image must be at least the size of the convolution kernel. 

Cj(N, 
B) 

 Given by Equation 3 

RF  FPGA’s resource vector: {logic units, RAM bits} 

   

Monotonicity of Cj helps in limiting the number of configurations examined, since larger 

accelerators would consume at least as much of any resource, and would continue to 
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violate resource constraints. Non-negativity of ni and monotonicity of predicate V take 

the place of some alternative mechanism for setting lower and upper bounds on 

parameter values for searches across parameter space. As an example, consider Equation 

4 when applied to the two-dimensional convolution of Figure 25. Table 10 summarizes 

the correspondence. Not knowing any particular image or convolution kernel in advance, 

the best accelerator is taken to be the one that handles the largest possible image and the 

largest possible convolution kernel, both assumed to be square.  

B.2 Confounding factors in sizing and synthesis estimation 

The premise that bigger computation arrays are necessarily better does not always hold. 

Some specific applications use strings or arrays of fixed size, so allocations above that 

size do not increase performance. In other specific cases, growth law assumptions do not 

match the physical facts of the problem. For example, the rigid molecule interaction case 

study assumes cubical arrays for holding the two molecules. Very few molecules actually 

have bounding boxes of 1:1:1 aspect ratio. Non-cubical arrays fit such cases more tightly, 

so fewer PEs in the array are allocated to empty padding. 

Synthesis, placement, and routing also create performance problems when the 

application uses a large fraction of the FPGA’s resources, especially when utilization 

exceeds 90%. Placement becomes difficult, because early, arbitrary placement decisions 

create unforeseeable constraints on later assignments of logic resources. Routing 

becomes increasingly difficult, as well. Localized congestion causes the router to create 
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circuitous connections between logic elements. Excessively long paths in turn claim 

disproportionate amounts of routing resources, making later routing decisions yet harder. 

As a result, near-optimal assignments of logic and connectivity become increasingly 

harder to find as utilization increases. Wiring delays increase dramatically, often 

exceeding 2× the delay (i.e. 50% the speed) of similar circuits with lower utilization. 

Although problematic, this research has not encountered cases where increased 

parallelism (and utilization) has actually decreased performance due to clock speed 

degradation. 

The choice of array size depends on the estimate of the arrays use of FPGA resources, 

commonly called synthesis estimation. For many reasons, synthesis estimation is a 

difficult and imprecise. It is clearly subject to many confounding effects, including: 

⋅ Estimation uncertainty. Resource estimation is an open problem, so any estimation 

functions Cj and coefficients B can only be approximate. For safety, they must be 

made conservative and thereby run the risk of under-utilizing resources. 

⋅ Dependence on specific tools and FPGAs. It is well known that different synthesis 

tools generate results that differ in the amount of logic resources required for 

implementing a given function. Even synthesis tool options and pragmas affect 

resource utilization. 
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⋅ Hidden scaling. It is difficult for estimation functions Cj to properly capture size-

dependent effects introduced during synthesis. For example, a large broadcast 

networks use long-distance routing resources (when available), but smaller 

configuration need use only short-range resources. Synthesis tools are known to add 

repeaters to large data distribution networks, claiming resources not explicitly 

allocated by the logic design. In principle, these can be quantified and added to 

functions Cj, but that may be infeasible in practice. 

⋅ Inadequate hardware modeling. Equation 4 is phrased in terms of the different 

resources (r1, r2, … rJ,)F, available on FPGA F. The problem is that different FPGA 

fabrics have different resource sets that can not always be treated as interchangeable. 

Programmable LUTs of different sizes are not directly comparable, for example, and 

different FPGAs are known to provide RAM blocks in different amounts and with 

different (length × width) configuration options. 

⋅ Alternative implementations. Different resources can often be used for 

implementing a given function. Lookup RAMs, random logic, or fixed-function 

blocks can all implement multiplication, depending application details. Suppose an 

array of multiplier-based PEs consumed all block multipliers in some FPGA. 

Depending on resource availability, more PEs could still be built using multipliers 

built from random logic or RAM tables. This creates estimation difficulties that are 

difficult to address.  
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⋅ Unacknowledged dependencies. This discussion has assumed, for example, that an 

application family’s number of summands is independent of the number of 

application-specific sum bits. The data path width specified by the number of sum 

bits certainly affects the number of summands possible for a given amount of logic. 

It is also true, however, that numbers of sum bits must be different to represent 

worst-case totals for different numbers of summands. The resource model in this 

example makes the simplifying assumption that the configuration parameters N have 

no affect on the application-specific coefficients B. Additional cross terms between N 

and B can be added to resource estimates Cj, however, to represent this kind of 

dependency. 

Despite these problems, crude synthesis estimates are fairly easy to develop, adequate for 

typical sizing computations. Also, the details of synthesis estimation do not appear 

explicitly in Equation 4. Improved estimation techniques can be used as they become 

available, with no fundamental change to the sizing process. In the extreme, actual 

synthesis could be performed for each design alternative and actual utilization figures 

used instead of heuristic estimates, giving perfect precision of estimation. This is of 

theoretic interest, however, and unlikely to be part of any feasible solution. 
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Appendix C. SAMPLE APPLICATION: DOCKING 

The computation core of the accelerator for solid molecule interaction is a generalized 3D 

correlation. This section presents the LAMP tool input for the computation core. The 

internal representation, LAMPML, is the XML format described in appendix A.1. 

Although convenient for machine processing, it presents a poor human interface. 

Convenience LAMP (or CLAMP), described in appendix A.3, is more readable, but 

requires translation into LAMPML. Because of the interactions with the underlying HDL, 

CLAMP can not represent all of the logic design. As a result, this section uses CLAMP 

where possible, but also uses LAMPML directly. 

The core of the docking application consists of the following files: 

⋅ DockingApp.lamp: Top-level index information. This file collects all of the other 

files used for the docking application, including the bindings used for one instance of 

the application. 

⋅ FPGAresource.lamp: Abstract definitions of the FPGA resources. Concretions of this 

abstraction help with synthesis estimation, and define the quantities of logic 

resources available on any specific FPGA 

⋅ XC2VP.lamp: Partially specializes FPGAresource to represent the memory 

allocation logic common across all members of the Xilinx Virtex II Pro family. 
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⋅ XC2VP70.lamp: Concrete resource definitions for the Xilinx Virtex II Pro VP70. 

⋅ XC2VP100.lamp: Concrete resource definitions for the Xilinx Virtex II Pro VP100. 

Any one application would use either this file, the XC2VP70 file, or some other file 

specific to another FPGA, but no more than one of them in any given application. 

⋅ DockingBase.lamp: Abstract definitions used by the docking application.  

⋅ ScoreBase.lamp: First-level specialization of DockingBase. This defines 

concretions of the scoring data types and operations. 

⋅ KatchalskiKatzir.lamp: Second-level specialization of the DockingBase interface. 

