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Abstract

We study an equilibrium in which agents face surprise liquidity shocks and invest in liquid

and illiquid riskless assets. The random holding horizon from liquidity shocks makes the

return of the illiquid security risky. The equilibrium premium for such risk depends on the

constraint that agents face when borrowing against future income; it is insignificant without

borrowing constraint, but can be very high with borrowing constraint. Illiquidity, therefore,

can have large effects on asset returns when agents face liquidity shocks and borrowing

constraints. This result can help us understand why some securities have high liquidity premia,

despite low turnover frequency.

r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Trading financial securities requires transactions costs.1 The impact of such costs
on asset prices has been the subject of numerous empirical2 and theoretical studies.3

*Fax: 650-725-6152.

E-mail address: mhuang@stanford.edu.
1A partial list of such costs includes bid-ask spread, market-impact costs, delay and search costs, and

direct transactions fees (including brokerage commissions, exchange fees, and transactions taxes). See [6]

for more details.
2See, for example, [4,5,8,9,33]. Other related empirical studies on effects of liquidity on asset returns

[3,10,11,13,23,29].
3See, for example, [2,4,12,21,22,25,34–36]. Also see [1,24], for example, for effect of liquidity on asset

prices in the context of asymmetric information, and see [18] for a model with endogenous liquidity

correlated with productivity and investment.
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Although we now have a good qualitative understanding of the effect of
transactions costs on asset prices, existing theoretical studies have not enjoyed much
success in explaining the empirically documented large impact of transactions costs
on asset prices. Amihud and Mendelson [4] and Brennan and Subrahmanyam [9], for
example, found that a significant part of cross-sectional variations in US stock
returns can be attributed to difference in transactions costs. They show that the
liquidity-premium coefficient (defined as the ratio between the differential of
expected returns and the differential of (round-trip proportional) transactions costs
of securities with similar cash flows but different transactions costs) ranges between
1.5 and 2.4 In contrast, theoretical studies by Aiyagari and Gertler [2] (with investors
trading riskless assets for consumption smoothening while facing income shocks),
Constantinides [12] (with investors trading for portfolio rebalancing), Heaton and
Lucas [22] (with investors trading riskless and risky assets to share income risk),
Vayanos [35] and Vayanos and Vila [36] (with investors trading for life-cycle reason)
all show that investors should drastically reduce their trading of the illiquid assets
when facing transactions costs and demand only a very small liquidity premium,
with the liquidity-premium coefficient typically less than 0.2 under reasonable
parameter choices.
An important reason behind such discrepancy between theory and empirical

findings is that existing theories on transactions costs—and in fact the asset pricing
literature in general—have not yet given a quantitative explanation for the observed
high market trading volume (see, for example, [17,25,26,28,30]). Since the liquidity
premia of illiquid securities depend strongly on investors’ holding horizon over
which the transactions costs get amortized, theories that cannot account for the
observed high trading volume (i.e., investors’ high-frequency trading needs)
inevitably face difficulty in explaining the observed market liquidity premia.
Moreover, even if one takes as given the observed trading frequency in the market,

one may still find it difficult to reconcile between the market average holding horizon
and the market liquidity premia. Consider, for example, the US stock market. With
an average holding horizon of about two years, a simple method of amortizing the
round-trip transactions costs over the holding horizon yields a liquidity-premium
coefficient of 0.5, the inverse of the holding horizon. This number is still much
smaller than those estimated by Amihud and Mendelson [4] and Brennan and
Subrahmanyam [9].
Motivated by these observations, this paper develops a model of an economy in

which investors face surprise liquidity shocks and invest in liquid and illiquid riskless
assets. We find that the impact of transactions costs on asset returns in this economy
is fairly large when investors are constrained from borrowing against future income.
Our approach departs from the existing theoretical literature on effects of

transactions costs on asset prices by recognizing that some investors in the economy
do not have control over the liquidation time of their security holdings, which could

4The fact that transactions costs have large impact on asset returns is also illustrated in a study by Silber

[33] which shows that restricted (‘‘letter’’) stocks that cannot be publicly traded for 2-years sell at an

average discount of 35% below regular stocks.
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come by surprise. A household may experience surprise liquidity shocks (such as a
sudden drop in wealth or a surprise consumption need) and, facing a borrowing
constraint, must liquidate its illiquid assets. Firms have surprise investment
opportunities, but face an imperfect and costly external capital market, and
therefore hold reserves to be liquidated when such opportunities arrive. Professional
traders hold reserves so as to take advantage of certain surprise news event by
creating new portfolio positions. Fund managers worry about a sudden increase in
withdrawal, resulting in a need to liquidate some illiquid assets. In all these
situations, it may be better to model the motivation for trade by a random arrival
time of liquidation. In contrast, previous theoretical studies have assumed that the
holding period for securities is either known or controlled by the investor and
predictable.
Our analysis shows that, for investors who face liquidity shocks, the required

liquidity premium depends not only on the expected holding horizon, which
determines investors’ average frequency of trading needs, but also on the surprise
(and random) nature of such holding horizon. Although the randomness of the
holding horizon only has a small effect on the equilibrium liquidity premium in an
economy without any borrowing constraint, it has a large effect on liquidity
premium under the more realistic assumption that investors are constrained from
borrowing against future income.
The intuition behind our results can be illustrated by comparing the illiquid asset

with the (otherwise identical) liquid asset. In equilibrium, the illiquid asset should
generate higher expected (pre-transactions-costs) return to compensate its holders
for illiquidity. In a non-stochastic environment, one can use the present-discounted-
value (PDV) approach, in which the price of the illiquid asset would simply be the
price of the liquid asset adjusted for the present discounted value of transactions
costs (with the riskless rate as the discount rate), such that the net-of-transactions-

costs holding-horizon return for the illiquid asset is the riskless rate. In the economy
studied here, however, this approach no longer works because of liquidity shocks.5

Specifically, the (net-of-transactions-costs) return of the illiquid asset is now risky—
it is low (and even possibly negative) for agents who experience liquidity shocks soon
after buying it, but high for agents who experience late liquidity shocks.
The question is whether such risk of the illiquid-asset return is priced in

equilibrium. If agents can borrow against future income at any time, then their
consumption levels at liquidity shocks of different times are smooth and they do not
require significant risk premium for holding the illiquid asset. In this case, agents
demand roughly the same liquidity premium as those with a fixed holding horizon
that is equal to the expected arrival time of the liquidity shock. On the other hand,
under the more reasonable assumption that agents accumulate income over time and
cannot borrow against future income stream, the unlucky agents who suffer an early
liquidity shock also have had less time to accumulate income in preparation for the
shock. They therefore require a risk premium for holding the illiquid asset. This

5We assume that there exists no mechanism that allows for insurance against the liquidity shock risk

because of moral hazard or adverse selection problems.
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leads to a higher equilibrium liquidity premium which increases with agents’ level of
risk aversion.
Our results of potentially large liquidity premia can be helpful in attempts

to bridge the quantitative gap of liquidity premia between theoretical calculations
and empirical estimates. In particular, they can be helpful in understanding why
some securities have high liquidity premia, despite their relatively low turnover
frequency.
Our study also contributes to the vast theoretical literature on the impact of

transactions costs on investors’ portfolio policy6 by analyzing such impact for
investors who face surprise liquidity shocks.
The model is cast in a continuous-time overlapping-generations economy

with two consol bonds, one liquid and one illiquid. In order to focus on the
impact of transactions costs and liquidity shocks, we take both consols to be
riskless. Each pays dividends at a constant rate. In order to model the surprise
nature of investors’ need to liquidate, the paper uses a Poisson arrival time
to (exogenously) represent the arrival of a liquidity shock. Each investor
in the economy derives his utility from ‘‘consumption’’ at the time of liquidity
shock.
In Section 2, we specify the model and the typical investor’s control problem.

