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Desiderata for cognitive architectures

RON SUN

ABSTRACT This article addresses issues in developing cognitive architectures—generic computa-
tional models of cognition. Cognitive architectures are believed to be essential in advancing under-
standing of the mind, and therefore, developing cognitive architectures is an extremely important
enterprise in cognitive science. The article proposes a set of essential desiderata for developing cognitive
architectures. It then moves on to discuss in detail some of these desiderata and their associated
concepts and ideas relevant to developing better cognitive architectures. It argues for the importance
of taking into full consideration these desiderata in developing future architectures that are more
cognitively and ecologically realistic. A brief and preliminary evaluation of existing cognitive
architectures is attempted on the basis of these ideas.

1. Introduction

As we have already known, a cognitive architecture is the overall, essential structure
and process of a broadly-scoped domain-generic computational cognitive model,
used for a broad, multiple-level, multiple-domain analysis of cognition and behavior
(Newell, 1990; Sun, 2002). A cognitive architecture provides a concrete framework
for more detailed modeling of cognitive phenomena, through specifying essential
structures, divisions of modules, relations between modules, and a variety of other
aspects (Sun, 1999). The analysis of cognition through cognitive architectures is to
be performed mainly at the computational level. Cognitive architectures are believed
to be essential in advancing understanding of the mind (Anderson, 1983; Anderson
& Lebiere, 1998; Newell, 1990; Sun, 2002), and therefore, developing cognitive
architectures is an extremely important enterprise in cognitive science.

However, many issues and confusions exist in this field that cry out for serious
conceptual clarification, so that further progress can be made. Some of these issues
are, for example:

• Basic cognitive assumptions. Right now, almost invariably, each cognitive
architecture is based on a radically different set of assumptions, and develops its
own world view. Is it possible that we come up with a common set of
assumptions and establish a baseline from which different architectures may be
developed and compared?
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• Essential dichotomies. Various cognitive dichotomies have been proposed be-
fore: implicit versus explicit, procedural versus declarative, automatic versus
controlled, and so on. What are the essential dichotomies? How should we
analyze them in a process-based (or mechanistic) way, and thereby develop
cognitive architectures on that basis?

• Memory modules. There have been many debates concerning the structure of
memory in psychology and cognitive science. It is far from clear what essential
subsystems of memory are and thus how memory should be divided up.

• Methodological approaches. Many methodological approaches exist: quantitat-
ive data fitting, qualitative demonstration, theoretical arguments, philosophical
thought experiments, and so on. What should we rely on in developing cogni-
tive architectures? Some of them? (In that case, which ones?) Or all of them?

Many, many other issues exist as well. See, for example, Newell (1990) and
Anderson and Lebiere (2003) for additional issues. In this article, I will focus mainly
on structural issues (that is, issues such as cognitive dichotomies, modularity of
cognition, memory subsystems, and so on). I hope to clarify some of these issues
regarding cognitive architectures, and lay the foundation for future computational
model development (Sun, 2002).

In the remainder of this article, Section 2 discusses the general idea of cognitive
architectures. Section 3 presents essential desiderata for cognitive architectures,
including behavioral and cognitive desiderata. Sections 4 to 9 present a gradually
expanding discussion of some of these desiderata and, in the process, develop more
detailed considerations and research questions. Section 10 connects these ideas to
phenomenological philosophy, which serves as the foundation of the above dis-
cussion. Section 11 briefly reviews and critiques existing cognitive architectures
based on the desiderata developed thus far. Section 12 summarizes the article.

2. What is a cognitive architecture?

As I stated before, a cognitive architecture is the overall, essential structure and
process of a domain-generic computational cognitive model, used for a broad,
multiple-level, multiple-domain analysis of cognition and behavior. In particular, it
deals with componential processes of cognition in a structurally and mechanistically
well defined way. Its function is to provide an essential framework to facilitate more
detailed modeling and understanding of various components and processes of the
mind. In this way, an architecture serves as an initial set of assumptions to be used
for further development. These assumptions, in reality, may be based on either
available scientific data (for example, psychological or biological data), philosophical
thoughts and arguments, or ad hoc working hypotheses (including computationally
inspired such hypotheses). An architecture is useful and important precisely because
it provides a comprehensive initial framework for further model development in
many task domains.

Because of initial assumptions made in an architecture, further development of
computational models is constrained in many ways, but is also open to many
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possibilities in a variety of other ways. For example, a model may be limited or
constrained because of the prior determination of a modular structure, but new
possibilities emerge in the area of modular interactions due to the architectural
division into modules.

Let us examine some ideas in more detail. We need to distinguish architectures
from innate structures of the mind. An innate structure can, but need not, be
specified in an initial architecture—it may be specified in more detailed modeling
later on (Sun, 2002). An innate structure does not have to be involved in the overall
structure/process or the overall division of a computational model; that is, it may
reside within an individual module or otherwise in a less conspicuous place.
Furthermore, as currently practiced, architectural details may not be innate. For one
thing, if one is mainly interested in modeling an adult cognitive agent (in other
words, not in modeling developmental processes), an architecture may contain
certain structures that are not innate, that have resulted from ontogenetic develop-
ment under the influence of physical, social, and cultural environments (see Ander-
son, 1993, for instances). Another case in which some non-innate structures are
introduced is that one may choose to model some cognitive tasks in an overly
representational way, as often happened in the early days of cognitive science, so
that external structures are introduced into a cognitive model as an architectural
constraint [1].

Although we need to recognize the differences between architectures and innate
structures, too much separation of the two is problematic. Clearly, these above cases
of non-innate structures are to be avoided as much as possible. To avoid the pitfalls,
we should take a minimalistic approach in architecture development. That is, we
should start with a minimal architecture, so as to avoid these non-innate structures.
But how should we measure minimality in architecture development?

An architecture can be minimal in two different senses. According to one sense
of minimality, an architecture should include only minimal initial structures and
employ learning as a means for developing further structures upon them, bootstrap-
ping all the way to a full-fledged cognitive model. In so doing, it is important that
we are careful to devise only minimal initial learning capabilities that are capable of
“bootstrapping,” in accordance with whatever phenomena that we aim to model
(Sun et al., 2001). The other sense of minimality implies reducing the internal
structures and representations to a minimal level (not limited to initial structures),
while still capturing the phenomena that we intend to model (Bickhard, 1993; Sun,
2000). One way we can accomplish this sense of minimality is through the use of
environmental cues, structures, and regularities. Putting it another way, we may
place many structures back into the world, instead of placing them (mainly) in the
head of an agent (Bickhard, 1993; Hutchins, 1995; Sun, 2000). The avoidance of
overly sophisticated initial structures, and thus the inevitable use of learning, may
often help to avoid overly representational models (Sun, 2000) (because of learning
can help to exploit environmental structures). The avoidance of overly represent-
ational models, conversely, often entails a simpler initial structure (since overly
representational models are usually complex), as well as the involvement of learning
(because otherwise the cost of the manual analysis of complex structures
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across the internal and the external world may be prohibitive). We should aim to
achieve both of these two kinds of minimality in developing cognitive architectures,
and thereby avoid the pitfalls above, so that the resulting architectures contain
roughly the innate structure of a cognitive agent.

For example, as will be discussed later, one such minimal structure that is
needed is the two-level structuring (derived from the dual-representation hypothesis
of Sun, 1994, 2002). I believe that such two-level structuring is minimal and
necessary, because there is no other way to come up with such a structure based on
currently known (or imaginable) learning methods, and also because it is the basis
on which many other structures are built, both innately and developmentally (as will
be discussed later).

3. Essential desiderata for cognitive architectures

It is fair to say that research in multiple fields, scattered across multiple scientific
disciplines, seems to be converging towards the understanding that the classical
treatment of cognition has been an impasse. Rethinking of approaches, methodolo-
gies, concepts, arguments, and facts is needed. Such rethinking is evident in a
number of “new” approaches that focus on the interaction between a cognitive agent
and its world (Bickhard, 1993; Sun, 2000) or the interaction amongst cognitive
agents (Hutchins, 1995). From studies of human cognition, motivation, and devel-
opment, through consciousness, sociality, and language, to artificial intelligence (e.g.
cognitive robotics), we are witnessing the resurgence of research whereby the
importance of interaction is better appreciated. The time is ripe to emphasize this
perspective also in cognitive architecture development (Sun, 2002), and this empha-
sis is one fundamental aspect of what I want to accomplish with the present article.

First, let us examine a few overall desiderata for cognitive architectures:

• Ecological realism. A realistic cognitive architecture needs to take into account
the essential functions of cognitive agents (humans in particular) in their natural
environments. Puzzle solving, cryptography, and geometric theorem proving
should not be our essential goals because they are not ecologically most
important activities for cognitive agents. What we should focus on is everyday
activities of cognitive agents, in their natural ecological environments (Gibson,
1979; Lorenz, 1950). This is precisely what we mean by ecological realism.
(We shall look into characteristics of everyday activities later.) Likewise, we
cannot ignore the fact that cognitive agents are always situated in sensory
environments, they continuously have to cope with many contingencies, they
have concurrent, often conflicting, needs and goals, and they are embodied
in physical structures that are limited in their movements, perceptions, and
actions.

