
Practical Evasion of a Learning-Based Classifier:
A Case Study

Nedim Šrndić and Pavel Laskov

Department of Cognitive Systems

University of Tübingen

Tübingen, Germany

{nedim.srndic, pavel.laskov}@uni-tuebingen.de

Abstract—Learning-based classifiers are increasingly used for
detection of various forms of malicious data. However, if they
are deployed online, an attacker may attempt to evade them
by manipulating the data. Examples of such attacks have been
previously studied under the assumption that an attacker has
full knowledge about the deployed classifier. In practice, such
assumptions rarely hold, especially for systems deployed online.
A significant amount of information about a deployed classifier
system can be obtained from various sources. In this paper, we
experimentally investigate the effectiveness of classifier evasion
using a real, deployed system, PDFRATE, as a test case. We
develop a taxonomy for practical evasion strategies and adapt
known evasion algorithms to implement specific scenarios in our
taxonomy. Our experimental results reveal a substantial drop of
PDFRATE’s classification scores and detection accuracy after it
is exposed even to simple attacks. We further study potential
defense mechanisms against classifier evasion. Our experiments
reveal that the original technique proposed for PDFRATE is only
effective if the executed attack exactly matches the anticipated
one. In the discussion of the findings of our study, we analyze
some potential techniques for increasing robustness of learning-
based systems against adversarial manipulation of data.

I. INTRODUCTION

Data analysis methods such as machine learning are increas-

ingly used in security applications. For tasks like malware

analysis, deployment of learning methods has become almost

imperative. Data-driven analysis enables automatic attribution

of seemingly heterogeneous malware samples to a modest

number of genuine malware families [1], [2]. Recent work

has also witnessed several innovative applications of machine

learning for detection of various kinds of security violations,

e.g., drive-by-downloads [3], [4], malicious web pages [5],

[6], compromised accounts and fake identities in social net-

works [7], [8], unwanted P2P traffic [9] and many others.

Clearly, deployment of learning methods in any security-

critical context requires that they can withstand potential

attacks. The security of machine learning methods has been

previously discussed from conceptual [10], methodical [11],

[12], [13], [14] and practical [15], [16], [17] viewpoints.

Despite the growing evidence for susceptibility of learning-

based approaches to adversarial data manipulation, this seems

to be of little hindrance for their acceptance as a versatile

tool for data-intensive security tasks. Typically, the security

analysis of proposed learning-based techniques is carried out

informally and is occasionally supported by experimental

evaluation.
Security assessment of learning-based approaches faces

several challenges. The main theoretical hurdle is the lack of

formal definitions of security in the context of data analysis.

In contrast to privacy, for which several formalisms have

been proposed, e.g., privacy-preserving data mining [18] or

differential privacy [19], no formal connection to established

security objectives is known for machine learning. From the

practical perspective, the success of attacks against learning

algorithms crucially depends on the amount of knowledge

available to an attacker. Most of the previously reported

successful attacks assume that the attacker has full knowledge

of the learned model [20], [15], [16], [21], [17], [22]. It can,

therefore, be argued that reducing the amount of knowledge

leaked about the model, as well as a proactive response

to potential exploitation of such knowledge should provide

adequate protection against adversarial data manipulation.
Still, it remains largely unclear what an attacker may learn

about a learning-based method deployed “in the wild” and how

this information can be exploited. To investigate this problem,

we present the results of a case study we performed on a

real learning-based system, PDFRATE1, an online service for

detection of PDF malware [23]. For any submitted PDF file,

PDFRATE provides a probabilistic estimate of its malicious-

ness. Our study addresses the case when an attacker attempts

to evade detection by modifying the submitted PDF file so that

its malicious functionality remains intact but the probabilistic

score returned by PDFRATE is decreased.
We proceed by presenting two classes of evasion strategies

suitable for several attack scenarios varying in the amount

of knowledge available to the attacker. Since PDFRATE is

a research system, its method and technical details are rel-

atively well documented in the original research paper [23]

and the accompanying technical report [24]. Based on this

information, it is possible to partially reconstruct the features

used for creation and evaluation of models, reproduce the

training procedures and even independently obtain some of the

training data2. To systematically explore the attacker’s options,

1http://pdfrate.com/.
2One of the training datasets used by PDFRATE is publicly available for

the research community.

2014 IEEE Symposium on Security and Privacy

© 2014, Nedim Šrndic. Under license to IEEE.

DOI 10.1109/SP.2014.20

197

we define an orthogonal set of evasion strategies reflecting

various degrees of available knowledge, described in detail

in Section II. The general idea of our evasion technique is

based on insertion of dummy content into PDF files which

is ignored by PDF renderers but affects the computation of

features used in PDFRATE, as elucidated in Section V-B.

Once we can influence a subset of PDFRATE’s features, we

develop algorithms for constructing attack instances, presented

in Section V-C. In the experiments of Section VI, we evaluate

the effectiveness of our strategies on a set of 100 malicious

files randomly drawn from a dataset known to PDFRATE.

Our results reveal that even with the smallest amount of

available information, i.e., an ability to freely modify one sixth

and increment another one sixth of the features, our attacks re-

duce the classification scores of PDFRATE from almost 100%

to the median of about 33%. Additional information about

the classifier, such as the knowledge of its type (trivial) and

possession of the training dataset (somewhat more difficult to

obtain), further decreases the median score to about 28%.

We have analyzed the defense strategy suggested and eval-

uated by the authors of PDFRATE, although we do not know

if it is deployed in the online system. The attack scenario

of [23] assumes that the attacker instruments a small subset

of informative features. It was shown that this attack can

be effectively thwarted by including a small portion of the

anticipated attack data into the training set. We reconstructed

this attack and verified the effectiveness of the original de-

fense strategy. However, such proactive defense turns out to

be effective only against the precise “strain” of the attack.

Whenever the executed attack does not match the anticipated

one, the effect of the proactive defense essentially vanishes,

and the detection accuracy falls below 10%.

Our contributions can be summarized as follows:

• We present a general model for practical assessment

of security of learning-based detection techniques. This

model enables systematic exploration of various kinds

of information leaks exploitable by an attacker and is

applicable to systems beyond PDFRATE that have a

modifiable subset of features.

• We present two evasion attacks that can be staged against

a deployed classification model in various scenarios.

• We demonstrate the first automated practical attack

against a learning-based classifier deployed “in the wild”

performed without knowledge of the learned model and

entirely in problem space.

• We provide an open source software framework for all

experiments carried out in our study for independent

verification and extension of our results.

II. EVASION ATTACKS AGAINST LEARNING SYSTEMS

Any learning-based system which is deployed in a real-

world environment and for which there exists a critical amount

of economic, political or military interest is certain to attract

the attention of individuals or groups striving to gain advantage

by manipulating the system in order to influence its decisions.

There are numerous examples of such activities. Besides the

Fig. 1. Taxonomy of evasion scenarios for classifier systems. In every
scenario, represented as a point, the knowledge about a given classifier
component is high if the scenario point is within that component’s circle,
otherwise low.

computer security applications mentioned in the introduction,

potential scenarios for such manipulation include adversarial

advertisements [25], spam detection [26], [27], recognition of

writing style [28], plagiarism detection [29] and many others.

In this work we focus on classifiers, a particular kind of

learning systems, which classify new data into two or more

predefined categories. Classifiers usually make predictions by

computing some numeric or probabilistic score and comparing

it with a fixed threshold. The goal of an adversary aiming

to manipulate a classifier is to confuse it into providing a

false classification. For binary classification problems, false

classifications are called false positives and false negatives.

From an adversarial viewpoint, the more information about

a learning-based system is available, the higher the chances

become that the system can be successfully gamed.

The essential components comprising every learning-based

classifier system are:

• the set of features used by the classifier

• the training dataset used for classifier training

• the classification algorithm with its parameters.

It is, therefore, in the interest of the adversary to maximize

their knowledge about the target classifier’s components. For

example, an adversary A who knows the feature set and

training dataset of a certain classifier has a higher chance of

evading it than an adversary B who only knows the feature

set. In this sense, the two adversaries A and B are operating

under different evasion scenarios. An evasion scenario is a

problem setting for evasion from an adversary’s point of view.

It describes the classifier system information available to the

adversary in a structured way: it outlines whether the adversary

has a low or high amount of knowledge about the feature set,

training dataset and classification algorithm.

To systematically explore evasion attacks against classifier

systems, we propose the taxonomy of evasion scenarios, de-

picted in Fig. 1, based on the amount of knowledge adversaries

possess about the three components of a classifier system.

Our taxonomy comprises 8 evasion scenarios. Their names

198

describe the information available to the adversary. If any of

the letters F , T or C, corresponding to the classifier com-

ponents feature set, training dataset and classifier algorithm,

respectively, is present in the name of a scenario, then the

level of knowledge about the given classifier component the

adversary has in this scenario is high, otherwise low. The

scenario named O refers to the case when the adversary has

low knowledge about all three classifier components.

