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Abstract

In a previous work [1], we have proposed a simple physical model to explain the accelerat-
ing displacements preceding some catastrophic landslides, based on a slider-block model with a
state and velocity dependent friction law. This model predicts two regimes of sliding, stable and
unstable leading to a critical finite-time singularity. This model was calibrated quantitatively
to the displacement and velocity data preceding two landslides, Vaiont (Italian Alps) and La
Clapière (French Alps), showing that the former (resp. later) landslide is in the unstable (resp.
stable) sliding regime. Here, we test the predictive skillsof the state-and-velocity-dependent
model on these two landslides, using a variety of techniques. For the Vaiont landslide, our
model provides good predictions of the critical time of failure up to 20 days before the col-
lapse. Tests are also presented on the predictability of thetime of the change of regime for la
Clapière landslide.

1 Introduction

There is a growing interest in understanding and predictingcatastrophic phenomena, such as floods,
earthquakes and avalanches, which are characterized by their rareness and burstiness often leading
to disastrous consequences for the embedding environment [2]. Notwithstanding their large societal
impacts, the scientific community is only beginning to develop the concepts and tools to model and
predict these class of events. The prediction of catastrophes is often considered to be essentially
impossible either due to intrinsic mechanisms inherent to the systems [3] or from the existence
of enormous practical barriers [4]. Several groups have however found evidence of a degree of
predictability of certain catastrophes [5], such as financial crashes [6] and earthquakes [7].

Here, we address the question of the predictability of landslides which constitute a major ge-
ologic hazard of strong concern in most parts of the world. Landslides occur in a wide variety
of geomechanical contexts, geological and structural settings, and as a response to various load-
ing and triggering processes. They are often associated with other major natural disasters such as
earthquakes, floods and volcanic eruptions.
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Derived from the civil-engineering methods developed for the safety of human-built structures,
including dams and bridges, the standard approach to slope instability is to identify the conditions
under which a slope becomes unstable [8]. By their nature, standard stability analysis cannot ac-
count for acceleration in slope movement [9]. The problem isthat this modeling strategy gives a
nothing-or-all signal. In this view, any specific landslideis essentially unpredictable, and the fo-
cus is on the recognition of landslide prone areas. This approach is very similar to the practice in
seismology called “time-independent hazard” where earthquake prone areas are located in associ-
ation with active faults for instance, while the predictionof individual earthquake is recognized to
be much more difficult if not unattainable. This “time-independent hazard” essentially amounts to
assume that landslides are a random (Poisson) process in time, and uses geomechanical modeling to
constrain the future long-term landslide hazard. The approaches in terms of a safety factor do not ad-
dress the preparatory stage leading to the catastrophic collapse, if any. In contrast,“time-dependent
hazard” would accept a degree of predictability in the process, in that the landslide hazard varies
with time, maybe in association with varying external forcing (rain, snow, earthquake, volcano).
The next level in the hierarchy would be “landslide forecasting”, which require significant better
understanding to allow for the prediction of some of the features of an impending landslide, usu-
ally on the basis of the observation of precursory signals. Practical difficulties include identifying
and measuring reliable, unambiguous precursors, and the acceptance of an inherent proportion of
missed events or false alarms.

Our purpose is to extend the model of a slider-block with state-and-velocity-dependent friction
introduced in our companion paper [1] for the analysis of twolandslides. Here, we examine how
one could have perhaps predicted these landslides in advance. By studying these two cases, we
hope to develop a methodology that could be useful in the future as well as to determine the limits
of predictability. For the Vaiont landslide, our model provides good predictions with a precision
of about one day of the critical time of failure up to 20 days before the collapse. Tests are also
presented on the prediction of the time of the change of regime for la Clapière landslide. Re-
examining the calibration of the model of a slider-block with state-and-velocity-dependent friction,
we cannot exclude that La Clapière might also belong to the unstable velocity weakening regime;
its deceleration observed after 1988 may then be interpreted as a change of surface properties that
modifies the friction law parameters.

2 A short synthesis of time-dependent predictive approaches

2.1 Phenomenological power law acceleration

Accelerating displacements preceding some catastrophic landslides have been found empirically
to follow a time-to-failure power law, corresponding to a finite-time singularity of the velocity
v ∼ 1/(tc − t) [10]. Controlled experiments on landslides driven by a monotonic load increase
have been quantified by a scaling law relating the surface accelerationdδ̇/dt to the surface velocity
δ̇ according to

dδ̇/dt = Aδ̇α , (1)

whereA andα are empirical constants [11]. Forα > 1, this relationship predicts a divergence
of the sliding velocity in finite time at some critical timetc. The divergence is of course not to be
taken literally: it signals a bifurcation from acceleratedcreep to complete slope instability for which
inertia is no more negligible. Several cases have been quantified ex-post with this law, usually for
α = 2, by plotting the timetc − t to failure as a function of the inverse of the creep velocity (see
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[12] for a review). Indeed, integrating (1) gives

tc − t ∼

(

1

δ̇

)
1

α−1

. (2)

For the Mont Toc, Vaiont landslide revisited here, Voight mentioned that a prediction of the failure
date could have been made more than 10 days before the actual failure, by using a linear relation
linking the inverse velocity and the time to failure, as found from (2) forα = 2 [10]. Our goal will
be to avoid such an a priori postulate by calibrating a more general physically-based model for the
purpose of forecasting.

2.2 Slider-Block model with state and velocity dependent friction

We briefly summarize Ref. [1], which models the future landslide as a block resting on an inclined
slope forming a fixed angleφ with respect to the horizontal. The solid friction coefficient µ between
two surfaces is taken to be a function of the cumulative slipδ and the slip velocitẏδ according to
the Dieterich-Ruina law [13, 14]:

µ = µ0 + A ln
δ̇

δ̇0

+ B ln
θ

θ0
, (3)

where the state variableθ is usually interpreted as proportional to the surface of contact between
asperities of the two surfaces.µ0 is the friction coefficient for a sliding velocitẏδ0 and a state
variableθ0. The state variableθ evolves with time according to

dθ

dt
= 1 −

θδ̇

Dc
, (4)

whereDc is a characteristic slip distance, usually interpreted as the typical size of asperities. Ex-
pression (4) can be rewritten as

dθ

dδ
=

1

δ̇
−

θ

Dc
. (5)

Form 6= 1, it is convenient to introduce the reduced variables

x ≡ (Sθ0)
1/(1−m) θ

θ0
, (6)

and
D ≡ Dc (Sθm

0 )
1

1−m , (7)

where

S ≡
δ̇0 e

τ
σ −µ0

A

Dc
(8)

andm = B/A. τ andσ are the average shear and normal stresses at the sliding interface of the
block. Then, expression (3) reads

δ̇

δ̇0

= D x−m . (9)

Similarly, expression (4) transforms into

dx

dt′
= 1 − x1−m , (10)
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wheret′ = t/T with

T =
Dc

D
=

[

Dc

δ̇0θm
0

]1/(1−m)

e
τ
σ −µ0

B−A . (11)

In the sequel, we shall drop the prime and use the dimensionless timet′, meaning that time is
expressed in units ofT except stated otherwise. The casem = 1 requires a special treatment [1].