• Bio-evolutionary realism. A cognitive model of human intelligence should be
reducible to a model of animal intelligence. There are reasons to believe that,
rather than discontinuous, cognitive processes of animal species and humans
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form a continuum. Large discontinuity is not warranted. The existence of large
discontinuity may indicate flaws in our very conception of human cognitive
processes. Often, in cognitive models, overly elaborate representations and
mechanisms dominate that cannot possibly be reduced to existing, or even
potentially plausible, models of animal cognition (cf. Rosenbloom et al., 1993).
This phenomenon is symptomatic of a serious methodological problem: viewing
high-level cognition as paramount to human cognition and thereby ignoring
ecological realism as an essential requirement of cognitive modeling (as pointed
out before in Sun, 2000, 2002). This requirement complements and supple-
ments ecological realism. We may term this requirement bio-evolutionary
realism, as it reflects the natural evolutionary history of biological species
leading up to humans (Newell, 1980).

• Cognitive realism. We should aim to capture essential characteristics of human
behavior and cognitive processes, as we understand them from psychology,
philosophy, and neuroscience. However, we should not, and cannot, capture
every minute variation in human performance and cognition. Rather, in our
development of cognitive architectures, we should attempt to abstract away
from details of the voluminous data that have been accumulated in many
scientific disciplines relevant to the understanding of cognition, and focus only
on fundamental, characteristic traits of human behavior and cognition. There
are, in fact, many well-known cognitive and behavioral characteristics that we
can identify, which we will discuss in more detail later.

• Eclecticism of methodologies and techniques. Any unnecessary or premature
commitment to any specific approaches, methodologies, or paradigms can only
be detrimental to the progress of the study of cognition and the development of
cognitive architectures. We want to take a broad-based approach, and be as
all-encompassing as possible when we evaluate and incorporate prior research
results, methods, and techniques. Future cognitive architecture development
should take an integrative approach, incorporating as much as possible various
prior perspectives, approaches, and results that are productive and useful (Sun,
2002).

In relation to human everyday activities (which I alluded to earlier), let us
discuss some behavioral characteristics commonly exhibited in such activities, which
we should attempt to capture in cognitive architectures:

• Reactivity. In human everyday activities, behavioral responses are mostly gener-
ated without involving elaborate computation (such as comparing all possible
alternatives at length). Reactivity of human behavior entails relatively fixed
responses, so that an individual does not have to re-compute responses every
time a response is needed (Savage, 2003). Such reactivity is also direct and
immediate; that is, it is “non-representational” (without involving overly elabor-
ate and overly explicit mediating conceptual representations). For detailed
characterization of this aspect of human behavior, see, for example, Agre and
Chapman (1990) and Clark (1997).

• Sequentiality. Human everyday activities are mostly sequential: they are carried
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out one step at a time, stretched out temporally. Temporal dependencies and
structures are essential to such activities and they are the basis of various
behavioral responses (Stanley et al., 1989; Sun, 1999; Willingham et al., 1989).
Heidegger (1927) provided a philosophical treatment of the temporal nature of
human everyday activities.

• Routineness. Human everyday activities are very much routinized and thus
largely made of routines, or habitual sequences of behavioral responses. We
may look at the matter this way, if we are committed to the assumptions of (1)
sequentiality and (2) relatively fixed (or habitualized) reactivity, then we also
have to be committed to the assumption of routineness of human activities.
However, note the gradual adaptation, or learning, of these routines as well—
generally, they are formed gradually and subject to constant modification.
Therefore, overall, we may view human everyday activities as consisting of
forming, changing, and following routines. See, for example, Heidegger (1927)
and Agre and Chapman (1990) for various discussions of routines.

• Trial-and-error adaptation. Learning of reactive routines is mostly, and essen-
tially, a trial-and-error adaptation process. Manifestations of such adaptation
have been variously studied under the rubric of law of effect (Thorndike, 1911),
classical and instrumental conditioning (Rescorla & Wagner, 1972; Shanks,
1993; Sutton & Barto, 1981), and probability learning (Wasserman et al.,
1993). There are reasons to believe that this type of learning is the most
essential to human everyday activities and cognition (see Sun, 1999, 2002).

Now, turning to the cognitive characteristics of human everyday activities, there
is likewise a list of essential characteristics that should be captured in cognitive
architectures:

• Dichotomy of implicit and explicit processes. Generally speaking, implicit
processes are inaccessible, “holistic,” and imprecise, while explicit processes are
accessible and precise (Dreyfus & Dreyfus, 1987; Reber, 1989; Smolensky,
1988; Sun, 1994, 1999, 2000). This dichotomy is closely related to some other
well-known dichotomies: the dichotomy of symbolic versus subsymbolic pro-
cessing, the dichotomy of conceptual versus subconceptual processing (Smolen-
sky, 1988), and the dichotomy of the conscious versus the unconscious (Sun,
1999). It can also be justified psychologically, by the voluminous empirical
studies of implicit and explicit learning, implicit and explicit memory, implicit
and explicit perception, and so on. These empirical dichotomies denote more or
less the same thing, and thus they all serve as justifications for a general
distinction between implicit and explicit cognition.

• Synergistic interaction. Recently, there have been some emerging indications of
synergy between implicit and explicit cognition. I hypothesized (see Sun, 1994,
1999, 2002) that the reason for having the two separate components, the
implicit and the explicit, or any other similar combination of components, was
that these different systems could (potentially) work together synergistically,
supplementing and complementing each other in a variety of different ways.
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This is because these two components have qualitatively different characteris-
tics, thus generating better overall results when they are combined (Breiman,
1996). See, for example, Mathews et al. (1989), Sun (1999), Sun et al. (2001),
and Dreyfus and Dreyfus (1987) for more discussions, demonstrations, and
arguments in favor of the notion of synergy.

• Bottom–up learning. The interaction between the two sides of the dichotomy
with regard to learning includes top–down (explicit learning first and implicit
learning later), bottom–up (implicit learning first and explicit learning later),
and parallel learning (simultaneous implicit and explicit learning). However,
there are reasons to believe that the most important and the most essential in
human everyday activities is bottom–up learning. There are various indications
of this possibility, including (1) various philosophical arguments, such as
Heidegger (1927), Dewey (1958), and Merleau-Ponty (1963), in which the
primacy of direct interaction with the world in an implicit way is emphasized;
and (2) psychological evidence of the acquisition and the delayed explication of
implicit knowledge (for example, Bowers et al., 1990; Karmiloff-Smith, 1986;
Mandler, 1992; Siegler & Stern, 1998; Stanley et al., 1989; Sun, 2002). (More
discussions of this point will come later.)

• Modularity. Some cognitive faculties are specialized and separate, either be-
cause they are functionally encapsulated (i.e. their knowledge and processes do
not transfer into other domains) or because they are physically (neurophysiolog-
ically) encapsulated. It is relatively easy to justify modularity teleologically, which
is one of the ways for containing the growth of complexity. Modular structures
can be formed evolutionarily so as to simplify learning ontogenetically (or to
bypass learning altogether in some cases). Modular structures can be used to
guarantee efficiency for important or critical behaviors and routines (whether
they are a priori or learned). For various notions, as well as justifications, of
modularity, see, for example, Fodor (1983), Timberlake and Lucas (1993),
Cosmides and Tooby (1994), and Pinker (1994).

It might seem a bad move to start one’s theory (i.e. cognitive architectures in
this case) with such a broad set of desiderata as those listed above. However, if one
is to propose a truly generic cognitive model, it is basically impossible to avoid a
broad set of desiderata (as Newell, 1990, discovered with respect to his SOAR
model). Furthermore, this set of desiderata is merely the starting point for develop-
ing broadly-scoped, comprehensively formulated cognitive architectures. Such a
starting point is by all means necessary. In addition to these, we may incorporate
even more desiderata down the road, such as externally driven versus internally
driven processing and their interactions (e.g. Merleau-Ponty, 1963; Piaget, 1971),
issues related to human categorization, and neurophysiological considerations (e.g.
Damasio, 1994), which are also theoretically interesting and cognitively fundamen-
tal in some ways.

As observed by Vere (1992), because a cognitive architecture aspires to provide
an integrative theory of cognition, it is invariably subjected to the “attack of the killer
bees”—each subfield or each small domain to which the architecture is applied is



348 R. SUN

“resolutely defended against intruders with improper pheromones.” He proposed
that we should “create a sociological environment in which work on integrated
cognitive systems can prosper.” To do so, “systems entering the cognitive decathlon
are judged … based on a cumulative score of their performance in each cognitive
‘event’.” In this way, contestants do not have to beat all of the narrower systems in
their one specialty event, but compete against other well-rounded cognitive systems.
This seems to be the appropriate approach towards the development of cognitive
architectures.

Below, I will discuss a few of these above cognitive desiderata in more detail. In
particular, I will address two important points regarding cognitive characteristics:
(1) dichotomy of implicit and explicit cognitive processes, and (2) modularity of
cognition, along with their respective associated further issues, such as interaction
and synergy resulting from the implicit/explicit dichotomy, bottom–up learning,
development of modularity, and modularity of memory. Through this set of gradu-
ally expanding discussions, I hope to arrive at some more detailed, finer-grained
further desiderata for developing cognitive architectures, and some essential research
issues in developing future cognitive architectures.

4. An essential dichotomy

The distinction between implicit and explicit processes has been made in many
theories of cognition, for example, in Anderson (1983), Keil (1989), Reber (1989),
Damasio (1994), and Sun (1994, 2002). It is believed that both types of processes
are essential to cognitive agents.