In our taxonomy, high knowledge does not necessarily mean

complete knowledge, and vice versa. There exist no strict

criteria for deciding whether the knowledge level about a

certain classifier component should be categorized as high or

low. We consider the knowledge level high if it can be used

to the substantial advantage of the adversary, otherwise low.

Our study is limited to the 4 evasion scenarios in which

the level of knowledge about the feature set is high. Without

the knowledge of features, the attacker is faced with a major

challenge of either deducing them from observation of clas-

sification results, or otherwise to attempt to directly measure

the sensitivity of a classifier to changes in the original data.

We are currently not aware of any techniques for addressing

these issues and therefore leave the investigation of scenarios

with low feature knowledge for future work.

In the following subsections, we describe high-level algo-

rithms for staging evasion attacks in the 4 scenarios of interest.

A. Scenario F

In scenario F, only the feature set is available to the

adversary, to a varying extent. The adversary might be aware

of some or all features, mistakenly consider obsolete features

as being used, be capable of reading a subset or all features

or be able to modify some or all features to a varying degree.

Manipulation of a sufficient subset of features is, however,

required in order to be able to modify samples and proceed

with evasion.

An adversary with no knowledge about the classifier and

training dataset may still perform evasion. If he has access to

data samples, certified to be benign by the target classifier,

he can try to align his malicious examples with known

benign examples. This strategy is known as a mimicry attack.

A particular implementation of this attack for PDFRATE is

presented in Section V-C1. In general, mimicry attack is most

effective if an attacker can submit probes to the target system

during the course of attack, in order to ensure the benign

classification of the source examples for the mimicry attack

or to choose among multiple benign sources. However, online

probing of a target system may be detectable and is therefore

less desirable than a fully offline attack, in which only the

final result is submitted to the target system.

An adversary that collects a sufficient amount of malicious

samples, e.g., those found on the black market, may combine

them with a collection of benign samples and thus build a

surrogate dataset. This dataset can be used to train an off-the-

shelf, surrogate classifier, which can then be evaded using

a special-purpose attack tuned for this particular classifier.

The rationale behind the surrogate classifier attack is that the

inference of predictive models is based on general statistical

properties which are shared among many learning methods.

Hence, it is quite likely that one can approximate an unknown

classifier with a suitable proxy classifier whose behavior can

be controlled by the attacker. The effectiveness of this strategy

critically depends on the quality of the data available to the

attacker. If surrogate data is a realistic sample of the true

distribution of the training data, one can expect the resulting

attack to be effective against the original, unknown target

classifier. The attack based on the surrogate classifier can be

performed offline, with only the final result submitted to the

target classifer.

B. Scenario FT

This scenario enables the adversary to take advantage of the

knowledge the target classifier’s training dataset, in addition

to the known features. The dataset may be fully or partially

leaked, enabling more accurate decisions in the process of

generating a successful attack sample.

Knowledge of the benign training points enables the adver-

sary to generate evasion samples which closely mimic them,

using the mimicry attack, thereby increasing the chances of

a successful attack in comparison to scenario F. Training a

potent classifier on the original dataset creates a surrogate

classifier that better approximates the target classifier than the

on trained in scenario F, again opening up the way to the

use of tailored methods for evasion of the surrogate classifier.

Knowledge of training data enables the attacker to perform the

entire attack offline before submitting the final result.

C. Scenario FC

In Scenario FC, the adversary knows the feature set and

some details about the classifier, such as its type, parameters or

the specific implementation. An adversary with no information

about the training dataset at all and without a surrogate dataset

has little advantage of knowing the classifier. With a surrogate

dataset they can train a surrogate classifier of the right type,

yet the accuracy of this approximation depends on the quality

of the gathered data. This attack can also be performed offline,

similar to other attacks based on surrogate classifiers.

D. Scenario FTC

The adversary has the best chance of evading the tar-

get classifier if he knows the details of all three classifier

components. In that case, he can fully reproduce the online

classifier in an offline setting, submitting the attack results only

when a sufficiently good evading sample has been found. An

offline mimicry attack or an offline classifier-specific attack

that defeat the offline classifier have a strong probability of

defeating the online one as well.

Before presenting the target system PDFRATE and the

specific algorithms used to implement the abovementioned

general attack scenarios, we give a short overview of the

Portable Document Format (PDF) in the following section.

199

Fig. 2. An example PDF file (detail).

III. THE PORTABLE DOCUMENT FORMAT

The Portable Document Format (PDF) is a file format

that enables creation of documents that render and print

consistently, independent of the underlying environment, and

is published as an open standard, ISO 32000-1:2008 [30]. A

PDF file, as depicted in Fig. 2, consists of a header with

the PDF magic number and format version, body, a set of

PDF objects that comprise the structure and content of the

file, the cross-reference table (CRT) that indexes the objects

in the body and trailer, pointing to the CRT. The beginnings of

the header, CRT and trailer are denoted by keywords %PDF,

xref and trailer, respectively. Objects in the file body

are introduced with the keyword obj and a pair of integer

identifiers. Objects can be of different types, e.g., numbers,

strings, names (identifiers), dictionaries (sets of key-value

pairs where key is always a name object and value can be any

object type, including another dictionary), indirect references
(“pointers” to other objects), streams (dictionaries with addi-

tional encoded and/or compressed content) etc. ISO 32000-1

prescribes some dictionaries to carry special meaning, such as

those whose Type is JavaScript (containing executable

JavaScript code), Metadata (with information about the file

such as its author, title, creation and modification dates, etc.)

or Page (describing a single page). A special type of streams,

called object streams, may contain other objects as part of the

encoded and/or compressed stream contents.

The header, body, CRT and trailer constitute the file struc-
ture of a PDF file, i.e., the content of the file’s bytes that can

be directly read by software agnostic of the PDF format. The

objects in the file body form a graph-like logical structure,

called the PDF document structure, by means of indirect links

to other objects or their direct embedding. The appearance of

pages is described by content streams. However, we limit our

interest at the file structure level because PDFRATE does not

parse PDF files, i.e., it only reads their raw bytes.

IV. PDFRATE

PDFRATE employs the Random Forest algorithm to classify

PDF files into benign or malicious based on their metadata and

certain structural features3. The following subsections provide

an overview of PDFRATE’s features, classification algorithm,

datasets and adversarial considerations; further details can be

obtained from the original paper [23].

A. Features

PDFRATE employs a total of 202 integer, floating point and

boolean features. 135 of those were described in [24], the rest

remain unknown. A subset of features are shown with their

values for one specific file in Fig. 4, Section V-B. The features

reflect various properties such as size and version of the file,

character counts of PDF metadata items such as author name,

creation and modification date, structural properties such as

the count of Acrobat forms and their relative positions in the

file, etc. All features were manually defined by the authors

and selected for best classification performance and robustness

against adversaries, respectively. The features are extracted

by running a set of regular expressions on raw bytes of the

PDF file. By not performing proper PDF parsing, authors of

PDFRATE have consciously given preference to speed and

simplicity rather than completeness and correctness, as some

of the features might lay in encoded and/or compressed object

streams, beyond the reach of regular expressions.

The features exhibit significant interdependence. When one

feature’s value is modified, many others may be affected

because they directly or indirectly depend on the targeted

feature. For example, by modifying the number of lower-case

characters of the Author metadata field (author_lc), the

related feature author_len will be affected, but so will less

directly related ones such as file size (size). A change in size

triggers further changes of seemingly completely unrelated

features pos_acroform_*, that denote the relative file

offset of one or more keywords AcroForm. Feature inter-

dependence makes the adversarial control of feature values

difficult.

B. Datasets

Three datasets were involved in the creation and evaluation

of PDFRATE. Three models have been trained on them, which

are used separately to assess new data submitted by users.

Two of the three datasets were used in the experimental

evaluation of PDFRATE presented in [23]: Contagio and

Operational. The Contagio dataset is a collection of malicious

and benign PDF files contributed by malware researchers,

available for download4. Training of PDFRATE was carried

out on a subsample of the Contagio dataset containing 5,000

benign and 5,000 malicious files5. The trained classifier was

evaluated on the Operational dataset comprising 100,000 PDF

files collected “on a large university campus”. Presumably, the

same dataset was used to train the model currently available

as the George Mason University (GMU) used by PDFRATE.

3 PDFRATE’s structural features describe physical rather than logical
structure, and are not to be confused with the PDF document structure.

4 The Contagio archives are available at the following URL: http://
contagiodump.blogspot.de/2010/08/malicious-documents-archive-for.html.

5 A list of MD5 sums of those files was published: http://pdfrate.com/
contagio md5 class.csv.

200

The last dataset, Community, was created from files sub-

mitted and rated by PDFRATE users and was not used in its

original evaluation.