In our previous companion paper [1], we have analyzed this set of equations (9,10) and shown
that it provides a physical basis for the phenomenological law (2). Indeed, it is easy to show that,
for m > 1 andxi < 1 and sufficiently close to the singularitytc, the slip velocity is of the form
(2) with α = 2, that is, the slip velocity is inversely proportional to time. Consequently, the slip
δ(t) ∼ ln[1/(tc − t)] diverges logarithmically.

More generally, depending on the ratiom = B/A of two parameters of the rate and state
friction law and on the initial frictional state of the sliding surfaces characterized by the reduced
parameterxi = x(t = 0) defined in (6), four possible regimes are found. Two regimes can account
for an acceleration of the displacement. ForB/A > 1 (velocity weakening) andxi < 1, the
slider block exhibits an unstable acceleration leading to afinite-time singularity of the displacement
and of the velocityδ̇ ∼ 1/(tc − t), thus rationalizing Voight’s empirical law. An acceleration of
the displacement can also be reproduced in the velocity strengthening regime, forB/A < 1 and
xi > 1. In this case, the acceleration of the displacement evolvestoward a stable sliding with
a constant sliding velocity. The two others cases (B/A < 1 and xi < 1, andB/A > 1 and
xi > 1) give a deceleration of the displacement. We have used the slider-block friction model to
analyze quantitatively the displacement and velocity datapreceding two landslides, Vaiont (in the
Italian Alps) and La Clapière (in the French Alps) [1]. The Vaiont landslide was the catastrophic
culmination of an accelerated slope velocity. La Clapièrelandslide was characterized by a strong
slope acceleration over a two years period, succeeded by a restabilizing phase. Our inversion of
the slider-block model on these data sets showed good fits andsuggested to classify the Vaiont
(respectively La Clapière) landslide as belonging to the velocity weakening unstable (respectively
strengthening stable) sliding regime.

3 Prediction of the Vaiont landslide

On October 9, 1963, a 2 km-wide landslide initiating at an elevation of 1100-1200 m, that is 500-
600 m above the valley floor, on the Mt Toc slope in the Dolomiteregion in the Italian Alps about
100 km north of Venice, ended up 70 days later in a 20 m/s run-away of about 0.3 km3 of rocks
sliding into a dam reservoir. The high velocity of the slide triggered a water surge within the
reservoir, overtopping the dam and killing 2000 people in the village downstream. For a synthesis
of its history and the analysis of time series of slip velocity of benchmarks on its flanks, we refer to
our companion paper [1].

3.1 Analysis of the cumulative displacement data with the slider-block model pa-
rameters

Previously, we have calibrated the slider-block model withstate-and-velocity-dependent friction on
the time series of slip velocities of several benchmarks. The key parameterm = B/A is found to
be larger than1, indicating an unstable regime leading to a finite-time singularity [1]. However, we
noted that the parameters of the friction law are poorly constrained by the inversion. In particular,
even for those benchmarks with the best fit givesm > 1, other models withm < 1 provide a good
fit to the velocity with only slightly larger residuals.
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We now contrast these results with those obtained by fitting the cumulative displacement (rather
than the velocity) with the slider-block model with the state and velocity friction law (9) and (10).
The results are shown in Figure 1. The fittedm are respectivelym = 0.99 (benchmark 5),m = 0.85
(benchmark 63),m = 0.68 (benchmark 67) andm = 0.17 (benchmark 50). These values differ
significantly from those obtained by the inversion of the velocity data and, to make things worse,
they all correspond to the velocity-strengthening regimem < 1. At first sight, these results are quite
surprising since we fit the same data, the only difference being that the cumulative displacement
is the integral of the velocity. We think that the reason for these discrepancies lies in the fact
that, assuming that the velocity-weakening regimem > 1 holds, the corresponding logarithmic
dependenceδ(t) ∼ ln(1/tc − t) of the displacementδ is extremely degenerate in that it predicts
an acceleration of the displacement which is significant only very close to the critical timetc.
Therefore, a cross-over from a low velocity to a larger velocity described by the regimem < 1 may
be selected by the inversion, as we witness here. This is a rather standard problem of logarithmic
singularities, which are so weak at providing constraints,notwithstanding the a priori reduction of
noise obtained by constructing a cumulative quantity. It may actually be the case that the cumulative
noise deriving from the integral of the velocity is enough tospoil the weak logarithmic singularity
[15]: the resulting correlated noise seems to select a milder behavior. We are thus led to conclude
that fits to the sliding velocity which involves stronger power law singularities should be more
reliable and we shall use them exclusively in our predictiontests reported for the Vaiont landslide.

3.2 Initiation of the instability and tests of robustness

The critical acceleration is observed neatly only in the last 70 days before the catastrophic landslide.
Before, the alternation of phases of accelerating and decelerating velocity in the 1960-1962 period
implies that some friction parameters have changed, maybe due to changes in water level, resulting
in a change of sliding regime. The change of water level may have modified the material properties
of the underlying solid contacts at the base of the moving rock mass [16], therefore changing the
parameterm = B/A from the stable to the unstable regime. Another possibilityis that changes
in water level have modified the population of contacts at thebasis of the rock mass, therefore
changing the parameters of the friction law, and changing the sliding regime from the decelerating
regime to to the accelerating regime. One possible simple change of the parameters of the friction
law correspond to a change of the initial condition on the state variablexi, which may induce a
change of the sliding regime from the decelerating regime for m > 1 andxi > 1 to the accelerating
regime form > 1 andxi < 1 and vice-versa.

