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Intelligent damage identification method
for large structures based on strain
modal parameters

Longjun He, Jijian Lian and Bin Ma

Abstract

Early damage detection not only improves the safety and reliability of structures but also reduces maintenance cost.

However, damage detection is difficult to implement in large structures under ambient excitation because of the limi-

tation of sensors, the uncertainty of ambient excitation, and the global properties of modal frequencies and displacement

modes. This paper proposes a new damage detection method that employs the real encoding multi-swarm particle

swarm optimization algorithm and fitness functions evolved from strain modes to find the optimal match between

measured and simulated modal parameters and to determine the actual condition of structures. The proposed

method requires low-frequency modes and incomplete modes and does not require mass normalization of parameters,

thus making the method suitable for nondestructive dynamic damage detection of large structures under ambient

excitation. Taking a concrete guide wall structure as an example, this paper studied the global searching performance

and the sensitivity of the proposed method. The efficiency of the proposed method was analyzed by using different noise

levels and sensor numbers. Results show that the proposed method is effective and can be applied in many types of large

structures.
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1. Introduction

Damage detection methods can be classified into four
levels according to the level of identification attempted:
Level 1, detecting the presence of damage in the struc-
ture; Level 2, determination of the geometric location
of the damage; Level 3, quantification of the severity of
the damage; Level 4, prediction of the remaining life-
span of the structure (Doebling et al., 1998). In recent
years, damage detection methods that are based on
modal information changes have generated a wide con-
cern in the fields of civil engineering, hydraulic engin-
eering, mechanical engineering, and aerospace
engineering (Fritzen and Jennewein, 1998; Cerri and
Vestroni, 2003; Qian et al., 2008; Guo and Li, 2011).
However, damage detection methods that are based on
artificial incentives are difficult to implement and may
not even be applicable for large structures. Therefore,
damage diagnosis for structures under ambient

excitation has attracted much attention in the research
community. Structural damage can lead to changes in
the physical properties of the structure (e.g., structural
stiffness and damping) and may affect the dynamic
properties of the structure (e.g., modal frequency and
shape). Therefore, structural damage detection may be
achieved by identifying structural dynamic parameters
under the action of wind and flow (Li and Law, 2010).
Displacement and acceleration are measured to deter-
mine the structural modal frequency and displacement
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mode of structures. However, only low frequencies and
incomplete modes are obtained during the process
because of excitation and limitation of sensors. Local
damage is often neglected because of the global proper-
ties of modal frequency and displacement mode. Other
signal processing methods, including wavelet transform
(Hera and Hou, 2004; Hester and Gonzalez, 2012) and
Hilbert–Huang transform (Huang and Shen, 1998;
Tang et al., 2010), cannot essentially change the
global properties of modal frequency and displacement
mode. With the development of optical fiber measure-
ment, structural damage detection by using strain
modes has attracted extensive attention worldwide
(Tsuda et al., 2004; Minakuchi et al., 2009). This type
of measurement can obtain strain modes directly and
can avoid errors caused by strain mode calculation
using differences in displacement modes. The result
shows that strain parameters, such as strain modes,
are more sensitive to location damages in several
simple structures (Li et al., 2002), and more require-
ments are needed for optimal sensor placement because
of the local property of strain modes.

Model updating methods that are based on intelli-
gent algorithms have recently attracted much attention
in the damage detection field. Based on the optimiza-
tion ability of the intelligent algorithms, these methods
can simulate measured parameters and then determine
the finite element (FE) model that can reflect the actual
structure condition, which enables these methods to
identify the locations and degrees of damage accur-
ately. Damage detection methods have been reported
to use algorithms, including the artificial neural net-
work (ANN) (Wu et al., 1992; Parka et al., 2009), sup-
port vector machine (SVM) (Song et al., 2006; He and
Yan, 2007), and genetic algorithm (GA) (Mares and
Surace, 1996; He and Hwang, 2006; Gomes and Silva,
2008; Vakil-Baghmisheh et al., 2008; Meruane and
Heylen, 2011). However, the ANN and SVM require
neutral training, in which a large amount of data is
demanded. By contrast, the GA and particle swarm
optimization (PSO) algorithm, which are based on the
laws of natural evolution and survival, do not rely on a
large amount of data. One of the important character-
istics of the GA and PSO algorithm is that these algo-
rithms can seek for a global optimal solution by using
multiple-point routes rather than single-point routes.
Although the GA is a reliable tool for determining a
global optimal solution, new intelligent optimization
algorithms may further improve the optimization effi-
ciency. The PSO algorithm, proposed by Kennedy and
Eberhart (1995), shows strong vitality in solving non-
linear, nondifferentiable, and multi-peak optimization
problems. The PSO algorithm has fast convergence,
requires few parameters, is easy to implement, and util-
izes a deep, intelligent background.

