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Abstract

Synaptic plasticity was recently shown to depend on the relative
timing of the pre and post synaptic spikes. The current paper analyt-

ically derives a spike dependent learning rule based on the principle
of information maximization for a single neuron with spiking inputs.

This rule is then transformed into a biologically feasible rule, which is
compared to the experimentally observed plasticity. This comparison

reveals that the biological rule increases information to a near opti-
mal level, and provides insights into the structure of biological plas-

ticity: It shows that time dependency of synaptic potentiation should

be determined by the synaptic transfer function and membrane leak.
Potentiation consists of weight dependent and weight independent

components whose weights are of the same order of magnitude. It
further suggests that synaptic depression should be triggered by rare

and relevant inputs but at the same time serves to unlearn the base-
line statistics of the network’s inputs. The optimal depression curve is

uniformly extended in time, but biological constraints that cause the
cell to forget past events may lead to a different shape, which is not

specified by our current model. The structure of the optimal rule thus
suggests a computational account for several temporal characteristics

of the biological spike timing dependent rules.
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1 Introduction

Temporal aspects of synaptic connections have recently become a key research

topic. First, it was demonstrated that synapses exhibit short-term facilitation and

depression (Abbott, Varela, Sen, & Nelson, 1997; Markram, Lubke, Frotscher, &

Sakmann, 1997), and synaptic connections with various dynamics were shown to

be expressed following learning (Monyer, Burnashev, Laurie, Sakmann, & See-

burg, 1994; Tang, E., Dube, Rmpo, Zhuo, Liu, & Tsien, 1999). Moreover, there

is now ample evidence that changes in synaptic efficacies depend on the relative

timing of pre and post synaptic spikes. This conflicts with the concept of learning

correlated activity (“those who fire together wire together”) which was the com-

mon interpretation of Hebbian learning several years ago. Recent findings show

that synapses between two excitatory neurons are potentiated when a presynap-

tic spike shortly precedes a postsynaptic one, whereas spiking activity in reverse

order results in synaptic depression. These effects have been demonstrated in a

variety of systems and preparations such as Hippocampal studies in vivo (Levy &

Steward, 1983), cultures of hippocampal neurons (Debanne, Gahwiler, & Thomp-

son, 1994; Bi & Poo, 1999), retinotectal synapses of xenopus (Zhang, H.W.Tao,

Holt, Harris, & Poo, 1998), mammalian cortex (Markram et al., 1997; Feldman,

2000; Froemke & Dan, 2002), and others (Magee & Johnston, 1997; Bell, Han,

Sugawara, & Grant, 1997; Debanne, Gahwiler, & Thompson, 1998). A recent

comparative review of the different spike dependent learning rules can be found

in (Roberts & Bell, 2002).

This new type of plasticity, sometimes termed spike-timing dependent plas-

ticity (STDP), has been studied in various theoretical frameworks, and some of

its computational properties have been characterized: Importantly, under certain

assumptions about the relative magnitude of synaptic potentiation and depres-

sion, STDP embodies an inherent competition between incoming inputs, and thus

results in normalization of the total incoming synaptic strength (Kempter, Ger-

stner, & van Hemmen, 1999, 2001), and maintains the irregularity of neuronal

spike trains (Abbott & Song, 1999; Song, Miller, & Abbott, 2000). STDP may

also play an important role in sequence learning (Mehta, Quirk, & Wilson, 1999;

Rao & Sejnowski, 2000) and lead to the emergence of synchronous subpopula-
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tion firing in recurrent networks (Horn, Levy, Meilijson, & Ruppin, 2000). The

dynamics of synaptic efficacies under the operation of STDP strongly depends

on whether STDP is implemented additively (independent of the baseline synap-

tic value) or multiplicatively (where the change is proportional to the synaptic

efficacy) (Rubin, Lee, & Sompolinsky, 2001; Aharonov, Guttig, & Sompolinsky,

2001): Additive learning leads to strong competition between synapses and is

intrinsically unstable, while supra additive1 learning may involve inherent stabi-

lization and allow a wide range of synaptic values.

The current article takes a different approach to the investigation of temporal

aspects of learning: Whereas the common approach is to model STDP and study

its properties, we start by analytically deriving spike-dependent learning from

first principles in a simple rate model, show how it could be approximated by

a biologically feasible rule, and compare the latter with the experimentally ob-

served STDP. This comparison provides computational insights into the temporal

structure of the experimentally observed STDP, and shows that under certain bi-

ological constraints, STDP approximates the performance of the optimal rule.

To this end, we apply the generic principle of information maximization

(Linsker, 1988), which states that the goal of a neural network’s learning pro-

cedure is to maximize the mutual information between its output and input.

This principle, known as Infomax, was applied in (Linsker, 1992) to a noisy lin-

ear network of real-valued (“rate”) input neurons with a multi-variate Gaussian

distribution. It yielded a two-phased learning rule: a Hebbian learning phase

when a signal is presented to the network, and anti-Hebbian learning when only

noise is presented. The current article extends the Infomax principle and derives

a learning rule that maximizes information about some relevant components of

the inputs not about its complete distribution.

A naive interpretation of the Infomax principle asserts that information about

the inputs of the network should be maximized. However, this criterion may be

inappropriate in the context of information processing in the brain, which is not

targeted to reproduce its sensory inputs, but rather to extract their behaviorally

1Additive and multiplicative learning may be viewed as two instances of a continuum of
the form ∆W = ηWα, where α = 0 corresponds to additive learning, α = 1 corresponds to
multiplicative one, and any α > 0 is termed supra additive.
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relevant components. We therefore consider a variant of the Infomax principle in

which information should be maximized about the identity of the input, allowing

for the extraction of relevant information.

The article is organized as follows: Section 2 describes the optimization task

and the model. Section 3 derives a gradient ascent learning rule that maximizes

input-output relevant mutual information. Section 4 shows how this rule can be

approximated by a biologically feasible learning rule and discusses its properties.

Section 5 studies possible extensions for the case of a limited supervised signal,

and Section 6 investigates learning procedures for the synaptic transfer func-

tion. The importance of these results together with insights into experimentally

observed plasticity are discussed in Section 7.

2 The Model

We study a generic learning task in a network with N input neurons S1, ..., SN

firing spike trains, and a single output (target) neuron Y . At any point in time,

the target neuron integrates its inputs with some continuous temporal filter F

due to voltage attenuation and a synaptic transfer function

Y (t) =
N
∑

i=1

WiXi(t) (1)

Xi(t) ≡
∫ t

−∞

Fτ (t − t′)Si(t
′)dt′ ;

∫

∞

0
Fτ (t)dt = 1

where Wi is the amplitude of synaptic efficacy between the i-th input neuron

and the target neuron, Si(t) =
∑

tspike
δ(t − tspike) is the ith spike train. The

filter F may be used to consider general synaptic transfer functions and voltage

decay effects. For example, voltage attenuation due to leak currents in a passive

membrane is realized as an exponential filter Fτ (t) = 1
τ
exp(−t/τ), ∀t > 0 with τ

being the membrane time constant.