We have also tried to invert the friction law parameters using only data up to a timetmax

smaller than the last available point (equal to 70 days from the origin of the time series) before the
catastrophic landslide occurs, to mimic a real-time situation. Changingtmax between 30 and 70
days, we obtain a large variability of the parameters. Most valuesm are found larger than 1 for
30 < tmax < 55 days, and then become smaller than one, and return tom ≥ 1 for 3 benchmarks
when using the full velocity data. Similar fluctuations are found when using a synthetic data set
generated with the friction model. We have generated a synthetic data set using the same parameters
as those of the best fit of benchmark 5, and added a white noise with the same standard deviation
as that of the residue of the fit of benchmark 5. Although this synthetic data set was generated with
m = 1.35, bothm > 1 andm < 1 (for 2 points over 15 points) values are obtained when inverting
the parameters up totmax and changingtmax between 30 and 70 days. However, values withm < 1
for this synthetic data set are much less frequent than for the Vaiont velocity data in relative terms.
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3.3 Predictions and ex-post skills

We present a series of attempts at predicting in advance the critical timetc of the catastrophic Vaiont
landslide instability. These attempts rely solely on the analysis of the four benchmarks velocity data
up to various timestmax < tc mimicking a real-time situation. Therefore, we truncate the data at
some timetmax < tc and use only the data up totmax. Our goal is i) to investigate whether
a prediction in advance could have been issued, as suggestedby Voight [10], ii) to establish the
reliability and the precision limits of such predictions and iii) to test various prediction schemes
that we have developed in the recent past for other applications or specifically for this problem. We
use and compare three methods to predict the critical timetc = 69 days of the collapse

• the slider block model with the state and velocity friction law described above;

• an approximation of the slider block model based on the functional renormalization method
described below;

• a simple finite-time singularity (2) withα = 2 as proposed by Voight [10].

3.3.1 Prediction using the slider-block model with the state and velocity friction law

The prediction of the critical timetc is obtained by fitting the slider-block model on the velocity
time series of the four benchmarks up to a timetmax. Form ≥ 1, tc is the time of the divergence.
The divergence of the velocity exists only in the unstable regimem > 1. Therefore, we choose the
best fit withm > 1, even if the best model gives sometimesm < 1.

3.3.2 Functional renormalization of the friction law

We are dealing with a noisy time series with relatively few data points for which the detection of a
singularity is a difficult task. Rather than using the full solution of a model assumed to be a good
representation of reality as done in the previous sections,it may be profitable to develop prediction
schemes that are less constrained by the necessarily restricting physical assumptions underlying the
model and that are more specifically designed from a mathematical point of view to be resilient to
noise and to the scarcity of data. Such a method is the so-called functional renormalization method,
which constructs the extrapolation for future timet > tmax from a re-summation of the time series
represented by a simple polynomial expansion in powers of time t. Its mathematical foundation
has been developed in a series of papers [17, 18, 19]. The application of this method to detect and
predict finite-time singularities has been already investigated in [20, 21]. We refer to these papers
for a presentation of the method and restrict ourselves hereto the concrete application of the method
to the friction law (9) and (10).

The first input of the functional renormalization approach is an expansion of the variable to be
predicted in increasing powers of time. In our case, we use the functional renormalization approach
to provide an approximate analytical solution of the differential equation of the friction model (10).
This method is much more efficient numerically than the numerical resolution of the differential
equation (10). The friction model (10) gives the time evolution of the state variable from which the
sliding velocityδ̇ derives using (9).

The needed expansion ofy ≡ θ/θ0 in powers of timet is obtained from a Taylor expansion
whose coefficients are derived from successive differentiation of (10). Up to fourth ordert4, calling
y0 = θ(t = 0)/θ0, we obtain

yk(t) ≃
k

∑

n=0

antn, t → 0, k = 1, 2, 3, 4, (12)
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where the coefficientsan are given in the Appendix A as a function of the friction parameters and
of the initial condition.

The functional renormalization approach is in principle able to derive an extrapolation to the
future from the form (12). However, in order to obtain an optimal stabilization, it is essential to
incorporate as much available information as possible. In particular, in our case, we know the
functional form of the dependence of the state variable as a function of time in the asymptotic
regime (large times form < 1 and close to the singularity form > 1). Therefore, the second input
of our implementation of the functional renormalization approach is the following. Form < 1, in a
long-time limit, it is easy to show that equation (10) has an asymptotic solution in the form,

yt→∞(t) ≃ y∗ + A1 exp

(

−
t

t∗

)

+ A2 exp

(

−
2t

t∗

)

+ h.o.t. (13)

where1/t∗ = (1 − m)/T = (1 − m)(Sθ0)
1/(1−m) and h.o.t. stands for higher-order terms. The

coefficientsA1andA2 are unspecified at this stage and can be determined using the crossover tech-
nique [19], in order to optimize the stability of the solution. Form ≥ 1, the asymptotic expression
ast → tc is of the form

x(t) ≃ m
1

m (tc − t)
1

m , (14)

where the critical timetc is given by expression (33). However, we shall allow the prefactor and
tc to be adjusted to ensure maximum stability. Specifically, the determined value oftc will be a
primary result of the crossover technique.

Our goal is thus to construct a functiony(t) which incorporates the short and long time asymp-
totics of the solution as given by expressions (12) and (13) for m < 1 and by (12) and (14) for
m ≥ 1, while possibly departing from it at intermediate times to allow for a maximum stability.
The general mathematical formulas that are the solution of this problem are given in Appendix A
for the two casesm < 1 and form ≥ 1 respectively.

For the application to the Vaiont landslide, and for each “present time”tmax, we assume that
m > 1 so thattc exists and we fit the expression of the fourth-order approximatey∗4(t) given by (32)
to the velocity of each of the four benchmarks, extract the corresponding parameters and put them in
equation (33) in Appendix A for the critical timetc4. We stress that the function thus reconstructed
is essentially indistinguishable from the fit with the slider-block friction model. Solving (33) fortc4
allows us to construct the predicted critical time as a function of the “present time”tmax. We also
estimate the value ofm as a function oftmax. Apart from some large jumps that may be attributed to
the sensitivity of specific noisy points astmax is scanned, we observe that most fits are compatible
with a value ofm in the range1.3 − 1.5.