C. Classification Algorithm

PDFRATE employs Random Forest [31], an ensemble learn-

ing method comprising a number tRF of independently trained

decision trees. In the training step, every tree is learned using

CART methodology, but using only a subset of the available

training samples. A different subset is generated for every

tree by randomly sampling a fixed number of times from the

training data, with replacement – a procedure called bootstrap

aggregating or bagging. When a new decision node is added

to a tree, only a randomly chosen subset of fRF features

is considered, where fRF is less than the total number of

features. A decision is made by majority voting among all

decision trees on a given new data point. Random forests are

known for their excellent generalization ability and robustness

against data noise. PDFRATE uses the R port of Leo Breiman’s

and Adele Cutler’s original Random Forest implementation,

available as the package RANDOMFOREST6. tRF and fRF

are parameters of RANDOMFOREST called ntree and mtry,

respectively. The values ntree = 1000 and mtry = 43 are

used by PDFRATE.

All three classifiers deployed by PDFRATE, i.e. the ones

trained on the Contagio, GMU, and Community datasets,

produce as their result the output of their decision function,

i.e., a real value in the interval [0, 1] denoting the percentage

of decision that have labeled the submitted file as malicious.

There is no threshold given in [23] determining at what

percentage should a file be considered malicious. Note that by

providing this percentage value instead of a binary decision,

PDFRATE reveals much more information about its classifi-

cation engines than it is necessary for decision-making and

thus enables the adversaries to make more informed decisions

when developing their evasion methods.

D. Adversarial Considerations

Before describing our attacks, we discuss the properties of

PDFRATE crucial for the adversarial setting of our study.

In our evaluation, we are only concerned with the evasion

of the Contagio classifier. We do not consider the GMU
and Community classifiers because their training datasets

were unavailable to us and hence we could not evaluate

the full spectrum of attack scenarios defined in Section II.

Besides being freely available, the Contagio dataset seems

to remain static. Periodic retraining, an important security

measure, would have complicated the consistent evaluation of

effectiveness of our evasion methods, as every classifier update

would have rendered previous results outdated. Furthermore,

although PDFRATE provides a second level of analysis by

classifying malicious files into “targeted” and “opportunistic”,

our study is limited to evading the initial binary classifier.

From an adversarial perspective, the level of knowledge

available to attackers about PDFRATE is high. The availability

6 http://cran.r-project.org/web/packages/randomForest/index.html

of its feature definitions facilitates the creation of manipulated

samples. Although robust against data noise, the Random

Forest classifier was not designed for resilience against ad-

versarial noise. Periodic retraining is also not carried out in

the deployed system. These weaknesses make PDFRATE an

excellent candidate for our case study. Other, more promi-

nent machine-learning-based malware detectors have features

which are either unknown or much more difficult to control.

Despite its weaknesses, adversarial considerations were

indeed present in PDFRATE’s inital design. The attack model

considered in [23] assumes that the adversary knows the means

and standard deviations of the 6 most important features, i.e.,

those on top of the list of variable importance measures of the

Random Forest model, for the benign training files. The adver-

sarial model assumes that an attacker can create camouflaged

malicious samples in which a subset of top features is set to

random values drawn from the normal distributions with the

given means and standard deviations characterizing the benign

samples. This attack will be referred to as “benign random

noise” (BRN). It was shown in [23] that the BRN attack can

severely degrade the detection accuracy of the classifier. To

counter this attack, a proactive defense strategy was proposed:

to modify a subset of malicious data points in the training set

in exactly the same way as an attacker would proceed. This

simple defense strategy proved to be surprisingly effective.

The BRN attack was implemented synthetically, i.e., by

modifying the top 6 features directly in feature space. There-

fore, it does not address the issue of whether real PDF files can

be generated with the required feature vectors. Due to strong

feature interdependencies, such an assumption is unrealistic

in practice. In our evaluation of the defense mechanisms

presented in Section VI, we depart from the feature space

and evaluate this attack using real PDF files. Furthermore,

we investigate the robustness of the proposed countermeasure

against our own mimicry attack.

V. METHODOLOGY

Since our study of evasion scenarios assumes a stealthy

attacker, the key elements of our methodology involve reim-

plementation of the methods deployed by PDFRATE. We

first reconstructed a subset of PDFRATE’s features using the

available public knowledge. The next step was to develop

a technique for manipulation of PDF files which affects the

selected subset of features. The last step in our methodology

was to design attack algorithms for carrying out the generic

attack strategies presented in Section II.

The above techniques and methods were implemented in

our experimental evasion framework called MIMICUS. The

framework consists of a Python module which supports feature

extraction, PDF file modification, upload to PDFRATE and

score retrieval, training of classifiers and performing attacks

against them. MIMICUS is free and open source software,

suitable for extension with other attacks and attack targets. It

is available for download7, bundled with all training data (as

7 MIMICUS – https://github.com/srndic/mimicus.

201

feature vectors), classifier models and code required to fully

reproduce our experimental results. All attack files used in our

experiments can be obtained from the Contagio database.

A. Reimplementation of PDFRATE’s Features

Our four evasion scenarios have one common assumption:

the adversary knows the features of the attacked system. The

level of knowledge about particular features may, however,

vary widely. The attacker may not be aware of some features’

existence at all. Even for features with known description, the

attacker may have partial or no control of their values. Finally,

interdependence between features prevents the attacker from

arbitrary manipulation of their values.

The knowledge about PDFRATE’s features comes from

three sources: the original research paper [23], the technical

report [24], and the behavior of PDFRATE as deployed online.

As stated in [23], a total of 202 features are employed by

PDFRATE. However, only 135 of them are described in [24],

to a varying extent. This limits the set of features potentially

under attacker’s control to roughly two thirds of the reported

number. Furthermore, it cannot be ruled out that the deployed

system does not have a different set of features compared to

the reported ones due to a natural progress in development.

As a first step, we reimplemented the extraction of 135

known features by following the general guidelines on feature

extraction from [24]. Subsequently, regular expressions were

developed for each feature except for size, which was read

directly. During this process we also examined metadata output

produced by PDFRATE for a fixed test suite comprising PDF

files with a broad range of values for many features. Values

of some features, e.g., counts of Page or obj keywords, can

be accurately deduced from the metadata output. The regular

expressions were further refined until consistent behavior was

achieved across all test files. Although the reimplementation

process required time-consuming expert work, it would be a

small hurdle for an incentivized adversary.

Thanks to the availability of the Contagio dataset, we were

able to verify the correctness of our reimplementation by

comparing our classification results on that dataset with those

reported in [23]. We, furthermore, verified that despite the dis-

crepancy in the set of implemented features, our local clone of

PDFRATE produces similar classification scores as the online

system on a benchmark dataset presented in Section VI-A3.

B. Modification of PDFRATE Feature Values

The development of the PDF file modification method for

our study was guided by the following design goal: once mod-

ified, the file in question has to appear indistinguishable from

the original to any PDF parser, yet reliably affect PDFRATE’s

feature extraction. The reason for this is that such a semantics-

preserving method can be safely applied to malicious PDF files

in our experiments, regardless of the diverse vulnerabilities

they may exploit, without the risk of breaking their potentially

subtle modus operandi.
The feature modification component of MIMICUS can ar-

bitrarily modify values of 35 and increment values of 33

Fig. 3. The PDF modification method takes the original PDF (left) and injects
new content between the cross-reference table (CRT) and the trailer. Such
a modified file (right) confuses PDFRATE into accepting the newly-injected
content as part of the file, while the PDF readers jump from the trailer directly
to the CRT, skipping the injected content completely.

features of PDFRATE, as detailed in Appendix A. Modification

of further features would have required delicate changes to

the structure of PDF files, increasing both the implementation

effort and the risk of breaking the malicious functionality.

Our approach to file modification was motivated by the dis-

crepancy between the operation of PDF readers and PDFRATE.

This approach was described in [32] as an example of a

semantic gap in the interpretation of various file formats.

PDFRATE evaluates a set of regular expressions over the raw

bytes in a PDF file, reading from the beginning to the end of

the file. In contrast, PDF readers parse PDF files in adherence

to the PDF syntax prescribed by ISO 32000-1. A conformant

PDF reader reads a file starting from its end. It checks the

trailer to find the location of the cross-reference table (CRT)

and then jumps directly to it in order to locate the objects in

the file body. This difference is illustrated in Fig. 3, showing

the layout of a PDF file before and after our modifications.

Our solution exploits this semantic gap: as long as the file

header, body and CRT are not modified or moved, the trailer

can be moved arbitrarily far away from the CRT8, thereby

generating an empty space in the file where arbitrary content

can be injected. Such content will be processed by PDFRATE,

but PDF readers will always ignore it.
The described content injection approach leaves behind file

modifications which are trivial to detect if one knows what to

look for. We believe that it is possible to rewrite the PDF files,

modifying the content in-place instead, thereby concealing

the modifications alltogether. However, this approach would

not come without technical complications. It could potentially

affect PDF readers by breaking the rendering of the PDF file

and might negatively impact the reliability of the embedded

exploit – problems which content injection avoids completely.