The learning goal in our model is to set the synaptic weights vector W such

that M + 1 uncorrelated patterns of input activity ξη(t) (η = 0..M) may be

discriminated. More formally, the goal is to maximize the mutual information

between the output Y and the identity of the input pattern η. Each pattern ξη(t)

determines the firing rates of all N input neurons as a function of time. The actual
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input Si(t) is a stochastic realization of ξi(t). The input patterns are presented

for short periods of length T . At each period, a pattern ξη is randomly chosen

for presentation with probability pη. Most of the patterns are rare (
∑M

η=1pη ≪ 1)

but ξ0 is abundant and may be thought of as a background noisy pattern. This

assumption is based on the common scenario of a neuron (e.g. a face cell in

IT cortex) that most of the time is exposed to irrelevant stimuli, and is rarely

presented with stimuli it is tuned to.

Two aspects of this model should be emphasized. First, unlike (Linsker, 1992),

information is not maximized about the input values, but about the identity of

the presented pattern. This follows the idea that the goal of a neural system

is not to reproduce the representation of the inputs, but to extract relevant in-

formation. Secondly, the input patterns determine the modulating rates that

underlie the input spike trains. These rates are not observable, and therefore

any learning procedure must depend on the observable input spikes that realize

the underlying rates. Therefore the fact that a learning rule depends on spikes

does not necessarily means that information is coded in spikes instead of in the

underlying rates.

3 Mutual Information Maximization

The goal of the current section is to derive a learning algorithm that maximizes

the input-output mutual information of the above model by changing the synap-

tic weights. We first focus on the modification of the synaptic magnitudes W ,

while keeping the temporal filter F fixed. Learning the optimal temporal filter is

discussed in section 6.3.

3.1 Deriving a gradient ascent learning rule

Let us focus on a single presentation period and look at the value of Y = Y (T ) at

the end of this period. Assuming that the temporal filter is mostly concentrated

in a time period of length T and omitting the notation of t, we obtain from Eq. 1

Y =
N
∑

i=1

WiXi ; Xi =
∫ 0

−T
Fτ (0 − t′)Si(t

′)dt′ ; (2)
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The mutual information (Shannon, 1948; Cover & Thomas, 1991) (and see

also (Linsker, 1992)) between the output and pattern identity in this network is

defined by

I(Y ; η) = h(Y ) − h(Y |η) ; h(Y ) = −
∫

∞

−∞

f(y)log(f(y))dy (3)

where the h(Y ) is the differential entropy (Cover & Thomas, 1991) of the dis-

tribution of Y , and h(Y |η) is the differential entropy of the Y distribution given

that the network is presented with a known input pattern η. f(Y ) is the p.d.f.

of Y . This mutual information measures how easy it is to decide which input

pattern η is presented to the network by observing the network’s output Y .

Consider the case where the number of input neurons is large and neurons

fire independently. Under these conditions, according to the central limit the-

orem, when the target neuron is presented with the pattern ξη, its membrane

voltage Y is a weighted sum of many uncorrelated inputs and is thus nor-

mally distributed f(Y |η) = N(µη, ση
2) with mean µη = 〈WXη〉 and variance

ση
2 =

〈

(WXη)(WXη)T
〉

− 〈WXη〉2. The brackets denote averaging over the

possible realizations of the inputs Xη when the network is presented with the

pattern ξη. Consider now the more complex case where the input neurons fire in

a correlated manner according to the covariance matrix Cij = Cov(Xi, Xj). Y

is now a sum of correlated inputs, and its distribution converges to the normal

distribution at a rate which is determined not by the number of input neurons,

but by the number of effectively independent variables. In particular, according

to the theory of large samples (Lehman, 1998; Ferguson, 1996), if each neuron

is correlated with at most m other neurons, their sum converges to the normal

distribution, with a rate that is at the worst case slower by a factor of 2m ((Fer-

guson, 1996) chap. 12]). Consequently, even with the high levels of synchrony

reported in some experiments performed in the mammalian cortex (e.g. (Singer

& Gray, 1995)), the number of effectively independent inputs is still very large.

This suggests that the input-dependent weighted sum of synaptic inputs can be

well approximated by a normal distribution, with parameters that depend on

the activity pattern. Formally, f(Y |η) ≈ N(µη, ση
2) with mean µη = 〈WXη〉

and variance ση
2 =

〈

(WXη)(WXη)T
〉

− 〈WXη〉2. Using the expression for the
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entropy of a Gaussian (h(X) = 1
2
log(2πeσ2) when X ∼ N(µ, σ2)), we obtain

h(Y |η) =
M
∑

η=0

pηh(Y |ξη) =
M
∑

η=0

pη
1

2
log(2πeση

2) (4)

To further calculate the mutual information I(Y ; η) we turn to calculate the

second term of Eq. 3, the entropy h(Y ). For this purpose we note that f(Y )

is a mixture of Gaussians (each resulting from the presentation of a single input

pattern) f(Y ) =
∑

η f(Y |η)pη, and use the assumption that
∑M

η=1pη is small with

respect to p0. The calculation of h(Y ) is still difficult, but fortunately its deriva-

tive with respect to Wi is tractable. Using a first order Taylor approximation we

obtain (See Appendix A)

∂I(Y ; η)

∂Wi
= +

M
∑

η=1

pη

(

Cov(Y, Xη
i )K1

η + E(Xη
i )K2

η

)

(5)

−
M
∑

η=1

pη

(

Cov(Y, X0
i )K

0
η + E(X0

i )K2
η

)

with K0
η ≡ (µη − µ0)

2

σ0
4

+
ση

2 − σ0
2

σ0
4

K1
η ≡ 1

σ0
2
− 1

ση
2

K2
η ≡ µη − µ0

σ0
2

.

where E(Xη
i ) is the expected value of Xη

i as averaged over presentations of the

ξη pattern.

The derived gradient may be used for a gradient ascent learning rule, by

repeatedly calculating the distribution moments µη, ση that depend on W , and

updating the weights according to

∆Wi = λ
∂

∂Wi

I(Y ; η) (6)

= +λ
M
∑

η=1

pη

(

Cov(Y, Xη
i )K1

η + E(Xη
i )K2

η

)

−λ
M
∑

η=1

pη

(

Cov(Y, X0
i )K

0
η + E(X0

i )K2
η

)

.

Since this learning rule climbs along the gradient, it is guaranteed to converge to a

local maximum of the mutual information. To demonstrate the operation of this
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Figure 1: Mutual information during learning with the gradient ascent learning
rule (Eq. 5). All patterns were constructed by randomly setting 10% of the
input neurons to fire Poisson spike trains at 40Hz, while the remaining input
neurons fire at 5Hz. Poisson spike trains were simulated by discretizing time
into 1 millisecond bins. Simulation parameters: λ = 1, N = 1000. A. 100
memory patterns with p0 = 0.9, pη = 0.001 for η > 0. B. Two memory patterns
with p0 = pη = 0.5.

learning rule, Figure 1A plots the mutual information during the operation of the

learning procedure as a function of time, showing that the network indeed reaches

a (possibly local) maximum of the mutual information. When this simulation is

repeated for different random initializations of the synaptic weights, the rise time

of the mutual information varies across runs, but all runs reach the same mutual

information end level.

