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Abstract

In a previous work [1], we have proposed a simple physicalehtiexplain the accelerat-
ing displacements preceding some catastrophic landshdsed on a slider-block model with a
state and velocity dependent friction law. This model presdiwo regimes of sliding, stable and
unstable leading to a critical finite-time singularity. $hmodel was calibrated quantitatively
to the displacement and velocity data preceding two ladds]iVaiont (Italian Alps) and La
Clapiere (French Alps), showing that the former (resperjdandslide is in the unstable (resp.
stable) sliding regime. Here, we test the predictive skiflthe state-and-velocity-dependent
model on these two landslides, using a variety of techniqus the Vaiont landslide, our
model provides good predictions of the critical time of fiad up to 20 days before the col-
lapse. Tests are also presented on the predictability dirtteeof the change of regime for la
Clapiere landslide.

1 Introduction

There is a growing interest in understanding and prediatatgstrophic phenomena, such as floods,
earthquakes and avalanches, which are characterizedibyateness and burstiness often leading
to disastrous consequences for the embedding environ2iemMNdtwithstanding their large societal
impacts, the scientific community is only beginning to depahe concepts and tools to model and
predict these class of events. The prediction of catasté®jsh often considered to be essentially
impossible either due to intrinsic mechanisms inherenh&dystems [3] or from the existence
of enormous practical barriers [4]. Several groups haveewewfound evidence of a degree of
predictability of certain catastrophes [5], such as finanmiashes [6] and earthquakes [7].

Here, we address the question of the predictability of Iagels which constitute a major ge-
ologic hazard of strong concern in most parts of the worldndstides occur in a wide variety
of geomechanical contexts, geological and structurainggstt and as a response to various load-
ing and triggering processes. They are often associatdédotfier major natural disasters such as
earthquakes, floods and volcanic eruptions.
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Derived from the civil-engineering methods developed far $afety of human-built structures,
including dams and bridges, the standard approach to shgpehility is to identify the conditions
under which a slope becomes unstable [8]. By their natuamdstrd stability analysis cannot ac-
count for acceleration in slope movement [9]. The problerth& this modeling strategy gives a
nothing-or-all signal. In this view, any specific landslideessentially unpredictable, and the fo-
cus is on the recognition of landslide prone areas. Thisagmbris very similar to the practice in
seismology called “time-independent hazard” where eadkg prone areas are located in associ-
ation with active faults for instance, while the predictiofnindividual earthquake is recognized to
be much more difficult if not unattainable. This “time-inégplent hazard” essentially amounts to
assume that landslides are a random (Poisson) processireatim uses geomechanical modeling to
constrain the future long-term landslide hazard. The aggres in terms of a safety factor do not ad-
dress the preparatory stage leading to the catastrophapsel if any. In contrast,“time-dependent
hazard” would accept a degree of predictability in the psscén that the landslide hazard varies
with time, maybe in association with varying external facgi(rain, snow, earthquake, volcano).
The next level in the hierarchy would be “landslide foremapst which require significant better
understanding to allow for the prediction of some of thedesd of an impending landslide, usu-
ally on the basis of the observation of precursory signatactital difficulties include identifying
and measuring reliable, unambiguous precursors, and teptance of an inherent proportion of
missed events or false alarms.

Our purpose is to extend the model of a slider-block withestatd-velocity-dependent friction
introduced in our companion paper [1] for the analysis of taradslides. Here, we examine how
one could have perhaps predicted these landslides in aglvaBy studying these two cases, we
hope to develop a methodology that could be useful in thedulg well as to determine the limits
of predictability. For the Vaiont landslide, our model pides good predictions with a precision
of about one day of the critical time of failure up to 20 day$obe the collapse. Tests are also
presented on the prediction of the time of the change of redon la Clapiére landslide. Re-
examining the calibration of the model of a slider-blockinstate-and-velocity-dependent friction,
we cannot exclude that La Clapiere might also belong to tistable velocity weakening regime;
its deceleration observed after 1988 may then be integbieetea change of surface properties that
modifies the friction law parameters.

2 A short synthesis of time-dependent predictive approactse

2.1 Phenomenological power law acceleration

Accelerating displacements preceding some catastrophitslides have been found empirically
to follow a time-to-failure power law, corresponding to aitBatime singularity of the velocity
v ~ 1/(t. — t) [10]. Controlled experiments on landslides driven by a ntoniz load increase
have been quantified by a scaling law relating the surfaoelenactiondé/dt to the surface velocity
§ according to

dé/dt = A6™ 1)

where A and o are empirical constants [11]. Far > 1, this relationship predicts a divergence
of the sliding velocity in finite time at some critical tinte. The divergence is of course not to be
taken literally: it signals a bifurcation from acceleratedep to complete slope instability for which
inertia is no more negligible. Several cases have been ifjednex-post with this law, usually for
«a = 2, by plotting the timet. — ¢ to failure as a function of the inverse of the creep velocsige(



[12] for a review). Indeed, integrating (1) gives
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For the Mont Toc, Vaiont landslide revisited here, Voightniened that a prediction of the failure
date could have been made more than 10 days before the aaitued,fby using a linear relation
linking the inverse velocity and the time to failure, as fddrom (2) fora = 2 [10]. Our goal will
be to avoid such an a priori postulate by calibrating a moreege physically-based model for the
purpose of forecasting.

2.2 Slider-Block model with state and velocity dependent fction

We briefly summarize Ref. [1], which models the future laitishs a block resting on an inclined
slope forming a fixed angle with respect to the horizontal. The solid friction coeffitig between
two surfaces is taken to be a function of the cumulative &kmd the slip velocity) according to
the Dieterich-Ruina law [13, 14]:
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where the state variabtis usually interpreted as proportional to the surface otacnbetween
asperities of the two surfaces. is the friction coefficient for a sliding velocity, and a state
variablefy. The state variablé@ evolves with time according to
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where D, is a characteristic slip distance, usually interpretechastypical size of asperities. Ex-
pression (4) can be rewritten as
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Form # 1, itis convenient to introduce the reduced variables
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andm = B/A. 7 ando are the average shear and normal stresses at the slidinfpéetef the
block. Then, expression (3) reads
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Similarly, expression (4) transforms into
dz 1-m



wheret’ = t/T with
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In the sequel, we shall drop the prime and use the dimens®rimet’, meaning that time is
expressed in units df except stated otherwise. The case= 1 requires a special treatment [1].