This implements the logic specific to the Katchalski-Katzir scoring function [Kat93]. 

This, ChenWengGSC, and ChenWengPSC are all concretions of the DockingBase 

abstraction. Any one of these may be used, but only one in any given accelerator. 

⋅ ChenWengGSC.lamp: An alternative to KatchalskiKatzir.lamp, this implements the 

GSC scoring function defined by [Che02]. 

⋅ ChenWengPSC.lamp: Another alternative to KatchalskiKatzir.lamp, this implements 

the PSC scoring function also defined in [Che02]. 

⋅ ConfigWrapper.lamp: Top-level component. This does not add directly to the logic 

design, but performs the sizing operation that determines the largest computation 

arrays that the FPGA can support. 
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⋅ Conv3D.lamp: Highest level component in the computation array 

⋅ Conv2D.lamp: Inner component of Conv3D 

⋅ Conv1D.lamp: Inner component of Conv2D 

⋅ MolCell.lamp: Unit cell of the correlation array 

⋅ FixedLenFifo.lamp: Definitions for the synchronous FIFO used within the 

correlation array. 

⋅ DPRAM.lamp: Defines a basic dual-ported RAM. 

Throughout this discussion, the correlation operation used in the docking algorithm is 

referred to as a convolution. Correlation and convolution are, strictly speaking, distinct 

operations. In practice, however, they perform operations so nearly identical that the 

terms may be used interchangeably.  

C.1 The docking model 

The files listed above comprise the LAMP model for the correlation core of the docking 

application. Figure 26, below, relates those files to the model structure shown in Figure 

22. In order to clarify the relationship to that figure, the name of each block is shown as a 

stereotype name, and the list of files that fill each role of the stereotype is shown as the 

block content. 
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There is always some amount of interpretation in assigning features of an application to 

roles defined by stereotypes, so other assignments could have been made, especially for 

classes that create partial specializations of abstractions (ScoreBase and XC2VP). Figure 

26 includes the following elements, identified by stereotype name: 

⋅ Model instance: These are the top-level containers for all other parts of the 

application. The DockingApp file aggregates the other files into a whole. The 

ConfigWrapper file performs the sizing operations that decide on specific 

dimensions of the computation arrays. 

⋅ Domain-specific: The domain specific files implement logic that is shared across all 

members of the computation family. These files implement the logic that spans the 

Figure 26. LAMP model for docking correlation core 
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domain of docking cores, but does not contain logic specific to any one member of 

that computation family. 

⋅ HWAbstraction: The FPGAresource class defines the logic resources available on 

any Xilinx FPGA. The XC2VP class partially specializes the abstract description to 

implement the memory allocation logic common to all Xilinx Virtex II Pro family 

members.  

⋅ HWConcretion: Each concretion describes the resources available within some 

particular FPGA. Only one of these is used in any actual accelerator, because each 

accelerator must be built for a specific FPGA platform. 

⋅ AppAbstraction: These files connect the domain-specific logic to the application-

specific logic. They state the application abstractions that are used by the domain-

specific modules, and that must be implemented by the modules specific to any one 

member of the family of applications. The DockingBase definitions are fully 

abstract. Definitions in ScoreBase create utilities for scoring arithmetic that are 

shared across many application concretions. It represents a partial specialization of 

DockingBase, and not the only scoring arithmetic that one could imagine. 

⋅ AppConcretion: Three examples have been provided, named according to the 

authors that proposed the specific scoring functions. All of them are subclasses of 
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ScoreBase and, by inheritance, DockingBase. Any of these may be used as the 

concrete scoring logic for an accelerator, but only one at a time may be used. 

C.2 Docking files in detail 

This section examines the CLAMP code that implements the correlation core of the 

docking application. LAMPML has been omitted, since CLAMP notation is far more 

readable. HDL code has also been omitted, because its implementation is straightforward 

and because the volume of it would clutter discussion of the novel LAMP constructs.   

DockingApp.lamp 

This is the only file in the application built form the integration subset of CLAMP. It 

maintains the list of files needed for a particular instance of the application.  

For brevity and readability, comments and blank lines have been stripped from this 

version of the file. The actual file would generally include C++ comments, both // and 

/* */ forms, for the benefit of human maintainers. Comments and blank lines have been 

stripped from all the other files, as well, so no further mention will be made. 

1.    application Docking { 

2.   useclass "DockingBase.xml"; 

3.   useclass "ScoreBase.xml"; 

4.   useclass "ChenWengPSC.xml"; 

5.   useclass "FPGAresource.xml"; 
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6.   useclass "XC2VP.xml"; 

7.   useclass "XC2VP70.xml"; 

8.   useclass "XC2VP100.xml"; 

9.    use "MolCell.xml";  

10.   use "DPRAMmodel.xml";  

11.  use "FixedLenFifo.xml";  

12.  use "Conv1D.xml";  

13.  use "Conf2D.xml";  

14.  use "Conv3D.xml";  

15.  use "ConfigWrapper.xml";  

16.  root ConfigWrapper rootComponent { 

17.   class FpgaContent := XC2VP70, 

18.   class AppClass := ChenWengPSC } 

19. } 

In a fully developed tool environment, this file would not normally be visible. It contains 

indexing information that collects the other design units in a single accelerator, and 

would be manipulated by the tool environment. One application file would represent 

the accelerator in its generic, unspecialized form. Abstract class definitions in that file 

would imply the definitions that the user must supply, along with the set of symbols 

imported by the root component. 
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Lines 2-6 name the class definitions that define the parts of the accelerator that are 

customized by each application. Lines 9-15 define the list of annotated HDL files used in 

this project. Lines 16-18 state which of the components is to be instantiated as the unique, 

top-level element, and associates concrete definitions with that model’s abstractions. 

Although both XC2VP70 and XC2VP100 hardware definitions are available, only one of 

them at a time may be bound the FPGAcontent symbol of the root component. 

FPGAresource.lamp  

This file defines the FPGA’s computing resources, in abstract form. It does not state the 

actual quantities specific to any one FPGA, but states the kinds of resources expected by 

synthesis estimation. In order to connect the descriptive text more closely to the features 

being described, the file has been interleaved with the commentary. Line numbers on 

each code fragment show its original position in the file. 

1. class FPGAresource { 

2.  const natural logicCells;  

This specifies the number of logic elements available on an FPGA. The meaning of this 

amount may vary, but it is interpreted as slices in FPGAs in the Xilinx product family. 

This is an abstract constant. This interface item may be used in calculations, particularly 

sizing operations, but must be bound to a concrete class for the expression to be 

evaluated.  
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3.  const natural ramBlocks; 

4.  const natural hardMultiply; 

Likewise, these two values represent the number of block RAMs and dedicated 

multipliers in the Xilinx product family. This description of available resources would 

need to change, for example, when porting the application to a Stratix FPGA. Where the 

Xilinx product family has only one size of block RAM resources, the Stratix has three: 

512b, 4Kb, and 512Kb, in various numbers. 