From these viewpoints, this study proposes a new
damage detection method for large structures under
ambient excitation. This damage detection method
employs the real encoding multi-swarm particle
swarm optimization (RMPSO) algorithm and the fit-
ness functions evolved from strain modes to find the
optimal match between measured and simulated
modal parameters and to obtain actual structure con-
ditions. Firstly, a new damage index, which is based on
uniformly distributed strain mode shapes (SMSs)
between measured points, is introduced to match the
simulated data with the measured data. Secondly, the
RMPSO algorithm is proposed to achieve the global
optimum solution. The actual damage conditions can
be effectively determined by updating the parameters of
the FE model. Thirdly, a concrete guide wall structure
with multiple damage scenarios provides an experimen-
tal framework for model verification. The sensor place-
ment scheme was determined based on an optimal
placement technique. The efficiency of the proposed
damage detection method was evaluated by using
damage cases with different noise levels and sensor
numbers.

The rest of the paper is organized as follows.
Section 2 presents four different fitness functions for
damage detection, and Section 3 presents the proposed
RMPSO algorithm for intelligent model updating. The
proposed method was tested on a concrete guide wall
structure for verification in Section 4, and Section 5
concludes the paper.

2. Damage detection procedure

Damage decreases the stiffness of structures. Therefore,
structural damage is often simulated by decreasing a
physical parameter, such as the elasticity module (E),
cross-sectional area (A), and moment of inertia (I).
In this study, damage degree is defined as the relative
decrease in elasticity module and is expressed as
follows:

�i ¼
Ei � Ed

i

Ei
� 100%, ð1Þ

where �i is the damage degree of the ith element, Ei is
the initial elastic modulus of the ith element, and Ed

i is
the current elastic modulus of the ith element. The
value �i ¼ 0 indicates that the element is undamaged,
whereas 05�i � 1 indicates that the element is partly
or completely damaged.

If �i is defined as an updating variable, then the
problem of detecting damage becomes a constrained
nonlinear optimization problem. The fitness function
is expressed as the error between the measured and
numerical modal data. However, only low frequencies,
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low displacement mode shapes (DMSs), and low SMSs
can be accurately obtained during the dynamic test for
large structures under ambient excitation. Several struc-
tural parameters, such as stiffness matrices, mass matri-
ces, and damping, are unavailable. The exciting forces
for large structures are often hardly measured; thus, the
mass-normalized factors are unknown, and the DMSs
and SMSs are not normalized. Therefore, most damage
detection methods for large structures under ambient
excitation are only suitable for theoretical research, but
not in practice.

To solve the aforementioned problem, this study
considers four fitness functions to detect damage in
large structures under ambient excitation. The first
and third fitness functions were obtained from previous
studies and then improved (Meruane and Heylen,
2011), whereas the second and fourth functions were
first proposed in this paper.

(1) Error in frequency.

F1 �
� �� �
¼
Xm
j¼1

!2
A,j �
� �� �

!2
E,j

� 1

 !2

: ð2Þ

Here, m is the number of measured modes; the sub-
scripts A and E refer to analytical and experimental
data, respectively; !j is the jth natural frequency. A
small frequency error yields a small fitness value.

(2) Uniform distribution of ratios of DMSs. The
values of measured and calculated modal shapes for
the same structure and same order are probably not
the same between measured points, and measured
modal shapes in large structures under ambient excita-
tion usually cannot be normalized. However, modal
shapes must be uniformly distributed whether the
modal shapes are normalized or not; that is, the
ratios of the measured and calculated modal shapes
with the same order are constant on measured points.
The uniform distribution of the ratios of the measured
and simulated DMSs is used as a fitness function to
determine the agreement between actual and simulated
modal information. The above fitness function is
expressed as follows:

F2 �
� �� �
¼
Xm
j¼1

�j ¼
Xm
j¼1

1

n� 1

Xn
i¼1

�E,ij
�A,ij
�
1

n

Xn
i¼1

�E,ij
�A,ij

 !2
0
@

1
A

1
2

,

ð3Þ

where n is the number of measured degrees of freedom
(DOFs); m is the number of measured modes; �ij refers
to the jth DMS on the ith measure point; �E,ij=�A,ij
refers to the ratios of measured and simulated DMSs;
�j is the standard deviation of the scale vector of the jth
measured and simulated DMSs and is used for

estimating the uniformity of the ratios of measured
and simulated DMSs distributed between measured
points. The more uniform the distributed ratios are,
the smaller the fitness of the objective function
becomes.