In our previous companion paper [1], we have analyzed thisfssquations (9,10) and shown
that it provides a physical basis for the phenomenologmal (2). Indeed, it is easy to show that,
form > 1 andz; < 1 and sufficiently close to the singularity, the slip velocity is of the form
(2) with o = 2, that is, the slip velocity is inversely proportional to #mConsequently, the slip
o(t) ~In[1/(t. — t)] diverges logarithmically.

More generally, depending on the ratie = B/A of two parameters of the rate and state
friction law and on the initial frictional state of the slidj surfaces characterized by the reduced
parameter:; = z(t = 0) defined in (6), four possible regimes are found. Two reginasaccount
for an acceleration of the displacement. H®fA > 1 (velocity weakening) and:; < 1, the
slider block exhibits an unstable acceleration leadingfioige-time singularity of the displacement
and of the velocitys ~ 1/(t. — t), thus rationalizing Voight's empirical law. An accelematiof
the displacement can also be reproduced in the velocitpgitiening regime, foB/A < 1 and
xz; > 1. In this case, the acceleration of the displacement evdtweard a stable sliding with
a constant sliding velocity. The two others cas8y4 < 1 andz; < 1, andB/A > 1 and
x; > 1) give a deceleration of the displacement. We have used itter-&llock friction model to
analyze quantitatively the displacement and velocity gaggeding two landslides, Vaiont (in the
Italian Alps) and La Clapiére (in the French Alps) [1]. Thaidht landslide was the catastrophic
culmination of an accelerated slope velocity. La Claplareislide was characterized by a strong
slope acceleration over a two years period, succeeded stabilezing phase. Our inversion of
the slider-block model on these data sets showed good fitsaggested to classify the Vaiont
(respectively La Clapiére) landslide as belonging to thlesity weakening unstable (respectively
strengthening stable) sliding regime.

3 Prediction of the Vaiont landslide

On October 9, 1963, a 2 km-wide landslide initiating at avatien of 1100-1200 m, that is 500-
600 m above the valley floor, on the Mt Toc slope in the Dolometgion in the Italian Alps about
100 km north of Venice, ended up 70 days later in a 20 m/s ruayast about 0.3 krf of rocks
sliding into a dam reservoir. The high velocity of the slidigdgered a water surge within the
reservoir, overtopping the dam and killing 2000 people mvhlage downstream. For a synthesis
of its history and the analysis of time series of slip velpot benchmarks on its flanks, we refer to
our companion paper [1].

3.1 Analysis of the cumulative displacement data with the gler-block model pa-
rameters

Previously, we have calibrated the slider-block model wittte-and-velocity-dependent friction on
the time series of slip velocities of several benchmarks Kéy parametem = B/A is found to
be larger tharl, indicating an unstable regime leading to a finite-time glagty [1]. However, we
noted that the parameters of the friction law are poorly traiged by the inversion. In particular,
even for those benchmarks with the best fit gives- 1, other models withn < 1 provide a good
fit to the velocity with only slightly larger residuals.



We now contrast these results with those obtained by fitieggtimulative displacement (rather
than the velocity) with the slider-block model with the staind velocity friction law (9) and (10).
The results are shown in Figure 1. The fittedare respectivelyn = 0.99 (benchmark 5yn = 0.85
(benchmark 63)mm = 0.68 (benchmark 67) andh = 0.17 (benchmark 50). These values differ
significantly from those obtained by the inversion of theoeély data and, to make things worse,
they all correspond to the velocity-strengthening regime: 1. At first sight, these results are quite
surprising since we fit the same data, the only differencagothat the cumulative displacement
is the integral of the velocity. We think that the reason foeste discrepancies lies in the fact
that, assuming that the velocity-weakening regime> 1 holds, the corresponding logarithmic
dependencé(t) ~ In(1/t. — t) of the displacemeni is extremely degenerate in that it predicts
an acceleration of the displacement which is significany atelry close to the critical time..
Therefore, a cross-over from a low velocity to a larger vidyodescribed by the regime. < 1 may
be selected by the inversion, as we witness here. This idarratandard problem of logarithmic
singularities, which are so weak at providing constraintgyithstanding the a priori reduction of
noise obtained by constructing a cumulative quantity. Iy saually be the case that the cumulative
noise deriving from the integral of the velocity is enougtspmil the weak logarithmic singularity
[15]: the resulting correlated noise seems to select a middkavior. We are thus led to conclude
that fits to the sliding velocity which involves stronger pwaw singularities should be more
reliable and we shall use them exclusively in our predict&sts reported for the Vaiont landslide.

3.2 Initiation of the instability and tests of robustness

The critical acceleration is observed neatly only in thé T@sdays before the catastrophic landslide.
Before, the alternation of phases of accelerating and eetelg velocity in the 1960-1962 period
implies that some friction parameters have changed, maybdéadchanges in water level, resulting
in a change of sliding regime. The change of water level mag haodified the material properties
of the underlying solid contacts at the base of the moving roass [16], therefore changing the
parametern = B/A from the stable to the unstable regime. Another possihi#itthat changes
in water level have modified the population of contacts athihsis of the rock mass, therefore
changing the parameters of the friction law, and changieggstitling regime from the decelerating
regime to to the accelerating regime. One possible simm@agd of the parameters of the friction
law correspond to a change of the initial condition on thé¢estariablez;, which may induce a
change of the sliding regime from the decelerating regimerfa> 1 andx; > 1 to the accelerating
regime form > 1 andx; < 1 and vice-versa.