Anderson (1983) proposed the distinction between declarative and procedural
knowledge, to account for changes in performance resulting from extensive practice,
based on data from a variety of skill learning studies (ranging from arithmetic to
geometric theorem proving). For Anderson, the initial stage of skill development is
characterized by the acquisition of declarative knowledge (explicit verbal knowledge
concerning a task). During this stage, the learner must explicitly attend to this
knowledge in order to successfully perform a task. Through practice, a set of implicit
procedures develop that allow the task to be performed without using declarative
knowledge. When the skill is proceduralized, it can be performed with no access to
explicit knowledge and often without concurrent conscious awareness of details
involved. Similar distinctions have been made by other researchers based on differ-
ent data sets.

Several other distinctions made by other researchers capture a very similar
difference between different types of processing. For example, Smolensky (1988)
proposed a distinction between conceptual (accessible) and subconceptual (inac-
cessible) processing. According to this framework, explicit knowledge is based on
conceptual processing (and thus accessible) and implicit knowledge is based on
subconceptual processing (and thus inaccessible). Dreyfus and Dreyfus (1987)
proposed the distinction of analytical and intuitive thinking, and believed that the
transition from the former to the latter was essential to the development of complex
cognitive skills (on the basis of phenomenological analysis of chess playing at
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different stages of learning chess). This transition is very similar to the declarative-
to-procedural transition as advocated by Anderson (1983, 1993), although the two
processes are not identical. Taken together, the distinction between explicit and
implicit processes is supported in many ways.

The distinction of implicit and explicit processes has been empirically demon-
strated in the implicit learning literature. There have been three common tasks used
in implicit learning research. The serial reaction time tasks (Willingham et al., 1989)
probe subjects’ ability to learn a repeating sequence. On each trial, one of the four
lights on a display screen was illuminated. Subjects were to press the button
corresponding to the illuminated light. The lights were illuminated in a repeating
10-trial sequence. It was found that there was a rapid and significant reduction in
response time to repeating sequences relative to random sequences. The reduction
in response time was attributed to the learning of the sequence. However, subjects
might not be able to explicitly report the repeating sequence, and were sometimes
even unaware that a repeating sequence was involved.

On the other hand, the process control tasks (Berry & Broadbent, 1988) examine
subjects’ ability to learn a relation between the input and the output variables of a
controllable system, through interacting with the system dynamically. Subjects were
required to control an output variable by manipulating an input variable. In one
instance of the task, subjects were to manage a (simulated) sugar production factory
and the goal was to reach and maintain a particular production level, through
controlling the size of the workforce. Although they often did not recognize the
underlying relations explicitly, subjects reached a certain level of performance in
these tasks.

Similarly, in the artificial grammar learning tasks (Reber, 1989), subjects were
presented strings of letters that were generated in accordance with a finite state
grammar. After memorization, subjects showed an ability to distinguish new strings
that conformed to the artificial grammar used to generate the initial strings from
those that did not. Although subjects might not be explicitly aware of the underlying
grammars (barring some fragmentary knowledge), when they were asked to judge
the grammaticality (“well-formedness”) of novel strings, they performed
significantly beyond the chance level.

In all, these tasks share the characteristic of performance being implicit to a
significant extent. There are many other tasks that are similar in this regard, such as
various concept learning, automatization, and instrumental conditioning tasks (see
Sun, 2002, for further details). Together, they clearly demonstrate the distinction
between implicit and explicit processes. (It is worth noting that in social psychology,
unlike in cognitive science, there have already been a large number of dual-process
models dealing specifically with social phenomena. See, for example, Chaiken &
Trope, 1999; Smith & DeCoster, 2000; and many others.)

5. Interaction in the dichotomy

Empirical research has shown that human cognition depends on the interaction of
two types of processes. For example, Mathews et al. (1989) suggested that “subjects
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draw on two different knowledge sources to guide their behavior in complex
cognitive tasks”; “one source is based on their explicit conceptual representations”;
“the second, independent source of information is derived from memory-based
processing, which automatically abstracts patterns of family resemblance through
individual experiences.” Likewise, Sun (1994) pointed out that “cognitive processes
are carried out in two distinct levels with qualitatively different mechanisms,”
although “the two sets of knowledge may overlap substantially.” Reber (1989)
pointed out that nearly all complex cognition in the real world (as opposed to small,
controlled laboratory settings) involved a mixture of explicit and implicit processes
interacting in some ways, and the relationship between the two might be complex.

Various demonstrations of interaction exist using artificial grammar learning,
process control, and other tasks. For instance, Stanley et al. (1989) and Berry (1983)
found that under some circumstances concurrent verbalization (which generated
explicit knowledge) could help to improve subjects’ performance in a process control
task (i.e. the synergy effect; Sun et al., 2001). Reber and Allen (1978) similarly
showed in artificial grammar learning that verbalization (i.e. explicit processes)
could help performance. In the same vein, although no verbalization was used,
Willingham et al. (1989) showed that those subjects who demonstrated more explicit
awareness of the regularities in the stimuli (i.e. those who had more explicit
knowledge) performed better in a serial reaction time task, which likewise pointed to
the helpful effect of explicit knowledge. Ahlum-Heath and DiVesta (1986) also
found that verbalization led to better performance in learning Tower of Hanoi [2].

As variously demonstrated by Berry and Broadbent (1988), Stanley et al.
(1989), and Reber et al. (1980), verbal instructions (given prior to learning) can
facilitate or hamper task performance too. One type of instruction was to encourage
explicit search for regularities that might aid in task performance. Reber et al. (1980)
found that, depending on the ways stimuli were presented, explicit search might help
or hamper performance. Berry and Broadbent (1988) found that explicit search
might help or hamper performance depending on the saliency of regularities. Owen
and Sweller (1985) found that explicit search hindered learning. Another type of
instruction was explicit how-to instruction that told subjects specifically how a task
should be performed, including providing information concerning regularities in
stimuli. Stanley et al. (1989) found that such instructions helped to improve
performance significantly. However, Dulaney et al. (1984) showed that correct and
potentially useful explicit knowledge, when given at an inappropriate time, could
hamper learning. All of these findings point to the complex interaction between
implicit and explicit processes.

6. The dichotomy and bottom–up learning

Let me address the idea of bottom–up learning, a particular aspect of the interaction
between implicit and explicit processes. “Bottom–up learning” concerns how com-
plex reasoning can arise from the simple adaptive behavior, how abstract concepts
can be based on simple, concrete, reactive action patterns, how consciousness can
emerge from unconsciousness, and so on.
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Admittedly, most of the work that makes the distinction between two types of
knowledge assumes a top–down approach; “proceduralization” leads to skilled per-
formance. In Anderson (1983), proceduralization is accomplished by converting
explicit declarative knowledge into implicit production rules, which are subsequently
refined through practice. In Anderson (1993), this is accomplished by maintaining
explicit memory of instances, which is utilized in performance through analogical
processes, and by creating production rules from these instances after repeated use.
However, these models were not developed to account for learning in the absence
of, or independent from, preexisting explicit domain knowledge.

Several lines of research demonstrate that cognitive agents may learn skills
(routines in everyday activities) without first obtaining a large amount of explicit
knowledge. In research on implicit learning, Berry and Broadbent (1988), Willing-
ham et al. (1989), and Reber (1989) expressly demonstrated a dissociation between
explicit knowledge and skilled performance, in a variety of tasks including process
control tasks (Berry & Broadbent, 1988), artificial grammar learning tasks (Reber,
1989), and serial reaction time tasks (Willingham et al., 1989). Berry and Broadbent
(1988) indicated that the human data in process control tasks were not consistent
with exclusively top–down learning models, because subjects could learn to perform
a task without being provided a priori explicit knowledge and without being able to
verbalize the rules they used to perform the task. This shows that skills are not
necessarily accompanied by explicit knowledge, which would not be the case if
top–down learning is the only way to acquire skills. Willingham et al. (1989)
similarly demonstrated that implicit knowledge was not always preceded by explicit
knowledge in human learning, and that implicit and explicit learning were not
necessarily correlated. Rabinowitz and Goldberg (1995) showed that there could be
parallel learning separately. There have been indications that explicit knowledge
may arise from implicit skills in many circumstances. Stanley et al. (1989) found that
the development of explicit knowledge paralleled but lagged behind the develop-
ment of implicit knowledge. Reber and Lewis (1977) made a similar observation.

Similar claims concerning the development of implicit knowledge prior to the
development of explicit knowledge have also been made in other areas. The implicit
memory research (e.g., Schachter, 1987) demonstrates a dissociation between
explicit and implicit knowledge/memory, in that an individual’s performance
can improve by virtue of implicit “retrieval” from memory and the individual
can be unaware of the process. This is not amenable to the exclusively top–
down approach. Instrumental conditioning also reflects a learning process that
is not entirely consistent with the top–down approach, since the process can be
non-verbal and non-explicit (without conscious awareness) and lead to forming
action sequences without a priori explicit knowledge. Such conditioning is appli-
cable to both simple organisms as well as humans (Gluck & Bower, 1988;
Thorndike, 1911; Wasserman et al., 1993). In developmental psychology,
Karmiloff-Smith (1986) proposed the idea of “representational redescription.”
During development, low-level implicit representations were transformed into more
abstract and explicit representations and thereby made more accessible. This
process is not top–down either, but in the exactly opposite direction.
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Mandler (1992) proposed a similar process: From perceptual stimuli, relatively
abstract “image schemas” were extracted that coded several basic types of move-
ments. Then, on top of such image schemas, concepts were formed utilizing
information therein. An infant gradually formed “theories” of how his/her sensori-
motor procedures work and thereby gradually made such processes explicit and
accessible. Similarly, Keil (1989) viewed conceptual representations as composed of
an associative component and a “theory” component, and developmentally, there
was a shift from associative to theory-based representations. “Theories” developed
from associative information that was already available.