Our modification method proceeds by injecting a set of

whitespace-separated string patterns into the gap between the

8 It is only important that the trailer remains at the end of the file.

202

CRT and the trailer of the target PDF file. The patterns are

crafted to make specific PDFRATE regular expressions match

them, thereby influencing the extracted feature values. For

example, injecting into a file with 5 obj keywords the string

“obj obj” will change its count_obj feature value from 5

to 7, as PDFRATE’s regular expressions will match them all.

As another example, the length of the Author metadata field

can be “reduced” from 10 to 3 by injecting a new Author
field with 3 characters, “/Author(abc)”, as PDFRATE

tends to only take into account the content of the last metadata

field in the file. By injecting our payload just before the trailer

we can ensure that this condition is fulfilled.

Using the described modification method it can be safely

assumed that the behavior of PDF readers will not be altered9,

but PDFRATE would be tricked into reading the desired

feature values from the modified file. Our experiments have

confirmed this behavior for two PDF readers, ADOBE READER

and EVINCE. In addition, we have submitted all malicious

files involved in our evasion experiments to WEPAWET [3]

before and after modification and verified that the exploit

effectiveness was not affected for any sample.

As already mentioned, the features of PDFRATE are heavily

interdependent, i.e., it is, in general, impossible to perfectly

translate data points in feature space into files in problem

space. Given a malicious file before the attack, FB , and

a data point PA generated by the attack algorithm run on

FB , the adversary wants to generate the attack file FA that

optimally defeats the classifier by modifying FB’s feature

values to PA. However, due to feature interdependence, the

resulting file F ′
A �= FA, has different features, which may

or may not defeat the classifier. Fig. 4 shows a concrete

example using the GD-KDE attack, described in Section V-C2.

Feature pos_acroform_min denotes the relative file offset

of the first occurence of the keyword AcroForm and is not

modifiable by MIMICUS, however, it was indirectly influenced

by the increase of the total file size. On the other hand,

although feature author_len, denoting the length of the

Author metadata field, is directly modifiable, it got the

value 11 instead of the desired 0 because other modifiable

features, i.e., author_lc, author_num, author_oth
and author_uc, denoting different character classes in the

Author field, drove the total character count to 11.

Another important consideration regarding the translation of

data points from the feature space into the problem space is

that algorithms operating in the feature space may construct

data points which are not feasible in the problem space.

Examples are the size and version features to which the

attack algorithms attempted to assign negative values. It is

neither feasible to enumerate all feature interdependencies and

account for their effects a priori, nor to identify invalid data

points before translation to problem space.

Our approach to dealing with these two limitations is

opportunistic: we generate the file from the feature vector

9 Provided that they do not parse the injected content, but perform the
direct jump prescribed by ISO 32000-1 instead.

FEATURE BEFORE AFTER FILE
author_lc: 0 2 2

author_len: 0 0 11
author_num: 0 3 3
author_oth: 0 5 5
author_uc: 0 1 1

count_acroform: 1 0 1
count_endobj: 11 918 465

count_endstream: 1 169 85
count_eof: 0 2 2

count_font: 0 86 86
count_image_large: 0 1 1
count_image_small: 0 6 6
count_image_total: 0 0 11

count_image_xsmall: 0 4 4
count_javascript: 3 0 3

count_obj: 14 922 922
count_objstm: 0 28 28

count_page: 0 29 29
count_stream: 1 169 85

count_trailer: 1 0 1
count_xref: 1 0 1

createdate_ts: -1 7.52e+8 7.52e+8
image_totalpx: 0 0 813898

moddate_ts: -1 1.0e+09 1.0e+09
pos_acroform_avg: 0.07043 0.07043 0.00716
pos_acroform_min: 0.07043 0.07043 0.00716
pos_acroform_min: 0.07043 0.07043 0.00716

size: 2726 -426760 26782
version: 0 -4 0

Fig. 4. Changes of feature values for a subset of features in an example
GD-KDE attack in scenario F. The BEFORE column shows the feature
values extracted from a malicious candidate file, FB , with the SHA-1 hash
a39cf14b806db14a9e877b665324d203e5a5a666. GD-KDE transformed these
values in feature space into data point PA (AFTER). Point PA was used to
modify file FB in file space and generate the attack file FA. However, feature
interdependence caused the file F ′

A to be generated instead, with slightly
different feature values (FILE).

by translating features one by one, independently from each

other and without accounting for the limitations, in the hope

that the resulting file’s features are not too far away from

the desired values. Although this approach results in hardly

predictable outcome, the resulting files have feature values

sufficiently close to the desired ones and are suitable for

evasion. As a concrete example, compare columns AFTER
(desired outcome) and FILE (actual outcome) of Fig. 4.

Additional safety mechanisms implemented in MIMICUS

prevent feature modification if the desired value is outside

of valid bounds specific to the feature and the file, e.g., if

there was an attempt to modify size to a positive value less

than the file already had. The specific lower and upper bounds

enforced by our method were collected by enumerating the

features of all of the files in the dataset of PDF files available

to the adversary, described in Section VI-A, and extracting

the minimum and maximum values for each feature. Another

reason for preventing feature modification is a feature data type

mismatch, e.g., when a data-type-agnostic algorithm wants to

set a boolean feature to 7. In the end, the result is a valid

PDF file with features close to the desired ones, suitable for

evasion.

C. Attack Algorithms

The second major component of MIMICUS are its attack

algorithms. Their main goal is to generate PDF files whose

203

feature vectors are likely to receive low classification scores.

To this end, we have adapted two previously known methods

to the specific context of PDFRATE’s features.

1) Mimicry Attack: The mimicry attack is well-known in

the security literature. Its idea is to transform a malicious

sample in such a way that it mimics a chosen benign sample as

much as possible, making the resulting mimicry sample harder

to detect. This attack is simple to implement, can be applied to

any classification algorithm, and does not necessarily depend

on a particular learned classifier model. Therefore, it is suitable

for evaluation in every evasion scenario. Our implementation

takes a malicious file and simply attempts to modify all

of its modifiable features at once to take on the values of

the features of a chosen mimicry target, a benign file. To

increase the effectiveness of a mimicry attack, we repeat it 30

times using different benign targets for every attack file. The

resulting 30 files are evaluated using a local classifier, and only

the sample which best evades the local classifier is submitted

to PDFRATE.

Due to the existence of undisclosed features and technical

limitations discussed in Section V-B, it is impossible to gener-

ate a file which exactly corresponds to the feature vector result-

ing from a mimicry attack. It is important that the conversion

of a feature vector into a file is performed after the mimicry

is complete in the feature space. The latter is technically

straightforward: we simply merge a malicious feature vector

into a chosen benign one while protecting existing values.

Modifying features one at a time while translating them into

a file is not a good strategy, as the interdependency between

features dominates the transformation and generates a lot of

uncontrollable changes. Using a single-step transformation

makes such interdependency less prominent.

The generality of the mimicry attack, i.e., its independence

of the specific learning algorithm and the underlying dataset,

makes it applicable to other learning-based systems which, like

PDFRATE, have a known and modifiable subset of features.

An inverse attack, performed by injecting malicious content

into a benign PDF file, was described in [33] and demonstrated

to be effective against PDFRATE in a small-scale experiment.

2) Gradient Descent and Kernel Density Estimation (GD-

KDE) Attack: The second attack evaluated against PDFRATE

is based on a method employing gradient descent and kernel

density estimation (hence in this paper we call it GD-KDE)

to defeat a classifier with a known, differentiable decision

function [22]. It requires the knowledge of a specific learned

model and a set of benign samples. Additionally, because it is

based on gradient descent, it is only applicable to differentiable

classifiers, such as SVM, artificial neural network, etc., and

cannot be applied to the Random Forest classifier. Hence,

the GD-KDE attack is applicable only to scenarios with

differentiable surrogate classifiers (F and FT).

The GD-KDE algorithm proceeds by following the gradient

of the weighted sum of the classifier’s decision function

and the estimated density function of benign examples. The

starting point of the gradient descent is the feature vector of

the malicious sample. The starting sample is usually correctly

classified as malicious; the goal is to move to the area where

the classification algorithm classifies points as benign. In order

to avoid moving to infeasible areas of the feature space with

negative classifications, the algorithm’s objective function has

the second term, the density of benign examples. This ensures

that the final result lies close to the region populated by

real benign examples. The density function must be estimated

beforehand, using the standard techniques of kernel density

estimation [34]. Similarly to the mimicry attack, we run GD-

KDE in the feature space to completion before transforming

the result into a file.