We have also tried to invert the friction law parameters gisinly data up to a time, ..
smaller than the last available point (equal to 70 days frleenorigin of the time series) before the
catastrophic landslide occurs, to mimic a real-time situat Changingt,.... between 30 and 70
days, we obtain a large variability of the parameters. Mastesm are found larger than 1 for
30 < tmee < 55 days, and then become smaller than one, and retunin o 1 for 3 benchmarks
when using the full velocity data. Similar fluctuations aoeirid when using a synthetic data set
generated with the friction model. We have generated a s¥inttiata set using the same parameters
as those of the best fit of benchmark 5, and added a white ndgiseheg same standard deviation
as that of the residue of the fit of benchmark 5. Although thiglsetic data set was generated with
m = 1.35, bothm > 1 andm < 1 (for 2 points over 15 points) values are obtained when imgrt
the parameters up t@,,.. and changing,,... between 30 and 70 days. However, values with: 1
for this synthetic data set are much less frequent than &¥#ont velocity data in relative terms.



3.3 Predictions and ex-post skills

We present a series of attempts at predicting in advanceitlaktime .. of the catastrophic Vaiont
landslide instability. These attempts rely solely on thalgsis of the four benchmarks velocity data
up to various times,,.x < t. mimicking a real-time situation. Therefore, we truncate dlata at
some timet,.x < t. and use only the data up tg,.x. Our goal is i) to investigate whether
a prediction in advance could have been issued, as sugd®stenight [10], ii) to establish the
reliability and the precision limits of such predictionsdaii) to test various prediction schemes
that we have developed in the recent past for other apmitaitbr specifically for this problem. We
use and compare three methods to predict the critical time69 days of the collapse

¢ the slider block model with the state and velocity fricti@mvldescribed above;

e an approximation of the slider block model based on the fanat renormalization method
described below;

¢ a simple finite-time singularity (2) with. = 2 as proposed by Voight [10].

3.3.1 Prediction using the slider-block model with the stat and velocity friction law

The prediction of the critical time. is obtained by fitting the slider-block model on the velocity
time series of the four benchmarks up to a titpg,. Form > 1, ¢. is the time of the divergence.
The divergence of the velocity exists only in the unstabigmem > 1. Therefore, we choose the
best fit withm > 1, even if the best model gives sometimes< 1.

3.3.2 Functional renormalization of the friction law

We are dealing with a noisy time series with relatively fewedaoints for which the detection of a
singularity is a difficult task. Rather than using the fulllgmn of a model assumed to be a good
representation of reality as done in the previous sectibngy be profitable to develop prediction
schemes that are less constrained by the necessarilgtiegtphysical assumptions underlying the
model and that are more specifically designed from a matheah@bint of view to be resilient to
noise and to the scarcity of data. Such a method is the seddalhctional renormalization method,
which constructs the extrapolation for future timg t,,., from a re-summation of the time series
represented by a simple polynomial expansion in powersnoé ti I1ts mathematical foundation
has been developed in a series of papers [17, 18, 19]. Theajph of this method to detect and
predict finite-time singularities has been already ingadéd in [20, 21]. We refer to these papers
for a presentation of the method and restrict ourselvestbéhe concrete application of the method
to the friction law (9) and (10).

The first input of the functional renormalization approastamn expansion of the variable to be
predicted in increasing powers of time. In our case, we uséuictional renormalization approach
to provide an approximate analytical solution of the diéfefal equation of the friction model (10).
This method is much more efficient numerically than the nicaéresolution of the differential
equation (10). The friction model (10) gives the time eviolntof the state variable from which the
sliding velocitys derives using (9).

The needed expansion 9f= 6/6, in powers of timet is obtained from a Taylor expansion
whose coefficients are derived from successive differgatiaf (10). Up to fourth ordet?, calling
yo = 6(t = 0)/6y, we obtain

k
yr(t) = Y ant™, t—0, k=1,234, (12)
n=0



where the coefficients,, are given in the Appendix A as a function of the friction paetens and
of the initial condition.

The functional renormalization approach is in principldéeaio derive an extrapolation to the
future from the form (12). However, in order to obtain an oyl stabilization, it is essential to
incorporate as much available information as possible. driqular, in our case, we know the
functional form of the dependence of the state variable amatibn of time in the asymptotic
regime (large times fom < 1 and close to the singularity fen > 1). Therefore, the second input
of our implementation of the functional renormalizatiorpegach is the following. Fom < 1,ina
long-time limit, it is easy to show that equation (10) has synaptotic solution in the form,

t 2t
Yt—oo(t) = y* + Aj exp <_t_*) + Agexp (_t_*) + h.o.t. (13)

wherel/t* = (1 —m)/T = (1 — m)(S6y)"/*=™) and h.o.t. stands for higher-order terms. The
coefficientsA;and A, are unspecified at this stage and can be determined usingotbsouer tech-
nique [19], in order to optimize the stability of the solutid~orm > 1, the asymptotic expression
ast — t. is of the form X X

x(t) @ mm (to —t)m , (14)

where the critical timeé.. is given by expression (33). However, we shall allow the gur&fr and
t. to be adjusted to ensure maximum stability. Specificallg, determined value of. will be a
primary result of the crossover technique.

Our goal is thus to construct a functigiit) which incorporates the short and long time asymp-
totics of the solution as given by expressions (12) and (@B8»f < 1 and by (12) and (14) for
m > 1, while possibly departing from it at intermediate times biova for a maximum stability.
The general mathematical formulas that are the solutiohisfdroblem are given in Appendix A
for the two cases: < 1 and form > 1 respectively.

For the application to the Vaiont landslide, and for eacte$§ent timet,,.,, we assume that
m > 1 so thatt. exists and we fit the expression of the fourth-order appresémi; (¢) given by (32)
to the velocity of each of the four benchmarks, extract threesponding parameters and put them in
equation (33) in Appendix A for the critical timg,. We stress that the function thus reconstructed
is essentially indistinguishable from the fit with the stididock friction model. Solving (33) fot,4
allows us to construct the predicted critical time as a fiamcof the “present timet ... We also
estimate the value of: as a function of ... Apart from some large jumps that may be attributed to
the sensitivity of specific noisy points &s. iS scanned, we observe that most fits are compatible
with a value ofm in the rangel.3 — 1.5.