In all, data and theories both indicate that learning may proceed from implicit
to explicit knowledge (as well as the reverse). Thus, bottom–up learning can be
justified on both empirical and theoretical grounds (Sun, 2002; Sun et al., 2001).
This issue is also related to the “symbol grounding” problem: bottom–up learning
enables conceptual structures of an agent to be grounded in both the subsymbolic
processes of the agent as well as the interactions between the agent and the world
(see Sun, 2000, for a detailed discussion of this issue).

7. Modularity

Another important desideratum is modularity. Instead of having one general-pur-
pose machinery (or a small number of them) that is universally applicable, there may
be a large number of specialized pieces of machinery each of which deals with a
particular aspect or a particular functionality. On this view, the mind is more like a
Swiss army knife than a general-purpose blade (Cosmides & Tooby, 1994). This
“Swiss army knife” theory of mind has some significant bearing on computational
modeling of cognitive agents, as we need to take modular structures into consider-
ation.

Although the notion of modularity has been well known, it is not very clearly
understood and delineated. Obviously, delineating modules or establishing a taxon-
omy of modules is not a simple matter. We need some clarification of the notion of
modularity first (and then, of course, detailed model building to be carried out
later).

7.1. Notions of modularity

To disentangle the notion, we can distinguish several different senses of the term
module. First of all, there is the notion of functional modules, which are functionally
encapsulated, such as early vision, hearing, or visceral processes. Modularity implies
that certain processes can only perform a certain range of functions. These processes
will only need a limited range of stimuli. The limitedness of stimuli implies domain
specificity; that is, each module only handles a particular domain (a particular type
and range of stimuli). Fodor (1983) was mostly concerned with this type of module.
According to Fodor, these modules are cognitively impenetrable (Fodor, 1983), or
informationally encapsulated; that is, they are inaccessible to other modules or
central systems. For example, according to him, the human language faculty is such
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a module. In terms of language, there are indeed some evidence of double dissocia-
tion of linguistic processes and other cognitive processes; however, the evidence is
far from conclusive.

Second, there is also the notion of anatomical modules that are biological and
anatomically encapsulated; that is, each of them is located in an isolatable anatom-
ical region of the brain and they work in relative independence of each other.
Damasio (1994) dealt with this type of module. This type of module explains the
invariability of certain elemental functions.

More complex, higher-level functions can arise from the interaction and combi-
nation of different neural circuits (for example, visual processing involves many
brain regions and brain circuits). Functions can be accomplished by some (fixed)
combinations of neural circuits, i.e. pathways. The fixedness of functions can be due
to the fixedness of these pathways (combinations of circuits). A functional module
may be spatially distributed, physically shared, or in some other ways not equivalent
to an anatomical unit. There have even been discussions of dynamic modules
(Tononi & Edelman, 1998).

Lastly, another sense of modules is domain-specific modules (Hirschfield &
Gelman, 1994; Karmiloff-Smith, 1986). A domain-specific module contains highly
specific knowledge and skills, that is, those knowledge and skills that are well
developed in a particular domain but do not easily translate into other domains. For
example, driving a car is a very specific skill that does not translate into skills for, for
example, flying an airplane. This type of domain-specific module may or may not be
informationally encapsulated: they may or may not have wide access to information,
knowledge, and skills in other modules (thus they are different from, and contain as
a subset, functional modules discussed earlier). For example, face recognition may
be a domain-specific module, since it is highly developed and specific, but it has to
rely on memory retrieval processes and other sources of information.

7.2. Advantages of modularity

Modularity has at least the following advantages, from an agent’s stance:

• Computational tractability, in that modularity reduces computational demands
(computational complexity of cognition), (1) through the use of separate
learning processes in an innately divided architecture, or (2) through automatic
decomposition of tasks into various subtasks, or (3) even through innately
encoded routines that require (almost) no learning.

• Accuracy and performance in general, because modularity means being free
from interference, at least to some extent, from other processes and modules.

These properties offer a definitive evolutionary advantage, and thus it is no surprise
that modularity is adopted by cognitive agents through natural selection.

We can also examine the issue from a design stance (i.e. the third person view,
for example, used in developing a computational model of a cognitive agent). From
such a stance, more advantages can be identified:
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• Understandability, in that it is easier to design a modularly structured system,
piece by piece, than a whole system at once; thus, modularity can improve the
quality of system design.

• Reliability, in that modularity can help to isolate parts of a system to prevent
minor problems from spreading and to prevent serious problems from occur-
ring.

• Debuggability, in that it is easier to locate problems when breakdown occurs if
a modular architecture is adopted.

However, along with advantages, there may be disadvantages that come with
modularity as well (such as the “binding” problem when combining information
from multiple visual modules).

Note that the notion of modularity does not necessarily mean that there is no
generic mechanism or process that can be applied to many different functions.
Domain specificity of modules and generality of mechanisms are not mutually
exclusive. For one thing, generic mechanisms can be adopted and then specialized
for various specific functions, along a developmental line, into specialized modules
(Karmiloff-Smith, 1986). Second, in terms of cognitive modeling, it is more viable,
practically speaking, to assume some generic mechanisms and then try to capture
various modules by adapting and specializing them and/or by working out some
specific combinations. Likewise, generic processes do not necessarily imply central-
ized representations either, as they can potentially be specialized for representations
within individual modules as well as communications among modules.

7.3. Developing modularity

In terms of genesis of modularity, as hypothesized by Wilson (1975),

When exploratory behavior leads one or a few animals to a breakthrough
enhancing survival and reproduction, the capacity for that kind of ex-
ploratory behavior and the imitation of the successful act are favored by
natural selection … The process can lead to greater stereotyping—‘instinct’
formation—of the successful new behavior.

It has been proposed (Cosmides & Tooby, 1994) that there are at least the following
innate functional modules (or families of instincts), including perceptual/motor-
based modules: a spatial perception module, a human face recognition module, a
tool-use module, a fear module, an emotion-perception module; and socially-ori-
ented modules: a social-exchange module, a “theory of mind” module, a parenting
module, and a mating module; as well as language/communication related modules:
a syntax module, a semantics module, a communication module, and so on. Since
each of them handles a biologically significant set of stimuli, it is very likely that
evolution produces specialized, sharply tuned, and pre-wired modules in a cognitive
agent to handle them, to ensure the survival (and the reproduction) of the agent.

Through interacting with the world, individual agents may also develop their
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own modules along the way, in order to obtain highly efficient and efficacious skills.
This is especially true of “domain-specific modules” mentioned earlier.

8. Modularity of memory

One important kind of modularity is the modularity of memory, that is, the
separation of, and the interaction among, different memory modules in a cognitive
agent. In the literature, there are all sorts of memory modules, various known as
declarative memory, procedural memory, semantic memory, episodic memory,
long-term memory, short-term memory, working memory, and so on. Different
taxonomies of memory exist. They are concerned with different ways of organization
and storage of information, knowledge, concepts, and categories. Let us look into
this aspect of cognitive architectures, and develop more fine-grained desiderata for
cognitive architectures in relation to memory.

Memory has been an active research area in cognitive science. The kind of
research on memory carried out in cognitive science can be traced back to the late
19th century. The usual experimental paradigm consists of the presentation of a list
(or several lists) of words or nonsense syllables, and the recall and/or recognition of
them later on (immediately afterward or after a substantial delay) by subjects.

8.1. Conflicting taxonomies

Data from experimental work suggested a number of (seemingly) distinct modules
in memory. First, based on small, laboratory experiments, the distinction between
short-term memory and long-term memory was suggested, in that short-term
memory is capacity limited and temporary, while long-term memory is relatively
permanent, with unlimited capacity. Short-term memory was viewed, at one point,
as a number of slots each of which could hold an item temporarily until displaced
by another item. Another characterization (which emerged in the 1970s) was
working memory (Baddeley, 1986)—a memory store that consists of three separate
short-term memory systems: an articulatory loop, a visual-spatial scratch-pad, and
an executive for control, again based on small, laboratory experiments. Cowan
(1993) proposed two types of short-term memory: active memory (activated repre-
sentations in long-term memory) and focus of attention (representations being
actively accessed or rehearsed). There has been extensive study of both short-term
memory and long-term memory, through (mainly) different designs of laboratory
experiments. These studies covers encoding, storage, and retrieval processes (the
three major functions of memory), and various issues involved with one or more of
these functions: depth of processing, incidental versus intentional learning, forget-
ting, interference, cue-effectiveness, use of imagery, and so on. Various ideas have
been proposed regarding whether there are separate memory systems or whether
there is really only one unitary memory system. Experimental results have been
ambivalent (Ratcliff & McKoon, 1998).

Another distinction is along the line of semantic memory and episodic memory
(Tulving, 1972), suggested by some different experiments. It was suggested that
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there were two distinct systems: one for temporal, spatial information of events (the
episodic memory) and the other for generic, conceptual information (information of
and by concepts).