In Section 3, we consider investors who are endowed up front with a lump-sum
of wealth upon their ‘‘entry’’ into the economy, and interpret this case to be
inclusive of cases with intertemporal income but no borrowing constraints
(because investors can monetarize their future income anytime). Section 4 treats
investors who face borrowing constraint and have to rely on past income and
accumulated wealth to deal with liquidity shock. Section 5 concludes. All proofs are
in the appendix.

2. The model

We consider a continuous-time overlapping generations economy with a
continuum of agents having a total mass of 1.7 At any time, each agent faces a
constant probability per unit time, l; of experiencing a liquidity shock which, upon
arrival, will force him to liquidate his securities and exit the economy.8 The arrivals
of the liquidity shocks for all existing agents are independent Poisson times. New
agents enter the economy at a constant rate of l per unit time. Because of the law of
large numbers, agents exit at a rate of l per unit of time, leaving the economy with a
constant mass of agents.

6See, for example, [12,14–16,19,27,31,32].
7Without loss of generality, our set of agents is the unit interval. Independence across the set of agents,

and the effect of law of large numbers, are achieved by the usual devices, as in [7] or [20].
8The assumption that agents exit the economy upon a liquidity shock is made for technical simplicity.

The qualitative results in this paper do not rely on the assumption.
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2.1. Financial structure

There is a single consumption good which also serves as the numeraire. There are
two financial securities. Both are riskless consol bonds, that is, perpetuities that pay a
constant flow of consumption dividends at a rate of d per unit of time. One consol is
liquid, with a price of p per share, and no transactions costs are required for trading
it. The other is illiquid, with a price of P per share, and agents who buy or sell x

shares of it pay a proportional transactions cost totaling exP:9 No short sales are
allowed for either consol.10 The total supply of consols, both liquid and illiquid, is
normalized to 1, so that the aggregate dividend rate (from both) is d per unit of time.
The fractional supply of the liquid consol is kAð0; 1Þ: (That is, the total dividend rate
from the liquid consol is kd per unit of time.)
We will construct equilibria in which the prices of the liquid and the illiquid

consols are, respectively, constant at p and P: The dividend flow rate (per unit of
numeraire) for the liquid and illiquid consols are, respectively, r ¼ d=p and R ¼ d=P:
We assume that RXð1þ eÞr; for otherwise the liquid consol dominates the illiquid
consol. Our goal is to find and characterize the optimal investment policy of
investors and the equilibrium liquidity premium, R � r:

2.2. Preferences

Each agent has utility E½UTðCT Þ� for terminal consumption, CT ; at the random
arrival time T of that agent’s liquidity shock. Each agent has constant time-
preference rate bX0 and CRRA utility with a constant relative risk-aversion g:
That is,

UTðCTÞ ¼
e�bT C

1�g
T
1�g if ga1;

e�bT logðCT Þ if g ¼ 1:

8<
: ð1Þ

2.3. An agent’s control problem

We consider a particular agent who enters into the economy at time 0 with an
endowment W0 of initial wealth, and (exogenously specified) deterministic income at

the rate ytX0 at time t; for some y such that
R t

0 ys dsoN for all t: The agent invests

current wealth, endowed income, and dividends in the liquid and illiquid consols. Let
the processes a and A denote the agent’s holdings of the liquid and illiquid consols,
respectively. The short-sale constraint implies that aX0 and AX0: Because, in the

9The analytic tractability, as well as the economic conclusions in the paper, does not rely on the

assumption that buyers and sellers equally share the total transactions costs of 2exP:
10By imposing the prohibition against short sales, we are effectively assuming, reasonably, that short

sales are so costly that the price differential between the two securities is not at the upper bound implied by

the no-arbitrage condition, and is instead determined by investors’ equilibrium demand for the securities.

We are interested here in the determinants of the securities’ equilibrium return differential within the no-

arbitrage bounds.
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equilibrium that we examine, there is no payoff-relevant information before the
agent’s liquidity shock at time T ; we may without loss of generality take both a and
A to be deterministic. Moreover, because of the existence of non-zero transactions
costs for the illiquid consol, the agent’s cumulative volume of trade in both the liquid
and illiquid consols is (without loss of generality) finite up to any time t; for
otherwise an infinite amount of wealth would be lost in transactions costs. We
therefore can take both a and A to be of finite variation.
Taking the expectation of UTðCTÞ over the Poisson arrival time T ; the agent thus

faces the problem

max
ða;AÞ

E½UT ðCTÞ�; ð2Þ

where T has the exponential distribution with parameter l; subject to the short-sale
constraint and portfolio dynamics:11

atX0; AtX0; ð3Þ

yt dt ¼ dat þ dAt þ edLA
t þ edDA

t � rat dt � RAt dt; ð4Þ

W0 ¼ a0 þ ð1þ eÞA0; ð5Þ

Ct ¼ at þ ð1� eÞAt; ð6Þ

where LA and DA denote the cumulative value of the illiquid consol purchased and

sold, respectively, and therefore A ¼ LA � DA: Because of (6), C is deterministic, and
we may therefore re-write our problem as

max
ða;AÞ

Z
N

0

UtðCtÞe�ltl dt;

subject to (3)–(6). To ensure finiteness of the investor’s utility, we assume that bþ
l� R

1þe40:

3. Optimal policy and equilibrium: initial wealth only

In this section, we consider the extreme case in which each agent’s endowment is a
lump-sum of wealth at time zero. That is, W040 and yt ¼ 0 for all t: Agents are thus
well prepared for liquidity shocks upon their ‘‘entries’’ into the economy. We can
also think of this setup as a case in which agents do have income over time but can
monetarize their future income stream by borrowing against future income.
We first study the optimal investment policy of a single agent entering at time zero.

We later solve for the equilibrium and calculate the equilibrium liquidity premium.

11The symbol d in (4) denotes differential, not the dividend flow rate.
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3.1. An agent’s optimal policy

The problem here is to find the policy ða;AÞ that solves the maximization problem
(2)–(6), given a specification of preferences (g; b), the arrival intensity (or ‘‘hazard
rate’’) l of liquidity shocks, and the financial market parameters (e; r; and R). With
y ¼ 0; this control problem is simplified by its stationarity and admits an exact
solution.
We first derive heuristic conditions for the optimal policy. These conditions will

help us identify a candidate optimal policy. We will, of course, prove later that the
identified candidate policy is indeed optimal.
Depending on the liquidity premium, an agent may choose to hold the liquid

consol only, the illiquid consol only, or a mixed portfolio of the liquid and illiquid
consols.
Consider a candidate optimal policy of always holding, and reinvesting in, the

illiquid consol only. Consider an alternate policy that deviates from the candidate
optimal policy from time t to time t þ Dt; by investing one unit (to be thought
of as a ‘‘small’’ amount) in the liquid consol at time t and then converting the
resulting liquid consol holding back to the illiquid consol at time t þ Dt: By adopting

such a deviation, the agent’s consumption increases12 by 1� 1�e
1þe þ OðDtÞ; from the

saving of the round-trip transactions costs, if the liquidity shock arrives within
ðt; t þ DtÞ:13 If the liquidity shock arrives at s4t þ Dt; then the agent’s consumption
decreases by

1� e
1þ e

R

1þ e
� r

� �
exp

R

1þ e
ðs � tÞ

� 	
Dt þ oðDtÞ; ð7Þ

due to the lower dividends from the liquid consol holding within ðt; t þ DtÞ:14 For the
candidate policy to be optimal, the agent’s conditional expected utility must
decrease, to the first order of Dt; when he adopts the alternate policy. That is, for any
tA½0;NÞ;