The above analytical derivation requires the background pattern to be highly

abundant
∑M

η=1pη ≪ p0. When this assumption does not hold, performance of the

learning rule can be studied numerically, to test whether the obtained learning

rule is still beneficial. To this end we repeated our simulations for the worst case

scenario, where two input patterns are presented with p0 = p1 = 0.5. In this case

too, the simulation yielded a monotonic increase of mutual information until it

reached a stable plateau, as shown in figure 1B.

3.2 Dynamics under the operation of the learning rule

In order to understand the dynamics of the weights W under the operation of the

gradient ascent learning rule, consider now the two sums in Eq. 5. The first sum
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Figure 2: Distribution of the output values Y after 100, 150, 200 and 300 learning
steps. Outputs segregate into two distinct bumps: one that corresponds to the
presentation of the ξ0 pattern and a second that corresponds to the rest of the
patterns. Simulation parameters are as in figure 1A.

contains terms that depend on the pattern ξη through Xη
i , and the second sum

contains terms that depend on ξ0 through X0
i . When the K terms are positive

these two sums are positive. Thus the weights that correspond to strong inputs

of the background pattern ξ0 are weakened, while the weights that correspond to

strong foreground inputs are strengthened. This result is similar to the case of

real-valued inputs investigated in (Linsker, 1992) where an information gradient

ascent rule alternates between Hebbian and anti-Hebbian learning. The main

effect of this process is an increase of the differences |µη −µ0|, while constraining

the variances ση, thus providing better discrimination of the rare patterns ξη from

the abundant ξ0 pattern.

This combination of Hebbian and anti-Hebbian learning characterizes the mu-

tual information target function we use, and is not necessarily obtained with other

target functions. For example, a maximum output variance criterion, whose op-

timal learning rule is the traditional correlation Hebbian rule, involves a global

decay term which is not input specific. Appendix D compares these two target

functions.

The intuition behind the increase in |µη − µ0| stems from the information
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maximization criterion: aiming to split the outputs as sparsely as possible, the

pattern with the highest prior probability is assigned an opposite sign compared

to the other patterns. Figure 2 depicts the distribution of output values during

learning as traced in simulation, showing how the output values split into two

distinct Gaussians-like bumps: one corresponding to the presentation of the back-

ground pattern ξ0 and the other to the presentation of the rest of the patterns.

Although in this picture all rare patterns share a single bump, in the general case

different foreground patterns may have different bumps.

The mutual information manifold is a complex and non-convex function of

the weight vector that does not have a single maximum. In fact, any extremum

point has a mirror extermum point with all weights having the opposite signs (see

Appendix B). A further analytical characterization of the information manifold

is difficult, and therefore in order to characterize the steady state structure of the

system, we repeated simulations for different random initializations of synaptic

weights2, and compared the synaptic efficacies at the steady state. Interestingly,

these simulations found only two steady state solutions for a given set of input

patterns, and these were always a pair of mirror solutions (see Appendix B). This

suggest that the landscape of mutual information as a function of weights values

contains only two large basins of attractions, into which the optimization process

is drawn.

2Simulation was repeated with the same set of memory patterns for 100 times under two
conditions. First weights were initialized as uniform random numbers between 0 and 1. Sec-
ondly, weights were initialized in (−1, 1). This was repeated for 10 different sets of memory
patterns.
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4 Towards Biological Feasibility

4.1 Deriving an approximated rule

With the goal of obtaining a biologically feasible spike-dependent learning rule

that maximizes mutual information we now turn to approximate the analytical

learning rule derived above by a rule that can be implemented in biology. We

follow four steps to modify the analytically derived rule into a more biologically

plausible one.

First, biological synapses are limited either to excitatory or to inhibitory

regimes. As the optimum has two mirror solutions, and for the sake of simplicity,

we limit the weights W to positive values (but see our discussion on inhibitory

synapses in the last section).

Secondly, we replace the terms {K1
η , K

0
η , K

′

η}, which are global functions of

W and ξη with constants {λ1, λ0, λ2}. These constants are optimized, but remain

fixed during the simulation, and therefore cannot provide equal performance as

the continuously changing K terms. However, if these constants are close to

the K values, the changes in the weight vector have a positive projection on

the gradient, and this approximation is sufficient for approaching the optimum.

This suggests that high levels of information can be obtained for a large range of

values of these constants, allowing cells to operate in a near optimal regime. To

test this idea, we measured the steady state information for different constants’

values. Figure 3 shows that the steady state level of information is not critically

sensitive to the λ values, since high information levels are obtained for a large

range of their values.

Thirdly, we implement an on-line learning mode instead of a “batch” one

by replacing explicit summation over patterns with stochastic averaging over the

presented patterns. Because summation is performed over the rare patterns alone

(Eq. 5), stochastic averaging is naturally implemented by restricting learning to

the presentation of foreground (rare) patterns. Appendix C discusses alterna-

tive learning rules in which learning is triggered both by the presentation of the

background and foreground patterns, showing that these rules are not robust to

fluctuations in pη and result in lower mutual information. We thus restrict learn-
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Figure 3: Mutual information as a function of learning parameters λ1 and λ0.
High information levels are obtained for a wide range of parameter values. Sim-
ulation parameters λ2 = 0.1. λ = 1.0, M = 20, N = 1000, p0 = 0.9, pη = 0.001,
T = 20 ms.

ing to the presentation of foreground patterns only3, which yields the following

learning rule

∆Wi = +
(

λ1Cov(Y, Xη
i ) + λ2E[Xη

i ]
)

−
(

λ0Cov(Y, X0
i ) + λ2E[X0

i ]
)

(7)

when ξη is presented, for η = 1..M only.

Fourthly, we replace the explicit dependence on average quantities E(X) and

Cov(Y, X) by stochastic averaging over spikes. This yields a spike-dependent

learning rule. In the case of inhomogeneous Poisson spike trains where input neu-

rons fire independently4, the expectation terms obey E(Xi) =
∫ 0
−T F (t′)E(Si(t

′))dt′,

and the covariance terms obey ((Kingman, 1993) chap. 3)

Cov(Y, Xi) =
∑

j

WjCov(Xj, Xi) = Wi V ar
(∫ 0

−T
F (t′)Si(t

′)dt′
)

(8)

= Wi

∫ 0

−T
V ar (F (t′)E(Si(t

′))) dt′

= Wi

∫ 0

−T
F 2(t′)E(Si(t

′))dt′ .

3This requires a weak form of supervision, and is discussed in section 5.

4Relaxation of these assumptions and their effect on the learning rule is discussed in section 6.
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Figure 4: Comparing optimal (Eq. 5 ) and approximated (Eq. 9 )learning rules.
Poisson spike trains were simulated by discretizing time into 1 millisecond bins.
For each pattern, 10% of the input neurons were set to fire at 40Hz, while the
rest fire at 5Hz. A lower bound of zero was imposed on all weights. Simulation
parameters: λ = 1.0, M = 20, N = 2000, λ1 = 0.15,λ0 = 0.05, λ2 = 0.1, p0 = 0.9,
pη = 0.001, T = 20 ms.