Yet another distinction is between declarative memory and procedural memory
(Anderson, 1983; Tulving, 1983). According to this distinction, a separate memory
system is used to store procedural skills, i.e. for the automatic production of skilled
performance without explicit and controlled access of information, while another
memory system is used for storing information of concepts or events, which may
allow explicit and controlled access. In general, procedural memory is more rigid
and tailored to specific situations, while declarative memory is more general-purpose
and flexible; procedural memory can be accessed rapidly, while declarative memory
is slower.

There was also the suggestion that memory be divided into explicit memory and
implicit memory: For example, procedural memory is implicit while semantic
memory and episodic memory are explicit (Tulving, 1983, 1985). Another
classification of memory (Roediger, 1990) is a division into declarative (explicit) and
procedural (implicit) memory whereby declarative memory is further divided into
episodic (working) memory and semantic (reference) memory, and procedural
memory into skill, priming, classical conditioning, and other similar memory sys-
tems. However, there is no general consensus either regarding whether the distinc-
tion of implicit and explicit memory exists or regarding how the memory system
should be divided along the explicit/implicit line.

In general, for many issues in memory research, there are contradictory exper-
imental indications; there are thus many mutually conflicting theories. For different
experiments or different aspects of memory, even though there may not be direct
contradictions in experimental results, there can still be many mutually incompat-
ible, ad hoc explanations of them. In this way, explanatory particularism is prevalent
[3].

8.2. Conflicting models

In computational modeling, there are equally many mutually conflicting proposals
regarding how to capture these memory modules and their distinctions computa-
tionally. The simplest representation is the undifferentiated list of features (the
feature list), which involves concepts and properties without any structure that
connects them. This representation may be adequate if a set of features (i.e. a set of
defining features) may be found that are necessary and jointly sufficient for a
concept. However, for most concepts in the everyday world, there is no such
defining features (Wittgenstein, 1953). To remedy the problem, some more com-
plex (or “advanced”) representations were proposed in AI research, which include
semantic networks, frames, scripts, schemas, and others (Minsky, 1981; Quillian,
1968). They rely on various structures for (presumably) more precise specifications.

In the area of quantitative psychological models, there have been a variety
of them proposed, ranging from instance-based models to prototype-based
models, and from spreading activation models to compound-cue models (Ratcliff &
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McKoon, 1998). Each of them was quite successful in fitting certain data while
failing in fitting some others (Ratcliff & McKoon, 1998).

There are integrated models that combine various memory systems in one
framework, addressing the question of the relations between different memory
systems. For example, Anderson’s cognitive architecture ACT-R (Anderson, 1983;
Anderson & Lebiere, 1998) is one of these integrated architectures. ACT-R consists
of a production (rule-based) system and a semantic network. The semantic network
captures declarative memory, and the production system captures procedural mem-
ory. The distinction of short-term and long-term memory is captured through, on
the one hand, activation traces as short-term memory and, on the other hand,
established nodes and links as long-term memory. The distinction of semantic and
episodic memory is not dealt with. The difference in accessibility between implicit
and explicit memory is likewise not fully accounted for. There have also been other
integrated models, for example, CLARION (Sun, 2002).

In general, in modeling, the difference between implicit and explicit memory
has not been adequately addressed (Ratcliff & McKoon, 1998). In particular,
mechanistic or process differences between implicit and explicit memory have not
been a focus (but see Sun, 2002). The debate between unitary versus multiple
memory systems (whereby some are explicit while others implicit) remains ongoing.

8.3. Different methodologies

Although there are many interesting observations, a wealth of data, and even some
general principles from memory research, there are problems. First of all, there is a
methodological problem: the experiments were conducted mostly in a laboratory
setting, with materials as far removed from everyday life as possible (such as
nonsense syllables); this methodology may have the advantage of avoiding
“contamination” of the experiments from extraneous sources (everyday common-
sense knowledge), but it also may lead to neglecting the fact that memory is part of
the cognitive processes engaged in, and fine tuned for, everyday activities coping
with the world. The artificiality of experimental designs and experimental materials
severs the tie between memory and everyday experience of cognitive agents. Thus,
experiments may reveal only a partial or even a distorted picture of memory. Even
with this problem ignored, the experimental methodology determines that the
experiments can only tackle memory by bits and pieces—one disparate issue at a
time. Thus we may lose sight of the whole picture. These kinds of experiments are,
in some sense, modeled after physics experiments, rather than dealing directly with
human existential experience in a holistic and ecologically realistic way [4]. Because
of this limiting methodology, every researcher tends to come up with his/her own
theory of memory based on his/her own particular perspective and bias. There is a
lack of coherence and overall organizing principles.

Second, work on memory tends to view memory as a passive storage device,
which simply stores data like a computer memory. However, the human mind is, in
fact, far removed from a digital computer (the narrow sense of the word). Dynamics
of the human mind is complex and interactive. Memory is not simply retention, but
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it is also pretension, as pointed out by Husserl (1970); that is, it actively participates
in intercepting and interpreting the ongoing flow of sensory information and it itself
changes and organizes in the process.

Third, current work on memory downplays its active participation in everyday
activities and the role of such activities in (and their influence on) memory func-
tions. The everyday activities of a cognitive agent consist of actions and reactions of
the agent in the world, for the sake of survival and other needs/goals of the agent,
which underlie the memory of the agent. Memory should be viewed as part of the
whole of existential experience. This is the path toward a principled, ecological
understanding.

In terms of representations used (such as semantic networks), the following
shortcomings may be identified from a computational modeling standpoint:

• In semantic networks, conceptual hierarchies require a priori determination
through hand-coding; in frames, slots need to be determined also through
hand-coding. This is not a serious problem if we are only concerned with small
toy domains for laboratory experiments. However, in any domain of a realistic
size, this poses a serious problem for practical reasons.

• Semantic networks and frames are often filled with ad hoc content, that is,
hierarchies and structures specifically designed for one particular kind of cir-
cumstance or only for the purpose of getting one particular result.

• A related problem is the context-free fixedness of such hierarchies and struc-
tures. Usually, conceptual hierarchies are explicitly and manually constructed a
priori. In human cognition, many concepts (if not all) can be flexible; that is,
they can have one or another superordinate concept, depending on (1) the
current context (for example, contextual priming; cf. Barsalou, 1983), (2) the
current goals, and (3) even personal, idiosyncratic connections. Thus, a more
flexible representation is called for [5].

In sum, more research on memory is needed. New research on memory needs
to be more ecologically realistic, and pay much more attention to the bigger picture
of cognition in the context of everyday activities. On that basis, new cognitive
architectures with ecologically realistic memory systems may be devised.

9. Goals and routines

Let us examine some considerations concerning goals as well as (sub)routine
structures induced by goals (Anderson, 1993). These considerations are important
to the development of cognitive architectures, because sequentiality is an essential
behavioral characteristic that needs to be captured in cognitive architectures, and in
turn, complex routine/subroutine structures necessary for achieving sequentiality
need to be addressed in cognitive architectures as well.

9.1. Importance of routines

Over the years, ethologists, among others, have proposed a number of mechanisms
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that provide mechanistic underpinnings for a variety of animal behaviors that are
specific to particular stimulus circumstances. Fixed action patterns (FAPs), innate
releasing mechanisms (IRMs), and modal action patterns (MAPs) are all instances
of such constructs (Savage, 2002). For example, FAPs are self-contained entities in
that each has a source of motivational energy that activates a specific sequence of
behaviors (a routine or subroutine), under some particular stimulus conditions.
According to the models of Lorenz (1950) and Tinbergen (1951), each species was
equipped with a sufficient variety of FAPs to ensure an appropriate response in any
normal circumstances.

Approximating such motivational constructs (which, notably, were proposed
mostly in relation to animals), Anderson (1983, 1993) proposed the use of a goal
stack in describing human cognition. A goal stack allows the use of routines (or
subroutines) (Sun, 2002; Tyrell, 1993). Once a goal is pushed onto the stack, a
routine (or subroutine) for accomplishing the goal is automatically initiated (very
much like what was described by Lorenz, 1950), through selecting actions suitable
for accomplishing the goal every step of the way. An initiated routine will keep
running, until interrupted or terminated. The initiated routine may be terminated by
popping the corresponding goal off the stack, when the goal has been accomplished
(or when it has been recognized that the goal cannot be accomplished for some
reason). During the running of the routine, a higher priority goal may be pushed
onto the goal stack when a current state prompts such an action. The current
routine can then be suspended, and the routine for the new goal be carried out. At
the termination of the new routine, the previous routine may be resumed (or
abandoned). A goal may spawn subgoals, by pushing these subgoals onto the stack,
which may also cause the suspension of a running routine.

There are alternatives though. In robotics, there have been various proposals
concerning “layered architectures” (see, for example, Gat, 1998). These architec-
tures in general share the same basic idea of dividing the action control of a robot
into three (or more) components: for instance, (1) the controller, which takes
actions reactively in response to environmental input in accordance with some
behavioral routines, (2) the sequencer, which selects among different behavioral
routines to be carried out by the controller, and (3) the deliberator, which plans out
future courses of actions and directs the sequencer to act accordingly. The three
layers are quite different in characteristics. The controller is stateless, or has only
limited (mostly transient) memory. The sequencer has past state information, on
which basis it selects behavioral routines in the controller. The deliberator maintains
information about the past and the future, and plans actions accordingly. Partially
due to this difference in the amount of information they possess, their speeds vary.
The controller is the fastest in making action decisions, while the deliberator is the
slowest due to the amount of information it has to deal with. Thus, the division of
labor among the three components is useful in maintaining both fast responses
(through using the controller) and behavioral flexibility (through using the delibera-
tor). The sequencer may be viewed as the interface between the two, carrying out
the plans of the deliberator.