Gtðe; r;RÞ � 2eU 0
tðCtÞ �

1� e
1þ e

½R � ð1þ eÞr�
Z

N

t

U 0
sðCsÞeð

R
1þe�lÞðs�tÞp0: ð8Þ

We can think of (8) as a first-order condition for optimality of ða;AÞ:

12As usual, one says that ‘‘f ðxÞ ¼ OðxÞ’’ if limx-0jf ðxÞ=xjpC for some C40; and that ‘‘f ðxÞ ¼ oðxÞ’’ if
limx-0jf ðxÞ=xj ¼ 0:

13Suppose the liquidity shock arrives at sAðt; t þ DtÞ: One unit invested at t according to the candidate

optimal policy becomes 1
1þe shares of the illiquid consol at t (after transactions costs). This will grow to

1
1þeexp½ R

1þeðs � tÞ� shares at s; which generates 1�e
1þeexp½ R

1þeðs � tÞ� ¼ 1�e
1þe þ OðDtÞ for sAðt; t þ DtÞ in revenue

after transactions costs. Under the alternate policy, one unit invested at t grows to erðs�tÞ ¼ 1þ OðDtÞ at s:

The difference is 1� 1�e
1þe þ OðDtÞ:

14 In this case, one unit invested at t according to the candidate optimal policy pays off 1�e
1þe exp½ R

1þeðs � tÞ�
at time s (see footnote 13). Under the alternate policy, one unit invested at t becomes 1

1þe exp½rDt� shares of
illiquid consols after conversion at t þ Dt; which becomes 1

1þe exp½rDt� exp½ R
1þeðs � t � DtÞ� shares of illiquid

consols at time s; with a liquidation revenue of 1�e
1þe exp½rDt� exp½ R

1þeðs � t � DtÞ� at time s: The difference

gives (7).
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Now consider a candidate optimal policy of always holding, and reinvesting in, the
liquid consol only. Consider an alternate policy that deviates from the candidate
policy by investing one unit in the illiquid consol at time t and reinvesting all of its
dividends in the liquid consol.15 By adopting such a deviation, in the event of a
liquidity shock at some time s4t; the agent’s consumption changes by16

1� e
1þ e

þ 1

1þ e

Z s

t

Rerðs�uÞ du � erðs�tÞ ¼ 1

1þ e
R � ð1þ eÞr

r
½erðs�tÞ � 1� � 2e

� 	
: ð9Þ

At the optimum, such a deviation decreases the agent’s expected utility, which
implies, for any tA½0;NÞ; the associated first-order condition of optimality for the
candidate policy is

Ht �
Z

N

t

U 0
sðCsÞ

R � ð1þ eÞr
r

½erðs�tÞ � 1� � 2e
� 	

e�lðs�tÞl dsp0: ð10Þ

Finally, if the candidate optimal policy is to invest in both the liquid and the illiquid
consols at all times, the associated first-order condition is

Gtðe; r;RÞ ¼ Ht ¼ 0; tA½0;NÞ: ð11Þ

It is worth noting that the above derivation highlights the fact that the return of
the illiquid consol is risky—it is low in the case of an early liquidity shock and high
for a late liquidity shock (see, for example, (9)), and that in equilibrium, agents’
degree of aversion toward such risk is determined by their levels of consumption at
liquidity shocks at different times (see, for example, (11)).
One can construct an agent’s optimal policy ða;AÞ from (8) to (11). According

to this optimal policy, an agent invests all of his wealth and dividends in the
liquid consol if the liquidity premium is too low; invests all of his wealth and
dividends in the illiquid consol if the liquidity premium is sufficiently high; and
maintains a constant proportion of the liquid and illiquid consols provided the
liquidity premium is within an appropriate range. This result is given in the following
proposition.

Proposition 1. Suppose W040 and y ¼ 0: The optimal policy ða;AÞ is given by

at

at þ At

¼
1 if RpRn;

yðRÞ if RAðRn;RnnÞ;
0 if RXRnn;

8><
>: ð12Þ

15We do not consider a local deviation of policy here because it is never optimal to sell the illiquid

consol before a liquidity shock.
16One unit invested at t according to the candidate policy grows to erðs�tÞ at s: One unit invested at t

according to the alternate policy generates 1
1þe shares of the illiquid consol (which pays off

1�e
1þe at s), plus the

dividends rolled over into the liquid consol between time t and s; 1
1þe

R s

t
Rerðs�uÞ du: The difference between

the two approaches gives (9).
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where

Rn ¼ r þ 2e bþ lþ gr � r

2

� �
; ð13Þ

Rnn ¼ r þ
2eðbþ lþ gr

1þe � r
2
Þ

1� 2e
1þeg

; ð14Þ

and, for RnoRoRnn;

yðRÞ ¼ 1� jðRÞ
1� e

1þejðRÞ ð15Þ

with

jðRÞ � R � Rn

R � ð1þ eÞr
Rnn � Rn

Rnn � ð1þ eÞr

� 	�1
: ð16Þ

The optimal wealth at time t; assuming no liquidity shock by that time, is

at þ At ¼

W0 expðrtÞ if RpRn;

W0
yðRÞþð1þeÞð1�yðRÞÞ exp½

yðRÞrþð1�yðRÞÞR
yðRÞþð1þeÞð1�yðRÞÞ t� if RnoRoRnn;

W0
1þe expð R

1þe tÞ if RXRnn:

8>><
>>: ð17Þ

The agent holds the liquid consol exclusively if the liquidity premium is lower than

Rn � r; and holds the illiquid consol exclusively if the liquidity premium is higher

than Rnn � r: If the liquidity premium falls between ðRn � r;Rnn � rÞ; (15) and (16)
show that the agent holds constant non-zero proportions of each consols. The illiquid-
consol proportion, 1� yðRÞ; increases with the return R of the illiquid consol.
Although the agent has, at any time, a constant expected horizon 1=l for the

liquidity shock, his optimal portfolio policy differs from that of an agent having a
fixed investment horizon. The latter is willing to mix the liquid and illiquid consols in
his holdings only if the liquidity premium is such that the rates of return for the two
consols, net of transactions costs, are exactly the same. Facing liquidity shocks at an
uncertain horizon, an agent is willing to hold a mixed portfolio of the liquid and

illiquid consols for any liquidity premium within the range ðRn � r;Rnn � rÞ: We call
this range the mixed-portfolio range, the size of which is

Rnn � Rn ¼ 4e2g
1þ e� 2eg

ðbþ l� r þ grÞ: ð18Þ

This difference between a fixed and a random investment horizon can be
understood as follows. If an agent is risk-averse and faces an uncertain investment
horizon, the net return generated by the illiquid consol is risky as it depends on the
random holding horizon. It is lower than that of the liquid consol in the case of an
early shock, and is higher in the case of a late shock. A risk-averse agent is therefore
willing to hold a mixed portfolio of the liquid and illiquid consols, given a liquidity
premium within an appropriate range, in order to balance the benefit of liquidity
(from the liquid consol), in case of an early shock, and the advantage of higher
return (from the illiquid consol) in case of a late shock. As expected, this range

M. Huang / Journal of Economic Theory 109 (2003) 104–129112



shrinks to a single liquidity premium if the agent is risk-neutral. That is, if g ¼ 0;
then, from (18), Rn ¼ Rnn:
If transactions costs are small, the size of the mixed-portfolio range is also small

because, as can be seen from (17), Rnn � Rn is of second order in e: This result is
intuitive since the liquid and illiquid consols are closer substitutes as e gets smaller.