The expectations E(Xη
i ) for η > 0 may simply be estimated by weighted

averages of the observed spikes Sη
i that precede the learning moment. Estimating

E(X0
i ) is more difficult because, as discussed in Appendix C, learning should be

triggered solely by the rare patterns. Namely, ξ0 spikes should have an effect only

when a rare pattern ξη is presented. A reasonable approximation can be obtained

using the fact that ξ0 is highly frequent, by averaging over all spikes in long time

periods. In this case the highest reliability for estimating ξ0 spikes is obtained if

spikes are weighted uniformly everywhere except during the presentation of ξη.

To see this, consider a stationary Poisson neuron that fires at a rate E[S(t)] = p,

which has to be estimated by a weighted average p̂ =
∫ b
a f(t)S(t)dt where

∫ b
a f(t) =

1. The variance of the estimator is
∫ b
a f 2(t)dtV ar[S(t)] which is minimized for

f(t) = const.

This optimal function extends infinitely in time and therefore cannot be re-

alized in biological cells, since have a limited memory span. When the memory

span of a neuron is limited by L, that is, its weighting function is constrained
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Figure 5: The temporal characteristics of the approximated learning rule of Eq.
9. The changes in synaptic weights ∆W as a function of the temporal difference
between the learning time t and the input spike time tspike. A. The potentiation
curve (solid line) is the sum of two exponents with constants τ and 1

2
τ (dashed

lines). B. A combination of the potentiation curve of the sub-plot A, and a
uniform depression curve with L = 45, T = 30.

to be zero for |t| > L, the optimal weighting function is f(t) = 1
(2L−T )

for all

t ∈ (−L,−T ) ∪ (0, L) and zero otherwise. It should be stressed that different

constraints on the memory span of the cell, reflecting limitations of the biological

hardware, may lead to weighting functions that are different from a uniform f .

The exact form of the weighting function for the background spikes depends on

such constraints and therefore cannot be predicted by our current analysis.

Formally, the following rule is activated only when one of the foreground

patterns (ξη, η = 1..M) is presented

∆Wi = +
∫ 0

−T

[

λ1WiF
2(t) + λ2F (t)

]

Si(t)dt (9)

−
∫

∞

−∞

[

λ0Wif
2(t) + λ2f(t)

]

Si(t)dt

This learning rule uses a weak form of supervision signal that activates learning

when one of the foreground patterns is presented, but does not require an explicit

error signal. Its properties are discussed in section 5.
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4.2 Comparing performance

In the previous section we derived a biologically implementable spike-dependent

learning rule that approximates an information maximization learning rule. But

how good are these approximations? Does learning with the biologically feasible

learning rule increase mutual information, and to what level? The curves in figure

4A compare the mutual information of the learning rule of Eq. 5 with that of Eq.

9, as traced in a simulation of the learning process. Apparently, the approximated

learning rule achieves fairly good performance compared to the optimal rule, and

most of the reduction in performance is due to limiting the weights to positive

values.

4.3 Interpreting the learning rule structure

In order to obtain intuition into the approximated learning rule we now examine

the components of Eq. 9 and demonstrate them pictorially in figure 5.

First, synaptic potentiation in Eq. 9 is temporally weighted in a manner

that is determined by the same filter F that the neuron applies over its inputs.

The learning curve involves an average of F (i.e.
∫ t F (t − t′)S(t′)dt′) and F 2

(i.e.
∫ t(F (t − t′))2S(t′)dt′). To demonstrate the shape of the resulting learning

rule, we choose the filter F to be an exponential filter F (t) = 1
τ
exp(−t/τ), which

corresponds to the voltage decay in a passive membrane with time constant τ .

In this case the squared filter F 2 is also an exponential curve but with time

constant τ/2. Figure 5A presents the weight-dependent (filtered by F 2) and

weight-independent (filtered by F ) potentiation components for the exponential

filter. The relative weighting of these two components (determined by the K

terms) was numerically estimated by simulating the optimal rule of Eq. 5 and

was found to be on the same order of magnitude. (demonstrated in Figure 6).

This suggests that learning should contain weight dependent and independent

components, in agreement with investigations of additive vs multiplicative STDP

implementations (Rubin et al., 2001).

Secondly, equations 5 and 9 suggest that synaptic depression is activated when

a foreground pattern is presented but serves to learn the underlying structure of

the background activity. As discussed in section 4.2, the optimal depression
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Figure 6: Traces of the values of K1
1 , K0

1 and K ′

1 as are numerically calculated
during the simulation of the gradient ascent rule, showing that all three values
are on the same order of magnitude. Simulation parameters as in the previous
figure.

learning curve extends infinitely in time, but this requires long memory that

is not biologically feasible. Using a limited memory span of size L, allows to

combine it with the potentiation curve into a single feasible rule. A learning rule

that combines both potentiation and depression is presented in figure 5B.

A major difference between the spike-triggered rule of Eq. 9 and the experi-

mentally observed STDP is the learning trigger. In Eq. 9 learning is triggered by

an external learning signal that corresponds to the presentation of rare patterns,

while in the experimentally observed rule it is triggered by the postsynaptic spike.

The possible role of the postsynaptic spike is discussed in the following section.
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5 Limited Supervised Learning Signal

By now we have considered a learning scenario, in which the system was allowed

to use an explicit and continuous external learning signal whenever one of the

rare patterns was presented. To take a further step towards biological plausibility

we turn to investigate a more plausible implementation of the supervised learning

signal. Such a signal may be noisy, unreliable and probably only available for a

limited period. In biological neural networks, the output spike of an excitatory

neuron usually signals the presence of an interesting (or a rare) pattern. The

post synaptic spike is therefore a natural candidate to serve as a learning signal

in our model, in which learning should be triggered by the presentation of the

rare patterns5.

The derivation in the previous sections aimed to maximize the information

I(Y ; η) in the membrane voltage Y . If, however, a neuron is forced to transmit

a binary signal, the strategy that minimizes information loss when translating

the continuous valued Y into a binary value is to spike when one of the rare

foreground patterns η ≥ 1 is presented 6. We thus turn to investigate whether

the postsynaptic spike (signaling the presence of interesting input patterns) may

be used as a learning signal. This yields a learning procedure identical to Eq. 9,

except this time learning is triggered by postsynaptic spikes. The resulting learn-

ing rule is somewhat similar to previous models of the experimentally observed

STDP (Kempter et al., 1999; Song et al., 2000; Rubin et al., 2001; Kempter et al.,

2001), although we keep the form of the learning rule derived earlier.

To this end, we have simulated an integrate and fire neuron that receives addi-

tional strong depolarizatory input when foreground patterns are presented. This

input usually causes the neuron to fire several milliseconds after the beginning of

5The post synaptic spike is not the only candidate for providing a learning signal, as high but
sub-threshold depolarization may also testify for the presentation of a foreground pattern. In-
deed, there is evidence that learning is triggered by high sub-threshold depolarization (Debanne
et al., 1994).

6Note however, that as proved in Appendix B, two mirror solutions can be achieved by our
analytically derive rule: The first one potentiates synapses that correspond to strong inputs,
and strongly depolarizes the target cell when rare patterns are presented. In this case output
spikes signal the presence of rare patterns. Under the mirror solution, the spikes of target
neuron signal the background pattern, leading to higher mean firing rates. This high activity
solution is considered in the literature less desirable in terms of energy consumption.

17



pattern presentation. As before, the mutual information was traced along time.