VI. EXPERIMENTAL EVALUATION

The experiments to be presented in this section assess the

effectiveness of evasion techniques presented so far. In our

evaluation protocol, we take on the role of an attacker and

combine all available means to defeat an up-to-date version

of PDFRATE as it is deployed. An attacker has no control

over PDFRATE’s deployment, hence no guarantees can be

provided that the system has not changed between individual

experiments. Since our evaluation was carried out against the

model trained on a static dataset and took place within one

week, it is quite unlikely that any changes in the production

system have occurred.

In another set of experiments, we also investigate the impact

of our attack on the defensive measures suggested in the

original paper [23].

A. Datasets

Three datasets were used in our experiments: two datasets,

Contagio and Surrogate, were intended for training of local

classifiers needed for attack implementation, while the Attack
dataset consisted of malicious files used as starting points for

generating attack samples targeting PDFRATE.

1) Contagio dataset: This dataset is an exact copy of the

original PDFRATE training dataset, described in Section IV-B.

It contains 5,000 benign and 4,999 malicious PDF files10. It is

reasonable to assume that an adversary knows that this dataset

was used for training and obtains access to it.

2) Surrogate dataset: This dataset is designed as a dataset

that an adversary without acces to Contagio data might have

collected to approximate it. Malicious files in the dataset are a

random subsample of PDF files uploaded to the online virus-

scanning service VirusTotal11 between the 5th and 22nd of

March, 2012. These files are newer than Contagio data but

were known before PDFRATE was published. Four files in

the dataset were found to be present in the Contagio dataset

and were removed to ensure strict complementarity of data.

Benign files in the Surrogate dataset are randomly subsam-

pled from the files obtained using keywordless Google web

searches for PDF files published between February 5, 2007

and July 25, 2012. The Surrogate dataset has the same size

and composition as the Contagio dataset.

10 We were unable to locate the malicious file with the MD5 hash
35b621f1065b7c6ebebacb9a785b6d69 in the archives.

11 VirusTotal – https://www.virustotal.com/.

204

3) Attack dataset: This dataset contains 100 malicious files

that are used as starting points for all attacks. This dataset

was deliberately chosen to be small in order to minimize

operational impact on PDFRATE. The adversary has access

to these files in all scenarios. The files were randomly drawn

from the Contagio dataset, already known to the classifier

and therefore make evasion even more challenging to the

attacker. Both PDFRATE and WEPAWET classify all of them

as malicious, PDFRATE with a very high score, as seen in

Fig. 5, “Baseline”. All files are distinct in both the problem

and feature space.

B. Classifiers

Depending on whether the attacker knows the exact clas-

sification algorithm employed by PDFRATE or not, he might

use either the original or an unrelated, surrogate classifier. Our

experimental framework MIMICUS models these two cases by

deploying the Random Forest classifier in scenarios FC and

FTC, where the classifier type is known, and a Support Vector

Machine (SVM) classifier in scenarios F and FT.

1) Random Forest: The classifier implementation and pa-

rameters are identical to the original classifier of PDFRATE

described in Section IV-C.

2) Support Vector Machine: We have chosen the SVM [35]

as a surrogate classifier because it delivers high classification

performance on many problems, including the discrimination

between malicious and benign PDF files using PDFRATE

features, and is unrelated to the Random Forest. The SVC

implementation of the SCIKIT-LEARN [36] machine learning

toolkit version 0.13.1 was used.

The SVM learns by mapping labeled training points into a

high- or infinite-dimensional feature space, optionally applying

a nonlinear transformation called a kernel function to the

input feature vectors to make them better separable. It then

finds a separating hyperplane in the new space with the

largest possible margin, i.e. the distance between the convex

hulls of the two classes of points, malicious and benign. The

hyperplane vector, represented by a subset of input points, so-

called support vectors, together with their weights, constitutes

an SVM model. When classifying new data, the distance

between the hyperplane and the new data point is calculated.

This distance, called the decision function score, is a real

value whose meaning is similar to the classification score of

PDFRATE. A binary decision can be made by taking the sign

of the decision function score for the new data point. We assign

the positive score to the malicious class by convention. To

evade an SVM, the adversary needs to modify a malicious

data point so that its decision function score changes sign.

Two kernel functions were evaluated: linear and RBF. The

linear kernel klinear(x1, x2) = x1 · x2 provides a linear

transformation of two input vectors x1 and x2, while the

RBF kernel kRBF (x1, x2) = exp(−γ||x1− x2||2) utilizes the

Gaussian radial basis function as a nonlinear transformation

of its arguments. For optimal evasion results, a grid search

was carried out on the two adversary’s datasets, optimizing

the SVM parameters C for the linear, C and γ for the RBF

TABLE I
REALIZED ATTACK SCENARIOS

Scenario Classifier Dataset Attack(s)

F SVM Surrogate Mimicry, GD-KDE

FC Random Forest Surrogate Mimicry

FT SVM Contagio Mimicry, GD-KDE

FTC Random Forest Contagio Mimicry

kernel. The highest achieved accuracy using 10-fold cross-

validation and a 60%:40% training-testing split was 98.7% on

the Contagio and 99.5% on the Surrogate dataset.

The parameters found in the grid search are same for both

datasets: RBF kernel, C = 10, γ = 0.01. However, the

generalization ablility of the two learned models for the two

datasets differs greatly. The SVM trained on Contagio data

achieves an accuracy of 98.5% on Surrogate data, but the

SVM trained on the Surrogate data performs very poorly

on Contagio data, with an accuracy of 61%. Of course, the

adversary in scenarios F and FC, without access to original

training data, would be unable to check how well its SVM

performs on it. Bad approximation of the training data strongly

affects the performance of the GD-KDE attack.

Due to differences in scale among features and as a general

rule when using SVMs, feature standardization was performed

on extracted data points by subtracting the feature mean from

the feature value and dividing the result by the feature’s stan-

dard deviation. Means and standard deviations of all features

were calculated on the Contagio dataset.

C. Attack Scenarios

The following subsections elucidate how the 4 main attack

scenarios described in Section II were implemented in our ex-

periments using the available data and algorithms. A summary

of the realized attack scenarios is presented in Table I.

1) Scenario F: In scenario F, all that the adversary knows

about PDFRATE is how to read 135 and modify 68 features.

Nevertheless, there are two attacks he can perform, depending

on the available datasets, as elaborated in Section II-A. The

mimicry attack uses randomly sampled benign files from

the Surrogate dataset, as the Contagio dataset is unknown.

Similarly, the surrogate classifier is trained on the Surrogate
dataset for evasion using GD-KDE. The classifier parameters

are optimized using grid search on the Surrogate dataset. Both

attacks were performed offline, without classifier feedback,

and their results were uploaded to PDFRATE for evaluation.

2) Scenario FT: In scenario FT, besides the limited knowl-

edge of features, the adversary has a complete knowledge of

the training dataset. Therefore, the Contagio dataset is used

to train a surrogate classifier for the GD-KDE attack in this

scenario, and randomly sampled benign files from Contagio
are used as mimicry targets for the mimicry attack. This time,

the surrogate classifier is optimized using grid search on the

Contagio dataset. Only the final attack results are submitted

to PDFRATE.

205

Baseline Mimicry GD-KDE Mimicry Mimicry GD-KDE Mimicry
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
D

Fr
at

e
sc

or
e

Scenario F Scenario FC Scenario FT Scenario FTC

Fig. 5. Populations of PDFRATE scores before (“Baseline”) and after each attack (the rest), for all 100 attack samples from the Attack dataset. Attacks are
grouped by scenario. The boxes extend from the first to the third quartile, with the median value between them (thick line). The whiskers extend to the farthest
datum within 1.5 times the interquartile range from the box, while the squares represent the outliers.

3) Scenario FC: Knowledge about the classifier is added

to the limited knowledge of features in this scenario. The

adversary knows the original classifier, its implementation and

parameters. They use the Surrogate dataset with the original

classifier to produce a surrogate classifier, which they evade

offline using mimicry attack, with mimicry targets randomly

selected from the Surrogate dataset. Results are submitted to

PDFRATE for evaluation.

4) Scenario FTC: Given the limited knowledge of features

and complete knowledge of the training dataset and classifier,

the attacker creates a local clone of PDFRATE and evades it

offline. Only the final attack results are submitted online.

D. Results

Before the attack experiments were run, all 100 files in the

Attack dataset were evaluated by PDFRATE. The results of this

evaluation, shown in Fig. 5, “Baseline”, provide a baseline

with which we compare the attack results. All but 3 files

received a 100% malicious classification score.

Our evaluation followed a simple protocol. For every at-

tack, 100 files from the Attack dataset were used to generate

attack samples. The effectiveness of generated attack files was

evaluated by submitting them to PDFRATE and comparing the

received classification scores with our baseline. All attack sam-

ples were submitted to WEPAWET to verify their maliciousness

after modification.