5.  function natural nRams( natural wordSize, natural nWords);  

6. } 

This is an abstract function definition. It specifies everything a programmer needs to 

know in order to use this function in calculations, but does not specify the way in which 

the function is evaluated. That must be provided in a concretion of this class before the 

function can actually be used. This function has no system-defined meaning. Within this 

application, however, it is used in synthesis estimation. An application may instantiate 

RAMs of many different sizes, larger or smaller than the FPGA’s block RAM. If the 

application’s logical RAM is larger than the FPGA’s physical RAM, then several 

physical RAMs must be ganged to implement the one logical structure. This function 

examines the size of logical RAM requested, and returns the number of physical RAMs 

required for its implementation. 

Line 6 closes the bracket opened on line 1, and ends the class definition. 
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XC2VP.lamp 

This class represents the features specific to the Xilinx Viretx II Pro product family, but 

shared across all members of that family. 

1. class XC2VP extends FPGAresource { 

2.  const natural ramBits := 16*1024; 

3.  const natural minWords := 512;  

4.  function natural nRams(natural wordSize, natural nWords) {  

5.   natural effWords := if nWords > minWords  

6.     then nWords else minWords; 

7.   return (wordSize * effWords + ramBits-1) / ramBits  

8.  }; 

9. } 

The ramBits declaration does not match any symbol in the superclass. As a result, it 

creates a new interface item in XC2VP that was not present in FPGAresource. This 

interface item is not accessible when XC2VP is accessed through FPGAresource, because 

it did not exist at that level of inheritance. It is, however, available internally to the class 

and to any client that accesses the XC2VP interface explicitly. 

This concrete definition of function nRams over-rides the abstract definition in 

FPGAresource, so it can be used anywhere that expression evaluation is required. The 

logic of this function funds the number of bits requested by the given numbers of words 
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and bits per word. This is not completely accurate, however. The Virtex II Pro block 

RAMs may be configured as 16K×1 (words × bits), 8K×2, 4K×4, 2K×9, 1K×18, or 

512×36. Logical RAM structures may be built by ganging physical RAMs, but each of 

the ganged RAMs must have one of those configurations. The exact allocation function, 

however, is non-trivial, and specific configurations may be handled best by several 

RAMs in a combination of configurations. This approximation is adequate for current 

needs, however, and can easily be replaced by any other expression the developer 

chooses. 

The XC2VP class provides a concrete definition only for the nRams symbol. It inherits 

abstract definitions for all other symbols from FPGAresource, so those symbols have 

abstract definitions in this class as well. Because not all of its symbols, including 

inherited ones, have concrete definitions, this can not be used by itself in sizing 

calculations. 

XC2VP70.lamp 

This is a subclass of XC2VP and, by inheritance of FPGAresource. It specifies exact 

values for the constants left undefined in those classes file. Because this fully defines all 

of the interface items in FPGAresource, or inherits concrete definitions, it can be used 

for expression evaluation. 

1. class XC2VP70 extends XC2VP { 

2.  const natural logicCells := 66176; 
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3.  const natural ramBlocks := 328;  

4.  const natural hardMultiply := 328; 

5. } 

Line 1 simply opens the class definition, and states that XC2VP70 is a subclass of XC2VP, 

the definitions that are partially specialized for the Xilinx Virtex II Pro product family. 

This does not need to define a concrete nRams function because it inherits the function 

that’s generic across this FPGA product line 

Constant values were transcribed from the manufacturer’s data sheet for this product. 

It is not explicit in these const declarations, but all of them correspond to abstract 

definitions in FPGAresource. As a result, these concrete declarations over-ride the 

superclass’ abstract definitions. 

XC2VP100.lamp 

This is also a subclass of XC2VP and, by inheritance for FPGAresource. It just fills in 

values from the FPGA vendor’s data sheet that match the meaning of the abstract 

constants defined in FPGAresource. Because this concretely defines or inherits concrete 

definitions of all interface elements in FPGAresource, it can be used in system sizing 

calculations. This is an alternative to the XC2VP70 class – only one of these definitions 

would be used in any actual accelerator configuration. 

6.   class XC2VP100 extends XC2VP { 

7.   const natural logicCells := 99216; 
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8.   const natural ramBlocks := 444;  

9.   const natural hardMultiply := 444; 

10. } 

DockingBase.lamp  

This class defines the abstractions for the docking application. Once these abstract 

definitions are given concrete meanings, the docking application can be synthesized. 

1. class DockingBase { 

2.  typedef scoreType;  

3.  function scoreType makeScore(integer a); 

4.  function scoreType addScore(scoreType a, scoreType b);  

5.  function scoreType  

6.     summarizeScores(scoreType a, scoreType b);  

7.  const scoreType zeroScore; 

8.  const scoreType summaryInit; 

These declarations have to do with score computation. Line 2 gives an abstract definition 

of the score type. At this level of abstraction, it has only identity, and no other visible 

features. Line 3 provides an abstraction for a data conversion function, allowing positive 

or negative integer values to be cast as score values. Line 4 provides an addition operator. 

Line 5 is used in the filtering operation that reduces the total volume of scoring data.  The 



 

 340 

remaining two constants are used as initialization values, for score summation and for 

summarization respectively. 

9.   typedef cellType; 

10.  function scoreType  

11.    cellScore(cellType largeMol, cellType smallMol); 

12.  const cellType emptyLg; 

13. }; 

These declarations have to do with the voxel values used to represent the two molecules. 

The cellType declaration just says that some data type definition will hold a cell of one 

molecule or the other. The cellScore function represents the arbitrary function F of  

Equation 2. The generalized correlation is not a sum-of-products, but a sum-of-F, 

summed over this function. The constant declaration of line 12 defines a value 

representing empty space, used for padding in 3-axis rotations. 

ScoreBase.lamp 

This class is a partial concretion of the DockingBase class.  It implements common logic 

for handling score values, in a way that can be reused across many different models of 

chemical phenomena. 
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1. class ScoreBase extends DockingBase { 

2.  const natural scoreBits := 10;  

3.  typedef scoreVal integer[scoreBits]; 

4.  typedef scoreType {  

5.   scoreVal value, 

6.   boolean overflow }; 

The scoreType definition over-rides the abstract definition in the superclass, 

DockingBase. Enough significance bits must be allocated so that credibly large positive 

or negative values can be handled without overflow, but over-allocation would waste 

resources that could have been put to use in creating additional processing elements. If 

the range of signed values were not adequate, two’s complement overflow would turn 

excessively positive values into negative ones, and vice versa. Overflow would invert the 

sense of the result, clearly not a desirable outcome. Saturating arithmetic could have been 

used to clamp results to the most positive or negative value. This has the disadvantages of 

losing knowledge of the overflow condition, which can be important to the analysis, and 

of requiring more hardware than the scheme chosen. In the event of overflow, the current 

scheme records that fact in a “sticky” flag. From that point forward, the fact that overflow 

occurred is preserved, no matter what operations occur later. The significance bits have 

no meaning in that case, except for the sign bit.  
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7.  function scoreType makeScore(scoreVal a) { 

8.   return new scoreType( 

9.    overflow := false, 

10.    value := a ) 

11.  }; 

This function converts an integer value into a score. Note that this function does not have 

exactly the same signature as the DockingBase function that it over-rides. The integer 

parameter here is has a restricted range, where it was unrestricted in the superclass. It 

does, however, have compatible type, so the over-ride is valid. 