The main difference between this simulation and our previous ones was that the

target neuron was sometimes spontaneously firing even when presented with the

background pattern, and that the time of the post synaptic spike was not locked

to the end of stimulus presentation. In addition, the integrate and fire model

embodies a different behavior of the membrane leak. While the model of Eq. 1

accounts for local leaks that influences the voltage from a single input, the mem-

brane leak in the integrate and fire model depends on the membrane voltage,

which in turn depends on all converging input to the target neuron.

The external signal was supplied for a limited learning period. After this

period, learning may still occur, but the postsynaptic spikes that trigger it are

no longer supervised but controlled by inputs only. If the network has learned to

faithfully represent the presented input pattern, the target neuron would faith-

fully spike on foreground pattern presentation, and serve to keep the network at

a stable and informative state. Figure 7 traces the MI along and after learning,

showing that the system stays in the informative state even after the external

supervised learning signal is turned off.
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Figure 7: Mutual information along learning with the optimal learning rule (Eq.
5) and learning with limited supervised rule in a simulation of and integrate and
fire neuron (threshold = 55 mV, resting potential=70 mV, membrane time con-
stant = 10 milliseconds). Learning occurred whenever the target neuron fired a
spike. On the first 20000 simulation steps, a depolarizing input of 5 millivolts was
injected into the neuron if one of the foreground patterns was presented (which
occurred with probability 5%). This input sometimes resulted in a spike which
in turn initiated learning. Following this learning phase, the neuron continues to
preserve the discrimination between background and foreground patterns even in
the absence of the supervised signal.

6 Extending the model

Our above analysis derived a biologically feasible learning rule that is near optimal

when the statistics of the input spike trains obeys several limitations. The current

section considers a wider family of input spike train statistics, and discusses the

changes in the learning rule needed in order to take this statistics into account in

an optimal manner. We present three types of extensions: Correlated inputs, non

Poisson spike trains and learnable synaptic transfer functions. While all these

three aspects may occur in conjunction, we consider them here separately for the

simplicity of exposition.

19



6.1 Correlated inputs

Section 4 derived a learning rule for uncorrelated input spike trains. We now

turn to consider input cross correlations, and show how these correlation change

the covariance term of equation 7, but preserve the general structure of the spike

dependent learning rule.

Consider the case where input neurons do not fire independently but in a cor-

related manner such that their filtered spike trains Xη
1 , ..., Xη

N obey the covariance

matrix Cη
ij = Cov(Xη

i , Xη
j ). If these correlations obey the conditions discussed

in section 3.1, then the weighted sum Y =
∑

i WiX
η
i is normally distributed

f(Y |η) = N(µη, ση
2), with mean µη = 〈WXη〉 and variance ση

2 = WCη
ijW

T−µη
2.

In this case, the covariance term in Eq. 8 changes into

Cov(Y, Xi) =
∑

j

Wj Cov(Xj, Xi) (10)

=
∑

j

WjCov
(∫ 0

−T
F (t′)Sj(t

′)dt′,
∫ 0

−T
F (t)Si(t)dt

)

=
∑

j

Wj

∫ 0

−T
F 2(t)Cov[Sj(t), Si(t)]dt .

In order to take into account these correlations, the learning rule of equation 7

becomes

∆Wi = +



λ1
∑

j

Wj

∫ 0

−T
F 2(t)Cov[Sη

j (t), Sη
i (t)]dt + λ2E[Xη

i ]



 (11)

−


λ0
∑

j

Wj

∫ 0

−T
F 2(t)Cov[S0

j (t), S
0
i (t)]dt + λ2E[X0

i ]





when ξη is presented, for η = 1..M only.

When presented with the pattern η, this learning rule increases more strongly

synapses from neurons that are positively correlated with other input neurons.

More interestingly, while the first term of Eq. 11 always has a positive component

Wi

∫ 0
−T F 2(t)V ar(Si(t))dt, it may be counter-balanced with negative components

Cov(Sj(t), Si(t)), for j 6= i, and may operate to weaken the synaptic strength of

neurons which are active in foreground patterns. These effects are not unique to

Infomax learning, but also characterize maximum variance learning (PCA) and

its implementations in traditional covariance based learning (see appendix D).
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As with any learning rule that takes into account input correlations, imple-

menting the learning rule of Eq. 11 in biology requires the target neuron to

measure co-activities of its synaptic inputs. The physiological mechanisms of

such correlation dependent synaptic changes are still largely unknown, although

they may in principle be realized to some extent through non linear processing

in the dendrites (Segev & London, 2000).

6.2 Non Poisson spike trains

While the previous section discussed correlations between different inputs, we

now consider temporal correlations in the spike trains of an individual input

neuron. Let Si(t) be a point process which is no longer Poisson, but has covariance

Cov[Si(t), Si(t
′)] for all t ∈ [−T, 0]. Under these conditions the covariance term

in equation 8 changes into

Cov(Y, Xi) = WiV ar(Xi) =
∫ 0

−T

∫ 0

−T
F (t)Cov[Si(t), Si(t

′)]F (t′)dt′dt (12)

As in the case of cross correlations described in the previous section, the positive

term Cov[Si(t), Si(t)] = V ar(Si(t)) may now be counter balanced by negative

covariance terms Cov[Si(t), Si(t
′)] for t 6= t′ if spikes are anti-correlated.

As an example, consider a stationary input spike train with E(S(t)) = p and

autocorrelations Cov[S(t), S(t′)]. Focus on two points in time t and t′ = t − ∆t

and denote p(S(t′) = 1|S(t) = 1) = p′∆t. When p′∆t < p the autocorrelation is

negative, as in the case where the two spikes are within the neuronal refractory

period. With this notation, the covariance can be written as Cov[S(t′), S(t)] =

pp′∆t − p2 = pp′g(∆t), with g(∆t) = 1 − p/p′∆t. The spike-triggered learning rule

thus includes two components: First, synaptic changes induced by single input

spikes as described in section 3, and secondly, synaptic changes induced by pairs

of spikes. Spike pairs occur with probability pp′∆t and effect the synapse with

a magnitude g(∆t). The pairwise component of the learning rule can therefore

be implemented by changing the synapse by ∆Wi = F (t)g(t− t′)F (t′) whenever

a pair of spikes occur at times t and t′. The function g depends on the inputs’

statistics (its firing rate and autocorrelations) and is used by the learning rule.

Optimized learning rules can therefore be achieved when g matches the baseline
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statistics of the input. In the case of negative autocorrelations, the covariance

term and the function g(∆t) are negative, thus the first input spike may be

regarded as inhibiting the synaptic change induced by the second input spike.

What is the relation between these autocorrelation sensitive rules and STDP

observed in neural tissues? Do neural systems estimate and use autocorrelations

in the inputs to optimize their synaptic learning rule? Interestingly, while early

works focused on measuring changes in EPSP as a function of time differences

between single pre and post synaptic spikes, the effects of complex and natural

spike trains were investigated recently by (Froemke & Dan, 2002). The structure

of patterns of presynaptic spikes was found to have pronounced effects on STDP,

suggesting that synaptic plasticity is indeed sensitive to autocorrelations and

input structures. Interestingly, an input spike that preceded a pair of input-

output yielding a change EPSP, was found to have a suppressing effect on the

magnitude of STDP, as suggested by the above analysis for the case of negative

autocorrelation at short time differences.