In future cognitive architectures, we need to develop more sophisticated goal
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structures and (sub)routine mechanisms. For instance, in a more sophisticated
model, goals may emerge from competitions among different needs and desires,
goals may change in various ways, including in a stack-like fashion, as well as other
possibilities, such as switching to a new goal altogether, and so on. Routines may
have both of the following two properties: persistence and interruptibility. The
interplay of these two properties needs to be explored and developed in full (Tyrell,
1993).

9.2. Formation of routines

The initiation of routines (e.g. setting goals), the routines themselves, and the
termination of routines can all be learned, in addition to being pre-wired using
predetermined rules. Routines (and their initiation and termination) may be learned
through experience, including autonomous exploration, instructions, imitations,
extraction, and other means (see, for example, Sun & Sessions, 2000).

If it is advantageous to invoke a routine (or subroutine) (i.e. to switch to a
different action policy for a period of time), then a goal module may learn to set a
specific goal, for example, in an attempt to maximize reinforcement, and thereby
change the overall state other modules experience. Due to this change, in other
modules, a different routine suitable for the current situation may be learned or
invoked. Similarly, if it is advantageous to terminate a routine (or subroutine) (i.e.
to switch to a different action policy), the goal module may learn to reset the current
goal, for example, in an attempt to maximize reinforcement.

10. Phenomenological considerations

Let us turn to some ideas from phenomenological philosophy, which are in fact
foundations of what we have been discussing and, as such, serve to justify the
foregoing discussions.

10.1. Comportment

One term that Heidegger (1927) chose to describe the basic activities of an agent,
the interaction of an agent with its everyday world, is comportment. As he put it,
“comportments have the structure of directing-one-selves-toward, of being-directed-
toward” (Heidegger, 1927). This term denotes the two-way interaction between an
agent and its world. We may use this notion as a foundation for understanding the
interaction and the mutual dependency between an agent and its world, especially
at a subconceptual level (at an implicit cognitive level).

Comportment is direct and unmediated. Thus, it is free from representationalist
baggages. Put it another way, comportment does not necessarily involve, or presup-
pose, explicit representations, and all the problems and issues associated with
explicit representations. To the contrary, all representations and relations between
mental states and their objects presuppose it as a basis: direct and unmediated
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comportment is in fact the condition of possibility of all mental representations.
Understanding and modeling comportment is thus the foundation of any ecologi-
cally realistic approach toward cognitive science that aims to understand cognitive
processes through understanding an agent’s interaction with its everyday world
(Sun, 2002).

Comportment, according to Heidegger, “makes possible every intentional rela-
tion to beings” and “precedes every possible mode of activity in general,” prior to
explicit beliefs, prior to explicit knowledge, prior to explicit conceptual thinking, and
even prior to explicit desire. Comportment is thus primary, in exactly this sense. The
traditional mistake of representationalism lies in the fact that they treat explicit
knowledge and its correlates as the most basic instead, and thus they turn the
priority upside-down; and in so doing, “every act of directing oneself toward
something receives [wrongly] the characteristics of knowing” (Heidegger, 1927; see
also Bickhard, 1993).

What we need to do to gain a better understanding of comportment beyond
mere philosophical speculation is to look into the development of comportment (Sun
et al., 2001). In particular, we should examine its development in the ontogenesis of
an individual agent, which is the most important means by which an agent develops
its subconceptual behavioral routines, or comportment, although some of the
structures (such as modularity) might be formed evolutionarily, a priori, as discussed
before.

10.2. Conceptual thinking

However, we also need to go one step further, on the basis of behavioral routines.
Simply put, it is not enough to have only (implicit, subconceptual) routines for
everyday activities; an agent also needs to develop conceptual thinking to some
degree, in order to supplement simple subconceptual reactive responses: for exam-
ple, to reason before actions, to plan in order to guide reactivity, or to be precise and
determinate beside being exploratory.

Conceptual (symbolic) thinking is a derivative way of thinking; symbolic struc-
ture is a derivative kind of representation. This point of view has been argued by
many philosophers and philosophically minded scientists since Heidegger’s time.
The reason that conceptual representations and reasoning are derivative is because
the opposite side, that is, subconceptual reactive coping in everyday activities, is of
utmost importance in an agent’s existence in its everyday world. Such coping
provides a necessary and minimally sufficient means for an agent to survive in the
world.

Let us look into this point. First, subconceptual reactive coping can conceiv-
ably provide a minimally sufficient means for survival; just notice the simple
organisms that are flourishing on the earth, from bacteria to invertebrates to simple
vertebrates, which by no means have any high-level thinking ability beside simple
evolved coping mechanisms. Only on the basis of these subconceptual coping
activities, in certain species, high-level explicit conceptual thinking arises. Reactive
coping thus constitutes the foundation of all other activities. Second, explicit
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conceptual thinking may have many advantages, but it is not clear that it alone can
sustain an agent in its everyday world. Explicit conceptual representations may be
computationally too costly, and it may not be possible to articulate some intricate
processes, which is nevertheless necessary for explicit conceptual representations
(Bickhard, 1993; Sun, 2000). Therefore, without being able to rely completely on
conceptual thinking, reactive coping is a necessary means for agents.

Conceptual thinking is “derived” from low-level mechanisms, because it is
secondary in several (different but related) senses: evolutionarily, phylogenetically,
ontogenetically (developmentally), and ontologically. It is evolutionarily and phylo-
genetically secondary, because it was a more recent product of evolution, and
has conceivably been evolved from lower-level mechanisms (Wilson, 1975). It is
ontogenetically secondary, because in the case of humans, it is usually developed
slowly and at a later stage of individual development, after the development of
fundamental coping skills (Karmiloff-Smith, 1986, Mandler, 1992). It is ontologi-
cally secondary, because it is only a special case of a generic competence for
individual actions and individual learning.

10.3. Conceptual thinking versus comportment

Explicit conceptual thinking often leads to a detached and reflective stance (Dreyfus,
1992, p. 45); that is, an agent can step back from the involvement and the reactive
engagement in everyday activities and reflect on thoughts abstractly, in a contempla-
tive way. Such a detached and reflective stance is made possible by explicit
representations “derived” from ongoing activities, which enable an agent to treat its
own thoughts as objects of thinking (i.e. to become detached), instead of being
immersed in the coping itself [6].

When an agent is involved completely in everyday routine activities, partici-
pation in these activities is “transparent” to the agent, in the sense that there is no
explicit conceptual thinking required of the agent. When conceptual representations
are developed to some degree, participation in these activities becomes less trans-
parent, since conceptual reasoning starts to intrude and is engaged from time to
time.

Let us examine some scenarios in the context of Heidegger’s description of
equipment and breakdown. According to Heidegger, in everyday routines, things
that an agent encounters is considered as “equipment,” that is, things that are used
for accomplishing something else. Pieces of equipment fit together with each other,
into an “equipmental whole.” So each piece of equipment functions in a nexus of
other pieces of equipment. Together, they constitute the everyday existential world
of an agent. Equipment is not primarily understood through conceptually character-
izing its shape, function, or other isolated properties. As demonstrated by Wittgen-
stein’s (1953) analysis of common concepts (such as “games”), in general, there is
no simply way to characterize a piece of equipment, or any other concepts, in this
fashion. As shown by Dreyfus (1991), even a simple piece of equipment such as a
chair defies such a characterization. Equipment can be understood, in a primordial
sense, from its role in the equipmental whole and its utilization in the everyday
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activities of an agent. Equipment is transparent and “ready-to-hand,” available for
use by an agent in a direct and unmediated way in everyday activities, without the
need to involve conscious awareness, focus of attention, or conceptual representa-
tions. (Notice the parallel between this view and Gibson’s view on direct perception;
see Gibson, 1979.)

When normal circumstances are changed and routines interrupted, reactive
routines can be disengaged. This is termed breakdown by Heidegger (1927). When
breakdown occurs, the ready-to-hand (Zuhandenheit) equipment turns into the
present-at-hand (Vorhandenheit). The agent has to use some other means for dealing
with these things, as they are no longer directly available as equipment. Conceptual
processes may be brought in. Conceptual reasoning may be used to varying degrees
in dealing with breakdown. According to Heidegger, it can go from deliberate
activities (as opposed to purely implicit, reactive routines as in the case of routine
everyday coping), through full deliberation, to theoretical reflection, and finally, to
pure contemplation (Dreyfus, 1991; Heidegger, 1927). For example, deliberate
activities involves the use of explicit concepts and references, so that certain
previously transparent things become explicit; they are particularly useful when
minor disturbances occur in the equipmental whole. On the other hand, full
deliberation, involving reflective planning and means–end analysis (“if–then” analy-
sis according to Heidegger), is useful when serious disturbances (for example, the
malfunctioning of “equipment”) occur whereby new ways of dealing with situations
need to be devised (Heidegger, 1927). Theoretical reflection further requires an
agent to hold back from the involved practical activities in the world and take a
“theoretical” stance, which is a complete changeover from the involved stance in
everyday activities. Pure contemplation is the stance that is completely free from any
interest or involvement with the world.