12.  typedef additionTemp integer[scoreBits+1]; 

13.  function scoreType addScore(scoreType a, scoreType b ) { 

14.   additionTemp tmpSum := a.value + b.value; 

15.   boolean oflo :=  

16.     tmpSum[scoreBits:1] != tmpSum[scoreBits-1:1]; 

17.   boolean negOut := if a.overflow then a.value < 0 

18.    elsif b.overflow then    b.value < 0 

19.    else      tmpSum < 0; 

20.   natural signOut := if negOut then 1 << (scoreBits-1) 

21.    else 0; 
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22.   return new scoreType( 

23.    overflow := a.overflow || b.overflow || oflo, 

24.    value := signOut | tmpSum[0:scoreBits-2] ) 

25.  };  

This function adds two score values, taking possible overflow into account. Line 12 

defines a computing value, with additional bits to allow detection of overflow. Line 14 

determines the sum, using the temporary register with extended precision. Lines 15-16 

use basic facts of two’s complement arithmetic to examine two one-bit fields of the sum 

and determine whether magnitude of the sum is too large to fit the significand of the 

score. Lines 17-21 determine the sign of the output, either by propagating an input 

overflow or by reporting the sum’s actual sign. In the case where operands a and b both 

report overflow and differ in sign, the result arbitrarily takes the sign of operand a. 

Summation of opposed overflows can not have a meaningful value; this approach at least 

records the fact of overflow. Lines 22-24 create the result. Line 23 reports overflow, 

whether propagated or newly detected, using a logical OR of all overflow conditions. 

Line 24 reports the sum with its proper sign, using a bitwise OR operation. Overflow 

conditions make the significand irrelevant, but preserve the meaningful values for the 

sign of the result.  
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26.  function scoreType summarizeScores(scoreType a, 

27.           scoreType b)  

28.   { 

29.   boolean pickA := if a.overflow  then a.value >= 0 

30.    elsIf b.overflow   then b.value < 0 

31.    else     a.value > b.value; 

32.   return if pickA then a else b 

33.  }; 

Many alternative ways exist for combining multiple score values into one summary 

value. This implements the familiar “max” function, with cases that handle overflow 

conditions. Positive overflow beats (or ties) any other value, negative overflow loses to 

(or ties) any other value, and all other cases depend on straightforward inequality testing. 

34.  const scoreType zeroValue := makeScore(0);  

35.  const scoreType summaryInit := new scoreType( 

36.   overflow := true, value := -1); 

37. }; 

These are straightforward definitions of values defined by the DockingBase superclass. 

The value for initializing a score summary is chosen to match the summary function 

implemented: the most negative possible value, compared with any other in a “max” 
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operation, reports that other value. If the summary had been based on sums of scores, it 

would probably have been zero, or other value according to the application logic. 

KatchalskiKatzir.lamp 

The first widely recognized use of correlation for docking [Kat93] implemented a simple 

scoring function: a reward for overlap of surface regions, a penalty for collision of 

interior regions, and no score for any other interaction, including a complete miss. 

Because of the implementation technologies available, it was most efficient for those 

researchers to force their logic into a product form, so that efficient transform-based 

correlation could be used. They encoded molecule volume elements as complex numbers. 

Interior voxels were positive imaginary values, surface voxels were positive real values, 

and the real part of a product would yield a negative score for collisions or a positive 

score for surface contact. This implementation uses logical operations instead of complex 

multiplication to determine the kind of interaction, allowing a compact voxel 

representation and a simple scoring function. 

1. class KatchalskiKatzir extends ScoreBase { 

1.  typedef cellType { 

2.   boolean isInterior, 

3.   boolean isSurface }; 
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2.  const cellType emptyCell := new cellType( 

3.   isInterior := false, isSurface := false ); 

Voxel values may be of any type. Here, the voxel (cell) representation is the most direct 

possible statement of the significant voxel state. An empty cell, exterior to a molecule, is 

neither interior to it nor in its surface region. 

4.  const scoreType collisionScore := makeScore(-10); 

5.  const scoreType touchScore := makeScore(3); 

These values represent the collision and surface contact scores directly. The values are 

arbitrary. Even if they do not match the original Katchalski-Katzir values exactly, they 

encode the same logic and can readily be modified to any desired values. 



 

 347 

6.  function scoreType cellScore( 

7.   cellType largeMol, cellType smallMol)  

8.  { 

9.   return if largeMol.isInterior && smallMol.isInterior 

10.     then  collisionScore 

11.    elsif largeMol.isSurface && smallMol.isSurface  

12.     then   touchScore 

13.    else  zeroScore 

14.  }; 

15. }; 

This function implements the logic for scoring any one cell-cell overlap. Again, it does 

not use the original phrasing of the correlation – that would have been an arithmetic 

product of complex values. The net result is the same, though, and readily implemented 

on FPGA logic. 

ChenWengGSC.lamp 

Other correlation-based scoring algorithms have been developed, including the Grid-

based Shape Complementarity (GSC) and the superior Pairwise Shape Complementarity 

(PSC) scoring functions compared by Chen and Weng [Che02]. The following example 

implements the logic of the GSC scoring function. As with the Katchalski-Katzir, this 

example replaces arithmetic operations with logical tests, allowing efficient FPGA-based 

implementation. The original transform-based algorithm required the voxel scoring 
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functions to be sums of arithmetic products. It is possible that, by making the logic of the 

molecule interaction tests more visible, that variants may be easier to implement, 

including variants that would be difficult to phrase as complex products.  

1. class ChenWengGSC extends ScoreBase { 

2.  typedef cellType integer[2]; 

3.  const cellType SolvAccessible := 0;  

4.  const cellType SolvExcluding := 1; 

5.  const cellType Core := 2; 

6.  const cellType emptySpace := 3;  

The basic logic of the GSC scoring function divides the 3D molecule structure into 

categorical values describing the molecule content at each grid point. Like the 

Katchalski-Katzir algorithm, this distinguishes empty, interior, and surface regions of 

each molecule. Surface regions, however, are distinguished by their solvent interaction 

properties, giving a slightly richer representation of the underlying chemistry. 