3.2. Equilibrium for W040 and y ¼ 0

We now consider market equilibrium for the continuum, ½0; 1�; of agents. The
parameters ðW0; l; b; e; kÞ define an economy. Assuming constant r and R; which we
show below in equilibrium, all agents have the same problem (2)–(6), except for the
starting time. An equilibrium for such an economy is a pair ðr;RÞ of rates of return
such that the aggregate demand for each consol at any point of time is equal to the
aggregate supply of that consol. That is, let ai;t and Ai;t denote the demand, in

absolute value, by current agent iA½0; 1� for the liquid and illiquid consols at time t;
respectively. Then market clearing means that17Z

½0;1�
ai;t di ¼ kp and

Z
½0;1�

Ai;t di ¼ ð1� kÞP: ð19Þ

Under our conjecture that equilibrium prices are constant, as shown in
Proposition 1, the proportions of the liquid and illiquid consols in each agent’s
optimal portfolio do not depend on time, and are thus the same for all agents in the
economy. Given the finite supply of both consols, every agent must be an marginal
investor of the illiquid consol in equilibrium. The equilibrium rate of return for the

illiquid consol, R; must therefore be in ðRn;RnnÞ:
The equilibrium rates of return, r and R; are determined by the market clearing

conditions of (19). We can re-express these two market-clearing conditions as
follows. The optimal proportions of the liquid and illiquid consols for each agent are
the same as the proportion of these consols in the aggregate supply. That is,

yðRÞ ¼ kp

kp þ ð1� kÞP ¼ kR

kR þ ð1� kÞr: ð20Þ

The second condition is that the total market wealth should be the same as the total
supply of consols. Assuming that the age distribution of the population is at its
steady state at time 0, the law of large numbers implies that this distribution always
has the exponential distribution with parameter l (almost surely), or, in other words,

that the density of ages is e�lt at age t: We thus have

k
d

r
þ ð1� kÞd

R
¼
Z

N

0

ðat þ AtÞe�ltl dt

¼ lW0

ðl� rÞyðRÞ þ ½ð1þ eÞl� R�½1� yðRÞ�: ð21Þ

17We mean (19) to hold almost surely, in the sense of the law of large numbers, as discussed in

footnote 7.
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Eqs. (20) and (21), combined with (15) and (16), determine the equilibrium rates of
return. It can be shown that there exists some ðr;RÞ that satisfies (15), (16), (20), and
(21). The conjectured equilibrium is therefore valid.
The absolute magnitude of the rates of return r and R are relatively un-

interesting because they are determined to a large extent by the exogenously specified
aggregate dividend flow rate, d; and by the investors’ aggregate endowment, W0: The
liquidity premium R � r does not, however, depend on d and W0 given r; it depends
only on the relative supply of the two consols, investors’ preferences, and the
frequency of liquidity shocks. We thus take r as given and characterize the liquidity
premium.
Given r; the solution for R is given by (16) and (20). Without solving for R

explicitly, we note that, since R must be bounded by Rn and Rnn;

2 bþ lþ gr � r

2

� �
o

R � r

e
o

2

1� 2e
1þeg

bþ lþ gr

1þ e
� r

2

� �
:

If all investors are risk-neutral, then the equilibrium liquidity-premium co-
efficient is

R � r ¼ 2eðbþ l� r=2Þ:

The liquidity premium is higher if investors are risk-averse. The difference, to the
first order of e; is 2egr; which is small for typical parameters. For example, if e ¼ 1%
and r ¼ 4%; then an increase in g from 0 to 1 increases the equilibrium liquidity
premium R � r by about 2egr ¼ 8 basis points.
The small impact of risk-aversion on the liquidity premium can be understood as

follows. If an agent has an up-front endowment at time 0 and no income over time
(or if he has intertemporal income but faces no borrowing constraints), then his
consumption at an early liquidity shock differs from that at a late liquidity shock
only by the amount of interest income, which is small. Such agents only demand a
very small risk premium for holding the illiquid asset. In fact, for reasonable
parameters (with b and r much smaller than l), the liquidity premium is close to 2el;
which is roughly the liquidity premium that one would obtain if one uses the PDV
approach.
The impact on the liquidity premium of the relative supplies of the liquid and

illiquid consols, k and 1� k; is only of second order. This is because, with only a
lump-sum initial wealth endowment, all investors are marginal investors in the
illiquid consol. A change in the relative supplies of the liquid and illiquid consols
does not change the marginal investor.
More realistically, however, we expect that investors in the economy have different

degrees of readiness for liquidity shocks and have an incentive to accumulate over
time a wealth reserve in preparation for the shock. Moreover, agents are constrained
from borrowing against future income. In the next section, we show that the impact
of liquidity shocks on the liquidity premium can be quite large after we take these
factors into account.
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4. Optimal policy and equilibrium: intertemporal income flow

In this section, we assume that agents have steady income over time but cannot
borrow against their future income. We introduce heterogeneity of agents’ readiness
for liquidity shocks by assuming that agents enter the economy with no initial
endowment, but with an (exogenously specified) deterministic income flow. That is,
we now take the case of W0 ¼ 0 and y40: We will show that, in equilibrium, agents
demand risk premium for holding the illiquid asset, and the liquidity premium can be
quite large.
As before, we first study a given agent’s problem, then characterize market

equilibrium.

4.1. Necessary and sufficient conditions for the optimal policy

We first derive the heuristic conditions for the optimal policy based on intuition
and simple perturbation arguments, and then prove that these conditions are both
necessary and sufficient for optimality.
When agents face a random holding horizon due to liquidity shocks, the net

(annualized) return on the illiquid asset is risky—it is low in the case of an early
liquidity shock, but high for a late liquidity shock. For the setup considered in this
section, an agent builds up wealth reserve over time and is constrained from
borrowing against his future income. He, therefore, has less to consume in the case of
an early liquidity shock than in a late liquidity shock. Because of this undesirable
positive correlation between his consumption level and the return on the illiquid
asset, the agent is reluctant to hold the illiquid asset without a sufficient level of
liquidity premium.
Moreover, for a given level of liquidity premium, a ‘‘younger’’ agent will find

the illiquid asset more undesirable than an ‘‘older’’ agent. This is because the
younger agent has accumulated less wealth reserve, and the asymmetry between
his consumption level at an early liquidity shock and that in a late liquidity
shock is more severe than that of an older agent. Therefore, for a given liquidity
premium, we expect that an agent is more likely to choose the liquid consol
early in his ‘‘life.’’ Depending on the liquidity premium, the agent may
switch to the illiquid consol after having built up ‘‘sufficient’’ reserves. So we
search for the agent’s optimal policy from within the class of policies with the

following property: There exist tn and tnn; with 0ptnotnnpN; such that

the agent holds only the liquid consol for tptn; holds the liquid consol and

accumulates the illiquid consol for tAðtn; tnnÞ; and holds only the illiquid consol for

tXtnn: That is,

At ¼ 0; tptn;

at40;At40; tAðtn; tnnÞ;
As � At40; tnptosptnn;

at ¼ 0; tXtnn:

8>>><
>>>:

ð22Þ
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Note that, between tn and tnn; the agent holds a mixed portfolio in order to achieve
an optimal balance between their need for short-term liquidity and long-term yield,
which is the same reason behind the mixed-portfolio policy discussed in Section 3.1.
We now derive heuristic conditions of optimality for such a policy. Consider an

agent with an optimal policy ða;AÞ satisfying (22). At any tXtnn; the agent derives
less expected utility if he deviates from the above policy by investing one unit in the
liquid consol and then converting the resulting liquid consol investment back to the
illiquid consol at time t þ Dt: This implies, from the same argument in Section 3.1
leading to (8), the first-order condition

Gtðe; r;RÞp0; tXtnn: ð23Þ

At any tAðtn; tnnÞ; the agent is marginally indifferent between investing one unit in
the illiquid consol, and investing one unit in the liquid consol and then converting it

back to the illiquid consol at time t þ DtAðtn; tnnÞ: This implies that
Gtðe; r;RÞ ¼ 0; tAðtn; tnnÞ: ð24Þ