3.3.3 Finite-time singularity (2) with a = 2

We use a simple linear regression of the inverse of the wglasia function of time, as proposed by
Voight [10]. We have found that, in order to have more stali@ameters, it is necessary to give less
weight to the early times where the velocity is small and amdt little information on the critical
time. We find that weighting each data point proportionatlyt$ velocity provides stable fits. The
critical time . is then given as the time at which the fitted straight line ef]thé data intersects
with the time axis. Recall that a linear relation betwé¢ﬁ and timet is equivalent to a power law
singularity of the velocity) ~ 1 /(t.—t), as discussed previously, which is expected asymptaticall
close tot,. for the friction model in the casex > 1 andz; < 1.



3.3.4 Comparison of three different methods of prediction bt. as a function of the “present
time” tmax

The predictions of the critical time obtained from the threethods are shown in Figure 2. A
prediction fort. with an uncertainty of a few days is obtained for the 4 benakmavithin 20
days before the catastrophic failure. The reliability @& girediction is confirmed by the coherence
and agreement between the three methods. Starting ap@ieynatt,,.. = 45 days, one can
observe that, using the friction model, all four time sepesvide a reasonablg prediction which
however tends to increase and to follow the value of the ‘garesme”t,,.,. This is unfortunately a
common feature of fits to power law singularities in which ldmt data points close to the “present”
tends to dominate the rest of the time series and produced&cf@e time of singularity close to the
“present time"t,.x [15, 22]. Thet. value obtained using the fourth-order approximate is avay
a little smaller than the,. estimated from the exact friction model. The renormalaatmethod

is therefore a little better at early times, but the exactifsh model works better at the end. The
t. value obtained by the linear regression1¢6 is too large for smalt, ..., because it is only an
asymptotic solution of the friction model far~ t.. However, this method provides very good
estimates of,. close tot...

To test whether the relative value of these three method# femm a genuine difference in their
stability with respect to noise or rather reflects an inadegof the slider-block friction model to
fit the data, we have generated a synthetic velocity timesabtained by using the slider-block
friction equations with the same parameters as found in the the full data set of benchmark 5
and adding white noise with the same standard deviatioreastlthe real data set. We then applied
the three prediction methods to this synthetic data setrihtiple and by construction, we should
expect a priori that the prediction based on the slideriofoction model should always perform
best since it is th&rue model. This is not what we find, as shown in Figure 3. At timedram ¢..,

i.e. 40 days< t,,4, < 60 days, the friction model is the best, as expected. Howtweprediction
based on the asymptotic linear relation betwéé& and timet is slightly better than the friction
model, starting approximately 9 days before the landslide.

The overall conclusion is that the least sophisticated Gaagr, that is the linear regression of
1/5, seems to perform as well as or slightly better than the stiphted renormalization method
or the exact friction model for “present times” sufficiendipse to the critical time.. For times
further away fromt.., the renormalization method and the exact friction modelsatter. Although
the corresponding power-law is only an asymptotic solubbthe friction model for times close
to t., the linear regression df/5 gives significantly better predictions than the exact madehe
renormalization method. However, we must keep in mind thatuse of the linear regression of
1/5 as a function of time contains two hidden and rather stroegraptions: the power law and the
value of its exponent. Without the slider-block friction deb, these assumptions are just guesses
and are a priori unjustified.

4 Prediction of the aborted 1986-1987 peak acceleration ofd Clapiere
landslide

We now report results on another case which exhibited aimanacceleration which did not result
in a catastrophic failure but re-stabilized. This examplevjgles what is maybe an example of the
m = B/A < 1 stable slip regime as interpreted within the friction modek Clapiere landslide
is located at an elevation between 1100 m and 1800 m on a 3000pe Isigh. The volume of
mostly gneiss rocks implied in the landslide is estimatedeécaround50 x 106 m3. The rock
mass started to be active before the beginning of the 20tluigeMhe displacement rate measured
by aerial photogrametric survey increased from 0.5 m/yrhé11950-1960 period to 1.5 m/yrs



in the 1975-1982 period [23]. Starting in 1982, the disphaerts of 43 benchmarks have been
monitored on a monthly basis using distance meters [23, 2}, Zhe displacement data for 5
benchmarks is shown in Figure 4. The velocity is shown in fédght The rock mass velocities
exhibited a dramatic increase between January 1986 ana@rjah®88, that culminated in the 80
mm/day velocity during the 1987 summer and to 90 mm/day iroet 1987. The homogeneity
of benchmark trajectories and the synchronous accelarphiase for most benchmark, attest of a
global deep seated behavior of this landslide [23]. Howevpartitioning of deformation occurred,
as reflected by the difference in absolute values of bendhdisplacements (Figure 4). The upper
part of the landslide moved slightly faster than the lowett pad the NW block. The observed
decrease in displacement rate since 1988 attest of a chatayalsliding regime at the end of 1987
(Figure 4).

4.1 Correlations between the landslide velocity and the rier flow

The velocity displays large fluctuations correlated witlctiations of the river flow in the valley
as shown in Figure 6. There is a seasonal increase of the wpaty which reaches a maximum
Vmax Of the order of or less thaB0 mm/days. The slope velocity increases in the spring due to
snow melting and over a few days after heavy precipitatiamentrated in the fall of each year
[23, 25]. During the 1986-1988 period, the snow melt andfadis were not anomalously high
but the maximum value of the velocity;,,.x = 90 mm/day, was much larger that the velocities
reached during the 1982-1985 period for comparable radsrdal river flows [23, 24]. This strongly
suggests that the hydrological conditions are not the smhr@l parameters explaining both the
strong 1986-1987 accelerating and the equally strong slawudn 1988-1990. During the interval
1988-1990, the monthly recorded velocities slowed down keval slightly higher than the pre-
1986 values. Since 1988, the seasonal variations of thageeselocity never recovered the level
established during the 1982-1985 period [24, ZR1t[27] derives a relationship between the river
flow and the landslide velocity by adjusting an hydrologiteidel to the velocity data in the period
1982 to 1986. This model tuned to this time period does natodke the acceleration of the
velocity after 1986.