7.   const scoreType SE_SA := makeScore(1);  

8.   const scoreType SE_CSE := makeScore(-9);   

9.   const scoreType Core_SA := makeScore(-9); 

10.  const scoreType Core_CSE := makeScore(-81);  
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Scores for each voxel pair depending on whether the interacting voxels are solvent-

accessible (SA), solvent-excluding (SE), or core regions. In some cases, no distinction is 

made between SE and core, abbreviated as CSE. 

11.  function scoreType cellScore(cellType Lg,cellType Sm){ 

12.   return 

13.    if Lg = Core then  

14.     if Sm = SolvAccessible  then Core_SA 

15.     elsif Sm = emptySpace  then scoreZero 

16.     else      Core_CSE 

17.    elsif Lg = SolvExcluding then  

18.     if Sm = SolvAccessible  then SE_CSE 

19.     elsif Sm = emptySpace  then scoreZero 

20.     else      SE_CSE 

21.    else       scoreZero 

22.   }; 

23.  }; 

This implementation of cellScore replaces the linear complex functions of the original 

problem statement with logical tests that achieve the same net result. The encoding based 

on complex values was clever, but the different kinds of interactions seem easier to 

identify in this phrasing. 
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ChenWengPSC.lamp 

The same paper that proposed the GSC scoring function compared it to PSC. This file 

implements the logic of the PSC algorithm 

1. class ChenWengPSC extends ScoreBase { 

2.  typedef LgCell extends cellType{ 

3.   boolean solvExcl, 

4.   boolean isCore, 

5.   boolean hasNeighbor }; 

This algorithm has the distinctive feature that the voxel representations in the two 

molecule representations differ. This demonstrates the flexibility of the inheritance 

constructs in the LAMP design language. It also demonstrates additional opportunities for 

compact representations, possibly allowing higher degrees of parallelism. This 

distinguishes core and solvent-excluding surface regions, as in the GSC algorithm, and 

replaces the “solvent-accessible” term with one that looks for neighboring atoms. 

6.  typedef nbrCount integer[5]; 
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7.  typedef SmCell extends cellType{ 

8.   boolean solvExcl,  

9.   boolean isCore, 

10.  nbrCount nbrs }; 

The smaller of the two molecules distinguishes core and solvent-excluding surface 

regions. It also counts the number of neighboring voxels, representing the belief that 

higher numbers of neighbors to any locale increase the strength of the interaction. 

11.   const natural SE_SE := -9; 

12.  const natural SE_Core := -27; 

13.  const natural Core_Core := -81; 

These scoring values have much the same meaning as in the GSC scoring system. 

14.  function scoreType cellScore(LgCell largeMol,  

15.          SmCell smallMol) { 

16.   natural otherScore :=  

17.    if smallMol.isCore then  

18.     if largeMol.isCore      then Core_Core 

19.     elsif largeMol.solvExcl  then SE_Core 

20.     else                  0 
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21.    elsif smallMol.solvExcl then  

22.     if largeMol.isCore      then SE_Core 

23.     elsif largeMol.solvExcl  then SE_SE 

24.     else                     0 

25.    else      0;              

26.   natural nbrScore := if largeMol.hasNeighbor  

27.    then smallMol.nbrs  

28.    else 0; 

29.   return makeScore(nbrScore + otherScore); 

30.  }; 

31. }; 

Lines 16-25 work much the same way as in the GSC algorithm. The difference is in lines 

26-28. This replaces scoring of the “solvent-accessible” voxel pairs with a reward 

proportional to the number of neighboring voxels in the large molecule, if the current 

voxel of the small molecule is sensitive to its neighbors at all. This is the term that makes 

use of the asymmetric voxel types, the boolean in the small voxel and the value count in 

the larger one. 

The choice of which value goes where is based on the different computing resources 

consumed by the arrays that hold the large and small molecules. Logic resources hold the 

small molecule values within the computation array, but on-chip RAM holds the larger 

molecule. The incremental logic required for the few extra voxel bits makes little 
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difference to the total logic size in the scoring cell, but would have increased the number 

of RAM bits per voxel from three to seven. This assignment of small and large molecules 

generally allows the largest sizes for both molecules. 

ConfigWrapper.lamp 

The configuration wrapper is the first of the CLAMP entity definitions in this example. It 

is important to note that these files correspond to annotated HDL text, but do not 

themselves contain the HDL text. These files are used to generate LAMPML output in 

XML format. That XML markup is to be integrated by hand into the HDL text. The 

CLAMP text is more readable, however, so it is used for descriptive purposes. 

Although this file is nominally for HDL annotation, it does not contribute any 

synthesizable logic to the application. Instead, it implements the function for sizing the 

computation arrays to the amounts of logic resources in the current FPGA. This doe not 

implement the full form of the optimization stated in Equation 4. Instead, it determines 

the largest computation array, i.e. the largest size of the small molecule grid that can be 

contained in the available logic. Then, it determines the largest size of larger molecule 

that can be held within the RAM resources at hand. 

1. entity ConfigWrapper { 

2.  symbol entName := uniqueID(configure); 
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3.  import class AppClass extends DockingBase; 

4.  import class FpgaContent extends FPGAresource; 

These are the only two items imported into the sizing logic: the application-specific 

functions and data types, and the statement of FPGA resources. Note that there is no 

input that explicitly specifies the size of either array. 

5.  typedef configChoice { 

6.   natural convBlockSize, 

7.   natural fifoSize }; 

This record states the choices made for a system configuration: the edge dimension of the 

convolution computation block, and the size of FIFO used for holding temporary results. 

Although the computation array can accept different sizes in its X, Y, and Z dimensions, 

this makes the simplifying assumption that array sizes along all axes are the same, i.e. 

that the array is a cube.  

8.  instance Conv3D sizing { 

9.   class AppClass := AppClass, 

10.   class FpgaContent := FpgaContent, 

11.   xCells := 1,  yCells := 1, zCells := 1, 

12.   xFifoLen := 1,    yFifoRows := 1 }; 

The sizing instance creates a dummy entity description. The dummy has all the logical 

internal structure of the Conv3D array (described below), but the constants describing 
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feature sizes are chosen arbitrarily. Only the class bindings matter, because they define 

the resource utilization for any chosen array size. Although this creates a logical instance 

of Conv3D bound to the parameters shown, no synthesizable instance of sizing is ever 

created. Instead, functions defined in this logical instance are used for computing 

resource demands. 

Lines 9 and 10 have the same symbol name on the right and left sides of the 

assignment. Within each line, the two symbols are distinct. In line 9, the right-hand 

occurrence of ApplClass is resolved in the scope of the current entityDef. It refers to 

the import statement at line 3, and represents whatever class is bound to that import 

symbol when a logical instance of this entity is created. The left-hand occurrence of 

AppClass refers to the import symbol in the entity for which the logical instance is 

being created, an instance named sizing of entity Conv3D. The proper interpretation for 

line 9, then, is that an import symbol defined in Conv3D and named AppClass binds to 

the same class reference as a symbol coincidentally named AppClass and defined in 

ConfigWrapper. 