The summary of PDFRATE’s scores for attack files is

presented in Fig. 5. For each attack, the population of 100

classification scores is represented as a box plot, with the

median shown as a thick line, the 25th and 75th percentiles

(“interquartile range” or IQR) as a box, scores within 1.5 IQR

from the median as “whiskers”, and the remaining outliers as

single points. Plots are grouped by attack scenario.

The results show that PDFRATE was evaded in all 4
attack scenarios. The median score dropped to 28-42% for

mimicry and 29-34% for GD-KDE attacks, depending on the

scenario. For all attacks except mimicry in scenario F, the 75th

percentile of the box plot lies below the 50% mark, implying

Baseline GD-KDE Baseline GD-KDE
−3

−2

−1

0

1

2

3

S
V

M
 s

co
re

Scenario F Scenario FT

Fig. 6. Populations of SVM decision function values before and after GD-
KDE attacks in scenarios F and FT, for all 100 attack samples from the Attack
dataset. Parameters of the box plot are described in Fig. 5.

that 75% of the attacks would be classified as benign if a 50%

threshold over classification scores were used for decision

making. The significance of these results is further emphasized

by the fact that only a third of features were modifiable, and

the files used for evaluation were already known to PDFRATE

at training and hence more difficult to evade.

Results in scenarios with a surrogate classifier, F and FT,

demonstrate the superiority of GD-KDE over mimicry. Fur-

thermore, the mimicry attack in the scenario with the highest

amount of knowledge, FTC, only marginally outperforms GD-

KDE in scenario FT. Further insights into the behavior of the

GD-KDE attack are given in Fig. 6. It shows the values of the

decision functions of two SVMs, one trained on the Surrogate
dataset in scenario F, the other on the Contagio dataset in

scenario FT, before and after attack. The post-attack SVM

scores demonstrate that the GD-KDE attack reliably steers

all samples far across the decision boundary into the benign

region. If the SVM classifier were deployed by PDFRATE, it

is very likely that the GD-KDE attack would have attained

perfect evasion, driving all scores below zero. Since the

206

SVM only approximately matches the decision function of a

Random Forest, attacks against PDFRATE fall far from being

perfect, but still significantly decrease the scores.

By careful observation of Fig. 6 it is evident that over 25%

of pre-attack samples in scenario F have a negative decision

function value, i.e., are classified as benign by the SVM

(but not PDFRATE) before attack. This is a consequence

of operating under scenario F, where the adversary trains

using the Surrogate dataset but attacks using samples from

the Contagio dataset. Because of the poor generalization of

SVM models in this case, as elaborated in Section VI-B2,

the samples are often misclassified. In scenario FT, where the

attacker also trains on the Contagio dataset, the baseline SVM

scores are strictly positive.

Another important observation based on Fig. 5 is the

improvement of attack effectiveness with the increase of

adversary’s knowledge about the target system. This finding is

in agreement with our initial conjecture about the importance

of adversary’s knowledge for classifier robustness. However,

it is curious that the improvement from scenario F to scenario

FTC is not as dramatic as one might expect: mimicry improves

by around 14% and GD-KDE in scenario F is outperformed

by the best overall attack, mimicry in scenario FTC, by a

mere 6%. This is an important finding indicating that merely

knowing a subset of features might provide the adversary more

advantage than previously considered.

The possession of training data is the second most important

contribution to the attackers’ success, after the knowledge of

features. Fig. 7 compares the scores of two local Random

Forests with that of PDFRATE on mimicry attacks in scenarios

FC, using Surrogate, and FTC, using Contagio data. It can

be seen that on Surrogate data, the exact classifier makes

an overly optimistic assessment of the attack effectiveness,

achieving a median score of about 18%, while the same files

get a median score of 37% when submitted to PDFRATE.

However, when staged with the Contagio dataset, the local

estimate of the attack score is almost identical to PDFRATE’s

(29% and 28%, respectively). This similarity is surprizing

taking into account that the local classifier was trained using

only a subset of PDFRATE’s features and that the training

process of Random Forests is heavily randomized.

As a final step in our evaluation, we investigate the impact of

attacks on the detection performance of PDFRATE. Recall that

the classification score still needs to be compared with some

threshold for a binary decision to be made. Earlier, we reported

that 75% of the attack points would have fallen under the radar

if the threshold were set at the specific value of 0.5. To analyze

the detection performance for all possible thresholds, the

Receiver Operating Characteristic (ROC) curves are presented

in Fig. 8 for the baseline and all attacks. The ROC curves were

obtained on a mixed data sample containing the same 100

attack samples and all 1051 benign samples from the original

Contagio database not in the Contagio dataset. It can be clearly

seen from this figure that, especially in the lower range of

false alarm rates (less than 0.5%), the detection performance

of PDFRATE is dramatically decreased by the attacks, and the

PDFrate Local PDFrate Local
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
an

do
m

 fo
re

st
 s

co
re

Scenario FC Scenario FTC

Fig. 7. Populations of Random Forest scores by PDFRATE and two local
Random Forests on two mimicry attacks, for all 100 attack samples from the
Attack dataset. Parameters of the box plot are described in Fig. 5.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
FTC, Mimicry
FT, Mimicry
FC, Mimicry
F, Mimicry
FT, GD-KDE
F, GD-KDE
Baseline

Fig. 8. ROC curves of the baseline and all attacks.

mimicry attack of the FTC scenario has caused a 7% false

positive rate. The relative effectiveness of the attacks with

respect to detection performance is similar to their relative

effectiveness with respect to classification scores (cf. Fig. 5).

E. Defensive Measures

In our last experiment, we have investigated the robustness

of defensive mechanisms proposed in [23] to our evasion tech-

nique. To set the baseline, we have reproduced the mimicry

attack and the defense technique in exactly the same way as

it was proposed by Smutz and Stavrou (cf. Section IV-D),

using the Random Forest classifier trained on the Contagio
dataset. Our classifier ranked the following 10 features12 as

most important, in descending order:

count_font pos_eof_avg count_endobj
count_js pos_eof_max producer_len
count_javascript len_stream_min
pos_box_max count_obj

12 We have used 10 instead of 6 top features for mimicry because they
were ranked significantly above others.

207

co
un

t_
fo

nt
(+

) c
ou

nt
_j

s
(+

) c
ou

nt
_j

av
as

cr
ip

t
(+

) p
os

_b
ox

_m
ax

(+
) p

os
_e

of
_a

vg
(+

) p
os

_e
of

_m
ax

(+
) l

en
_s

tre
am

_m
in

(+
) c

ou
nt

_o
bj

(+
) c

ou
nt

_e
nd

ob
j

(+
) p

ro
du

ce
r_

le
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
A

cc
ur

ac
y

Feature space
Problem space

Fig. 9. Results of the BRN attack applied on data points in feature space
versus files in problem space. The attack was applied 10 times, starting with
only count_font and progressively modifying ever more features.

We have then reimplemented the original “benign random

noise” (BRN) attack of Smutz and Stavrou in the feature space

and extended it to the problem space by generating the target

file for the attack’s ultimate feature vector. The comparison of

the effectiveness of these two attack variants as a function of

the number of features modified is shown in Fig. 9. We observe

that the behavior of the synthetic variant of the BRN attack

(solid line) closely resembles the results reported in [23], with

a slightly higher impact on accuracy13. However, when applied

to files, the BRN attack is ineffective (dashed line). Only the

modification of one or two features exhibits some impact on

detection accuracy. Attempting to modify further features leads

to increasing inadvertent modifications which end up steering

the mimicry samples towards the benign class. Furthermore,

only 5 of the top 10 features are modifiable. Therefore, the

BRN attack in problem space is unpractical and, compared to

other attacks presented in Section VI-D, suboptimal.

Finally, we have evaluated the effectiveness of the “vac-

cination” mechanism proposed by Smutz and Stavrou which

modifies a fraction of malicious samples in the training dataset

in such a way that they are more similar to expected attack

samples. Two scenarios are considered: when the defender

anticipates the (1) right and the (2) wrong kind of attack. Ef-

fectiveness of the vaccination defense against the BRN attack

under both scenarios is compared in Fig. 10. Our experiment

confirms the effectiveness of the vaccination defense when the

right kind of attack, i.e., BRN, is anticipated (dashed curve).

However, the classifier vaccinated with the BRN attack showed

no resistance to our mimicry attack from the FTC scenario

(dotted curve). Repeating the experiment with the vaccination

using our mimicry attack revealed that the resistance to the

attack was restored (Fig. 11). Hence it can be concluded that

the vaccination mechanism is effective against any correctly

13 The accuracy scores might vary because of experiment randomization,
different Random Forest models or different cutoff values.

0 0.05 0.1 0.5 1 5 10 50 100
Training set perturbation (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y Unmodified data
BRN attack
Our mimicry attack

Fig. 10. Performance of the defensive measure proposed in [23]. Averaged
results of 5 independent trials, using 10-fold cross-validation.