(3) Correlation coefficient based on SMSs. The cor-
relation coefficient between the jth measured and simu-
lated SMS is defined as follows:

Corj ¼
 T
E,j �  A,j

� �2
 T
E,j �  E,j

� �
 T
A,j �  A,j

� � , j ¼ 1, 2, . . . , m,

ð4Þ

where  j is the jth SMS, and m is the number of mea-
sured modes.

Equation (4) shows that Corj represents the correl-
ation between two modal shape vectors. According to
the Cauchy–Schwarz Inequality

0 � Corj � 1: ð5Þ

The above inequality indicates that no correlation
exists between two modal shapes when the correlation
coefficient is equal to 0, whereas an upper limit of
1 denotes that two modal shapes are completely corre-
lated. The third fitness function is introduced as
follows:

F3 �
� �� �
¼
Xm
j¼1

1� Corj
� �

: ð6Þ

Thus

F3 �
� �� �
¼
Xm
j¼1

1�
 T
E,j �  A,j

� �2
 T
E,j �  E,j

� �
 T
A,j �  A,j

� �
0
B@

1
CA: ð7Þ

According to the above equation, highly relevant
measured and simulated SMSs yield smaller fitness
values.

(4) Uniform distribution of the ratios of SMSs.
According to the uniform distribution of the ratios of
DMSs, the objective function for uniform distribution
of the ratios of the measured and simulated SMSs is
defined as follows:

F4 �
� �� �
¼
Xm
j¼1

�j ¼
Xm
j¼1

1

n� 1

Xn
i¼1

 E,ij

 A,ij
�
1

n

Xn
i¼1

 E,ij

 A,ij

 !2
0
@

1
A

1
2

,

ð8Þ

where  ij represents the jth SMS on the ith measure
point;  E,ij= A,ij refers to the ratios of measured and
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simulated SMSs; �j is the standard deviation of the scale
vector of the jth measured and simulated SMS and is
used for estimating the uniformity of the ratios of mea-
sured and simulated SMSs distributed between mea-
sured points. The more uniform the distributed ratios
are, the smaller the fitness of the objective function
becomes.

The objective function E considers one of the above
four fundamental functions and a damage penalization
term. Thus

Eh �
� �� �
¼ Fh �

� �� �
þ �

XnE
k¼1

�k, 8h ¼ 1, 2, 3, 4: ð9Þ

With the addition of the damage penalization term
�
PnE

k¼1 �k, the objective function can search not only
the best correlation, but also the minimum possible
damage. Thus, false damage detection caused by
experimental noise or numerical errors can be avoided.
The value of � depends on the confidence in the numer-
ical model and the experimental data.

The optimization problem is defined as follows:

Find : X ¼ x1, x2, . . . , xnE
� 	T

Minimize : E �
� �� �

Subject to : 0 � �k � 1,

ð10Þ

where nE is the number of potential damage elements.
The damage detection problem is transformed into a
constraint nonlinear minimization problem by defining
the objective function. The smaller the fitness function
is, the more similar the information becomes. In this
study, we propose the RMPSO algorithm to improve
the global searching ability of existing intelligence
algorithms.

3. Real encoding multi-swarm particle
swarm optimization algorithm

3.1. Real encoding particle swarm optimization
algorithm

PSO is a new swarm intelligence algorithm based on the
stochastic optimization technique developed by
Dr. Kennedy and Dr. Eberhart in 1995, inspired by
the social behavior of bird flocking. PSO shares many
similarities with evolutionary computation techniques,
such as GAs. The system is initialized with a population
of random solutions and searches for optima by updat-
ing generations. However, unlike GAs, the standard
particle swarm optimization (SPSO) algorithm has no
evolution operators, such as crossover and mutation.