13.  function configChoice confBlocks(configChoice confTry) { 

14.   natural bumpConv := confTry.convBlockSize + 1; 

15.   natural logicUsage := sizing.synthLogic( 

16.    bumpConv, bumpConv, bumpConv,  

17.    confTry.fifoSize, confTry.fifoSize); 
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18.   natural RAMusage := sizing.synthRAM( 

19.    bumpConv, bumpConv, bumpConv,  

20.    confTry.fifoSize, confTry.fifoSize); 

21.   boolean logicFits :=  

22.     logicUsage <= FpgaContent.logicCells; 

23.   boolean RAMover := RAMusage > FpgaContent.ramBlocks; 

24.   return if RAMover then confTry 

25.    elsif logicFits then configBlocks(new configChoice( 

26.     convBlockSize := bumpConv, 

27.     ifoSize := confTry.fifoSize)) 

28.    else confRam(confTry) 

29.  }; 

Function confBlocks performs the first of two sizing steps, sizing of the computation 

array. Parameter confTry is assumed to be some configuration that has already been 

found to be acceptable. The goal of this function is to try larger arrays and report the 

largest allowed. If no larger array is allowed, then confTry is used as the system 

configuration. Recursion generates successively larger configurations until one is 

rejected, then the last one not rejected is used. 

LAMPML and CLAMP do not contain looping or conditional execution statements. 

Instead, they use recursion and conditional expression evaluation to achieve the same 

results. Since the recursive functions complete execution before synthesis begins, and 
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long before execution of the accelerator logic, they do not cause any problems for 

processing of the underlying HDL. 

Line 14 starts evaluation of the larger configuration. It increments the size of the 

proposed computation array. Lines 15-17 evaluate the amount of logic that would be 

needed by sizing, a Conv3D component, for implementing an array of that size and of 

confTry’s given buffer size. Logic and memory are the two resources considered in this 

estimation, and both may, at least in principle, change for any change of parameter 

values. As a result, the amount of RAM claimed by an array of proposed size must also 

be checked. Lines 18-20 determine the RAM utilization for the proposed array size. 

Lines 21-22 perform simple tests to determine whether resource demands of the 

proposed array sizes fit within the resources of the FPGA. These tests are phrased in 

terms of class FpgaContent, which is imported (i.e. an input) to this entity. That class 

has no definition in this entity, except that it is defined to export the interface specified in 

abstract class FPGAresource. Depending on the bindings assigned by the entity that 

instantiates this class, any FPGA’s resources could have been used. Different resource 

limits could create different results for these inequalities, allowing different array sizes. 

This entity is instantiated by the root statement in DockingApp.lamp, which binds a 

concrete class definition to FpgaContent. In this example, resource constraints for the 

Xilinx Virtex II Pro VP70 are used. 
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Porting this application to a larger array size requires a different binding of 

FpgaContent, creating a different set of resource limits. This logic works the same way 

no matter what the actual amount of those limits, so in independent of FPGA type. 

Choice of actual FPGA is made in DockingApp.lamp, the file that integrates the full set 

of knowledge required for any one accelerator. 

Lines 23-26 evaluate the outcome of the proposed configuration, given that input 

confTry is assumed to be acceptable. There are three possible outcomes to this test. First 

(line 23), the newly proposed configuration may be found to exceed available amounts of 

RAM. The input is assumed to have used acceptable amounts of RAM, so that 

configuration is used, and no further claims for RAM resources are proposed. The second 

possible outcome is that RAM and logic utilization are both within limits, so addition 

claims for logic resources (line 24-25) will be tried. The third possible outcome (line 26) 

is that logic resources can not support a larger array, so the RAM-based FIFO arrays will 

be sized by function confRAM. 

30.  function configChoice confRAM(configChoice confTry) { 

31.   natural bumpFifo := confTry.fifoSize + 1; 

32.   natural logicUsage := sizing.synthLogic( 

33.    confTry.convBlockSize, confTry.convBlockSize,  

34.    confTry.convBlockSize, bumpFifo, bumpFifo); 
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35.   natural RAMusage := sizing.synthRAM( 

36.    confTry.convBlockSize, confTry.convBlockSize,  

37.    confTry.convBlockSize, bumpFifo, bumpFifo); 

38.   boolean blewLimit :=  

39.        (logicUsage >= FpgaContent.logicCells) 

40.    || (RAMusage >= FpgaContent.ramBlocks); 

41.   return if blewLimit then confTry 

42.    else confRAM(new configChoice( 

43.     convBlockSize := confTry.convBlockSize, 

44.     fifoSize := bumpFifo)) 

45.  }; 

Function confRAM implements the second step in this application’s sizing logic. Once a 

size is chosen for a computation array, it determines the largest amount of buffer space 

possible within the RAM limitations. This function’s logic resembles that in 

confBlocks. It assumes that the input describes a configuration with acceptable logic 

and RAM utilization. It then increments the configuration parameter known to claim 

RAM resources (line 31, and determines the amounts of RAM and logic claimed by the 

newly proposed configuration (lines 32-37).  

Since the computation array is already assumed to be the largest possible, it is only 

necessary to choose between using the known-good RAM configuration (line 41) and 

trying a larger one lines 42-44). 
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Referring to Equation 4, it should be clear how these functions capture all terms in the 

maximization problem. The result of utility function U is implicit. It favors larger 

computation array sizes. When two computation arrays have the same size, a tie-breaking 

rule favors the larger RAM array. Tuple configChoice implements array N, the 

configuration parameters. Class FpgaContent implements the resource limits R, and 

includes auxiliary logic related to computing the resource limits. Cost functions C are 

implemented explicitly in Conv3D as synthLogic and synthRAM. Class AppClass 

contains all needed information about the resource demands implied by a particular 

choice of data types and application-specific functions. It implicitly contains the 

information of vector B, the sizing parameters specific to any one member of the 

accelerator family. Maximization is explicitly performed these two functions. The 

predicate V that tests architectural validity does not appear explicitly, but is silently taken 

to be true for all positive values of convBlockSize and fifoSize. 