In order to study quantitatively the effect of the precifidas on the landslide velocity, we need
to remove the long-term fluctuations of the velocity that maibe correlated to changes in the pre-
cipitations. Before applying a spectral analysis of theeiy data, we use simple functions to fit the
displacement data. We then subtract this long-term tremmbtain stationary residuals that can be
used to perform a spectral analysis of the fluctuations o¥éhecity. We divide the data of bench-
mark 10 of La Clapiére into three different intervald982.917, 1987.833], [1987.833, 1991.25]
and[1991.25,1995.5]. The initial values of the time and of the displacement aredfito O at the
beginning of each time period. In the first interval, the e#lprises (with fluctuations); in the sec-
ond interval, the velocity decreases (with fluctuations)thie third interval, the velocity fluctuates
around a constant. We used non-linear Least-Square fitsdiffiéiment fitting functions separately
within each interval. The results of the fits are the follogvin

1. Inthe firstinterva[1982.917,1987.833], we fit the displacement by(t) = a(|1—t/to| > —1)
with a = 8.96,b = 1.01 andty = 6.26 years.

2. For the second interval987.833,1991.25], we use the same functional form with =
10.42,b = 0.4106 andty = —0.1081. The negative value ofy implies a decay of the
displacement.

3. For the third interval1991.25,1995.5], we use a fit byd(t) = at® which has only two
parameters = 7.4687 andb = 0.989.



The goodness of fit is very good in all three regimes: the stahdeviations of the residuals being
of the order 0f0.4 while the magnitude of the displacement is ab&wtthis yields a signal-over-
noise ratio ofr5, which is very good.

Figure 7 compares the Burg’'s power spectrum of the flow ratekeoTinée river and of the
detrended velocity residuals. The Burg spectrum is a snedoBT (fast-Fourier transform) ob-
tained by approximating the true spectrum by that of an agtesssive process of a finite order. The
top panel of figure 7 exhibits the Burg's power spectrum offtbw rates of the Tinée river on the
1982-1988 and on the 1988-1996 periods, which are proxiteeafycle of precipitations and snow
melting. The bottom panel of figure 7 shows the Burg’'s powecspm of the detrended velocity
residuals for these two periods.

In the first time interval 1982-1988, a strong peak at theqoeof 1 year appears both for
the velocity residuals and for the river flow. This corregpemce is confirmed by the strong cross-
correlation between the river flow and the landslide velpeihich is also directly apparent visually
in Figure 6. We now use the language of system theory anddemsie river flow as an input (or
a forcing) and the landslide velocity as an output of theesystThese observations of a common
spectral peak and of a strong cross-correlation are thempatinte with a view of the system as
being linear or only weakly non-linear.

In contrast, the (linear) correlation between the river filoput and the landslide velocity output
disappears in the second time interval 1988-1996, as candesm from the absence of a spectral
peak at the period of years and a very weak peak at the periochonths = 2 year!) in
the (output) landslide velocity spectrum compared withtthe strong peaks at the same periods
of 1 years ands months observed in the (input) river flow spectrum. This kdesn of linear
correlation seems to be associated with the birth of a stpeads close to the sub-harmonic period
of 2 years (f = 0.5 year!), which is absent in the river flow rate. This suggests thiohg
interpretation. Frequency doubling or more generally degy multiplications are the results of
simple nonlinearities. Indeed, higher frequency overaneriver runoff is very common feature
of hydrological regime [28]. In contrast, the creation obsarmonics requires bifurcations or
period-doubling, for instance involving nonlinear proges with time delays. It thus seems that
the input of rain and snow melting is transformed by the systleiring the second time interval
via the process of such delayed period-doubling nonlitieari It is intriguing that the change of
sliding regime to a reduction of velocity in the second tim&eival seems here to be associated
with such a sub-harmonic non-linearity, which could be thsuit of a change of topology of the
block structures (through fragmentation) and of the dalimn of novel fresh surfaces of sliding.

It would also be interesting to add a periodic forcing to ourdels to better capture the time-
dependence of the velocity and study its possible nonlineasequences. This is left for a future
work, together with a complete description of the three tintervals by the slider-block friction
model.

4.2 Prediction of La Clapiere change of sliding regime in 1983-1988

Our previous analysis of the calibration of the frictionabahel to the displacement of La Clapiere
data finds thatn = B/A is very close to but smaller than one, while the value,af significantly
larger than 1. The corresponding fit of the displacement wétathe slider-block model is shown
in figure 8. This argues for La Clapiere landslide to be in stable regime [1]. However, the
transition time (defined by the inflection point of the dig@ment) is found to increase with,.x
as shown in figure 9. This may argue for a change of regime froracaeleration regime to a
restabilization before the time= 1988 of the velocity peak (corresponding to the inflection point)
The parameter$ andx; found in this analysis are also poorly constrained. Sinmésults are
obtained for different benchmarks.
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The analysis of the velocity data seems to reinforce sometheadea of a change of regime
from an unstable to a stable phase, as shown in figures 10 anithel Early acceleration was in
the unstable regime: > 1 but did not reach the instability due to a change of morphglotpck
partition and the creation of new active surfaces of slidifihis interpretation is suggested in
particular by the plot of the inverse of the velocity shownFigure 11, which is close to linear
at early times. Over the route toward the finite-time singiathe landslide perhaps did not
succeed in accommodating the velocity increase and desgeddrsy changing geometry and loading
conditions (block partitioning). In other words, the sa@uatshown in Figure 8 withn < 1 may
rather describe a transient from an unstable state to a&stgime. In particular, we cannot exclude
the possibility that the surfaces have all along been cteniaed by the regimé3 > A and then
a change of geometry and surfaces of sliding may have reseaethuced state variable given
by expression (6). Another possibility is that the frictiparametem has changed frorm > 1
tom < 1, leading to a stable deceleration of the displacement &fi88. It is not unreasonable
to conjecture that the internal stresses associated wittcagated by the accelerating phase may
have led to its fragmentation into several sub-entitiesating fresh surfaces and resetting the state
variable or then-value characterizing the surfaces of contact. This is mlitative agreement with
field observations of new faulting patterns since 1987, wisighal a change in the geometry of
the landslide involving the regression of the main scarp laoked sub-entities [24, 29]. These
observations provide evidence for a change in both the heashdorce (mass push from the top)
and the activated basal surfaces. These morphologicabebauggest that the 1987-1988 period
has been a transition period for the evolution of La Clap®iding system over the last 50 years.
In the block-slider model, this amounts to modifying theiaalesS andé; and thus to reset. In
this interpretation, the change of regime observed for Lapiere could then be due to a change
from z; < 1 (unstable acceleration) te; > 1 (stable deceleration). This change fram < 1
to z; > 1 may be interpreted as either an increase of applied shemsst@ decrease of normal
stress, or an increase of the surface of contacts betweeslitey surfaces. Thus, within the
slider-block model, one can characterize the post 1988&latedevolution in terms of new sliding
surfaces being mobilized which are more stable that thaquewnes due to more numerous and/or
efficient contacts.