3.3.3 Finite-time singularity (2) with α = 2

We use a simple linear regression of the inverse of the velocity as a function of time, as proposed by
Voight [10]. We have found that, in order to have more stable parameters, it is necessary to give less
weight to the early times where the velocity is small and contains little information on the critical
time. We find that weighting each data point proportionally to its velocity provides stable fits. The
critical time tc is then given as the time at which the fitted straight line of the 1/δ̇ data intersects
with the time axis. Recall that a linear relation between1/δ̇ and timet is equivalent to a power law
singularity of the velocitẏδ ∼ 1/(tc− t), as discussed previously, which is expected asymptotically
close totc for the friction model in the casem > 1 andxi < 1.
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3.3.4 Comparison of three different methods of prediction of tc as a function of the “present
time” tmax

The predictions of the critical time obtained from the threemethods are shown in Figure 2. A
prediction fortc with an uncertainty of a few days is obtained for the 4 benchmarks within 20
days before the catastrophic failure. The reliability of the prediction is confirmed by the coherence
and agreement between the three methods. Starting approximately attmax = 45 days, one can
observe that, using the friction model, all four time seriesprovide a reasonabletc prediction which
however tends to increase and to follow the value of the “present time”tmax. This is unfortunately a
common feature of fits to power law singularities in which thelast data points close to the “present”
tends to dominate the rest of the time series and produce a predicted time of singularity close to the
“present time”tmax [15, 22]. Thetc value obtained using the fourth-order approximate is always
a little smaller than thetc estimated from the exact friction model. The renormalization method
is therefore a little better at early times, but the exact friction model works better at the end. The
tc value obtained by the linear regression of1/δ̇ is too large for smalltmax, because it is only an
asymptotic solution of the friction model fort ≈ tc. However, this method provides very good
estimates oftc close totc.

To test whether the relative value of these three methods result from a genuine difference in their
stability with respect to noise or rather reflects an inadequacy of the slider-block friction model to
fit the data, we have generated a synthetic velocity time series obtained by using the slider-block
friction equations with the same parameters as found in the fit to the full data set of benchmark 5
and adding white noise with the same standard deviation as that of the real data set. We then applied
the three prediction methods to this synthetic data set. In principle and by construction, we should
expect a priori that the prediction based on the slider-block friction model should always perform
best since it is thetrue model. This is not what we find, as shown in Figure 3. At times far from tc,
i.e. 40 days< tmax < 60 days, the friction model is the best, as expected. However, the prediction
based on the asymptotic linear relation between1/δ̇ and timet is slightly better than the friction
model, starting approximately 9 days before the landslide.

The overall conclusion is that the least sophisticated approach, that is the linear regression of
1/δ̇, seems to perform as well as or slightly better than the sophisticated renormalization method
or the exact friction model for “present times” sufficientlyclose to the critical timetc. For times
further away fromtc, the renormalization method and the exact friction model are better. Although
the corresponding power-law is only an asymptotic solutionof the friction model for times close
to tc, the linear regression of1/δ̇ gives significantly better predictions than the exact modelor the
renormalization method. However, we must keep in mind that the use of the linear regression of
1/δ̇ as a function of time contains two hidden and rather strong assumptions: the power law and the
value of its exponent. Without the slider-block friction model, these assumptions are just guesses
and are a priori unjustified.

4 Prediction of the aborted 1986-1987 peak acceleration of La Clapière
landslide

We now report results on another case which exhibited a transient acceleration which did not result
in a catastrophic failure but re-stabilized. This example provides what is maybe an example of the
m = B/A < 1 stable slip regime as interpreted within the friction model. La Clapière landslide
is located at an elevation between 1100 m and 1800 m on a 3000 m slope high. The volume of
mostly gneiss rocks implied in the landslide is estimated tobe around50 × 106 m3. The rock
mass started to be active before the beginning of the 20th century. The displacement rate measured
by aerial photogrametric survey increased from 0.5 m/yrs inthe 1950-1960 period to 1.5 m/yrs
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in the 1975-1982 period [23]. Starting in 1982, the displacements of 43 benchmarks have been
monitored on a monthly basis using distance meters [23, 24, 25]. The displacement data for 5
benchmarks is shown in Figure 4. The velocity is shown in Figure 5. The rock mass velocities
exhibited a dramatic increase between January 1986 and January 1988, that culminated in the 80
mm/day velocity during the 1987 summer and to 90 mm/day in October 1987. The homogeneity
of benchmark trajectories and the synchronous acceleration phase for most benchmark, attest of a
global deep seated behavior of this landslide [23]. However, a partitioning of deformation occurred,
as reflected by the difference in absolute values of benchmark displacements (Figure 4). The upper
part of the landslide moved slightly faster than the lower part and the NW block. The observed
decrease in displacement rate since 1988 attest of a change in landsliding regime at the end of 1987
(Figure 4).

4.1 Correlations between the landslide velocity and the river flow

The velocity displays large fluctuations correlated with fluctuations of the river flow in the valley
as shown in Figure 6. There is a seasonal increase of the slopevelocity which reaches a maximum
Vmax of the order of or less than30 mm/days. The slope velocity increases in the spring due to
snow melting and over a few days after heavy precipitations concentrated in the fall of each year
[23, 25]. During the 1986-1988 period, the snow melt and rainfalls were not anomalously high
but the maximum value of the velocity,Vmax = 90 mm/day, was much larger that the velocities
reached during the 1982-1985 period for comparable rainfalls and river flows [23, 24]. This strongly
suggests that the hydrological conditions are not the sole control parameters explaining both the
strong 1986-1987 accelerating and the equally strong slowdown in 1988-1990. During the interval
1988-1990, the monthly recorded velocities slowed down to alevel slightly higher than the pre-
1986 values. Since 1988, the seasonal variations of the average velocity never recovered the level
established during the 1982-1985 period [24, 26].Rat [27] derives a relationship between the river
flow and the landslide velocity by adjusting an hydrologicalmodel to the velocity data in the period
1982 to 1986. This model tuned to this time period does not reproduce the acceleration of the
velocity after 1986.