46.  configChoice sysConfig := confBlocks(new configChoice( 

47.   convBlockSize := 1, fifoSize := 1)); 

The sysConfig value contains the system configuration parameters that result from 

maximizing resource utilization as described above. It starts with a dummy configuration 

of the smallest possible size, as an initial value for the recursive search of configuration 

space. 
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48.  instance Conv3D convArray { 

49.   class AppClass := AppClass, 

50.   class FpgaContent := FpgaContent, 

51.   xCells := sysConfig.convBlockSize, 

52.   yCells := sysConfig.convBlockSize, 

53.   zCells := sysConfig.convBlockSize, 

54.   xFifoLen := sysConfig.fifoSize,  

55.    yFifoRows := sysConfig.fifoSize }; 

56. } 

Once the system configuration parameters have been determined, it is possible to create a 

system with that configuration. Again referring to Equation 4, it is easy to see how this 

combines information from the all of the sources identified in section B.1: the application 

family (Conv3D), the specific application family member (AppClass), the FPGA 

resource specifics (FpgaContent), and the sizing parameters that derive from those 

three.  

As a simplification, the X, Y, and Z axes of the convolution array are assigned the same 

sizes, as are the X and Y axes of the buffers that hold partial correlation sums. There is no 

fundamental reason for this other than convenience – another implementation might have 

reason to used different sizes in either case. 
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Conv3D.lamp 

As with all CLAMP entity definitions, this expresses only the LAMP logic. In use, it is 

translated into XML-based LAMPML, then integrated by hand with the HDL application 

logic. This file shows only the LAMP logic, without the HDL content. 

The rest of the CLAMP files in this example follow the same general structure as this 

one, so will be described in generally less detail. This set of declarations serves two 

major purposes: it defines the synthesizable entities that form the top level of the 

computation array, and it performs one level of synthesis estimation.  Each of these is 

described in detail at the corresponding part of the file. 

1. entity Conv3D { 

2.  symbol entName := uniqueID(conv3D_); 

The entity’s name symbol (entName) is exported from CLAMP and LAMPML into the 

HDL used for defining the structure of the computation array. 

3.  import class AppClass extends DockingBase; 

4.  import class FpgaContent extends FPGAresource; 

These declarations import the application-specific details of the accelerator and the 

definitions relating to resource availability in the FPGA.  



 

5.  import natural xCells; 

6.  import natural yCells; 

7.  import natural zCells; 

8.  import natural xFifoLen; 

9.  import natural yFifoRows; 

These values import the dimensions of the computation array and of the buffer arrays. 

The values have meanings illustrated in Figure 27. The FIFOs hold intermediate scoring 

results, and depend on the size of the large molecule. The computation array holds the 

small molecule voxel values, one per computation cell, and performs the generalized 

correlation sum. 

10.  natural xyFIFOwords := (xFifoLen + xSize) * yFifoRows; 

This value computes the number of words needed for one plane FIFO.  

xFifoLen xCells
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Figure 27. Import values for Conv3D correlation array 
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11.   instance FixedLenFIFO planeBuffer { 

12.   class dataType := AppClass.scoreType, 

13.   class FpgaContent := FpgaContent, 

14.   maxLag := xyFIFOwords, 

15.   blank := AppClass.zeroScore }; 

This creates the FIFO entity definition to be used for the plane buffer. It does not actually 

instantiate the logic of the FIFO. Instead, it creates a compatible definition that can be 

instantiated by the HDL code. The dataType binding defines the type of the data word to 

hold in the FIFO. Although this is a typeDef rather than a class, the same syntax is used 

for both. The FpgaContent assignment appears to have the same symbol on both sides 

of the assignment operator. The two occurrences of FpgaContent are in fact different. 

The left hand symbol is an import in FixedLenFIFO, and is resolved in that symbol 

context. The right hand side is resolved in the Conv3D context. The intent of this binding 

is to pass the FpgaContent definition recursively down the hierarchy of LAMP 

definitions. 

16.   instance Conv2D convPlane { 

17.   class AppClass := AppClass, 

18.   class FpgaContent := FpgaContent, 

19.   xCells := xCells, 
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20.   yCells := yCells, 

21.   xFifoLen := xFifoLen }; 

The convPlane declaration creates a logical LAMP entity that can be instantiated by the 

HDL code. It follows the same logic as the instance statement at line 11, so its class 

bindings recursively propagate the symbol definitions of the current context into the new 

Conv2D context.  

22.   function natural synthLogic( 

23.   natural xSize, natural ySize, natural zSize, 

24.   natural fifoXlen, natural fifoYrows) 

25.  { 

26.   natural planeBufSize :=  

27.     (fifoXlen + xSize) * fifoYrows; 

28.   natural planeLogic :=  

29.     convPlane.synthLogic(xSize, ySize, xFifoLen) +  

30.    planeBuffer.synthLogic(planeBufSize); 

31.   return zSize * planeLogic  

32.  }; 
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33.   function natural synthRAM( 

34.   natural xSize, natural ySize, natural zSize, 

35.   natural fifoXlen, natural fifoYrows) 

36.  { 

37.   natural planeBufSize :=  

38.     (fifoXlen + xSize) * fifoYrows; 

39.   natural planeRAM :=  

40.     convPlane.synthRAM(xSize, ySize, xFifoLen) + 

41.    planeBuffer.synthRAM(planeBufSize); 

42.   return zSize * planeRAM  

43.  };         

44. } 

These two functions, synthLogic and synthRAM, perform synthesis estimation for this 

component, based on the designer’s knowledge of its internal structure. The two work 

much the same way. Each one represents the amount of space needed for the FIFO (lines 

26-27 and 37-38). Based on that, each one computes the amount of resource, logic or 

RAM, needed by the 2D plane of convolution logic (lines 29 and 40) plus a plane buffer 

(lines 30 and 41).  The result is taken to be that amount of resource, times the number of 

planes. 

Note that the imported symbols are accessible to these function bodies, but the import 

values (xCells, etc) are not used in these estimates. These functions use only parameter 
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values, so they can compute resource estimates for any size of computation array, not just 

the sizes bound to import values for this particular instance. That lets the logic in 

ConfigWrapper examine resource utilization for many hypothetical configurations, not 

just the ones that have been instantiated. 

Conv2D.lamp 

This entity definition follows the same general pattern seen in Conv3D.lamp .  

1. entity Conv2D { 

2.  symbol entName := uniqueID(conv2D_); 

3.  import class AppClass extends DockingBase; 

4.  import class FpgaContent extends FPGAresource; 

5.   import natural xCells; 

6.  import natural yCells; 

7.  import natural xFifoLen; 

Class imports have the same meaning as in Conv3D. Value imports do too, except that 

Conv2D has a proper subset of Conv3D’s value imports.  

8.  instance FixedLenFIFO rowBuffer { 

9.   class dataType := AppClass.scoreType, 

10.   class FpgaContent := FpgaContent, 

11.   maxLag := xyFIFOwords, 

12.   blank := AppClass.zeroScore }; 
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13.  instance Conv1D convRow{ 

14.   class AppClass := AppClass, 

15.   class FpgaContent := FpgaContent, 

16.   xCells := xCells }; 

Definitions of inner entities follow the same pattern as in Conv3D, except that the plane is 

built from one-dimensional computation and FIFO arrays.  