Appendix B explores what would have been the predictectatitimet. estimated in real time
prior to the velocity peak, according to this scenario of astable acceleration towards a finite-
time singularity. We have seen that, while the slider-bloaddel as well as the power law formula
(2) provide excellent fits to the data, they do not lead to w&taple predictions of the critical time
t. on the Vaiont data as well as on synthetic tests generatdgtinrtstable regime: > 1. It may
thus be valuable to test the approach of Gluzman et al. [2@§rms of a version of the functional
renormalization approach already discussed in relatidh thie Vaiont landslide. It is our hope that
this approach could provide in a more robust determinatfan.o

Figure 12 compares the prediction of a fit using a polynonfiakder two in time to the inverse
of the velocity (panel (a)) with the prediction of the renalimation approach (panel (b)). In each
panel, two curves are presented corresponding to two éiffestarting points of the data taken into
account in the predictions: the points to the left corresiorthe first date taken into account in the
predictions; therefore, the predictions correspondintpéocrosses use approximately two years
fewer data than the predictions shown with the open cirdlegs allows us to compare the effect of
missing data or alternatively the effect of a non-criticahlvior at the beginning of the time series.
The abscissa,.x is the running “present time”, that is, the last time of théedaken into account
to issue a prediction. The prediction with the polynomiabsh in panel (a) of Figure 12 can be
seen as an improvement in methodology over the Voight faar(@)l which corresponds to a linear
fit of the inverse velocity with time fooe = 2. Comparing panels (a) and (b), the renormalization
method seems to present a smaller dispersion and bettegrgemee: in particular, about half-a-
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year prior to the time of the maximum realized velocity iraded by the horizontal dashed line, the
prediction of this date by the renormalization method ughmy longer time series becomes very
precise. Thus, a critical time close to the time of the vé&jopeak would have been predicted
starting approximately half-a-year year from it. It is thest unreasonable to consider the velocity
peak as a proxy for the critical time that the system wouldehtexhibited in absence of a change of
regime, since on its approach the largest internal stresagslevelop and may fragment the block
and modify the morphology of the landslide, thus resettieggeometry and some of the parameters
of the model. In this scenario, we would thus expect thatithe of the peak velocity should be
not far from what would have been the critical time of catggsic failure of the landslide.

We should however point out that the functional renormélimamethod used in this Appendix
B does not work for the Vaiont landslide because of a techmstability whose fundamental origin
is not understood by these authors. Technically, the nwaleristability comes from the absence
of alternating signs in the polynomial expansion at eartye. This technical problem thus casts
some shadow on the usefulness of the approach describedtieteis unable to tackle the regime
which is undoubtedly unstable. This limitation suggestaimdhe importance of working with
several alternative and competing models, as further sészliin the following concluding section.

5 Discussion and conclusion

We have extended the quantitative analysis of our compagraper [1] on the displacement history
for two landslides, Vaiont and La Clapiere, to explore thmitential predictability. Using a vari-
ety of techniques, we have tried to go beyond the time-indeéget hazard analysis provided by
the standard stability analysis to include time dependesdiptions. While our present inversion
methods provide a single estimate of the critical tilmef the collapse for each inversion, a better
formulation should be to translate these results in termes obability of failure, as for instance
done by Vere-Jones et al. [30].

Using the innovative concept of applying to landslides tiagesand velocity dependent friction
law established in the laboratory and used to model earkegimition, our inversion of this simple
slider-block friction model shows that the observed movetmiean be well reproduced and suggest
the Vaiont landslide (respectively La Clapiéere landslide belonging to the velocity weakening
unstable (respectively strengthening stable) regime.

For the Vaiont landslide, the friction model provides gooeldictions of the time-to-failure up to
20 days before the collapse. A pure phenomenological moggiested by Voight [10] postulating
a power law finite-time singularity ~ 1/(t. — t) with unit exponent obtains similar results up to
10 days before the collapse. Our approach can be seen adipgosiphysically-based derivation
of this phenomenological model as well as a generalizatarapture three other possible regimes.

For la Clapiere landslide, the inversion of the displaceinaata for the accelerating phase
1983-1888 up to the maximum of the velocity gives< 1, corresponding to the stable regime.
The deceleration observed after 1988 implies that, not @nlg Clapiere landslide in the stable
regime but in addition, some parameters of the friction lawehchanged, resulting in a change
of sliding regime from a stable regime to another one charaetd by a smaller velocity, as if
some stabilizing process was occurring. Possible caretidatr a change in landsliding regime
include the average dip slope angle, the partitioning ofkdo new sliding surfaces and changes
in interface properties. However, another possible im&gtion is that this landslide was initially
in the unstable regime, but did not reach the instability hua change of geometry and of sliding
surfaces. The best fit obtained with < 1 for the accelerating phase 1983-1988 would then
describe a transient regime between the unstable regimiharstiable regime, due to a progressive
change in the model parameters. This second scenario seemgdrsimonious but cannot be
completely excluded.
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The present work has offered the novel conceptual frameanddanguage of the slider-block
model, which can be used to classify the relative merits artbpmance of other models. For an
assessment in real time of the upcoming risks of a catastrdaiture, one should then consider
both scenarios (stable versus unstable which are encodpdctesely by the range of parameters
m < 1 andm > 1 in the slider-block model) and test the data using the aviailassociated
theoretical models, some of which have been presentedsm#per. Such an approach in terms
of multiple scenarios [31, 32, 33] can help assess socistd.r A systematic exploration of such
approaches will extend the preliminary investigation agglits offered here.
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AH and JRG were supported by INSU french grants, Gravitaabimstability ACI. SG and DS ac-
knowledge support from the James S. Mc Donnell Foundatish&@ntury scientist award/studying
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A Appendix A: Functional renormalization group formulas for the
friction law (9) and (10)

Consider an expansion as in (12) of an observabit¢in powers of a variable given byzy(u) =
Zﬁ:o an, u". The method of algebraic self-similar renormalization stancts so-called “approx-
imants”, which are reconstructed functions that best fyatlee imposed asymptotic constraints
while obeying criteria of functional self-similarity and maximum stability in the space of func-
tions [17, 18, 19]. These approximants are given by theviolig general recurrence formula for
the approximate:; (u) of orderk as a function of the expansian,_ (u) up to orderk — 1 :

s/k

—k/s

" k ap N
rp(u) = |2, (u) — — uF

S

(15)

The crossover index is determined by the condition that the leading terms of ttgaesion of
z}(t) ast — 0 must agree with the expansionof(u).