Now consider any time totn: The agent derives less expected utility if he deviates
from the above policy by investing one unit in the illiquid consol at t; rolling over its
dividends into the liquid consol until tn; and then converting all liquid holdings at tn

and all dividend payoffs after tn into the illiquid consol. With this deviation, the
agent’s consumption upon liquidity shock at time s changes by18

DCs ¼

1

1þ e
R � ð1þ eÞr

r
erðs�tÞ � 1

 �

� 2e
� 	

if sptn;

1� e

ð1þ eÞ2
R � ð1þ eÞr

r
½erðtn�tÞ � 1�e

R
1þeðs�tÞ

if s4tn:

8>>><
>>>:

ð25Þ

Optimality implies, for any totn; the first-order condition

Kt �
Z tn

t

U 0
sðCsÞ

R � ð1þ eÞr
r

½erðs�tÞ � 1� � 2e
� 	

e�lðs�tÞl ds

þ 1� e
1þ e

R � ð1þ eÞr
r

½erðtn�tÞ � 1�
Z

N

tn
U 0

sðCsÞe
R
1þeðs�tnÞ

e�lðs�tÞl dsp0: ð26Þ

The heuristic first-order conditions (23)–(26) are necessary for optimality of a
policy ða;AÞ satisfying (22). It turns out that conditions (22)–(26) are also sufficient
conditions for optimality. The result is stated below and proved in the appendix.

18 If the proposed candidate policy is optimal, then it is marginally optimal to invest one unit in the

liquid consol at t; roll over dividends into the liquid consol before tn; and invest only in the illiquid consol

after tn: Under such a proposed policy, one unit invested at t grows to erðs�tÞ at any time sptn; becomes
1

1þee
rðtn�tÞ shares of the illiquid consols at tn; and pays off 1�e

1þee
rðtn�tÞ exp½ R

1þeðs � tnÞ� at any time s4tn:Under

the alternate policy, however, one unit invested at t becomes, at any time sptn; 1
1þe shares of the illiquid

consol (which pays off 1�e
1þe), plus, from the dividends rolled over into the liquid consol between time t and s;

1
1þe

R s

t
Rerðs�uÞ du: At s4tn; the total illiquid consol holding is 1

1þe exp½ R
1þeðs � tnÞ� þ R

ð1þeÞ2r
½erðtn�tÞ �

1� exp½ R
1þeðs � tnÞ�; which, when multiplied by 1� e; gives the liquidation revenue at time s4tn: The

difference between the two policies gives Eq. (25).
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Lemma 1. A policy ða;AÞ of the form of (22) is optimal if and only if it satisfies

(23)–(26).

For the general case with y40; the necessary and sufficient conditions for the
optimal policy, (23)–(26), are difficult to solve analytically since they are a
continuum collection of integral equations.19 Fortunately, for special cases with
‘‘small’’ transactions costs (in a sense to be made precise), we can solve (23)–(26) to
obtain the optimal policy. This solution, presented in Section 4.2, allows us to solve
for, in Section 4.3, the equilibrium for cases with small transactions costs. The
equilibrium liquidity-premium coefficient, which represents the impact of transac-
tions costs on asset prices after all, can still be analyzed and calculated, which we do
in Section 4.4. Luckily, the limited analytical tractability still allows us to obtain
most of the economics in our model.

4.2. The optimal policy for small transactions costs

For analytical tractability, we consider the limit of an agent’s optimal policy as
e-0: In this limit, an agent’s control problem is interesting only if R � r-0 as well.
Therefore we have to consider a sequence of economies defined by a sequence
fðen; rn;RnÞg:We first solve for an agent’s limiting optimal control solution, as en-0;

rn-r40; and Rn�r
2en

-K40: This solution depends on the liquidity-premium

coefficient K :
As the agent builds up a wealth reserve, he becomes less concerned about the

riskiness of the returns of the illiquid asset. Intuitively, we expect that his optimal
policy takes the form of (22). For the nth economy, defined by ðen; rn;RnÞ; let Cn

t ¼
an

t þ ð1� eÞAn
t denote the agent’s consumption, according to his optimal policy, at

time t: As n-N; for any tX0; we can show (see the appendix)

Cn
t -CN

t �
Z t

0

yse
rðt�sÞ ds ð27Þ

and

Gtðen; rn;RnÞ
en

-GN

t � 2U 0
tðCN

t Þ � ð2K � rÞ
Z

N

t

U 0
sðCN

s Þe�ðl�rÞðs�tÞ ds: ð28Þ

This indicates that, if the agent’s optimal policy is indeed of the form of (22), then,

for g40; the time period, ðtnn ; tnnn Þ; of a mixed portfolio shrinks to a single point as

n-N; because GN

t ¼ 0 holds for at most one tX0: We thus expect that, for a

sufficiently small e and sufficiently large liquidity premium coefficient, the agent
holds a mixed portfolio only for a short-time period, holds only the liquid consol
before this time period, and holds only the illiquid consol after this time period. The
following proposition confirms this intuition. Two of our results will use the
following technical regularity condition, which ensures that an agent’s current and

19 If y ¼ 0; an agent’s control problem is stationary, and this continuous set of equations collapse into a

single equation, which is why we can obtain an explicit analytic solution in Proposition 1.
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future incomes are less important, relative to the wealth reserve, as his size of the
wealth reserve increases.

Assumption 1. The income rate process y is strictly positive, differentiable, and
satisfies

d

dt

ytR t

0 yserðt�sÞ ds

" #
o0 for all t: ð29Þ

Proposition 2. Consider a sequence of economies defined by fðen; rn;RnÞg; with

en-0; rn-r and
Rn � rn

2en

-K40 as n-N: ð30Þ

(i) If KoK0 � bþ lþ gr � r=2; then there exists some N1 large enough that, for

any nXN1; an agent in the nth economy holds only the liquid consol throughout.
(ii) Under Assumption 1, if K ¼ K0; then for any time %tAð0;NÞ; there exists some

N240 large enough that, in any economy n4N2; an agent holds only the liquid

consol for any time to%t:
(iii) Under Assumption 1, if K4K0; then there exists a time tAð0;NÞ such that, for

any dAð0; tÞ; there exists some N340 large enough that in any economy n4N3;
an agent holds the liquid consol exclusively for any time tot� d; and holds only

the illiquid consol for any time t4tþ d: Moreover, t is given byZ
N

0

CN

tþt

CN

t

� ��g

e�ðbþl�rÞt dt ¼ 2

2K � r
; ð31Þ

where CN

t is defined by (27).

4.3. Equilibrium with small transactions costs

With the above solution of the optimal policy, we now consider the equilibrium
formed by the continuum, ½0; 1�; of agents in the limit of e-0: An agent entering at
time s has future income yt at time t þ s; where the process y is the same for all
agents. We consider a sequence of economies defined by feng; and define an
equilibrium in the nth economy as two rates of returns, rn and Rn; such that the
aggregate demand for each consol at any point of time is equal to the aggregate
supply of that consol, in the sense of (19). We again conjecture that, for any n; in the
equilibrium of the nth economy, the prices of the liquid and illiquid consols remain
constant over time, and therefore that the rates of return of the two consols are
constant over time.
We begin by constructing the equilibrium for the limit economy. Let r denote the

equilibrium rate of return (in the limit economy) of the liquid consol and let K
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denote the equilibrium liquidity-premium coefficient (in the limit economy). The
total market wealth is equal to the total endowment in the limit economy, which
implies, again using the law of large numbers, that

d

r
¼
Z

N

0

CN

t e�ltl dt ¼ l
l� r

Z
N

0

yte
�lt dt; ð32Þ

where we have again assumed that the age distribution of the population is at its
steady state (exponential density) at time 0.
Based on Proposition 2, we conjecture that there exists some t40 such that

agents in the limit economy hold only the liquid consol before ‘‘age’’ t and hold
only the illiquid consol after ‘‘age’’ t: The fraction of the total market wealth held
by agents with age less than t is equal to the fractional supply of the liquid consol
k: That is,Z t

0

CN

t e�ltl dt ¼ k

Z
N

0

CN

t e�ltl dt; ð33Þ

where CN

t is given by (27). The equilibrium liquidity premium coefficient K is then

related to t by (31) in Proposition 2.
The above conjecture can be verified. We can show that the liquidity-premium

coefficient for small e is indeed close to the solution for K given by (33) and (31).