SPSO can be expressed as follows: the potential solu-
tions, called particles, fly through the problem space by
following the current optimum particles. Each particle
keeps track of its coordinates in the problem space that
are associated with the best solution (fitness) it has
achieved so far (the fitness value is also stored). This
value is called ‘‘pbest’’. Another ‘‘best’’ value that is
tracked by the particle swarm optimizer is the best
value, obtained so far by any particle in the neighbor-
hood of the particle. This location is called ‘‘lbest’’.
When a particle takes all the population as its topo-
logical neighbors, the best value is a global best and
is called ‘‘gbest’’. The PSO concept consists of, at
each time step, changing the velocity of (accelerating)
each particle toward its ‘‘pbest’’ and ‘‘gbest’’ locations.
Acceleration is weighted by a random term, with sep-
arate random numbers being generated for acceleration
toward ‘‘pbest’’ and ‘‘gbest’’ locations.

In this paper, the real encoding form is used in
describing the solution domain to optimize simultan-
eously the damage location and degree. The number
of potential damage elements is defined as the dimen-
sion of a particle, and the value in each dimension rep-
resents the damage degree of the corresponding
element; that is, xid 2 0, 1½ �. Here, xid ¼ 0 indicates
that the element is undamaged, whereas 05 xid � 1
implies that the element has partial or complete
damage. Taking a cantilever beam with 10 potential
damage elements as an example, if the optimal solution
is 0, 0, 0:3, 0, 0, 0, 0:8, 0, 1, 0½ �

T, then the third, seventh,
and ninth elements have 30%, 80%, and 100% damage
degree, respectively, whereas other elements are
undamaged. By using the real encoding form, we can
describe the damage location and degree conveniently
and effectively.

The updated velocity and location for the real
encoding particle swarm algorithm (RPSO) are
expressed in Equations (11) and (12), respectively:

vkþ1id ¼ �v
k
id þ c1r1 � ð p

k
id � xkidÞ þ c2r2 � ð p

k
gd � xkidÞ,

ð11Þ

xkþ1id ¼ xkid þ vkþ1id 1 � i � N 1 � d � D: ð12Þ

Here, �, c1, and c2 are constant; r1 and r2 are uniformly
distributed random numbers between 0 and 1; N is the
population size; D is the dimension of particles; xkid is
the current location of the ith particle in the dth dimen-
sional space at step k; pkid is the personal best location of
the ith particle in dth dimensional space at step k; pkgd is
the global best location of the ith particle in the dth
dimensional space at step k. c1r1 � ð p

k
id � xkidÞ denotes

that the different elements between the personal best
and current locations are exchanged in pairs by
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probability c1r1 to update the velocity and location of
the particles. c2r2 � ð p

k
gd � xkidÞ has a similar meaning.

3.2. RMPSO algorithm

If a particle has found an optimal location via single-
swarm PSO, other particles will quickly approach that
particle. This phenomenon may result in decreased
population diversity. If the current optimal location is
a local extreme value, then the particles may no longer
search in the solution space; thus, the PSO falls into the
local extreme value and then ‘‘prematurity’’ phenom-
enon occurs. A hierarchical real encoding three-
population PSO algorithm, which is based on parallel
structure and grade evaluation, is proposed to improve
global optimization performance in allusion to these

problems. The RMPSO algorithm simulates biogenic
accumulation in nature. Three separate species are pro-
duced based on different fitness values of particles in
the initial stage, including one small-scale elite popula-
tion with a high matching degree and two large-scale
civilian populations with low matching degrees. Three
populations exchange particles after certain iterations
on the basis of grade evaluation and migration strategy.
The idea of the RMPSO algorithm is illustrated in
Figure 1.

The key steps of RMPSO are described as follows.

1. Initialize the PSO and divide the particles into three
populations. Initialize the velocity and location of
particles by real encoding and guarantee that the
dimension of each particle is equal to the number

Figure 1. The flowchart of the real encoding multi-swarm particle swarm optimization (RMPSO) algorithm.
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of potential damage elements. Evaluate the fitness of
initial particles and divide the whole population into
three parts, one of which is the small-scale elite
population (A) with low fitness values (high match-
ing degree) and the other two are large-scale civilian
populations (B and C) with high fitness values (low
matching degree). Initialize the iteration times
‘‘Iteration’’¼ 1, the maximum iteration times
‘‘MaxIter,’’ and the iteration times with the same
global best ‘‘Samecounter’’¼ 0.