In order to study quantitatively the effect of the precipitations on the landslide velocity, we need
to remove the long-term fluctuations of the velocity that maynot be correlated to changes in the pre-
cipitations. Before applying a spectral analysis of the velocity data, we use simple functions to fit the
displacement data. We then subtract this long-term trend toobtain stationary residuals that can be
used to perform a spectral analysis of the fluctuations of thevelocity. We divide the data of bench-
mark 10 of La Clapière into three different intervals:[1982.917, 1987.833], [1987.833, 1991.25]
and [1991.25, 1995.5]. The initial values of the time and of the displacement are fixed to 0 at the
beginning of each time period. In the first interval, the velocity rises (with fluctuations); in the sec-
ond interval, the velocity decreases (with fluctuations); in the third interval, the velocity fluctuates
around a constant. We used non-linear Least-Square fits withdifferent fitting functions separately
within each interval. The results of the fits are the following.

1. In the first interval[1982.917, 1987.833], we fit the displacement byd(t) = a(|1−t/t0|
−b−1)

with a = 8.96, b = 1.01 andt0 = 6.26 years.

2. For the second interval[1987.833, 1991.25], we use the same functional form witha =
10.42, b = 0.4106 and t0 = −0.1081. The negative value oft0 implies a decay of the
displacement.

3. For the third interval[1991.25, 1995.5], we use a fit byd(t) = atb which has only two
parametersa = 7.4687 andb = 0.989.
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The goodness of fit is very good in all three regimes: the standard deviations of the residuals being
of the order of0.4 while the magnitude of the displacement is about30, this yields a signal-over-
noise ratio of75, which is very good.

Figure 7 compares the Burg’s power spectrum of the flow rates of the Tinée river and of the
detrended velocity residuals. The Burg spectrum is a smoothed FFT (fast-Fourier transform) ob-
tained by approximating the true spectrum by that of an autoregressive process of a finite order. The
top panel of figure 7 exhibits the Burg’s power spectrum of theflow rates of the Tinée river on the
1982-1988 and on the 1988-1996 periods, which are proxies ofthe cycle of precipitations and snow
melting. The bottom panel of figure 7 shows the Burg’s power spectrum of the detrended velocity
residuals for these two periods.

In the first time interval 1982-1988, a strong peak at the period of 1 year appears both for
the velocity residuals and for the river flow. This correspondence is confirmed by the strong cross-
correlation between the river flow and the landslide velocity, which is also directly apparent visually
in Figure 6. We now use the language of system theory and consider the river flow as an input (or
a forcing) and the landslide velocity as an output of the system. These observations of a common
spectral peak and of a strong cross-correlation are then compatible with a view of the system as
being linear or only weakly non-linear.

In contrast, the (linear) correlation between the river flowinput and the landslide velocity output
disappears in the second time interval 1988-1996, as can been seen from the absence of a spectral
peak at the period of1 years and a very weak peak at the period6 months (f = 2 year−1) in
the (output) landslide velocity spectrum compared with thetwo strong peaks at the same periods
of 1 years and6 months observed in the (input) river flow spectrum. This breakdown of linear
correlation seems to be associated with the birth of a strongpeak close to the sub-harmonic period
of 2 years (f = 0.5 year−1), which is absent in the river flow rate. This suggests the following
interpretation. Frequency doubling or more generally frequency multiplications are the results of
simple nonlinearities. Indeed, higher frequency overtones in river runoff is very common feature
of hydrological regime [28]. In contrast, the creation of sub-harmonics requires bifurcations or
period-doubling, for instance involving nonlinear processes with time delays. It thus seems that
the input of rain and snow melting is transformed by the system during the second time interval
via the process of such delayed period-doubling nonlinearities. It is intriguing that the change of
sliding regime to a reduction of velocity in the second time interval seems here to be associated
with such a sub-harmonic non-linearity, which could be the result of a change of topology of the
block structures (through fragmentation) and of the solicitation of novel fresh surfaces of sliding.

It would also be interesting to add a periodic forcing to our models to better capture the time-
dependence of the velocity and study its possible nonlinearconsequences. This is left for a future
work, together with a complete description of the three timeintervals by the slider-block friction
model.

4.2 Prediction of La Clapière change of sliding regime in 1983-1988

Our previous analysis of the calibration of the frictional model to the displacement of La Clapière
data finds thatm = B/A is very close to but smaller than one, while the value ofxi is significantly
larger than 1. The corresponding fit of the displacement datawith the slider-block model is shown
in figure 8. This argues for La Clapière landslide to be in thestable regime [1]. However, the
transition time (defined by the inflection point of the displacement) is found to increase withtmax

as shown in figure 9. This may argue for a change of regime from an acceleration regime to a
restabilization before the timet = 1988 of the velocity peak (corresponding to the inflection point).
The parametersS andxi found in this analysis are also poorly constrained. Similarresults are
obtained for different benchmarks.
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The analysis of the velocity data seems to reinforce somewhat the idea of a change of regime
from an unstable to a stable phase, as shown in figures 10 and 11: the early acceleration was in
the unstable regimem > 1 but did not reach the instability due to a change of morphology, block
partition and the creation of new active surfaces of sliding. This interpretation is suggested in
particular by the plot of the inverse of the velocity shown inFigure 11, which is close to linear
at early times. Over the route toward the finite-time singularity, the landslide perhaps did not
succeed in accommodating the velocity increase and degenerated by changing geometry and loading
conditions (block partitioning). In other words, the solution shown in Figure 8 withm < 1 may
rather describe a transient from an unstable state to a stable regime. In particular, we cannot exclude
the possibility that the surfaces have all along been characterized by the regimeB > A and then
a change of geometry and surfaces of sliding may have reset the reduced state variablex given
by expression (6). Another possibility is that the frictionparameterm has changed fromm > 1
to m < 1, leading to a stable deceleration of the displacement after1988. It is not unreasonable
to conjecture that the internal stresses associated with and created by the accelerating phase may
have led to its fragmentation into several sub-entities, creating fresh surfaces and resetting the state
variable or them-value characterizing the surfaces of contact. This is in qualitative agreement with
field observations of new faulting patterns since 1987, which signal a change in the geometry of
the landslide involving the regression of the main scarp andlocked sub-entities [24, 29]. These
observations provide evidence for a change in both the head driven force (mass push from the top)
and the activated basal surfaces. These morphological changes suggest that the 1987-1988 period
has been a transition period for the evolution of La Clapière sliding system over the last 50 years.
In the block-slider model, this amounts to modifying the variablesS andθi and thus to resetx. In
this interpretation, the change of regime observed for La Clapière could then be due to a change
from xi < 1 (unstable acceleration) toxi > 1 (stable deceleration). This change fromxi < 1
to xi > 1 may be interpreted as either an increase of applied shear stress, a decrease of normal
stress, or an increase of the surface of contacts between thesliding surfaces. Thus, within the
slider-block model, one can characterize the post 1988 landslide evolution in terms of new sliding
surfaces being mobilized which are more stable that the previous ones due to more numerous and/or
efficient contacts.