Proposition 3. Suppose that W0 ¼ 0 and that Assumption 1 holds. Let rn and Rn denote

the equilibrium rates of return on the liquid and illiquid consols, respectively, in the nth

economy with transactions cost coefficient en: Then

lim
n-N

rn ¼ r and lim
n-N

Rn � rn

2en

¼ K ;

where r is given by (32), and

K ¼ r

2
þ
Z

N

0

CN

tþt

CN

t

� ��g

e�ðbþl�rÞt dt

� 	�1
ð34Þ

with t given by (33).

We again choose r exogenously, since it depends to a large extent on the
exogenously chosen parameters d and y through (32).

4.4. Discussion and numerical calculation

With the above characterization of the equilibrium with small transactions costs,
we now look at how the liquidity-premium coefficient depends on various economic
factors.
First, the liquidity-premium coefficient increases with the agents’ common risk-

aversion coefficient g: This is reasonable since part of the liquidity premium is the
risk premium that agents require for holding the illiquid asset.
Secondly, the liquidity-premium coefficient increases as the relative supply, k; of

the liquid consol decreases. This is again reasonable since, as the liquid consol supply
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decreases, the marginal holders of the illiquid consol have had less time to
accumulate his wealth reserve and face a more uneven future income for liquidity
shocks at different times, and thus demand a higher risk premium for holding the
illiquid consol. This effect disappears if agents are risk-neutral. That is, if g ¼ 0; the
liquidity-premium coefficient does not depend on the liquid consol supply.
Both of these effects can be illustrated by a numerical example with a constant

income flow, yt ¼ y0: For the limiting economy (with e-0) under this specification,
we have

CN

t ¼ y0

r
½ert � 1�; ð35Þ

and the ‘‘age’’ of the marginal agent for the illiquid consol, t; is determined, after
simplifying (33), by

k ¼ 1þ l� r

r � d
e�ðl�dÞt � l� d

r � d
e�ðl�rÞt: ð36Þ

The equilibrium liquidity-premium coefficient can then be calculated from (34) and
(36). In Fig. 1, we present the numerical result for the following choice of
parameters: l ¼ 0:5 (so that the expected arrival time of 1=l matches the historical
average holding time of securities traded on the New York Stock Exchange, which is
about 2 years), b ¼ 0:05; and r ¼ 5%: The liquidity-premium coefficient is calculated
for all k values and for the relative risk aversion (RRA) coefficient g in the range
between 0 and 3.
As Fig. 1 shows, the liquidity premium depends strongly on the relative supplies of

the liquid and illiquid securities and on the risk-aversion of investors. It increases as
the supply of the liquid asset goes down and as agents’ risk aversion goes up.

Fig. 1. The liquidity-premium coefficient, K; as a function of the total supply of the liquid asset. The four

lines, from top to bottom, correspond to, respectively, different relative risk aversion coefficients (RRA) of

g ¼ 3; g ¼ 2; g ¼ 1; and g ¼ 0: For other parameters, we have: l ¼ 0:5; r ¼ 0:05; and b ¼ 0:05:
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Quantitatively, the liquidity-premium coefficient in our economy is much larger
than that calculated under the PDV approach in which the price of the illiquid consol
would simply be the price of the liquid consol adjusted for the present discounted
value of all expected future transactions costs incurred by the marginal holder of the
illiquid consol, with the riskfree rate as the discount rate (see, for example, [4]). If
agents are risk-neutral, then our result is the same as that from the PDV approach,
with a liquidity-premium coefficient of lþ b� r=2 ¼ 0:525: In general, however, the
PDV approach tends to underestimate the equilibrium liquidity premium when
agents are risk-averse, face liquidity shocks, and are restricted from borrowing
against future income.
We should also note that the liquidity premium obtained under the PDV approach

is approximately the same as that obtained by assuming that agents have a fixed
holding horizon of 1=l: The liquidity-premium coefficient generated by the latter
approach is roughly l; which is 0.5 in our numerical example.20 So both of these
approaches ignore the risk premium that agents demand for holding the illiquid
asset, and therefore underestimate the required liquidity premium.
Our result can be helpful in understanding why market liquidity premium is quite

high despite the fact that the market average holding horizon is relatively long. As
discussed previously, given that the US stock market’s average holding horizon is
about 2 years, a simple PDV-based calculation would give KE0:5; which is much
smaller than those estimated by Amihud and Mendelson [4] and Brennan and
Subrahmanyam [9] (between 1.5 and 2). Our result shows that investors, when facing
liquidity shocks and being constrained from borrowing against future income, may
indeed require a high liquidity premium. Of course, the highly stylized nature of this
model does indeed limit the strength of this conclusion, but our paper nonetheless
points to the importance of taking into account of liquidity shocks and borrowing
constraints when we try to reconcile between the observed holding horizons and
liquidity premia of securities in the market.

5. Conclusion

There is a gap between the empirical and theoretical literature on the effect of
transactions costs on asset returns. While empirical studies have shown that
transactions costs have a large effect on stock returns, theoretical studies generally
predict only a small effect. This paper takes a small step in bridging such a gap by
studying an equilibrium in which agents face surprise liquidity shocks and invest in
liquid and illiquid riskless assets.
When investors face a random holding horizon due to liquidity shocks, the

realized (net-of-transactions-cost) return of a riskless illiquid security can still be
risky. In equilibrium, the required premium for bearing such risk depends on the

20For the technical setup in our model, the exact formula for the liquidity-premium coefficient

demanded by an investor with a fixed horizon of T is shown by Vayanos and Vila [36] to be K ¼
0:5rð1þ e�rT Þ=ð1� e�rT Þ:
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constraint that agents face when borrowing against future income; it is insignificant
without borrowing constraint, but can be very high with borrowing constraint.
Illiquidity, therefore, can have large effects on asset returns when investors face
liquidity shocks and borrowing contraints. Specifically, equilibrium liquidity
premium can be much higher than that demanded by investors with a fixed
investment horizon that is equal to the expected arrival time of a liquidity shock. Our
result can be helpful in understanding why some securities have high liquidity
premia, despite their relatively low turnover frequency.
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Appendix A. Proofs of lemmas and propositions

This appendix contains proofs for all the lemmas and propositions. We first define
the set of feasible policies and then make some technical observations.
First, we note that it is never optimal for any agent to sell the illiquid consol prior

to a liquidity shock since doing so amounts to paying the transactions costs earlier
and earning less dividends. We therefore restrict out attention to policies with
increasing A: A policy ða;AÞ is feasible if it satisfies (3)–(5) and A is non-decreasing.
Secondly, from (3) to (5), it can be shown that all feasible policies satisfy the
following feasibility conditions:

d0 þ ð1þ eÞD0 ¼ 0; ðA:1Þ

d½e�rt½dt þ ð1þ eÞDt�� ¼ e�rt½R � ð1þ eÞr�Dt dt ðA:2Þ

and

lim
e-0
R-r

Ct ¼ lim
e-0
R-r

ðat þ AtÞ ¼ CN

t � W0e
rt þ

Z t

0

yse
rðt�sÞ ds: ðA:3Þ

We next prove Lemma 1, which can be used to establish Proposition 1.