2. Update the velocity and location of each population.
Calculate the fitness values of each particle and
obtain the ‘‘gbest’’ of each population and ‘‘pbest’’
of each particle according to fitness. Update the vel-
ocity and location of each population separately by
using Equations (11) and (12) to produce the
updated elite population A1 and civilian populations
B1, C1.

3. Mutation operator. The mutation operators of the
GA are considered high-frequency mutation oper-
ators to enhance the global optimization ability of
PSO. Firstly, the single-point mutation operator is
employed in the elite population to adjust the non-
zero dimensions and to search for more accurate
damage degrees. The adjacent position mutation
operator is applied in civilian population B; that is,
random selected dimensions of particles in this civil-
ian population are moved forward or backward to
detect the adjacent locations and to ensure the real
damage position. Finally, the random exchange
mutation operator is applied in civilian population
C to speed up the search for the best solution; that is,
random selected dimensions are exchanged in pairs.
The three mutation operators provide an approach
to new solutions without the influence of other par-
ticles, thereby improving the population diversity.
The fitness values of the particles before and after
mutation are compared. The particles with low fit-
ness values (high matching degree) are reserved, and
elite population A2 and civilian populations B2, C2
are produced.

4. Verify whether the immigration condition is
achieved to complete the individual exchanges of
elite and civilian populations. For example, set the
immigration frequency f ¼ 2 and the number of
immigrants T ¼ 2. One immigration processing is
carried out every two iterations, and two particles
with the lowest fitness values (highest matching
degree) in each civilian population will immigrate
into the elite population, while four particles with
highest fitness values (lowest matching degree) in
elite population will simultaneously immigrate into
the two civilian populations. High-quality particles
are selected by immigration operation on the basis of
grade evaluation during optimization, and the

exchanged particles can be used as ‘‘exotic species’’
to enhance the diversity of population and to avoid
trapping into the local optimum.

5. Compare the global best fitness values before and
after the update. If the values are the same, one is
added to the ‘‘Samecounter.’’ If not, the value of
‘‘gbest’’ will be updated, and ‘‘Samecounter’’ will
be reset.

6. Stop the iterations if the ‘‘Samecounter’’ achieves a
preset value or if the iteration step reaches the max-
imum. Output the results. If the above requirements
are not met, return to step (2).

Each dimension of particles must be ensured to
search between 0 and 1. If not, reset these dimensions
to 0.

4. Application case

The procedure of the proposed approach for structural
damage detection can be summarized in the following
steps. To detect the structural damage accurately,
secondary development for the FE model was carried
out with Matlab software. The RMPSO algorithm was
used to update the physical parameter of elements
to achieve optimal matching between measured and
simulated modal parameters and to obtain the FE
model that can reflect the actual structure condition.
Figure 2 shows the procedure of the proposed
approach.

4.1. Selection of the research object and
target modes

The left-hand guide wall structure of Xiangjiaba power
station was used to demonstrate the efficiency of the
proposed approach in identifying structural damages.
The guide wall structure was a 65.75m high concrete
structure. The thickness of the structure was 6.7m at
the crest, and the maximum thickness was 48.2m at the
base. Figure 3 shows the FE model of a concrete guide
wall structure section between two structural joints.
Eight-node three-dimensional (3D) brick elements
were used in the FE model. The density of the concrete
material was set at 2400 kg/m3, the elasticity modulus at
35GPa (undamaged), and the Poisson’s ratio at 0.167.
The model had a total of 500 nodes and 420 elements.
The hydrodynamic pressure effect was performed by
using the added mass to calculate the wet modal par-
ameters of the concrete guide wall structure. Low-
frequency modes with high modal participation factors
can usually provide sufficient information to describe
the dynamic behavior of large structural systems; thus,
the first six modes were selected as target modes.
Without loss of generality, this paper performed
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Figure 2. The procedure of the proposed method for damage identification. RMPSO: real encoding multi-swarm particle swarm

optimization; FE: finite element; SSI: stochastic subspace identification.

Figure 3. The finite element model of the guide wall structure.
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damage detection on the basis of the vibration charac-
teristic of the Y direction. In addition, elements 1–104
(marked red in Figure 3) were selected as potential
damage elements, because the stiffness of the cantilever
in the concrete guide wall structure was relatively small.