0 0.05 0.1 0.5 1 5 10 50 100
Training set perturbation (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Clean data
Our mimicry

Fig. 11. Effect of the defensive measure proposed in [23] on our mimicry
attack. Averaged results of 5 independent trials.

anticipated attack. The latter assumption, however, is rather

unrealistic in practice.

VII. INTERPRETATION OF ATTACKS

From the operational perspective, it is crucial to understand

which features contribute most to the success of the reported

attacks. In general, interpretation of models created by learning

techniques is always difficult. Even though Random Forest

classifiers provide a ranking of features according to their

informativeness, which has been crucial for the design of the

BRN attack, this information is only indirectly related to the

two types of attacks presented in our paper. Hence, a different

analysis technique had to be developed to interpret our attacks.

Our interpretation is based on the binary difference between

feature vectors before and after an attack. While it may be

tempting to claim that the features with largest change are the

most informative, this measure is strongly misleading in our

case since the ranges of feature values are vastly different.

Even re-scaling the changes to valid value ranges is not

suitable since the bounds for specific features can only be

determined on the basis of an empirical sample of PDF files

208

0 10 20 30 40 50 60 70 80 90 100
Number of changes in 100 attack files

0

5

10

15

20

25

30

35

40

45
C

ou
nt

 o
f f

ea
tu

re
s

Modifiable
Not modifiable

Fig. 12. Distribution of the count of features that were changed across 100
GD-KDE attacks in scenario FT.

and are prone to outliers. Furthermore, only one third of the

features is directly modifiable in our approach, yet all of them

may be indirectly modified as a result of some other changes.

The only conceivable characterization of the mimicry attack

is the empirical support of specific features, i.e., the percentage

of files for which a given feature was changed by the attack.

The histograms of feature support are shown in Figures 12

and 13 for the GD-KDE and mimicry attack, respectively. It

can be seen that both attacks perform a significant amount of

feature modifications, hence one cannot explain the attacks by

a small number of essential features. Between the two attacks,

the modifications produced by GD-KDE are more uniform,

having a set of 45 features that are changed in almost every

attack. The remaining 23 features are rarely modified, most

likely due to the opposite direction of change (recall that 35

features are only incrementable in our setup) or due to the

infeasibility of the requested change. The changes effected

by the mimicry attack exhibit higher variability of support.

It is also interesting to observe that direct modifications

are accompanied by an almost balanced amount of indirect

modifications. This serves as another example for the high

interdependency of PDFRATE’s features.

A practical way to interpret attacks is to observe concrete

changes in feature values produced by the attacks. Although

it does not scale to cases with many features and files, this

kind of investigation provides deep insight into the modus
operandi of the attack at hand. Fig. 4 shows how the features

of one specific file changed in the GD-KDE attack. Recall that

GD-KDE operates by steering malicious data points across the

decision boundary into the benign area using gradient descent,

and at the same time utilizes kernel density estimation to push

them towards seen benign samples. This “benignization” is ev-

ident in the provided example. By comparing the BEFORE and

AFTER columns, we see that the attack has added an author

(author* features), set the creation (createdate_ts)

and modification (moddate_ts) date into recent past, re-

duced JavaScript occurences (count_javascript), added

some pages (count_page), fonts (count_font), images

0 10 20 30 40 50 60 70 80 90 100
Number of changes in 100 attack files

0

5

10

15

20

25

30

35

40

45

C
ou

nt
 o

f f
ea

tu
re

s

Modifiable
Not modifiable

Fig. 13. Distribution of the count of features that were changed across 100
mimicry attacks in scenario FTC.

(count_image*), etc. – all changes towards the benign

class. Some features, e.g., size and version, were changed

to invalid values, possibly due to the influence of the gradient

descent component.

VIII. DISCUSSION AND RELATED WORK

While the results of our study are only applicable to a single

system, our findings suggest several important implications. It

was the first attempt to perform a comprehensive practical

evaluation of a deployed learning-based system, hence we

cannot expect that our results can be exactly reproduced for

a large number of similar systems. Still, some key issues

revealed by our experiments deserve careful consideration, as

they pinpoint some general problems that need to be addressed

in the design of future data-driven systems.

The main message of our experiments is that an attacker can

significantly decrease the accuracy of a learning-based system

if he has sufficient knowledge of its features and methods. The

main factor that contributes to this insecurity is the knowledge

of features. For PDFRATE we have observed that even the

simplest attack from our arsenal, with no further knowledge

of the system except for its features, can reduce maliciousness

scores for a chosen representative set of malicious samples

from 100% to the median of 33%. This was possible despite

the fact that roughly one third of the classifier’s features was

completely unknown to us and another third not modifiable by

our tools. Such an impact suggests that even a small amount

of knowledge about the features can be exploited for staging

evasion attacks. Additional factors such as the knowledge of

the training data and the precise type of the algorithm are

helpful but not crucial for the attack, as this information can

be well approximated by surrogate sources.

The fundamental problem underlying the insecurity of

learning-based approaches lies in the design of features. The

growing popularity of machine learning in various kinds of

information systems – far beyond security – is largely due to

its ability to predict, with greater or lesser success, causes from

side effects. It is this generalization ability that makes machine

209

learning algorithms the means of choice for finding solutions

to problems shrouded by uncertainty, when one has neither

enough understanding of the problem to design a solution, nor

can figure it out from looking at the raw data. The prevailing

approach for designing features for learning algorithms by

hand-picking a set of easily computable side effects, or “expert

features”, obviously has the peril that the attacker may do

exactly the same. To protect such methods against evasion,

there seems to be no other way than to hide the cricial mass

of knowledge about features. Otherwise, as our study shows,

there exist principled ways to automatically extend the missing

knowledge for staging a successful evasion attack.

Are there alternative solutions that can make learning meth-

ods more robust to evasion? One potential solution is to use

features that inherently represent, at least to a reasonable de-

gree, the causes to be detected. One example of such features

can be found in previous work on shellcode detection and

classification, e.g., [37], [38], [39], [40], which uses n-grams,

or short byte sequences, as basic features. Similar approach has

been recently explored for detection of JavaScript malware,

with the same techniques applied to sequences of syntactic

tokens [41], [42]. The discriminative power of these methods

lies in the inherent statistical difference between shellcode and

usual packet content, as well as between malicious JavaScript

code and benign programs. Hence one can expect such features

to be less prone to malicious manipulation than “expert

features”. If fact, it has been shown that exact evasion of n-

gram based features is NP-complete [20], and approximate

solutions are widely believed to be difficult in practice.

Another potential solution can be offered by methods

attempting to uniformly spread the “discriminative power”

across as many features as possible. Some methods of this kind

have been recently proposed for learning on problems with

potential feature deletion or corruption [43], [44]. At the cost

of a significant increase in the complexity of training problems,

such methods offer a reasonable protection for limited amount

of feature noise, regardless of the type of features. Assuming

that the attacker has modification access to a limited number

of features, as it was the case in our study, one can expect

such methods to deliver a good tradeoff for the cases when no

“intrinsic features” can be devised.

Finally, methods based on multiple classifier systems [45]

should be mentioned as a potential solution. Evading a number

of complementary classifiers can be significantly harder than

a single classifier. For example, we were unable to design

an optimal attack against a Random Forest classifier using a

set of heterogeneous decision functions. Some applications of

multiple classifier systems in security and other adversarial

scenarios have recently been considered [46], [47].

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the first empirical security

evaluation of a deployed learning-based system. Our study

assumed that an attacker has no specific insider information

about the system. It demonstrated, however, that enough in-

formation can be gathered from various sources and extended

with appriximations and automatic inference algorithms in

order to stage a successful evasion attack. In our experiments

carried out on an established system for detection of PDF mal-

ware, PDFRATE, the significant drop in classification scores

(from almost 100% to 28-33%) as well as deterioration of

detection rates has been observed. We have also observed

that simple countermeasures against evasion attacks, such as

including a small fraction of attacks in the training data, are

only effective if the anticipated attack exactly matches the

performed one.

The findings of our study suggest that careful attention

should be paid to the design of features and algorithms used in

data-driven security techniques. Our future work will attempt

to tackle the limitations of learning methods discovered in

the presented experiments, especially in understanding of the

general properties for construction of attack-resilient features.

Our evaluation methods are applicable to other learning-based

systems with modifiable features and we intend to extend

our methods for security assessment of related systems for

detection of malicious JavaScript and PDF files. By publishing

our experimental code online we hope to share our experience

with other researchers and to facilitate reproducibility of

experimental results in security assessment of real systems.