Proof of Lemma 1. The necessity of conditions (23)–(26) for the optimality of a
policy ða;AÞ of the form of (22) was shown in their derivation. We now show that
such a policy must be optimal by proving that no other feasible policy can produce a
higher expected utility.
Let ða;AÞ; with consumption C ¼ a þ ð1� eÞA; denote a policy that is of

the form of (22) and satisfies (23)–(26). Consider any other feasible policy
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ða þ d;A þ DÞ with consumption C þ x ¼ C þ dþ ð1� eÞD: Using the concavity
of Ut; we haveZ

N

0

UtðCt þ xtÞe�ltl dt �
Z

N

0

UtðCtÞe�ltl dt

p
Z

N

0

U 0
tðCtÞ½dt þ ð1� eÞDt�e�ltl dt ðA:4Þ

¼ Q1 þ Q2 þ Q3 þ Q4; ðA:5Þ
where

Q1 �
Z tn

0

U 0
tðCtÞ½dt þ ð1þ eÞDt�e�ltl dt; ðA:6Þ

Q2 � �
Z tn

0

U 0
tðCtÞð2eDtÞe�ltl dt; ðA:7Þ

Q3 �
Z

N

tn
U 0

tðCtÞ
1� e
1þ e

ðdt þ ð1þ eÞDtÞ
� 	

e�ltl dt; ðA:8Þ

Q4 �
Z

N

tn
U 0

tðCtÞ
2e

1þ e
dt

� 	
e�ltl dt: ðA:9Þ

Integrating (A.6) and (A.10) by parts and using the feasibility conditions for ða;AÞ
and ða þ d;A þ DÞ; we have

Q1 �
Z tn

0

Z tn

t

U 0
sðCsÞe�ðl�rÞsl ds

" #
e�rt½R � ð1þ eÞr�Dt dt; ðA:10Þ

Q3 ¼¼ Q5 �
1� e
1þ e

Z
N

tn

R

1þ e
� r

� � Z
N

t

U 0
sðCsÞe�lse

R
1þeðs�tÞl ds

� 	
dt dt; ðA:11Þ

where

Q5 �
1� e
1þ e

½dtn þ ð1þ eÞDtn �
Z

N

tn
U 0

tðCtÞe�lte
R
1þeðt�tnÞl dt: ðA:12Þ

Combining (A.9) and (A.11),

Q3 þ Q4 � Q5 ¼
1

1þ e

Z
N

tn
Gtðe; r;RÞdte

�ltl dt; ðA:13Þ

with Gt defined in (8).

If tn ¼ 0; we have Q5 ¼ Q1 þ Q2 ¼ 0: If ða;AÞ satisfies (22)–(26), then Gtðe; r;RÞ ¼
0 for tA½0; tnnÞ; Gtðe; r;RÞp0 for tXtnn; and dtX0 for tXtnn: We thus have
Gtðe; r;RÞdtp0 for all t and Q1 þ Q2 þ Q3 þ Q4p0: The lemma is then proved for

tn ¼ 0:
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If tn40; applying feasibility conditions of ða;AÞ and ða þ d;A þ DÞ to (48), we
have

dtn þ ð1þ eÞDtn ¼ ½R � ð1þ eÞr�ertn
Z tn

0

Dte
�rt dt: ðA:14Þ

Substituting (A.14) into (A.12), then adding (A.7), (A.10), and (A.12) together, we
have

Q1 þ Q2 þ Q5 ¼ �
Z tn

0

Lt Dte
�ltl dt; ðA:15Þ

where

Lt � 2eU 0
tðCtÞ � ½R � ð1þ eÞr�

Z tn

t

U 0
sðCsÞe�ðl�rÞðs�tÞ ds

� 1� e
1þ e

½R � ð1þ eÞr�erðtn�tÞ
Z

N

tn
U 0

sðCsÞe
R
1þeðs�tnÞ

e�lðs�tÞ ds: ðA:16Þ

We define, for totn;

%Kt ¼ �
Z tn

t

Lse
�lsl ds: ðA:17Þ

Integrating (A.15) by parts, we have

Q1 þ Q2 þ Q5 ¼ D0 %K0 þ
Z tn

0

%Kt dDt: ðA:18Þ

Expanding (A.17) into three terms by using (A.16), exchanging the order of
integration for the second term, integrating the third term, and comparing with (26),
we have

%Kt ¼ e�ltKt: ðA:19Þ

Finally, substituting (A.19) into (A.18), and adding up (A.13) and (A.18),

Q1 þ Q2 þ Q3 þ Q4

¼ K0D0 þ
Z tn

0

e�ltKt dDt þ
1

1þ e

Z
N

tn
Gtðe; r;RÞ dte

�ltl dt: ðA:20Þ

If ða;AÞ is of the form of (22) with tn40; then At ¼ 0 for totn and at ¼ 0 for tXtnn:
This implies that D0X0 and dtX0 for tXtnn: If, moreover, conditions (23)–(26) are
met, then

Q1 þ Q2 þ Q3 þ Q4p0: ðA:21Þ

The lemma is thus proved by (A.4) and (A.21). &

Lemma 1 is used to show that the candidate policy in Proposition 1, of the form in
(22), is indeed optimal.
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Proof of Proposition 1. If RpRn; the candidate policy is given by At ¼ 0 and Ct ¼
at ¼ W0 expðrtÞ; for all t: This policy is of the form of (22), with tn ¼ tnn ¼ N; and
for which we have

Kt ¼
lW

�g
0 e�ðbþgrÞtðR � RnÞ

ðbþ lþ gr � rÞðbþ lþ grÞp0: ðA:22Þ

This policy therefore satisfies (23)–(26) and is optimal by Lemma 1.

If RXRnn; the candidate policy is given by (12) and (17), with at ¼ 0 for all t: It is
again of the form of (22), with tn ¼ tnn ¼ 0; and, for all t;

Gtðe; r;RÞ ¼ �U 0
tðCtÞ

ð1þ e� 2egÞðR � RnnÞ
ð1þ eÞðbþ lÞ þ gR � R

p0: ðA:23Þ

This policy ða;AÞ therefore satisfies (23)–(26), and is optimal by Lemma 1.

If RAðRn;RnnÞ; the candidate policy in (12) and (17) is of the form of (22), with

tn ¼ 0 and tnn ¼ N: From (8), we have Gtðe; r;RÞ ¼ 0 for all t: So this policy satisfies
(23)–(26), and is optimal by Lemma 1. &

Proof of Proposition 2. If KoK0; then there exists a N1 such that, for any nXN1;
Rn � rno2K0en ¼ Rn

n � rn; where Rn
n is defined as in (13) for the nth economy.