4.2. Optimal sensor placement

The optimal sensor placement is an important tool that
can obtain enough modal information, thus ensuring
the accuracy of damage detection. Figure 3 shows the
candidate nodes numbered 1–140. Table 1 lists the dis-
placement sensor and the strain sensor configurations
in the Y direction with 8, 10, 15, and 20 sensors, which
were obtained by using a sensor placement method on
the basis of information entropy (Papadimitriou et al.,
2000).

4.3. Modal parameter identification
considering noise

Given the convenience of the multiple-case study, FE
model simulation was used to obtain the signals in this
study. The noise in measured signals mainly includes
the noise of ambient excitation, the noise of sensors,
and the noise of the measuring instrument system.
The noise from ambient excitation is usually considered
as input and not as a noise in the structural measure-
ment. Therefore, we supposed the noise of the measur-
ing instrument system as white noise, which follows
the Gaussian distribution. In the FE simulation, the
Gaussian white noise was considered as input to simu-
late ambient excitation and to collect the vibration
response of the concrete guide wall structure. The sam-
pling frequency was set at 100Hz, and the sampling
time was 100 s. White noise was added to the measured
output, which is given as follows:

xZi ¼ xi þ ximax � randn� ns, ð13Þ

where xi refers to the original signal of the ith measured
point; xZi refers to the signal with noise; ximax is the
maximum of xi; randn represents the Gaussian white
noise, which has an average of 0 and standard deviation
of 1; ns is the noise level of time history signals. Thus,
the standard deviation of the noise is ns times the max-
imum of the time history data, and ns is 2% and 5% in
this study.

Taking two simultaneous damages (element 9 with
30% damage and element 27 with 50% damage) as an
example, Figures 4 and 5 show the displacement and
strain time history response signals with 2% noise
under ambient excitation, respectively. Figures 6
and 7 show the normalized power spectrums of corres-
ponding signals, from which the first six measured fre-
quencies are 3.13, 9.38, 13.09, 17.38, 21.48, and
22.75Hz, respectively.

The data-driven stochastic subspace identification
method (Basseville et al., 2004; Gontier, 2005) was

Table 1. The schemes of optimal sensor placement.

Sensor type

Number of

sensors Node number

Displacement sensor 8 2, 5, 23, 25, 55, 67, 109, 116

10 2, 5, 16, 23, 25, 51, 55, 67, 109, 116

15 2, 5, 10, 16, 23, 25, 35, 51, 55, 61, 67, 85, 109, 116, 120

20 2, 3, 5, 10, 16, 23, 25, 26, 35, 39, 51, 55, 61, 67, 81, 85, 109, 116, 118, 120

Strain sensor 8 16, 30, 41, 45, 70, 106, 124, 136

10 10, 16, 30, 41, 45, 70, 105, 106, 124, 136

15 10, 16, 23, 30, 41, 43, 45, 61, 70, 105, 106, 116, 124, 126, 136

20 10, 16, 23, 30, 32, 34, 41, 43, 45, 61, 65, 70, 105, 106, 111, 115, 116, 124, 126, 136

Figure 4. Time history signals of displacement.
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adopted to identify the modal parameters (modal fre-
quencies, DMSs, and SMSs) of the concrete guide wall
structure under ambient excitation. The frequency sta-
bilization diagram (Zhang et al., 2005) was used to
eliminate the false modes. The identified first six fre-
quencies from signals with 2% and 5% noise were com-
pared with the identified frequencies from the original
signals, and the average errors were 0.2% and 0.3%,
respectively. The identified first six DMSs from signals
with 2% and 5% noise were compared with the identi-
fied DMSs from the original signals, and the average of
the correlation coefficients of modal shapes were 99.7%
and 99.4%, respectively. The identified first six SMSs
from signals with 2% and 5% noise were compared
with the identified SMSs from the original signals,
and the average of the correlation coefficients of
modal shapes were 99.5% and 99.3%, respectively.
The identified modal parameters were used as baseline
information, and the intelligent algorithm was used to
search for the structural damage model that can match
the measured modal information.

4.4. Performance verification of algorithms and
fitness functions

In this part, the number of sensors was 20, and two
simultaneous damages (element 9 with 30% damage
and element 27 with 50% damage) were evaluated with-
out regard to noise. Algorithms can obtain satisfactory
results when the damage penalty factor � ¼ 0:05.