Through analyzing equipment and breakdown, Heidegger demonstrated that
subconceptual routines (“automated” dealing with ready-to-hand equipment) are
more fundamental ontologically than isolated, context-free objects and their proper-
ties that are knowable only through (conceptual-level) reflection and contemplation.
This analysis reversed the usual philosophical priority placed on explicit conceptual
understanding, and placed conceptual processes in their proper places with respect
to the processes of cognition. In reality, conceptual processes can only occur on the
background of everyday routine activities, in addition to the fact that they are
generated from such activities. Because of their background and their origin,
conceptual processes can be mixed in with everyday routine activities in various
ways, under proper circumstances.

However, on the other hand, conceptual thinking has important roles to play
too in cognition. The importance of conceptual thinking, while exulted by represen-
tationalists, is often mistakenly ignored by advocates of situated cognition and
autonomous agents. In pursuing their causes, many researchers in these areas
(situated cognition and autonomous agents) may have overstated their cases in
downplaying conceptual thinking. This tendency goes all the way back to Heidegger:
the role of conceptual and analytic thinking was downplayed and sometimes ignored
by Heidegger in his work.
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To see the importance of conceptual thinking, we can again use the dichotomy
of embodied skills versus explicit knowledge (as a form of the dichotomy of implicit
versus explicit processes). The question is: how can an agent develop a set of skills
that are highly specific and highly efficient but, at the same time, can be readily
applied to a variety of different situations? This is because agents in the world must
deal with novel situations and changing environments. This dilemma is difficult to
resolve, although humans seem to possess the ability to achieve an appropriate
balance between the two sides. It seems that an agent needs, in addition to highly
specific embodied skills, sufficiently general and explicit knowledge that are transfer-
able and explicitly manipulatable (Sun & Peterson, 1998; Sun et al., 2001).

Not only does an agent need generic and explicit conceptual knowledge, as
opposed to mere embodied skills, for the sake of generalization, it also needs such
knowledge for the sake of conceptual problem solving, creativity, and other non-rou-
tine activities that require the uniquely human ability of analytic reasoning and
explicit conceptualizing. For example, when planning a trip ahead of time, explicit
knowledge of places and routes are needed, since reactive coping is out of question;
when scheduling a large project, explicit and generic knowledge is also needed, in
order to justify the schedule or optimize the schedule; so on and so forth. Though
one may claim that some of these activities may or may not require conceptual
thinking, such thinking can certainly be of a great deal of help to a cognitive agent,
and may even be indispensable for truly complex situations.

In fact, a balance of the two—specific, subconceptual, embodied skills and
generic, explicit, conceptual knowledge—is believed to be essential to cognitive
agents in a sufficiently complex world: as mentioned before, on one hand, there are
ample psychological data that point to the distinction between the two types and the
need for both (for example, Keil, 1989; Reber, 1989; Seger, 1994; Sun et al., 2001).
On the other hand, there are philosophical arguments for such a distinction/balance
as well (Dewey, 1958; Dreyfus & Dreyfus, 1987; Heidegger, 1927; Sun, 2000),
which over the years have become increasingly convincing.

11. An evaluation of the state of the art

Thus far, we explored the desiderata for developing cognitive architectures, which,
I believed, needed to be brought to light and explicitly examined, in order to
advance the state of the art in cognitive architecture research. I have identified some
desiderata for developing a cognitively and ecologically realistic cognitive architec-
ture. Among these, the most important are the dichotomy and the interaction of
implicit and explicit processes, modularity, memory systems, and goals/routines. I
have gone to great length in elaborating on these points.

Now let us take a quick look at some existing cognitive architectures in light of
this discussion. Let us briefly examine a few representative cognitive architectures:
ACT-R, SOAR, EPIC, PRODIGY, DEM, COGNET, and CLARION.

First of all, ACT-R (Anderson, 1993; Anderson & Lebiere, 1998) has been
examined earlier. On the positive side, the model is arguably the most successful
cognitive architecture in existence. It succeeded in capturing a wide variety of
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human data in many different task domains, ranging from skill learning to language
production. It has been testing a variety of goal mechanisms, including goal stacks.
Recently, there have been attempts at adding various perceptual and motor modules
to the model. On the other hand, as explained before, it has a certain degree of
modularity. It employs the division between procedural and declarative memory.
However, in my view, its modularity is not sufficient: It does not have a clear-cut
(process-based or representation-based) distinction between implicit and explicit
processes, it does not subdivide memory to a sufficient extent, and so on. Further-
more, it does not sufficiently explore the interaction between implicit and explicit
processes and, relatedly, it does not address bottom–up learning, both of which have
been shown to be important to cognition (Sun, 2002).

SOAR (see Rosenbloom et al., 1993) is based on the ideas of problem spaces,
states, and operators. Prominently in the model, there is a goal stack. When there is
an outstanding goal on the goal stack, different productions propose different
operators and operator preferences for accomplishing the goal. Learning consists of
chunking—the creation of a new production that summarizes the process leading up
to achieving a subgoal, so as to avoid impasses subsequently. SOAR, like ACT-R,
lacks sufficient modularity in its architecture. For instance, in SOAR, there is no
sufficiently clear representation-based or process-based difference between implicit
and explicit cognition (see Sun, 2002 for arguments). There is no distinction
between procedural and declarative memory either. Thus there is no bottom–up
learning, or top–down learning. There have been attempts at adding various percep-
tual and motor modules to the model though.

Like SOAR, PRODIGY (Minton, 1990) involves search through a problem
space to achieve goals. The search is based on means–ends analysis: finding an
operator that reduces the difference between the current state and the goal. The
model encodes control knowledge for the selection of operators and their associated
parameters. Learning consists of constructing control rules based on previous
problem solving experiences. There is a certain degree of modularity in control
knowledge. However, it does not make the implicit/explicit distinction. There is no
mechanism for either top–down or bottom–up learning.

Drescher (1991) developed an architecture that attempted to implement the
Piagetian constructivist view of development, known as the Dynamic Expectancy
Model (DEM). It builds on sensory-motor input/output and creates schemas on that
basis. Schemas are formulated as context–action–outcome triples. The learning
mechanism is based on statistics collected during interaction with the world. New
schemas are created and their contexts identified and tuned through statistical
means. The model also builds abstractions out of primitive actions. However, the
model does not make the distinction between implicit and explicit knowledge and
does not account for the distinction of bottom–up and top–down learning. The
model deals only with low-level procedural learning (sensory-motor interaction). As
is, it lacks other modules.

EPIC (Meyer & Kieras, 1997) is focused on capturing multi-task performance.
It includes a production rule system as the central processor, and a set of detailed
perceptual and motor processors. The fundamental assumption of the model is that
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most capacity limitations are a result of the limitations of peripheral processors,
rather than the central processor. In a way, the model adopts the declarative/pro-
cedural distinction. It adopts some other forms of modularity as well, including that
of different peripheral processors. However, it does not include the dichotomy of
implicit and explicit processes, and does not deal with the interaction between the
two types of processes (including bottom–up learning). In fact, there is no learning
in the model at all.

COGNET was also developed to handle multiple tasks (Zachary et al., 1996).
It consists of a problem context, a set of tasks, an attention manager, and a task
execution process. Different tasks are evaluated in the current context and selected
for execution. Given its handling of concurrent tasks, the model allows certain
modularity. However, to instantiate such modularity, there is much work to be
done—details of different modules and their interactions need to be specified before
simulation is possible. There is no built-in division between declarative and pro-
cedural knowledge or between explicit and implicit processes. There is no mechan-
ism for either top–down or bottom–up learning, or other interactions between
implicit and explicit processes.

Now turning to a relatively new cognitive architecture, CLARION has been
developed in Sun (1999, 2002) and Sun et al. (2001). It employs a variety of
modularity, including that between implicit and explicit processes, as well as that
between various memory components, and so on. As a result, it directly addresses
the interaction between implicit and explicit processes, and in particular bottom–up
learning.

CLARION has a dual-representational structure. That is, it consists of two
levels: the top level captures explicit processes and the bottom level implicit processes.
CLARION provides a concrete instantiation of the notions of a fundamental reactive
coping mechanism and a derivative conceptual reasoning capability. Conceptual
representations are derived, literally, from reactive routines (the bottom level of
CLARION), through bottom–up learning, within the context of ongoing activities in
the everyday world. CLARION shows that this is not only possible, but also
advantageous. The advantages include: minimizing learning mechanisms, synergy in
learning (for example, speeding up learning), synergy in performance (for example,
improving performance, improving transfer, and so on), and facilitating multi-agent
interactions [7]. CLARION provides a way of studying the interaction between two
types of knowledge in an integrated but dichotomized architecture. Thus, CLAR-
ION points to the way of achieving a proper balance of explicit knowledge and
implicit skills (i.e. conceptual and subconceptual processes).

At the bottom level, CLARION captures everyday reactive coping: routines are
gradually tuned to deal, in a direct and unmediated way, with everything in the
world that the agent encounters, i.e. with all of the “equipment,” without necessarily
involving conceptual representations and reasoning (Heidegger, 1927). Reactive
routines can be effective and efficient in a stable everyday world. On the other hand,
as explained earlier, full deliberation, involving reflective planning and means–end
analysis, is useful when serious disturbances occur whereby new ways of dealing with
situations need to be devised (Heidegger, 1927). In CLARION, this can be
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accomplished through extensive use of conceptual representations, at the top level of
the model, in which various possibilities can be explicitly reasoned about and explicit
sequences of actions and temporal projections onto future states can be established.