For the friction model (9) and (10), the coefficientsin (12) and (15) are determined by the
friction parameters and the initial conditions

a = Yo, (16)
a; = 00_1 -8 yé_m, (17)
a, = %S (m—1)aiyy ™, (18)
a3 = éa(m -1) {—m ai yo ™' + 2ay xgm} ) (19)
ay = iS(m—U [(1+m) maf yg™

— 6m as alyo_m_l +6as yo "] (20)

Whereyo = 9(75 = 0)/90

A.l Casem <1

As we see from (13), the natural expansion variabke s exp (—ti*).
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The first-order and simplest approximate is

—S

zi(u) =2 (1+cu)* =2" (1 + cexp (—ti*)) , (21)

with * = 1/T whereT is given by (11). The crossover amplitudeand the crossover index
are determined by the condition that the expansion;¢f) ast — 0 must agree with the first two
terms of expression (12), leading to the following systeraaiations,

2 (1+c¢)° =x9, (22)
=a. 23
BT SIS B (23)
The crossover index is then given by
~ In (xo/2*)
 In(l+e¢)’ (24)
while the crossover amplitudesatisfies the following equation:
1 * t*
n(zo/x*) ¢ __m (25)
In(l4+¢) (14+¢) x0

The second-order approximate is given by

zy(u) = [(1 + cou) 2 + cluﬂ_s1

(1 + co exp (—%))_82 + c1 exp (—%)] - . (26)

The crossover amplitudes, c; and crossover index; and s, are obtained from the condition
that the expansion of3(t) ast — 0 must recover the first four terms of expression (12). The
corresponding expressions are rather long and will not begmted here explicitly. Interestingly,
for m = 0, the second-order approximate recovers the exact solution

x*

A2 Casem >1

In this case, the natural variable in the expansiandst. Our goal is to obtain the critical timg as

a function ofm. Using the crossover technique [19] for the two asymptotressions (12) at short
time and (14) close tt., we obtain a sequence of approximanist), x5(t),z5(t) andz}(t) asso-
ciated with a sequence of improving approximations for thiégcal time, t.1(m), t.o(m), tes(m)
andt.4(m). All approximants agree term-by-term with the correspogdshort time expansion
and lead to the critical behavior (14) agoes to the corresponding critical time. The first-order
approximate is

1/m
xi(t) = xo <1 + By t> , with ¢, = — T (27)
i) m aj

Interestingly,z (¢) coincides with the exact solution in the limit — oo, which takes the form
1
x =" ((wo/x")™ — (/7)) ™.
In the next order, we obtain the second-order approximate

ma2 t2

T/m | (28)

5(1) [(u @ t)m+
z5(t) = —
2 0 o o
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andt.s is solution of the following equation

a ™ ma
(1 + 2 t02> + 22 =0. (29)
Zo Zo

The third order approximate reads

m 1/m
Zi(t) = xo Kl + 3y 9t2> + % t‘ﬂ : (30)
i) )

andt.s satisfies the following equation

ay az o\ mas
1+—1t —t toa =0. 31
< +xo C3+x0c3) + oy e (31)
The fourth-order approximate is given by
a az o as g\" ma441/m
mj(t):moKl%——t—l——t +—t> + t} , (32)
Zo Zo Zo Zo
with ¢4 solution of the equation
(1+ﬂt4+%t2 +%t3)m+ T —0 (33)
To C 7o c4 To cd To c4 .

Note that form = 1, all approximants are identical and equal to the exact isolut

B Appendix B: Functional renormalization of polynomials expansions
for the prediction of ¢. as a function of the “present time” t,,,,, for
La Clapiere landslide

This appendix present tests of the prediction of the timefithvthe velocity peaked, following
the hypothesis discussed in the main text that the ensucgjatation resulted from a change from
x; < 1tox; > 1in the velocity weakening regimB > A. According to this interpretation, the
first accelerating phase should be described by an incgesslocityx 1/t. —t). The critical time

t. can be approximated by the time of the peak of the velocitytiver words . is close to the
inflection point of the displacement as a function of time.

Rather than using the version of the functional renormtatimamethod described for the Vaiont
landslide based on the slider-block equations of motionysechere a simpler version that has been
tested earlier in another rupture problem [20]. This chaogoverned by the fact that we can not
rely entirely on the friction model with fixed parameterscgirwe know that a change of regime
occurred. We thus follow a more general approach which islependent upon a specialized spec-
ification of the equations of motion. The previous invedtigaon a model system [20] developed
theoretical formulas for the prediction of the singularéiof systems which are a priori known to
exhibit a critical behavior, based solely on the knowledfythe early time evolution of an observ-
able. From the parameterization of such early time evaiuitioterms of a low-order polynomial
of the time variable, the functional renormalization agmio introduced by Yukalov and Gluzman
[17] allows one to transform this polynomial into a functiatich is asymptotically a power law.
The value of the critical time., conditionedon the assumption that exists, can then be deter-
mined from the knowledge of the coefficients of the polyndmi&luzman et al[20] have tested
with success this prediction scheme on a specific exampleshoded that this approach gives
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more precise and reliable predictions than through the tife@symptotic power law model, but
is probably not better than the true model when the later asvkn