Appendix B explores what would have been the predicted critical timetc estimated in real time
prior to the velocity peak, according to this scenario of an unstable acceleration towards a finite-
time singularity. We have seen that, while the slider-blockmodel as well as the power law formula
(2) provide excellent fits to the data, they do not lead to verystable predictions of the critical time
tc on the Vaiont data as well as on synthetic tests generated in the unstable regimem > 1. It may
thus be valuable to test the approach of Gluzman et al. [20] interms of a version of the functional
renormalization approach already discussed in relation with the Vaiont landslide. It is our hope that
this approach could provide in a more robust determination of tc.

Figure 12 compares the prediction of a fit using a polynomial of order two in time to the inverse
of the velocity (panel (a)) with the prediction of the renormalization approach (panel (b)). In each
panel, two curves are presented corresponding to two different starting points of the data taken into
account in the predictions: the points to the left correspond to the first date taken into account in the
predictions; therefore, the predictions corresponding tothe crosses× use approximately two years
fewer data than the predictions shown with the open circles.This allows us to compare the effect of
missing data or alternatively the effect of a non-critical behavior at the beginning of the time series.
The abscissatmax is the running “present time”, that is, the last time of the data taken into account
to issue a prediction. The prediction with the polynomial shown in panel (a) of Figure 12 can be
seen as an improvement in methodology over the Voight formula (2) which corresponds to a linear
fit of the inverse velocity with time forα = 2. Comparing panels (a) and (b), the renormalization
method seems to present a smaller dispersion and better convergence: in particular, about half-a-

11



year prior to the time of the maximum realized velocity indicated by the horizontal dashed line, the
prediction of this date by the renormalization method usingthe longer time series becomes very
precise. Thus, a critical time close to the time of the velocity peak would have been predicted
starting approximately half-a-year year from it. It is thennot unreasonable to consider the velocity
peak as a proxy for the critical time that the system would have exhibited in absence of a change of
regime, since on its approach the largest internal stressesmay develop and may fragment the block
and modify the morphology of the landslide, thus resetting the geometry and some of the parameters
of the model. In this scenario, we would thus expect that the time of the peak velocity should be
not far from what would have been the critical time of catastrophic failure of the landslide.

We should however point out that the functional renormalization method used in this Appendix
B does not work for the Vaiont landslide because of a technical instability whose fundamental origin
is not understood by these authors. Technically, the numerical instability comes from the absence
of alternating signs in the polynomial expansion at early times. This technical problem thus casts
some shadow on the usefulness of the approach described herewhich is unable to tackle the regime
which is undoubtedly unstable. This limitation suggests again the importance of working with
several alternative and competing models, as further discussed in the following concluding section.

5 Discussion and conclusion

We have extended the quantitative analysis of our companionpaper [1] on the displacement history
for two landslides, Vaiont and La Clapière, to explore their potential predictability. Using a vari-
ety of techniques, we have tried to go beyond the time-independent hazard analysis provided by
the standard stability analysis to include time dependent predictions. While our present inversion
methods provide a single estimate of the critical timetc of the collapse for each inversion, a better
formulation should be to translate these results in terms ofa probability of failure, as for instance
done by Vere-Jones et al. [30].

Using the innovative concept of applying to landslides the state and velocity dependent friction
law established in the laboratory and used to model earthquake friction, our inversion of this simple
slider-block friction model shows that the observed movements can be well reproduced and suggest
the Vaiont landslide (respectively La Clapière landslide) as belonging to the velocity weakening
unstable (respectively strengthening stable) regime.

For the Vaiont landslide, the friction model provides good predictions of the time-to-failure up to
20 days before the collapse. A pure phenomenological model suggested by Voight [10] postulating
a power law finite-time singularitẏδ ∼ 1/(tc − t) with unit exponent obtains similar results up to
10 days before the collapse. Our approach can be seen as providing a physically-based derivation
of this phenomenological model as well as a generalization to capture three other possible regimes.

For la Clapière landslide, the inversion of the displacement data for the accelerating phase
1983-1888 up to the maximum of the velocity givesm < 1, corresponding to the stable regime.
The deceleration observed after 1988 implies that, not onlyis la Clapière landslide in the stable
regime but in addition, some parameters of the friction law have changed, resulting in a change
of sliding regime from a stable regime to another one characterized by a smaller velocity, as if
some stabilizing process was occurring. Possible candidates for a change in landsliding regime
include the average dip slope angle, the partitioning of blocks, new sliding surfaces and changes
in interface properties. However, another possible interpretation is that this landslide was initially
in the unstable regime, but did not reach the instability dueto a change of geometry and of sliding
surfaces. The best fit obtained withm < 1 for the accelerating phase 1983-1988 would then
describe a transient regime between the unstable regime andthe stable regime, due to a progressive
change in the model parameters. This second scenario seems less parsimonious but cannot be
completely excluded.
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The present work has offered the novel conceptual frameworkand language of the slider-block
model, which can be used to classify the relative merits and performance of other models. For an
assessment in real time of the upcoming risks of a catastrophic failure, one should then consider
both scenarios (stable versus unstable which are encoded respectively by the range of parameters
m < 1 and m > 1 in the slider-block model) and test the data using the available associated
theoretical models, some of which have been presented in this paper. Such an approach in terms
of multiple scenarios [31, 32, 33] can help assess societal risks. A systematic exploration of such
approaches will extend the preliminary investigation and results offered here.
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A Appendix A: Functional renormalization group formulas fo r the
friction law (9) and (10)

Consider an expansion as in (12) of an observablex(t) in powers of a variableu given byxk(u) =
∑k

n=0 an un. The method of algebraic self-similar renormalization constructs so-called “approx-
imants”, which are reconstructed functions that best satisfy the imposed asymptotic constraints
while obeying criteria of functional self-similarity and of maximum stability in the space of func-
tions [17, 18, 19]. These approximants are given by the following general recurrence formula for
the approximatex∗

k(u) of orderk as a function of the expansionxk−1(u) up to orderk − 1 :

x∗

k(u) =

[

x
−k/s
k−1 (u) −

k ak

s
uk

]

−s/k

. (15)

The crossover indexs is determined by the condition that the leading terms of the expansion of
x∗

k(t) ast → 0 must agree with the expansion ofxk(u).
For the friction model (9) and (10), the coefficientsak in (12) and (15) are determined by the

friction parameters and the initial conditions

a0 = y0, (16)

a1 = θ−1
0 − S y1−m

0 , (17)

a2 =
1

2
S (m − 1) a1y

−m
0 , (18)

a3 =
1

6
α(m − 1)

[

−m a2
1 y−m−1

0 + 2a2 x−m
0

]

, (19)

a4 =
1

24
S(m − 1) [(1 + m) m a3

1 y−m−2
0

− 6m a2 a1y
−m−1
0 + 6a3 y−m

0 ] , (20)

wherey0 = θ(t = 0)/θ0.