APPENDIX A

PDFRATE FEATURE REIMPLEMENTATION

The MIMICUS experimental framework supports reading

of 135 PDFRATE features (66%) described in [24]. The

remaining 67 of 202 features were not disclosed. Modification

of values of the following 68 features (33%) is supported:

• Features whose value can only be incremented (33):

count_acroform count_image_xlarge
count_acroform_obs count_image_xsmall
count_action count_javascript
count_action_obs count_javascript_obs
count_box_a4 count_js
count_box_legal count_js_obs
count_box_letter count_obj
count_box_other count_objstm
count_box_overlap count_objstm_obs
count_endobj count_page
count_endstream count_page_obs
count_eof count_startxref
count_font count_stream
count_font_obs count_trailer
count_image_large count_xref
count_image_med size
count_image_small

• Features whose value can be both incremented and decre-
mented (35):

author_dot keywords_dot subject_dot
author_lc keywords_lc subject_lc
author_num keywords_num subject_num
author_oth keywords_oth subject_oth
author_uc keywords_uc subject_uc
createdate_ts moddate_ts title_dot
createdate_tz moddate_tz title_lc
creator_dot producer_dot title_num
creator_lc producer_lc title_oth
creator_num producer_num title_uc
creator_oth producer_oth version
creator_uc producer_uc

210

REFERENCES

[1] U. Bayer, P. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda, “Scal-
able, behavior-based malware clustering,” in Network and Distributed
System Security Symposium (NDSS), 2009.

[2] O. Thonnard, “A multicriteria clustering approach to support at-
tack attribution in cyberspace.” Ph.D. dissertation, Ecole Doctorale
d’Informatique, Télécommunications et Electronique de Paris, 2010.

[3] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-
by-download attacks and malicious JavaScript code,” in International
Conference on World Wide Web (WWW), 2010, pp. 281–290.

[4] M. A. Rajab, L. Ballard, N. Lutz, P. Mavrommatis, and N. Provos,
“CAMP: Content-agnostic malware protection,” in Network and Dis-
tributed System Security Symposium (NDSS), 2013.

[5] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: a fast filter
for the large-scale detection of malicious web pages,” in International
Conference on World Wide Web (WWW), 2011, pp. 197–206.

[6] G. Stringhini, C. Kruegel, and G. Vigna, “Shady paths: leveraging
surfing crowds to detect malicious web pages,” in ACM Conference on
Computer and Communications Security (CCS), 2013, pp. 133–144.

[7] M. Egele, G. Stringhini, C. Kruegel, and G. Vigna, “COMPA: Detecting
compromised accounts on social networks.” in Network and Distributed
System Security Symposium (NDSS), 2013.

[8] D. M. Freeman, “Using naive bayes to detect spammy names in social
networks,” in ACM Workshop on AI and Security (AISec), 2013, pp.
3–12.

[9] B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “Peerrush: mining
for unwanted p2p traffic,” in Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2013, pp. 62–82.

[10] M. Barreno, B. Nelson, A. Joseph, and J. Tygar, “The security of
machine learning,” Machine Learning, vol. 81, no. 2, pp. 121–148, 2010.

[11] M. Kearns and M. Li, “Learning in the presence of malicious errors,”
SIAM Journal on Computing, vol. 22, no. 4, pp. 807–837, 1993.

[12] M. Brückner, C. Kanzow, and T. Scheffer, “Static prediction games for
adversarial learning problems,” Journal of Machine Learning Research,
pp. 2617–2654, 2012.

[13] M. Kloft and P. Laskov, “Security analysis of online centroid anomaly
detection,” Journal of Machine Learning Research, vol. 13, pp. 3133–
3176, 2012.

[14] B. Biggio, G. Fumera, and F. Roli, “Security evaluation of pattern
classifiers under attack,” IEEE Transactions on Knowledge and Data
Engineering, vol. 99, no. PrePrints, p. 1, 2013.

[15] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee, “Poly-
morphic blending attacks,” in USENIX Security Symposium, 2006, pp.
241–256.

[16] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif, “Misleading
worm signature generators using deliberate noise injection,” in IEEE
Symposium on Security and Privacy, 2006, pp. 17–31.

[17] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in International Conference on Machine Learning,
2012.

[18] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in Inter-
national Cryptology Conference on Advances in Cryptology (CRYPTO),
2000, pp. 36–54.

[19] C. Dwork, “Differential privacy: a survey of results,” in Interna-
tional conference on theory and applications of models of computation
(TAMC), 2008, pp. 1–19.

[20] P. Fogla and W. Lee, “Evading network anomaly detection systems:
formal reasoning and practical techniques,” in ACM Conference on
Computer and Communications Security, 2006, pp. 59–68.

[21] D. Lowd and C. Meek, “Good word attacks on statistical spam filters,”
in Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2005, pp. 641–647.

[22] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, 2013.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-40994-3 25

[23] C. Smutz and A. Stavrou, “Malicious PDF detection using metadata
and structural features,” in Annual Computer Security Applications
Conference (ACSAC), 2012, pp. 239–248.

[24] ——, “Malicious PDF detection using metadata and structural features,”
Available at http://cs.gmu.edu, Department of Computer Science, George

Mason University, 4400 University Drive MSN 4A5, Fairfax, VA 22030-
4444 USA, Tech. Rep. GMU-CS-TR-2012-5, 2012.

[25] D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, and
Y. Zhou, “Detecting adversarial advertisements in the wild,” in ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), 2011, pp. 274–282.

[26] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein,
U. Saini, C. Sutton, J. D. Tygar, and K. Xia, “Exploiting machine
learning to subvert your spam filter,” in USENIX Workshop on Large-
scale Exploits and Emergent Threats (LEET), 2008, pp. 1–9.

[27] C. Yang, R. C. Harkreader, and G. Gu, “Die free or live hard? empirical
evaluation and new design for fighting evolving twitter spammers,” in
Recent Adances in Intrusion Detection (RAID), 2011, pp. 318–337.

[28] M. Brennan, S. Afroz, and R. Greenstadt, “Adversarial stylometry: Cir-
cumventing authorship recognition to preserve privacy and anonymity,”
ACM Transactions on Information Systems Security, vol. 15, no. 3, pp.
1–22, 2012.

[29] G. Oberreuter, G. L’Huillier, S. A. Rı́os, and J. D. Velásquez, “Outlier-
based approaches for intrinsic and external plagiarism detection,” in
Knowledge-based and intelligent information and engineering systems,
2011, pp. 11–20.

[30] “Document management - Portable document format - Part 1: PDF 1.7,”
http://www.adobe.com/devnet/pdf/pdf reference.html, 2008.

[31] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[32] S. Jana and V. Shmatikov, “Abusing file processing in malware detectors
for fun and profit,” in IEEE Symposium on Security and Privacy, 2012,
pp. 80–94.

[33] D. Maiorca, I. Corona, and G. Giacinto, “Looking at the bag is not
enough to find the bomb: An evasion of structural methods for malicious
pdf files detection,” in SIGSAC Symposium on Information, Computer
and Communications Security, 2013, pp. 119–130.

[34] E. Parzen, “On estimation of a probability density function and mode,”
The Annals of Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076,
1962.

[35] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning,
vol. 20, pp. 273–297, 1995.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[37] K. Wang, J. Parekh, and S. Stolfo, “Anagram: A content anomaly
detector resistant to mimicry attack,” in Recent Adances in Intrusion
Detection (RAID), 2006, pp. 226–248.

[38] K. Rieck and P. Laskov, “Language models for detection of unknown
attacks in network traffic,” Journal in Computer Virology, vol. 2, pp.
243–256, 2007.

[39] J. Kolter and M. Maloof, “Learning to detect and classify malicious
executables in the wild,” Journal of Machine Learning Research, 2006,
to appear.

[40] Z. Shafiq, S. Khayam, and M. Farooq, “Embedded malware detection
using markov n-grams,” in Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2008, pp. 88–107.

[41] K. Rieck, T. Krüger, and A. Dewald, “Cujo: Efficient detection and
prevention of drive-by-download attacks,” in Annual Computer Security
Applications Conference (ACSAC), 2010, pp. 31–39.

[42] P. Laskov and N. Šrndić, “Static detection of malicious JavaScript-
bearing PDF documents,” in Annual Computer Security Applications
Conference (ACSAC), 2011, pp. 373–382.

[43] A. Globerson and S. Roweis, “Nightmare at test time: Robust learning
by feature deletion,” in International Conference on Machine Learning
(ICML), 2006, pp. 353–360.

[44] O. Dekel, O. Shamir, and L. Xiao, “Learning to classify with missing
and corrupted features,” Machine Learning, vol. 81, no. 2, pp. 149–178,
2010.

[45] F. Roli, G. Giacinto, and G. Vernazza, “Methods for designing multiple
classifier systems,” in Multiple Classifier Systems, 2001, pp. 78–87.

[46] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee, “McPAD: A
multiple classifier system for accurate payload-based anomaly detec-
tion,” Computer Networks, vol. 53, no. 6, pp. 864–881, 2009.

[47] B. Biggio, G. Fumera, and F. Roli, “Multiple classifier systems for
adversarial classification tasks.” in Multiple Classifier Systems, 2009,
pp. 132–141.

211