The input of the method is the inverse of La Clapiére blodieiy ¢ as a function of time up
to the “present timet,,.x. One starts with a simple polynomial fit ibe as a function of time from
some starting time up th,... One then applies the functional renormalization methquaéed
in [20] to this polynomial expansion. We restrict our an&y® expansions of up to second-order
in time:

1/6 =1+ byt + bot? | (34)

where the zeroth-order coefficieithas been put equal foby a suitable normalization of the data.
The first order approximant for the inverse velocity ready [2

s
Fr(t) = <1 - b—lt) . (35)
51
The second order approximant is
. by N\
Fj(t) = 1+ bit <1 _ —t> . (36)
b182

The exponents; andssy are control parameters that are determined from an optitakility crite-
rion. We follow [20] and impose; = s = s, which is a condition of consistency between the two
approximantss is now the single control parameter, and plays the role oftitieal exponent at the
critical pointt.. The condition of the existence of a critical point is thattbapproximants;(¢)
and Fy (t) of the inverse velocity should vanishiat ¢.. This yields two equations determining
ands, which can be solved numerically.

The numerical estimates @t., s) depends on the time interval over which the polynomial
coefficientsb; andb, are determined. Let, .. denote the last point used in the polynomial fit.
Figure 12 shows the numerical estimatetpfas a function of,,,.. More precisely, Figure 12
compares the prediction of a fit using a polynomial of order imtime to the inverse of the velocity
(panel (a)) with the prediction of the renormalization aygwh (panel (b)).

We have also fitted a power law to the data to extract an ediofdt. as a function oft .
and find an extremely unstable prediction wheréuctuates wildly ranging from two years before
the end of 1987 to 25 years after 1987. Clearly, predictimgctiange of regime from a power law
fit of the acceleration in the first phase of La Clapiére is plately unreliable. In contrast, the
renormalized approximants provide a more reasonableestsiimate.
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Figure 1. For each of the four Vaiont benchmarks, the curnvalatisplacement data is fitted with
the slider-block model with the state and velocity frictimw (10) and (9) by adjusting the set
of parametersn, D/T and the initial condition of the state variahle. The data is shown as
the crosses linked by straight segments and the fit is thectiritinuous line. The fitteeh are
respectivelym = 0.99 (benchmark 5)m = 0.85 (benchmark 63} = 0.68 (benchmark 67) and
m = 0.17 (benchmark 50). The fits with the slider-block model obtditxy imposing the value
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m = 1.5 are shown with the dashed line for comparison.
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Figure 2: Predicted critical timé. as a function of the “present time), ... (last point used for

the fit) for all four benchmarks of the Vaiont landslide, gsthree different methods of prediction
described in the text: renormalization method (circles)ynarical evaluation of the friction model
(10) (crosses), and linear regression of the inverse wgla@s a function of time performed by
removing the first point (early time) of the curve and usingeighit proportional to the velocity
(dots). The horizontal dashed line indicated the trueaaitiimet. = 69.5 days (for an arbitrary

origin of time from which the fits are performed to the cataghic landslide. All methods impose
m > 1, but in some cases a better fit may be obtained in the stablaeeg < 1.
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Figure 3: Same as Figure 2 for a synthetic data set with the sgmrameters and noise as those
obtained for benchmark 5 of the Vaiont landslide, using aesthree different methods of predic-
tion. The right panel is a zoom of the left panel closé.tdl he horizontal dashed line indicated the

true critical timet. = 69.8 of the catastrophic landslide.
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Figure 4: Displacement for the 5 benchmarks on La Clapiée& in this study.
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Figure 6: Velocity pattern for benchmark 10 of La Clapiéardslide (solid line and dots) and flow
rates (thin solid line) of the Tinée river on the 1982-19%%igpd. Because the Tinée river runs at
the basis of the La Clapiere landslide, the river flow rafkects the water flow within the landslide
[24, 25]. The flow rates are measured at St Etienne villagen 2fstream the landslide site. There
is no stream network on the landslide site. The Tinée floindra 170 km basin. This tiny basin
is homogeneous both in terms of slopes and elevation (inGB8-B000 m range). Accordingly the
seasonal fluctuations of the river flow is admitted to refleetdvolution of the amount of water that
is available within the landslide slope due to rainfalls andw melting. Data fronCETE [1996].
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Figure 7: Top panel: Burg's power spectrum of the flow ratethefTinée river on the 1982-1988

and on the 1988-1996 periods which are aggregated from ttiedseshown in figure 6. Bottom
panel: Burg’s power spectrum of the detrended velocitydiesds for the same two periods.
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Figure 8: Displacement for benchmark 10 of la Clapiére $idd (crosses) and fit using the friction

model. The best fit gives: = 0.98 (black line). The gray line shows the best fit obtained when
imposingm = 1.5 for comparison.

26



(yrs)

t
w

1.5 | | | | | |
1.5 2 2.5 3 3.5 4.5 5
tmax (yrs)

Figure 9: Predicted value of the tintge of the inflection point of the velocity for La Clapiere
landslide, using a fit of the displacement data with theifiitctmodel. All points correspond to
the stable regimen < 1. In this regime there is no finite-time singularity of the agty but a
transition from an accelerating sliding to a stable slidiogtimes larger than the inflection point
t.. This parameter is poorly constrained by the fit and increasth the time of the last poirtt,, ..
used in the fit.
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Figure 10: Velocity for benchmark 10 of la Clapiére landsl{crosses) and fit of the velocity data
with the friction model. The best fit gives = 0.99 (black line).
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Figure 11: Same as Figure 10 showing the inverse of the \gloci
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Figure 12: Panel (a): prediction of a critical time using avith a polynomial of order two in time
to the inverse of the velocity; panel (b): prediction of temarmalization approach described in
Appendix B. In each panel, two curves are presented comelépg to two different starting points
of the data taken into account in the predictions: the leftpoints correspond to the first date taken
into account in the predictions; the predictions corresiomn to the crosses use approximately
two years fewer data than the predictions shown with the @iretes. The abscissg,.. is the
running “present time”, that is, the last time of the datetalito account to issue a prediction. The
maximum realized velocity occurred at a time indicated keyHbrizontal dashed line. This time is
thus a proxy for the ghost-like critical time of the landslid
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