Sensitivity to complex patterns was observed not only for presynaptic spikes

(as in the above analysis) but also for output spikes patterns. An information

maximization study of these effects therefore requires more detailed assumptions

on the nature of coding with output spikes, and exceeds the scope of the current

paper.

6.3 Learning the Synaptic Transfer Function

The above analysis focused on changes in the magnitude of synaptic efficacy. As

our model includes the shape of the synaptic transfer function, we can extend

the above analysis to derive learning rules that change not only the amplitude of

the synaptic value Wi but also the shape of the synaptic transfer function Fi(t).

This is achieved by differentiating the mutual information I(Y ; η) with respect

to Fi(t) in a similar manner to the derivation of ∂I(Y ;η)
∂Wi

, and yields

Cov(Y, Si(t)) = Cov





N
∑

j=1

Wj

∫

Fj(0 − t′)Sj(t
′), Sj(t)



 = (13)

= Cov (WiFi(0 − t)Si(t), Si(t)) = WiFi(0 − t)V ar(Si(t))

22



≈ WiFi(0 − t)E(Si(t))

Thus a learning rule that changes the synaptic transfer function contains terms

which are proportional to Fi(t). This suggests that in addition to an increase

in amplitude, the synaptic transfer function should sharpen, because large Fi(t)

values would be strengthened more than small Fi(t) values.

In biological neurons, various components effect the shape of the EPSP at

the soma. Among these are the dynamics of the receptor, the morphology of

the dendrite and spine, and the passive electrical properties of the dendritic tree.

Physiological evidence is gathered regarding activity dependent changes in these

components (see e.g. (Segal & Andersen, 2000)), but the experimental results

are far from being conclusive.

7 Discussion

The principle of information maximization was originally applied for discriminat-

ing Gaussian signals from noise (Linsker, 1992). Our analysis extends the Infomax

principle to discriminate between spatio-temporal activity patterns. The learning

task is thus to maximize the relevant information, which in our model lies in the

identity of the presented input, instead of reproducing the inputs. Introducing

temporal properties of the target neuron into the analysis (such as its synap-

tic transfer function) allows us to infer the temporal properties of the learning

rule required to maximize this relevant information. Moreover, we show how the

analytically derived learning rule is well approximated by a biologically feasible

learning rule that operates through spike-dependent plasticity. This rule requires

a limited supervisor signal, which activates learning whenever an “interesting”

event occurs, but does not require an explicit error signal. The supervision signal

is only required for a transient learning period, yielding a network that remains

at a stable performance level for long periods. Presumably, such a learning signal

may be available in the brain by “novelty detector” or reward prediction circuits

(e.g. (Schultz, Dayan, & Montague, 1997)).

What can we learn from the structure of this analytically derived learning rule

about spike-timing dependent plasticity observed experimentally? First, in our

analysis, synaptic depression operates to unlearn the statistics of the background
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activity. It is activated following the presentation of rare patterns, in order

to maintain the balance between potentiation and depression, as in traditional

Hebbian learning models (Sejnowski, 1977; Dayan & Willshaw, 1991; Chechik,

Meilijson, & Ruppin, 2001). The optimal performance is obtained when the

weight of depression is stronger than that of potentiation, (Figures 3 and 6).

This constraint is nicely explained by the model of (Song et al., 2000), where

spike time differences that lead to potentiation occur more often than chance

because input spikes contribute to the creation of output spikes. Preventing the

divergence of synaptic values requires that synaptic potentiation is balanced by

stronger depression or by neuronal level regulation of synaptic efficacies (Chechik,

Horn, & Ruppin, 2002).

Secondly, the shape of the synaptic potentiation curve is determined by the

input-output transfer function of the synapse. This yields direct experimentally

testable predictions, suggesting that neurons with fast membrane time constants,

will exhibit fast synaptic plasticity curves correspondingly. Interestingly, while

STDP was often found to be NDMA dependent (Markram et al., 1997; Zhang

et al., 1998; Bi & Poo, 1999; Feldman, 2000), the STDP potentiation window

only lasts a few tens of milliseconds while the typical time scale of NMDA recep-

tors extends to hundreds of milliseconds. Our findings suggest a computational

reasoning for this apparent mismatch, because the major contributor of input

current to excitatory cells are AMPA type channels, whose typical time scales

are on the order of a few tens of milliseconds only. The derived learning rules

combines both a weight dependent and a weight independent components. This

is in agreement with experiments which show that the change in EPSC depends

on the initial EPSC amplitude ((Bi & Poo, 1999) Fig 5.). The correlation be-

tween EPSC change and initial EPSC is negative, in that larger initial EPSCs

show smaller increase following STDP. This suggest that in this preparation the

weight dependent depression component is stronger that the weight dependent

potentiation component.

Thirdly, because synaptic depression serves to unlearn the baseline statistics

of the inputs, it achieves this goal most effectively for synaptic depression curves

that extend in time. The experimental evidence in this regard is mixed: some

preparations reveal depression curves which extend to 100-200 milliseconds, (De-
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banne et al., 1994; Feldman, 2000), while in others the time constant of both

depression and potentiation are similar and around 40 milliseconds (Zhang et al.,

1998; Bi & Poo, 1999; Yao & Dan, 2001). Moreover, the theoretical analysis

suggests that depression would be even more effective if it operates when the pre

synaptic spike occurs long before the post synaptic one (as in Figure 5C). This

effect was indeed observed in some preparations (Nishiyama, Hong, Katsuhiko,

Poo, & Kato, 2000; Feldman, 2000), but the evidence is very limited, possibly be-

cause longer time differences should be tested to observe this effect in additional

preparations.

We have chosen to focus on excitatory synapses in the above discussion but our

analytical derivation of InfoMax learning is also relevant for inhibitory synapses

(see appendix B). Applying the derivation for inhibitory synapses yields an asym-

metric learning rule in which synapses become less inhibitory if their activity is

followed by a postsynaptic spike, and is strengthened when the opposite order

holds. Such a learning rule was observed in synapses of rat cortical inter neurons

(Holmgren & Zilberter, 2001).

Finally, the analysis suggests that the shape of the synaptic transfer function

should also be plastic. EPSP shape is known to change on a short time scale (an

effect termed synaptic facilitation and depression (Markram et al., 1997; Abbott

et al., 1997)) due to depletion of synaptic vesicles. Our analysis suggests that

long term changes in EPSP shape should take place following learning, where

sharpening of EPSP should accompany synaptic strengthening.

In summary, the main predictions suggested by the model that can be ex-

perimentally tested with standard electrophysiological techniques are as follows.

First, when comparing neurons with various electrophysiological propoerties, the

STDP potentiation curve of each neuron should have a similar time constant as

its EPSPs time constants. Secondly, in addition to synaptic depression that is

observed when pre synaptic spikes follow the post synaptic spikes, weakening of

synapses is expected to be observed for presynaptic spikes that largely precede

the post synaptic spikes (e.g. by 3-4 membrane time constants). Thirdly, in

parallel with potentiation of synaptic magnitude induced by STDP, the shape of

the EPSP at the soma should sharpen.