17.  function natural synthLogic( 

18.   natural xSize, natural ySize, natural fifoXlen) 

19.  { 

20.   natural rowLogic := convRow.synthLogic(xSize) + 

21.    rowBuffer.synthLogic(fifoXlen); 

22.   return 5 + ySize * rowLogic + 

23.     synthSize(AppClass.cellType)  

24.  }; 

Synthesis estimation for logic resources is slightly more complex than for Conv3D. The 

ySize * rowLogic term propagates estimates from inner components to the current 

level. The constant 5 represents allocation for a control register in the HDL code that is 

not visible to the LAMP code. 

The synthSize expression represents the amount of logic needed for a staging buffer 

that helps reduce fanout delays. The buffer itself is not represented in the LAMP code, so 
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can not be added automatically to the synthesis estimate. The data type of the value held 

in that buffer is, however, derived from LAMP code. The register holds a 

AppClass.cellType value, and this expression determines the number of logic 

elements needed for enough one-bit registers to hold that value. Referring to Equation 4, 

this represents inclusion of application-specific information from vector B into the 

estimated demand for logic resources. 

25.  function natural synthRAM( 

26.   natural xSize, natural ySize, natural fifoXlen) 

27.  { 

28.   natural rowRAM := convRow.synthRAM(xSize) 

29.    + rowBuffer.synthRAM(fifoXlen); 

30.   return ySize * rowRAM  

31.  }; 

32. } 

RAM allocation for this entity follows the pattern set earlier. This does not have 

additional terms, as synthLogic does, because there are no additional RAM allocations 

beyond the row buffers. 

Conv1D.lamp 

This defines the one-dimensional convolution array used as component within Conv2D. It 

follows the same general pattern seen in Conv3D and Conv2D, but does not need direct 
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access to the FPGA-specific definitions. The one-dimensional row consists of MolCell 

components, so an instance definition is created for those inner blocks. 

1. entity Conv1D { 

2.  symbol entName := uniqueID(conv1D_); 

3.  import class AppClass extends DockingBase; 

4.  import natural nCells; 

5.  instance MolCell convCell { 

6.   class AppClass:= AppClass }; 

7.   function natural synthLogic(natural numCells) 

8.   { return numCells * convCell.synthLogic }; 

9.  function natural synthRAM(natural numCells) 

10.   { return numCells * convCell.synthRAM }; 

11. } 

Another small difference also sets this apart from the previous entity declarations. The 

synthesis estimation functions depend on estimates from an inner component (convCell) 

as before. In this case, however, the inner component exports synthesis estimates as 

symbol values rather than functions. The “variable” part of a MolCell element is only in 

the data types and function logic that it uses, defined by AppClass, not in any imported 

value settings. 
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MolCell.lamp 

The MolCell component is the leaf component in the convolution array.  

1. entity MolCell { 

2.  symbol entName := uniqueID(molCell_); 

3.  import class AppClass extends DockingBase; 

4.   natural synthLogic :=  

5.   synthSize(AppClass.cellType) + 

6.   synthSize(AppClass.scoreType) +  

7.   synthSize(AppClass.cellScore,  

8.    AppClass.cellType, AppClass.cellType) + 

9.   synthSize(AppClass.addScore,  

10.    AppClass.scoreType, AppClass.scoreType); 

11.  natural synthRAM := 0;  

12. } 

This entity is the leaf structure in the convolution array. It has no inner components under 

LAMP management, so does not contain any instance declarations.  

The resource estimation function does not depend on any outside information other 

than that in the binding to the AppClass import. As a result, the synthLogic and 

synthRAM resource estimates are phrased as constant values rather than functions. The 

synthRAM estimate should be self-explanatory. The synthLogic expression, however, 
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requires knowledge of the HDL implementation of this entity. The four terms, 

respectively, represent a register holding a voxel value, a register holding a scoring sum, 

a function for scoring voxel values, and a function for summing score values. 

FixedLenFifo.lamp 

The fixed length FIFO holds each input for some number of number of cycles, then 

releases it, a form of digital delay line. The amount of delay can be adjusted during a 

setup operation, but is held fixed for the duration of any computation. Because of the 

expected lengths of delays, the FIFO is implemented in terms of block RAM resources. 

1. entity FixedLenFIFO { 

2.   symbol entName := uniqueID(flFIFO_);  

3.   import class FpgaContent extends FPGAresource; 

4.  import class dataType extends baseType; 

5.  import dataType blank; 

6.  import natural maxLag; 

The FIFO implementation depends on RAM allocation (described in terms given by 

FpgaContent), as well as a length limit, maxLag. There is no explicit word size, because 

that value is implicit in the type of data processed by the FIFO, dataType.  
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7.  instance DPRAM fifoBuf { 

8.   class dataType := dataType, 

9.   class FpgaContent := FpgaContent, 

10.   nWords := maxLag}; 

This instance declaration describes the dual-ported RAM used to implement the FIFO. 

11.  function natural synthLogic(natural nWords)  

12.   { return fifoBuf.synthLogic(nWords) + 3 * #nWords +  5 

}; 

This component’s logic synthesis estimate depends on the estimates for the inner RAM, 

on registers for reading, writing, and resetting RAM addresses, and a few units of control 

logic represented by the constant 5. Each address-related register is given #nWords bits, 

an expression that counts the number of bits needed to represent the nWords value. 

13.  function natural synthRAM(natural nWords) 

14.   { return fifoBuf.synthRAM(nWords)  }; 

15. } 

RAM usage depends only on the usage of the inner component, fifoBuf.  
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DPRAM.lamp 

The dual-ported RAM is the only other leaf component in the computation core of the 

correlation array. It uses the same set of language constructs seen in the other CLAMP 

code samples above.  

1. entity DPRAM { 

2.  symbol entName := uniqueID(dpram_); 

3.  import class dataType extends baseType; 

4.  import class FpgaContent extends FPGAresource; 

5.  import natural nWords;   

6.  function natural synthLogic(natural nWords) 

7.   { return #(nWords-1) };                                 

Logic estimation for the dual-ported RAM need only account for one address register, 

with enough bits to hold the largest possible address (nWords-1).  

8.  function natural synthRAM(natural nWords)  {  

9.    return FpgaContent.nRams(synthSize(dataType),nWords) 

10. }; 

11. } 

This function uses the FPGA’s own allocation algorithm to determine the number of 

RAM elements that will be needed to hold nWords number of values, each of type 

dataType. Note that this does not directly encode any information about the RAM 
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resources, except for the implicit assumption that there is only one kind of block RAM 

available. This phrasing leaves the DPRAM component independent of the FPGA used to 

implement it, and independent of the technique used to determine how many units of the 

FPGA’s RAM resources are needed. When the FpgaContent symbol is bound to a 

different concretion of the FPGAresource, this component automatically inherits the 

proper FPGA-specific behavior. 
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