A.1 Casem < 1

As we see from (13), the natural expansion variable isu = exp
(

− t
t∗

)

.
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The first-order and simplest approximate is

x∗

1(u) = x∗ (1 + cu)−s = x∗

(

1 + c exp

(

−
t

t∗

))

−s

, (21)

with x∗ = 1/T whereT is given by (11). The crossover amplitudec and the crossover indexs
are determined by the condition that the expansion ofx∗

1(t) ast → 0 must agree with the first two
terms of expression (12), leading to the following system ofequations,

x∗ (1 + c)−s = x0 , (22)

x0s c
1

t∗(1 + c)
= a1 . (23)

The crossover indexs is then given by

s = −
ln (x0/x

∗)

ln (1 + c)
, (24)

while the crossover amplitudec satisfies the following equation:

ln (x0/x
∗)

ln (1 + c)

c

(1 + c)
= −

a1t
∗

x0
. (25)

The second-order approximate is given by

x∗

2(u) = x∗

[

(1 + c2u)−s2 + c1u
2
]

−s1

= x∗

[

(

1 + c2 exp

(

−
t

t∗

))

−s2

+ c1 exp

(

−
2t

t∗

)

]

−s1

. (26)

The crossover amplitudesc1, c2 and crossover indexs1 and s2 are obtained from the condition
that the expansion ofx∗

2(t) as t → 0 must recover the first four terms of expression (12). The
corresponding expressions are rather long and will not be presented here explicitly. Interestingly,
for m = 0, the second-order approximate recovers the exact solution.

A.2 Casem ≥ 1

In this case, the natural variable in the expansion isu = t. Our goal is to obtain the critical timetc as
a function ofm. Using the crossover technique [19] for the two asymptotic expressions (12) at short
time and (14) close totc, we obtain a sequence of approximantsx∗

1(t), x∗

2(t), x
∗

3(t) andx∗

4(t) asso-
ciated with a sequence of improving approximations for the critical time, tc1(m), tc2(m), tc3(m)
and tc4(m). All approximants agree term-by-term with the corresponding short time expansion
and lead to the critical behavior (14) ast goes to the corresponding critical time. The first-order
approximate is

x∗

1(t) = x0

(

1 +
a1

x0
m t

)1/m

, with tc1 = −
x0

m a1
. (27)

Interestingly,x∗

1(t) coincides with the exact solution in the limitm → ∞, which takes the form

x = x∗ ((x0/x
∗)m − (t/t∗))

1

m .
In the next order, we obtain the second-order approximate

x∗

2(t) = x0

[(

1 +
a1

x0
t

)m

+
m a2

x0
t2

]1/m

, (28)
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andtc2 is solution of the following equation
(

1 +
a1

x0
tc2

)m

+
m a2

x0
t2c2 = 0 . (29)

The third order approximate reads

x∗

3(t) = x0

[(

1 +
a1

x0
t +

a2

x0
t2

)m

+
m a3

x0
t3

]1/m

, (30)

andtc3 satisfies the following equation
(

1 +
a1

x0
tc3 +

a2

x0
t2c3

)m

+
m a3

x0
t3c3 = 0 . (31)

The fourth-order approximate is given by

x∗

4(t) = x0

[(

1 +
a1

x0
t +

a2

x0
t2 +

a3

x0
t3

)m

+
m a4

x0
t4

]1/m

, (32)

with tc4 solution of the equation
(

1 +
a1

x0
tc4 +

a2

x0
t2c4 +

a3

x0
t3c4

)m

+
m a4

x0
t4c4 = 0 . (33)

Note that form = 1, all approximants are identical and equal to the exact solution.

B Appendix B: Functional renormalization of polynomials expansions
for the prediction of tc as a function of the “present time” tmax for
La Clapi ère landslide

This appendix present tests of the prediction of the time at which the velocity peaked, following
the hypothesis discussed in the main text that the ensuing deceleration resulted from a change from
xi < 1 to xi > 1 in the velocity weakening regimeB > A. According to this interpretation, the
first accelerating phase should be described by an increasing velocity∝ 1/tc − t). The critical time
tc can be approximated by the time of the peak of the velocity, inother words,tc is close to the
inflection point of the displacement as a function of time.

Rather than using the version of the functional renormalization method described for the Vaiont
landslide based on the slider-block equations of motion, weuse here a simpler version that has been
tested earlier in another rupture problem [20]. This choiceis governed by the fact that we can not
rely entirely on the friction model with fixed parameters since we know that a change of regime
occurred. We thus follow a more general approach which is notdependent upon a specialized spec-
ification of the equations of motion. The previous investigation on a model system [20] developed
theoretical formulas for the prediction of the singular time of systems which are a priori known to
exhibit a critical behavior, based solely on the knowledge of the early time evolution of an observ-
able. From the parameterization of such early time evolution in terms of a low-order polynomial
of the time variable, the functional renormalization approach introduced by Yukalov and Gluzman
[17] allows one to transform this polynomial into a functionwhich is asymptotically a power law.
The value of the critical timetc, conditionedon the assumption thattc exists, can then be deter-
mined from the knowledge of the coefficients of the polynomials. Gluzman et al.[20] have tested
with success this prediction scheme on a specific example andshowed that this approach gives
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more precise and reliable predictions than through the use of the asymptotic power law model, but
is probably not better than the true model when the later is known.