Our analysis fails to explain several other forms of STDP such as (Dan & Poo,
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1998; Egger, Feldmeyer, & Sakmann, 1999), in which a symmetric learning rule

is observed. It is possible that a model that incorporates high order temporal

correlations in the input and output spike trains may be required to account for

these findings.

It was conjectured that STDP supports the idea that information is stored

in temporal spike patterns. It is shown here that even in a learning task in

which information is coded in the underlying firing rates, spike-timing depen-

dent learning is required for effective learning. However, natural spike trains

which trigger learning in-vivo contain complex statistical structures (Paulsen &

Sejnowski, 2000; Froemke & Dan, 2002). It thus remains an important ques-

tion to explore learning rules that maximize mutual information about naturally

structured spike trains.
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A Gradient Ascent Learning Rule

The current section derives a gradient ascent learning rule that performs local

search on the mutual information manifold. The input-output mutual informa-

tion we aim to maximize is the mutual information between the output value and

the identity of the presented pattern is defined by

I(Y ; η) = h(Y ) − h(Y |η) ; h(Y ) =
∫

f(y)log[f(y)]dy (14)

where the first term is the differential entropy of the output Y , and the second is

the differential entropy of the Y conditioned on input pattern presentation. The

conditional entropy is

h(Y |η) =
M
∑

η=0

pηh(Y |ξη) =
M
∑

η=0

pη
1

2
log(2πeση

2) (15)

and its derivative with respect to Wi is

∂h(Y |η)

∂Wi
=

M
∑

η=0

pη
1

2

1

ση
2

∂ση
2

∂Wi
(16)

To calculate the entropy H(Y ), we use the fact that the distribution of Y is a

mixture of Gaussians, each resulting from the presentation of a different pattern

f(y) =
∑M

η=0pηφη(y), and write

h(Y ) = −
∫

dy
M
∑

η=0

pηφη(y)log



p0φ0(y) +
M
∑

η=1

pηφη(y)



 = (17)

= −log(
p0√
2πσ0

)
∫

dy
M
∑

η=0

pηφη(y) −
∫

dy
M
∑

η=0

pηφη(y)
(y − µ0)

2

2σ0
2

−

−
∫

dy
M
∑

η=0

pηφη(y)

∑M
η=1pηφη(y)

p0φ0(y)
,

where the last equality relies on the fact that signal patterns are only rarely

presented (
∑M

η=1pη ≪ 1) and using the approximation log(x + ǫ) ≈ log(x) + ǫ
x
.

We now turn to differentiate each of the above three terms with regard to Wi.

For the first term we use
∫
∑M

η=0pηφη(y)dy = 1 and obtain

− ∂

∂Wi
log(

p0√
2πσ0

)
∫

dy
M
∑

η=0

pηφη(y) =
∂

∂Wi

1

2
log(σ0

2) =
1

2

1

σ0
2

∂σ0
2

∂Wi
.(18)
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For the second term we use
∫

φη(y)(y − µη)dy = 0 and obtain

∂

∂Wi

∫

dy
M
∑

η=0

pηφη(y)
ση

2

σ0
2

(y − µη + µη − µ0)
2

2ση
2

= (19)

=
M
∑

η=0

pη
∂

∂Wi

1

2

ση
2

σ0
2

+
M
∑

η=0

pη
∂

∂Wi

(µη − µ0)
2

2σ0
2

=

=
M
∑

η=0

pη

2σ0
4

(

∂ση
2

∂Wi
σ0

2 − ση
2 ∂σ0

2

∂Wi

)

+
M
∑

η=0

pη

2





∂(µη−µ0)2

∂Wi
σ0

2

σ0
4

−
(µη − µ0)

2 ∂σ0
2

∂Wi

σ0
4



 =

=
M
∑

η=1

pη
1

2

1

σ0
2

(

∂ση
2

∂Wi

− ση
2

σ0
2

∂σ0
2

∂Wi

+
∂(µη − µ0)

2

∂Wi

− (µη − µ0)
2

σ0
2

∂σ0
2

∂Wi

)

,

where the last equality results from a vanishing term for η = 0. For the third

term we use the fact that
∑M

η=1pη ≪ 1 and neglect second order terms of
∑M

η=1pη

∂

∂Wi

∫ M
∑

η=0

pηφη(y)

∑M
η=1pηφη(y)

p0φ0(y)
dy = (20)

=
∂

∂Wi

∫

p0φ0(y)

∑M
η=1pηφη(y)

p0φ0(y)
dy +

∂

∂Wi

∫

(

∑M
η=1pηφη(y)

)2

p0φ0(y)
dy ≈

≈ ∂

∂Wi
(1 − p0) = 0

These three terms together yield

∂h(Y )

∂Wi
=

1

2

1

σ0
2

∂σ0
2

∂Wi
+ (21)

+
M
∑

η=1

pη
1

2

1

σ0
2





∂ση
2

∂Wi

− ση
2

σ0
2

∂σ0
2

∂Wi

+
∂(µη − µ0)

2

∂Wi

−
(µη − µ0)

2 ∂σ0
2

∂Wi

σ0
2





Combining equations (15,18-20) while omitting the constant factor 1
2
, we ob-

tain the gradient on the mutual information manifold

∂I(Y ; η)

∂Wi

=
∂

∂Wi

h(Y ) − ∂

∂Wi

h(Y |η) ∝ (22)

∝ −
M
∑

η=1

pη
1

ση
2

∂ση
2

∂Wi

− p0
1

σ0
2

∂σ0
2

∂Wi

+
1

σ0
2

∂σ0
2

∂Wi

+
M
∑

η=1

pη
1

σ0
2

(

∂ση
2

∂Wi
− ση

2

σ0
2

∂σ0
2

∂Wi
+

∂(µη − µ0)
2

∂Wi
− (µη − µ0)

2

σ0
2

∂σ0
2

∂Wi

)
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= +
1

σ0
2

∂σ0
2

∂Wi
− p0

1

σ0
2

∂σ0
2

∂Wi
− 1

σ0
2

∂σ0
2

∂Wi

M
∑

η=1

pη
ση

2

σ0
2
− 1

σ0
2

∂σ0
2

∂Wi

M
∑

η=1

pη
(µη − µ0)

2

σ0
2

−
M
∑

η=1

pη
1

ση
2

∂ση
2

∂Wi
+

M
∑

η=1

pη
1

σ0
2

∂ση
2

∂Wi
+

M
∑

η=1

pη
1

σ0
2

∂(µη − µ0)
2

∂Wi

=
1

σ0
2

∂σ0
2

∂Wi



(1 − p0) −
M
∑

η=1

pη
ση

2

σ0
2
−

M
∑

η=1

pη
(µη − µ0)

2

σ0
2



+

+
M
∑

η=1

pη
∂ση

2

∂Wi

[

1

σ0
2
− 1

ση
2

]

+
M
∑

η=1

pη
1

σ0
2

∂(µη − µ0)
2

∂Wi

=

=
1

σ0
2

∂σ0
2

∂Wi

M
∑

η=1

pη

[

1 − ση
2

σ0
2
− (µη − µ0)

2

σ0
2

]

+

+
M
∑

η=1

pη
∂ση

2

∂Wi

[

1

σ0
2
− 1

ση
2

]

+
M
∑

η=1

pη
1

σ0
2

∂(µη − µ0)
2

∂Wi
=

where we used the fact that 1 − p0 =
∑M

η=1pη. Substituting the derivatives
1
2

∂ση
2

∂Wi
= Cov(Y η, Xη

i ) and 1
2

∂(µη−µ0)2

∂Wi
= (µη − µ0)(< Xη

i > − < X0
i >) into Eq.