The four different functions optimized by the
RMPSO algorithm were implemented to identify the
structural damage detection method. The basic param-
eters of RMPSO are listed as follows: the dimension of
particles was 104, the size of each civilian population
was 200, the size of the elite population was 50, � was
0.2, both c1 and c2 were 0.5, the immigration frequency
was 2, and the number of immigrants was 4. The iter-
ation will be stopped when the flag of the algorithm
achieves 50 or when the iteration step reaches 1000.
The RPSO algorithm and real encoding genetic algo-
rithm (RGA) were performed and compared with the
proposed method to demonstrate the effectiveness of
the algorithms. The basic parameters of the RPSO
and RMPSO algorithms were basically the same. The
parameters of the RGA adopted the definitions in the
existing reference (Gomes and Silva, 2008). Each
method was carried out 10 times. Figures 8–11 show
the best optimization process for three algorithms on
the basis of four fitness functions, respectively.
According to these figures, the RMPSO algorithm pro-
posed in this study has obvious advantages in optimiza-
tion efficiency dealing with intelligent damage
detection. The RMPSO algorithm not only has fast
convergence, but also can achieve the theoreticalFigure 7. Normalized power spectrums of strain.

Figure 6. Normalized power spectrums of displacement.

Figure 5. Time history signals of strain.
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optimal solution (0.04). Although the RPSO algorithm
has fast convergence, this algorithm decreases easily to
the local extreme value. Moreover, the optimization
ability of the RPSO algorithm is worse than that of
the RMPSO algorithm. The RGA, which is an
improvement of the GA, requires more iterative steps
compared with the RPSO and RMPSO algorithms.
Meanwhile, its optimization results are better than
those of the RPSO algorithm, but worse than those

of the RMPSO algorithm. Overall, the RMPSO algo-
rithm is an efficient global optimization algorithm that
can deal with intelligent damage detection of high
dimensions.

Among the fitness functions, the fourth fitness func-
tion has the largest distinction degree and the best
damage detection capability. The distinction degrees
of the first three fitness functions are only about 4,
50, and 2.5, respectively, whereas the distinction
degree of the fourth fitness function is almost 1000.

Figure 9. Fitness curves of objective function 2. RMPSO: real

encoding multi-swarm particle swarm optimization; RPSO: real

encoding particle swarm algorithm; RGA: real encoding genetic

algorithm.

Figure 10. Fitness curves of objective function 3. RMPSO: real

encoding multi-swarm particle swarm optimization; RPSO: real

encoding particle swarm algorithm; RGA: real encoding genetic

algorithm.

Figure 8. Fitness curves of objective function 1. RMPSO: real

encoding multi-swarm particle swarm optimization; RPSO: real

encoding particle swarm algorithm; RGA: real encoding genetic

algorithm.

Figure 11. Fitness curves of objective function 4. RMPSO: real

encoding multi-swarm particle swarm optimization; RPSO: real

encoding particle swarm algorithm; RGA: real encoding genetic

algorithm.
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In this paper, we denoted that an element is considered
undamaged if the value of its corresponding dimension
is not more than 0.02. Figure 12 shows the damage
detected by four fitness functions. In this figure,
the red arrows direct the real damage locations, and

F1–F4 represent the four fitness functions. As shown
in Figure 12, only the fourth fitness function detected
the damage locations and degrees correctly, whereas the
results of the first three fitness functions were
not satisfactory. In the next section, we will discuss

Table 2. Damage detected with different numbers of sensors and noise levels.

Case

Number of

sensors

Real Detected (no noise) Detected (2% noise) Detected (5% noise)

Location Degree (%) Location Degree (%) Location Degree (%) Location Degree (%)