The input of the method is the inverse of La Clapière block velocity δ̇ as a function of time up
to the “present time”tmax. One starts with a simple polynomial fit of1/δ̇ as a function of time from
some starting time up totmax. One then applies the functional renormalization method explained
in [20] to this polynomial expansion. We restrict our analysis to expansions of up to second-order
in time:

1/δ̇ = 1 + b1t + b2t
2 , (34)

where the zeroth-order coefficientb0 has been put equal to1 by a suitable normalization of the data.
The first order approximant for the inverse velocity reads [20]

F ∗

1 (t) =

(

1 −
b1

s1
t

)

−s1

. (35)

The second order approximant is

F ∗

2 (t) = 1 + b1t

(

1 −
b2

b1s2
t

)

−s2

. (36)

The exponentss1 ands2 are control parameters that are determined from an optimal stability crite-
rion. We follow [20] and imposes1 = s2 = s, which is a condition of consistency between the two
approximants.s is now the single control parameter, and plays the role of thecritical exponent at the
critical point tc. The condition of the existence of a critical point is that both approximantsF ∗

1 (t)
andF ∗

2 (t) of the inverse velocity should vanish att = tc. This yields two equations determiningtc
ands, which can be solved numerically.

The numerical estimates of(tc, s) depends on the time interval over which the polynomial
coefficientsb1 and b2 are determined. Lettmax denote the last point used in the polynomial fit.
Figure 12 shows the numerical estimate oftc as a function oftmax. More precisely, Figure 12
compares the prediction of a fit using a polynomial of order two in time to the inverse of the velocity
(panel (a)) with the prediction of the renormalization approach (panel (b)).

We have also fitted a power law to the data to extract an estimate of tc as a function oftmax

and find an extremely unstable prediction wheretc fluctuates wildly ranging from two years before
the end of 1987 to 25 years after 1987. Clearly, predicting the change of regime from a power law
fit of the acceleration in the first phase of La Clapière is completely unreliable. In contrast, the
renormalized approximants provide a more reasonable stable estimate.
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Figure 1: For each of the four Vaiont benchmarks, the cumulative displacement data is fitted with
the slider-block model with the state and velocity frictionlaw (10) and (9) by adjusting the set
of parametersm, D/T and the initial condition of the state variablexi. The data is shown as
the crosses linked by straight segments and the fit is the thincontinuous line. The fittedm are
respectivelym = 0.99 (benchmark 5),m = 0.85 (benchmark 63),m = 0.68 (benchmark 67) and
m = 0.17 (benchmark 50). The fits with the slider-block model obtained by imposing the value
m = 1.5 are shown with the dashed line for comparison.
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Figure 2: Predicted critical timetc as a function of the “present time”tmax (last point used for
the fit) for all four benchmarks of the Vaiont landslide, using three different methods of prediction
described in the text: renormalization method (circles), numerical evaluation of the friction model
(10) (crosses), and linear regression of the inverse velocity as a function of time performed by
removing the first point (early time) of the curve and using a weight proportional to the velocity
(dots). The horizontal dashed line indicated the true critical timetc = 69.5 days (for an arbitrary
origin of time from which the fits are performed to the catastrophic landslide. All methods impose
m > 1, but in some cases a better fit may be obtained in the stable regimem < 1.
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Figure 3: Same as Figure 2 for a synthetic data set with the same parameters and noise as those
obtained for benchmark 5 of the Vaiont landslide, using the same three different methods of predic-
tion. The right panel is a zoom of the left panel close totc. The horizontal dashed line indicated the
true critical timetc = 69.8 of the catastrophic landslide.
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Figure 4: Displacement for the 5 benchmarks on La Clapière used in this study.
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Figure 5: Velocity for the same data as shown in Figure 4. Annual fluctuations of the velocity is
due to the seasonal variations of the precipitations.
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Figure 6: Velocity pattern for benchmark 10 of La Clapière landslide (solid line and dots) and flow
rates (thin solid line) of the Tinée river on the 1982-1995 period. Because the Tinée river runs at
the basis of the La Clapière landslide, the river flow rate reflects the water flow within the landslide
[24, 25]. The flow rates are measured at St Etienne village, 2 km upstream the landslide site. There
is no stream network on the landslide site. The Tinée flow drains a 170 km2 basin. This tiny basin
is homogeneous both in terms of slopes and elevation (in the 1000-3000 m range). Accordingly the
seasonal fluctuations of the river flow is admitted to reflect the evolution of the amount of water that
is available within the landslide slope due to rainfalls andsnow melting. Data fromCETE, [1996].
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Figure 7: Top panel: Burg’s power spectrum of the flow rates ofthe Tinée river on the 1982-1988
and on the 1988-1996 periods which are aggregated from the periods shown in figure 6. Bottom
panel: Burg’s power spectrum of the detrended velocity residuals for the same two periods.

25



0 1 2 3 4 5
0

5

10

15

20

25

30

35

time (yrs)

di
sp

la
ce

m
en

t (
m

)

Figure 8: Displacement for benchmark 10 of la Clapière landslide (crosses) and fit using the friction
model. The best fit givesm = 0.98 (black line). The gray line shows the best fit obtained when
imposingm = 1.5 for comparison.
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Figure 9: Predicted value of the timetc of the inflection point of the velocity for La Clapière
landslide, using a fit of the displacement data with the friction model. All points correspond to
the stable regimem < 1. In this regime there is no finite-time singularity of the velocity but a
transition from an accelerating sliding to a stable slidingfor times larger than the inflection point
tc. This parameter is poorly constrained by the fit and increases with the time of the last pointtmax

used in the fit.
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Figure 10: Velocity for benchmark 10 of la Clapière landslide (crosses) and fit of the velocity data
with the friction model. The best fit givesm = 0.99 (black line).
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Figure 11: Same as Figure 10 showing the inverse of the velocity.
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Figure 12: Panel (a): prediction of a critical time using a fitwith a polynomial of order two in time
to the inverse of the velocity; panel (b): prediction of the renormalization approach described in
Appendix B. In each panel, two curves are presented corresponding to two different starting points
of the data taken into account in the predictions: the leftmost points correspond to the first date taken
into account in the predictions; the predictions corresponding to the crosses× use approximately
two years fewer data than the predictions shown with the opencircles. The abscissatmax is the
running “present time”, that is, the last time of the data taken into account to issue a prediction. The
maximum realized velocity occurred at a time indicated by the horizontal dashed line. This time is
thus a proxy for the ghost-like critical time of the landslide.
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