22, we obtain

∂

∂Wi
I(Y ; η) =

M
∑

η=1

pηCov(Y η, Xη
i )K1

η −
M
∑

η=1

pηCov(Y 0, X0
i )K0

η + (23)

+
M
∑

η=1

pη
1

σ0
2
(µη − µ0)(< Xη

i > − < X0
i >)

where

K0
η =

ση
2 − σ0

2

σ0
4

+
(µη − µ0)

2

σ0
4

(24)

K1
η =

1

σ0
2
− 1

ση
2

.

In the case of inhomogeneous Poisson process, in which spikes in the train are

uncorrelated but their underlying rate may vary along time

Cov(Y, Xi) = Cov(
N
∑

i=1

WiXi, Xj) = Cov(WiXi, Xi) = WiV ar(Xi) (25)

= WiV [
∫ 0

t′=−T
Fτ (0 − t‘)S(t′)] = Wi

∫ 0

t′=−T
V [Fτ (0 − t‘)S(t′)]

= Wi

∫ 0

t′=−T
F 2

τ (0 − t′)V [S(t′)] ≈ Wi

∫ 0

t′=−T
F 2

τ (0 − t′)E[S(t′)]
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where in the case of exponential filter (Fτ (x) = 1
τ
exp(−x/τ)), we obtain Cov(Y, Xi) =

WiEτ/2(Xi) where Eτ (X) =
∫

exp( t−t′

τ
)S(t′)dt′.

B Mirror Fixed Points of the Learning Rule

Let W ∗ be a fixed point solution of the optimal learning of Eq. 5, that is

∂I(Y ; η)

∂Wi

|W ∗ = +
M
∑

η=1

pη

(

Cov(Y, Xη
i )K1

η (W ∗) + E(Xη
i )K2

η (W ∗)
)

(26)

−
M
∑

η=1

pη

(

Cov(Y, X0
i )K

0
η (W ∗) + E(X0

i )K2
η (W ∗)

)

= 0

Now note that both K1
η and K0

η are even functions of W , but K2
η and Cov(Y, Xi) =

Cov(WX, X) are odd functions of W . This yields

∂I(Y ; η)

∂Wi
|−W ∗ = +

M
∑

η=1

pη

(

(−Cov(Y, Xη
i ))K1

η (W ∗) + E(Xη
i )(−K2

η (W ∗))
)

(27)

−
M
∑

η=1

pη

(

(−Cov(Y, X0
i ))K0

η(W
∗) + E(X0

i )(−K2
η (W ∗))

)

=

= −∂I(Y ; η)

∂Wi

|W ∗ = 0

Therefore, any solution W ∗ has a mirror solution −W ∗ which is also a fixed point

of the dynamics.

C Pattern-Triggered Learning

The batch learning rule of of Eq. 5 can be turned into a stochastic on-line ver-

sion by replacing summation over patterns with a learning rule that modifies

the synaptic weights according to the input pattern presented at that moment.

There are two fundamentally different alternative implementations: First, chang-

ing synaptic weights triggered by presentation of all patterns

∆Wi =

{

−(λ0Cov[Y, X0
i ] + λ2E[X0

i ])
(

1
p0

∑M
η=1pη

)

when ξ0 is presented

−λ1Cov[Y, Xη
i ] + λ2E[Xη

i ] when ξη is presented, η > 0
(28)
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Or, limiting learning to follow the presentation of the foreground patterns only

∆Wi = +
(

λ1Cov[Y, Xη
i ] + λ2E[Xη

i ]
)

−
(

λ0Cov[Y, X0
i ] + λ2E[X0

i ]
)

(29)

when ξη is presented, for η = 1..M only.

These two alternatives have different consequences for on-line learning: The latter

rule (’learn on rare patterns’, Eq. 7) does not explicitly depend on the prior

probabilities pη while the former rule (’learn on all patterns’, Eq. 28) does.

The former rule thus suffers from a major drawback when the prior probabilities

are unknown or vary in time, because the system has to continuously estimate

these probabilities. If the priors pη are incorrectly estimated, strengthening and

weakening of synaptic weights goes out of balance, and synaptic values drift to

their limits, causing the neuron to lose all its discriminative power. This is similar

to saturation effects observed in traditional models of Hebbian learning such as

(Sejnowski, 1977; Dayan & Willshaw, 1991; Chechik et al., 2001). To demonstrate

this effect we have conducted the following series of experiments. We set pη to

fluctuate along time, while the learning parameters were set to the average pη

values. Figure 8 compares the above two learning rules and shows that the ’learn

on all patterns’ learning rule is sensitive to fluctuations in pη while the ’learn on

rare patterns’ rule is robust to these fluctuations. We conclude that an on-line

implementation of the batch rule should take the form of Eq. 7, where learning

is triggered by the rare patterns only.
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Figure 8: Learning patterns with fluctuating frequencies pη. The two learning
rules of equations 7 and 28 are compared, showing that learning that is triggered
on rare patterns is much more robust to such fluctuations. Fluctuating patterns
were modeled in the following way: Pattern presentation was divided to 5 cycles,
each containing 2000 presentation steps. Each cycle consisted of a period of length
L0 where only the background pattern was presented, and the remaining period
(with length Lη = 2000−L0) where the rest of the patterns are randomly chosen
for presentation such that the average probabilities pη are preserved. The ratio

B = Lη

L0

thus provides a ’burstiness’ measure, where high B values correspond to
input statistics with bursts of foreground input patterns. Information value is the
average over the last cycle containing both quiet periods and bursts. Simulations
were repeated for five different runs, and errors depict variability across these
runs.

D Maximum Output Variance

A clearer intuition into the structure of the Infomax learning rule, can be ob-

tained by comparing it with another learning rule, derived according to the cri-

terion of maximum output variance. Traditional Hebbian learning (learning by

correlation) is known to perform gradient ascent on the manifold of this target

function. This optimization criterion must be complemented with a constraint

over the weights, otherwise synaptic weights diverge (Sejnowski, 1977; Dayan &
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Willshaw, 1991). Consider therefore the following target function

V ar(Y ) − λ
∑

i

W α
i (30)

where α is commonly taken to be 1 (additive normalization) or 2 (multiplicative

normalization). Differentiating this target function with regards to Wi yields

∂

∂Wi

(

V ar(Y ) − λ
∑

i

W α
i

)

= Cov(Y, Xi) − λαW α−1
i (31)

In this learning rule all patterns strengthen synapses in a way that corresponds

to their input’s strength. Synaptic weakening is enforced through a global de-

cay term. The balance between activity-dependent input-output correlation and

normalization should yield a non divergent solution.

In contradistinction, the Infomax learning rule derived in this paper tends to

strengthen synaptic weights that correspond to strong inputs of some patterns

while decreasing the synapses of other pattern. Depression is thus achieved not

through a global competition mechanism but is input specific.
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