Lemma 1 then implies that agents in the nth economy hold only the liquid consol.
If K4K0: We first show that, for any d40; there exists N3 such that, for any

n4N3; agents in the nth economy always find it optimal to hold only the illiquid
consol for any time after tþ d; regardless of their policy before time tþ d: Let
ðaðtþdÞ�;AðtþdÞ�Þ denote an agent’s (non-negative) holdings immediately before time

tþ d: Using a superscript n to denote the nth economy, our candidate policy ðan;AnÞ
is

an
t ¼ 0;

An
t ¼ ½

an
ðtþdÞ�
1þen

þ An
ðtþdÞ��e

Rn
1þen

ðt�t�dÞ þ
R t

tþd
ys

1þ en

e
Rn
1þen

ðt�sÞ
ds;

8<
: tXtþ d:

Consider any other feasible policy ðan þ dn;An þ DnÞ for tXtþ d: Using the
concavity of Ut;Z

N

tþd
UtðCn

t þ xn
t Þe�ltl dt �

Z
N

tþd
UtðCn

t Þe�ltl dt

p
Z

N

tþd
U 0

tðCn
t Þ½d

n
t þ ð1� enÞDn

t �e�ltl dt

¼ Qn
3 þ Qn

4; ðA:24Þ

where

Qn
3 ¼

Z
N

tþd
U 0

tðCn
t Þ

1� en

1þ en

ðdn
t þ ð1þ enÞDn

t Þ
� 	

e�ltl dt; ðA:25Þ

Qn
4 ¼

Z
N

tþd
U 0

tðCn
t Þ

2en

1þ en

dn
t

� 	
e�ltl dt: ðA:26Þ
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Applying feasibility conditions and integrating by parts, we have

Qn
3 þ Qn

4 ¼
1

1þ en

Z
N

tþd
Gtðen; rn;RnÞ dn

t e�ltl dt; ðA:27Þ

where

Gtðen; rn;RnÞ ¼U 0
tðCn

t Þ 2en �
1� en

1þ en

½Rn � ð1þ enÞrn�
�



Z

N

t

U 0
sðCn

s Þ
U 0

tðCn
t Þ

e
ð Rn
1þen

�lÞðs�tÞ
ds

	
:

As n-N;

lim
n-N

Gtðen; rn;RnÞ
2en

¼ U 0
tðCN

t Þ 1� x � r

2

Z
N

0

CN

tþs

CN

t

� ��g

e�ðbþl�rÞt dt

� 	
: ðA:28Þ

Condition (29) implies that

@

@t

CN

tþs

CN

t

� �
o0; ðA:29Þ

which, combined with (31), implies that the limit in (A.28) is strictly negative for any
t4t: This result, together with (A.24) and (A.27), proves our claim for the case of
K4K0 and tXtþ d:
Continuing for the case of K4K0; we show that for any dAð0; tÞ; there exists N3

such that, for any nXN3; agents in the nth economy find it optimal to hold only the
liquid consol for any time before t� d: We do so by proving that, for any given

feasible policy ð %an; %AnÞ which has %An
t40 for some tot� d; the following revised

policy, ðan;AnÞ; is strictly utility enhancing:

An
t ¼ 0; an

t ¼
R t

0
yse

rnðt�sÞ ds if tot� d;
an

t

an
t þ An

t

¼ %an
t

%an
t þ %An

t

� yn
t if tXt� d:

8><
>: ðA:30Þ

Let dn ¼ %an � an and Dn ¼ %An � An: Using the concavity of Ut again,Z
N

0

UtðCn
t þ xn

t Þe�ltl dt �
Z

N

0

UtðCn
t Þe�ltl dt

p
Z

N

0

U 0
tðCn

t Þ½d
n
t þ ð1� enÞDn

t �e�ltl dt

¼ *Qn
1 þ *Qn

2 þ *Qn
3;

where

*Qn
1 ¼

Z t�d

0

U 0
tðCn

t Þ½d
n
t þ ð1þ enÞDn

t �e�ltl dt; ðA:31Þ

*Qn
2 ¼

Z t�d

0

U 0
tðCn

t Þð2enDn
t Þe�ltl dt; ðA:32Þ
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*Qn
3 ¼

Z
N

t�d
U 0

tðCn
t Þ½d

n
t þ ð1� enÞDn

t �e�ltl dt: ðA:33Þ

Integrating by parts and applying feasibility conditions, we have

*Qn
1 ¼

Z t�d

0

Z t�d

t

U 0
sðCn

s Þe�ðl�rnÞsl ds

� 	
e�rnt½Rn � ð1þ enÞrn�Dn

t dt: ðA:34Þ

For the term *Qn
3; from the feasibility conditions, we can show

dn
t þ ð1� enÞDn

t ¼ ½dn
t�d þ ð1þ enÞDn

t�d�ernðt�tþdÞ þ oðenÞ; tXt� d ðA:35Þ
and

dn
t�d þ ð1� enÞDn

t�d ¼ dn
ðt�dÞ� þ ð1þ enÞDn

ðt�dÞ� þ oðenÞ: ðA:36Þ

Substituting (A.36) into (A.35) and then substituting (A.35) into (A.33),

*Qn
3 ¼ ½dn

ðt�dÞ� þ ð1þ enÞDn
ðt�dÞ��

Z
N

t�d
U 0

tðCn
t Þernðt�tþdÞe�ltl dt þ oðenÞ: ðA:37Þ

Substituting (A.14), with tn ¼ ðt� dÞ�; into (A.37), and then summing up (A.37)
with (A.32) and (A.34),

*Qn
1 þ *Qn

2 þ *Qn
3 ¼ �

Z t�d

0

Dn
tL

n
t e�ltl dt þ oðenÞ; ðA:38Þ

where

Ln
t ¼ 2enU 0

tðCn
t Þ � ½Rn � ð1þ enÞrn�

Z
N

t

U 0
sðCn

s Þe�ðl�rnÞðs�tÞ ds:

We have

lim
n-N

Ln
t

2en

¼ U 0
tðCN

t Þ 1� 2K � r

2

Z
N

0

CN

tþs

CN

t

� ��g

e�ðbþl�rÞt dt

� 	
: ðA:39Þ

Eqs. (A.29) and (31) imply that the limit in (A.39) is strictly positive for any tot:
This result, together with (A.30) and (A.38), proves our claim for the case of K4K0

and tot� d:21

Finally, for the case of K ¼ K0; the proof is identical to the proof for the case of
K4K0 and tot� d; except with a change of t� d into %t: &

Proof of Proposition 3. In equilibrium, the total market wealth is equal to the total
asset supply:

k
d

rn

þ ð1� kÞ d

Rn

¼
Z

N

0

ðan
t þ An

t Þe�ltl dt:

Since investors hold both assets in equilibrium, we have limn-N ðRn � rnÞ ¼ 0: This,
combined with (A.3), implies that r ¼ limn-Nrn is given by (32).

21Note that we have only shown what the optimal policy, if it exists, should be for tot� d and tXtþ d:
An optimal policy for K4K0 can be shown to exist, at least among all policies that have a bounded rate of

change for a and A:
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Next we prove by contradiction that limn-NðRn � rnÞ=en ¼ 2K : Suppose that

X � lim sup
n-N

Rn � rn

en

a2K : ðA:40Þ

Then there exists an increasing sequence fnm : mX1g of integers such that

lim
m-N

Rnm � rnm

enm

¼ X :

Let tX be defined by

X � r

2
¼

Z
N

0

CN

tXþt

CN

tX

 !�g

e�ðbþl�rÞt dt

" #�1
:

Proposition 3 implies that, for any dAð0; tX Þ; there exists some M40 such that, for
any m4M; agents in the nmth economy holds only the liquid consol for totX � d;
and only the illiquid consol for tXtX þ d: We thus haveR tX�d

0 C
ðnmÞ
t e�ltl dtR

N

0
ðaðnmÞ

t þ A
ðnmÞ
t Þe�ltl dt

kp
R tXþd
0 C

ðnmÞ
t e�ltl dtR

N

0
ðaðnmÞ

t þ A
ðnmÞ
t Þe�ltl dt

:

Taking the limit as d-0 and as m-N;

k ¼
R tX

0 CN

t e�ltl dtR
N

0
CN

t e�ltl dt
ðA:41Þ

which implies tX ¼ t and thus X ¼ 2K ; a contradiction. So we have
lim supn-N

ðRn � rnÞ=en ¼ 2K : Similarly, lim infn-NðRn � rnÞ=en ¼ 2K : We have
thus finished the proof. &
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