1 8 18 50 18 47 18 45 18 43

10 18 50 18 46 18 46 18 45

15 18 50 18 49 18 50 18 49

20 18 50 18 51 18 49 18 50

2 8 64 20 59 62 15 13 55 59 18 25 63 72 17 12

10 64 20 64 18 64 21 64 22

15 64 20 64 21 64 20 64 19

20 64 20 64 20 64 19 64 20

3 8 10 27 20 10 7 19 35 18 13 5 15 43 17 33 9 25 31 10 9 16

10 10 27 20 10 10 27 17 12 10 27 18 8 10 26 22 13

15 10 27 20 10 10 27 21 10 10 27 20 9 10 27 19 9

20 10 27 20 10 10 27 20 10 10 27 20 10 10 27 19 10

4 8 34 70 70 40 26 35 82 51 29 18 30 69 74 53 16 22 21 41 60 78 24 13 35 29

10 34 70 70 40 31 65 72 65 22 13 29 38 70 28 35 32 29 39 70 25 40 33

15 34 70 70 40 34 70 67 39 34 70 66 41 34 70 68 36

20 34 70 70 40 34 70 69 39 34 70 68 40 34 70 69 37

5 8 2 23 99 20 50 80 1 23 97 10 42 85 1 23 62 97 8 54 14 63 3 20 87 16 43 69

10 2 23 99 20 50 80 2 21 101 18 53 71 3 24 99 17 53 85 3 19 77 102 13 14 36 51

15 2 23 99 20 50 80 2 23 98 22 45 84 3 23 70 103 26 39 10 79 5 25 39 91 13 54 22 63

20 2 23 99 20 50 80 2 23 99 18 51 80 2 23 99 19 53 77 2 23 99 17 53 79

6 8 13 82 104 70 60 50 13 90 88 67 14 77 87 100 71 12 23 65 9 78 100 78 41 39

10 13 82 104 70 60 50 13 18 74 104 66 25 14 47 17 82 102 68 49 36 17 82 102 65 52 43

15 13 82 104 70 60 50 13 82 104 66 54 57 13 30 80 104 68 15 43 38 13 31 84 104 67 35 42 46

20 13 82 104 70 60 50 13 82 104 68 60 49 13 82 104 67 60 50 13 82 104 70 56 49

Figure 12. Damage detected by four fitness functions.
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the fourth fitness function optimized by the RMPSO
algorithm.

4.5. Results

Multiple damage cases with different numbers of sen-
sors and noise levels were simulated. The damage cases
include single damage, two simultaneous damages, and
three simultaneous damages; each damage case has two
conditions. The RMPSO algorithm was used to opti-
mize the fourth objective function (the uniform distri-
bution of the ratios of the measured and simulated
SMSs). Satisfactory results with no noise, 2% noise,
and 5% noise were achieved when the damage penalty
factors were 0.05, 0.08, and 0.10, respectively.

Table 2 summarizes the damage detected in each
case. In the single damage case, it is possible to locate
and quantify the damage correctly by measuring only
10 DOFs (7.1% of the total Y-DOFs). The method
requires more sensors when the number of damage
locations is increased. For two simultaneous damages,
the method needs at least 15 DOFs (10.7% of the total
Y-DOFs), and the three simultaneous damages require
at least 20 DOFs (14.3% of the total Y-DOFs). The
number of DOFs required depends on the structure
and complexity of the damage situation that needs to
be detected. Noise influences damage detection, such as
in Case 6. The results obtained by using 15 sensors are
different whether noise is considered or not.

5. Conclusion

This study proposed a new damage detection method
for large structures employing the RMPSO algorithm
and the fitness function evolved from strain modes to
find an optimal match between measured and simulated
modal parameters and to obtain the actual structure
condition. The proposed method requires only low-fre-
quency and incomplete modes; thus, this method is
highly suitable for the nondestructive dynamic
damage detection of large structures under ambient
excitation. A concrete guide wall structure was used
to verify the approach. The following conclusions are
derived.

1. The RMPSO algorithm tends to the global optimum
quickly and shows good convergence during algo-
rithm validation. The RMPSO algorithm is proved
to be a more efficient global optimization algorithm
compared with the existing RPSO algorithm and
RGA in dealing with intelligent damage detection
of high dimensions.

2. Four objective functions were compared, and the
results show that the uniform distribution of the
ratios of measured and simulated SMSs are more

effective in detecting structural damage compared
with the other objective functions.

3. The new damage detection method was used to
update the parameters of the FE model, search the
optimal matching with actual parameters of struc-
tural damage, and detect the damage with multiple
damage scenarios. Results show that locating and
quantifying the damage correctly by using only 10
DOFs is possible in single damage cases. For two
simultaneous damages, the method requires at least
15 DOFs, whereas the three simultaneous damage
cases require at least 20 DOFs. Noise also has an
influence on damage detection. The number of sen-
sors required depends on the structure, the complex-
ity of the damage situation, and the noise of the
measured situation.

The proposed damage detection method can effect-
ively detect the locations and degrees of damage in dif-
ferent damage cases and can be promoted and applied
in many types of large structures.
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