Going one step further, theoretical reflection requires that an agent hold back
from the involved practical activities in the world and take a “theoretical” stance. In
CLARION, it means a complete disengagement from usual sorts of reactive routines
and even usual sorts of conceptual processes, as well as from normal everyday
activities themselves, and instead being involved in different sorts of processes and
representations. This is because it involves looking at things from a different
perspective—a theoretical perspective—that aims to investigate things not in terms
of their everyday use but in terms of their theoretical interest. Scientific research is,
in a way, an example of such activities.

CLARION provides, in computational terms, a natural way for dynamically
acquiring conceptual representations for conceptual thinking, without pre-coding
(by hand) into the model of a cognitive agent all the requisite knowledge of
conceptual thinking. This is accomplished via bottom–up learning as explained
earlier. The implementation details can be found in Sun and Peterson (1998) and
also in the appendix.

On the negative side, CLARION’s mechanisms for goals and routines need to
be further developed. As is, they are somewhat rudimentary. In addition, details of
memory systems in CLARION need to be further developed too. For one thing,
they need to be fleshed out.

Beside these afore-reviewed cognitive architectures, there are of course many
more in existence. See, for example, Pew and Mavor (1998) for detailed discussions
of some other existing cognitive architectures. Newell (1990) presented a set of
criteria of his own, including general issues such as flexibility of behavior, integration
of knowledge, dynamic interaction, and adaptation. Anderson and Lebiere (2003)
attempted an evaluation of their cognitive architecture ACT-R, along with connec-
tionist models, in accordance with Newell’s criteria. Langley and Laird (2002)
provide yet another survey of cognitive architectures.

Of course, ultimately, what is important for a cognitive architecture is its ability
to account for data in quantitatively precise ways, and to provide interesting
interpretations based on quantitative match. Therefore, a good quantitative match is
the most important desideratum of all. In this regard both ACT-R and CLARION
fare well, better than other competitors (see Anderson, 1993; Anderson & Lebiere,
1998; Sun, 2002; Sun et al., 2001).

12. Concluding remarks

In summary, basic assumptions behind cognitive architectures need to be examined.
In this article, I have argued for a set of essential desiderata as the basis for
developing future cognitive architectures. The following desiderata have been
identified:

• ecological realism
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• bio-evolutionary realism
• cognitive realism
• eclecticism of methodologies and techniques

And in terms of cognitive and behavioral characteristics:

• reactivity
• sequentiality
• routineness
• trial-and-error adaptation
• dichotomy of implicit and explicit cognition
• synergistic interaction
• bottom–up learning
• modularity

and so on. Detailed discussions have been carried out concerning some of these
points in this article.

A cursory examination of existing cognitive architectures has shown that these
desiderata have been, or can be, satisfied to various extents. However, to take into
full consideration these desiderata and to develop them to the full extent, much
more work is needed. In order to better develop cognitive architectures in the future,
we need to address the very issue of a set of basic desiderata for cognitive architec-
tures and base our further efforts on that foundation. Addressing this fundamental
issue is a necessary step that will lay the foundation for further progress.

Existing work on cognitive architectures has accomplished a great deal in terms
of taking into consideration cognitive and behavioral characteristics of cognitive
agents, and in terms of matching human data in a precise and detailed way. In this
regard, ACT-R and CLARION, as reviewed earlier, arguably provide two useful
examples and, possibly, a starting point for the further development of cognitive
architectures.

By no means is this set of desiderata the final word. It is but a starting point in
an expectedly long process of discussions and debates. It is hoped that this process
can get started quickly and thus further progress can be made quickly in developing
better cognitive architectures. This list may need to be expanded, revised, or
completely revamped, but we need to start somewhere.
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Notes

[1] For example, in a navigation task, a reactive navigator may be, instead, modeled as a AI planning
system in which a complete internal model of the world, along with a set of elaborate planning
rules, becomes part of the architecture.

[2] However, as Reber (1989) pointed out, verbalization and the resulting explicit knowledge might
also hamper (implicit) learning, under some circumstances, especially when too much verbaliza-
tion induced an overly explicit learning mode in subjects performing a task that was not suitable
for learning in an explicit way, for example, when learning a rather complex artificial grammar.
Similarly, in a minefield navigation task, Sun et al. (2001) reported that too much verbalization
induced overly explicit learning that was detrimental to performance.

[3] For example, Pashler (1998) pointed out that “the broad three-part distinction [sensory store,
short-term memory, long-term memory] has received an extraordinary amount of criticism over
the years. The original, relatively primitive versions of the model require important modification,
principally, abandoning the idea of serial information flow and the suggestion that short-term
memory is unitary and exclusively verbal. Furthermore, the model must be read with the
understanding that the proposed memory structures are not claimed to have, nor are they likely
to have, the exclusive function of memory storage.”

[4] Recall the origin of the experimental methodology in the late 19th century, when physics was the
model of clarity that all disciplines tried to imitate.

[5] It may be argued that this problem can be remedied by introducing some new components in a
model that can modify the connections and slots on the fly in accordance with various dynamic
factors. Although this is theoretically possible, semantic networks are notoriously complex and
difficult to modify, even statically, let alone dynamically.

[6] I should note the derivative character of this detached stance, in the very same sense as its source,
conceptual thinking, is derivative. Heidegger vehemently opposed the use of this detached stance
in philosophical thinking, especially as used in Husserlian phenomenology. “The achieving of
phenomenological access to the beings which we encounter, consists rather in thrusting aside our
interpretative tendencies, which keep thrusting themselves upon us and running along with us,
and which conceal not only the phenomenon of such ‘concern’, but even more those things
themselves as encountered of their own accord in our concern with them” (Heidegger, 1927).
Dreyfus put it this way in his interpretation of Heidegger: “The bare objects of pure disinterested
perception are not basic things we can subsequently use, but the debris of our everyday practical
world left over when inhibiting action” (Dreyfus, 1992). He pointed out that neither everyday
activities nor detached thinking can be conceived as “a relation between a self-sufficient mind and
an independent world,” to forgo the inextricable involvement of one with another.

[7] All of these points have been studied in experimental work on CLARION. See Sun and Peterson
(1998) and Sun et al. (2001).
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Appendix

Below are some relevant details concerning CLARION from Sun et al. (2001) and Sun (2002). Overall,

FIG. 1. The CLARION architecture.
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CLARION has a dual-representational structure. It consists of two levels: the top level captures explicit
processes and the bottom level implicit processes (see Figure 1). In so doing, as mentioned before,
CLARION provides a concrete instantiation of the notions of a fundamental reactive coping mechanism
and a derivative conceptual reasoning capability.

The Rule-Extraction-Refinement algorithm (RER) learns explicit knowledge at the top level (in the
form of rules) using information from the bottom level, to capture the bottom–up learning process
(Karmiloff-Smith, 1996; Stanley et al., 1989). The basic idea of this algorithm is as follows: if an action
decided by the bottom level is successful (i.e. if it satisfies a certain criterion), then the agent extracts
an explicit rule (with its action corresponding to that selected by the bottom level and with its condition
specifying the current input state), and adds the rule to the top level. Then, in subsequent interactions
with the world, the agent refines the constructed rule at the top level by considering the outcome of
applying the rule: if the outcome is successful, the agent may try to generalize the condition of the rule
to make it more universal; if the outcome is not successful, then the condition of the rule may be made
more specific and exclusive of the current state.

The details of the operations used in the above algorithm (including rule extraction, generalization,
and specialization) and the criteria measuring whether a result is successful or not (used in deciding
whether or not to apply some of these operators) are described in Sun et al. (2001) and Sun and
Peterson (1998). Essentially, successfulness is measured by an information gain measure, which
indicates whether a rule provides useful information or not. The information gain measure is computed
from data generated by the bottom level. The current states, and therefore the rule conditions, are
described based on dimension-value representation. Generalization amounts to adding an additional
value to one input dimension in the condition of a rule, so that the rule will have more opportunities of
matching inputs. Specialization amounts to removing one value from one input dimension in the
condition of a rule, so that it will have less opportunities of matching inputs. Iterative processes of rule
generalization and specialization, under the guidance of the information gain measure (and thus the
bottom level), lead to useful explicit rules at the top level for a particular task. Conditions of these
learned rules constitute concepts in the conceptual representation of an agent (at the top level), which
are geared toward specific prior experience (the experienced tasks). It is clear that this whole process of
bottom–up learning is under the guidance of bottom-level reactive routines, which are trained by
reinforcement learning algorithms (Sutton & Barton, 1981).

In the bottom level, Q-learning is a reinforcement learning algorithm. In the algorithm, each Q value
estimates the maximum total reinforcement that can be received from the current state and the currently
chosen action on. A Q value is an evaluation of the “quality” of an action in a given state. Thus, actions
are selected based on Q values. Specifically, at each step, given the current state, we compute the Q
values of all the possible actions. We then use the Q values to decide on an action to be performed (e.g.
by choosing the action with the highest Q value). Q values are gradually tuned, online, through
successive updating during interaction with the world (i.e. through the Q-learning algorithm), to enable
reactive sequential behavior to emerge in the bottom level (Sun & Peterson, 1998).






